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Abstract
We develop e-variables for testing whether two or more data streams come from
the same source or not, and more generally, whether the di↵erence between the
sources is larger than some minimal e↵ect size. These e-variables lead to exact,
nonasymptotic tests that remain safe, i.e., keep their type-I error guarantees, under
flexible sampling scenarios such as optional stopping and continuation. In special
cases our e-variables also have an optimal ‘growth’ property under the alternative.
While the construction is generic, we illustrate it through the special case of k⇥ 2
contingency tables, i.e. k Bernoulli streams, allowing for the incorporation of
di↵erent restrictions on the composite alternative. Comparison to p-value analysis
in simulations and a real-world 2 ⇥ 2 contingency table example show that e-
variables, through their flexibility, often allow for early stopping of data collection
— thereby retaining similar power as classical methods — while also retaining the
option of extending or combining data afterwards.
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Chapter 2

2.1 Introduction

We develop hypothesis tests that remain statistically valid under flexible sampling
scenarios, in which one is allowed to engage in optional continuation and optional
stopping. We focus on the setting with data coming from several groups (often:
treatment(s) versus control), with the goal of testing whether the underlying dis-
tributions are all the same. We design a family of tests for this scenario based
on e-variables and test martingales that preserve type-I error guarantees under
optional stopping. Hence, if the level ↵-test is performed and the null hypothesis
holds true, the probability that the null will ever be rejected is bounded by ↵.
Our tests can be implemented, and are exact, for composite null and alternative
hypotheses, arbitrary distributions and in combination with arbitrary divergence
measures. While our e-variable construction works for general parametric models,
in the practical part of this paper we restrict ourselves to sequential categorical
data, i.e. Bernoulli streams, for which we provide explicit implementation details
and test scenarios.

Relevance Even in this age of big data and huge models, simple tests for com-
paring two populations are still used as heavily as ever in clinical trials, psycholog-
ical studies and so on — areas heavily plagued by the reproducibility crisis [Pace
and Salvan, 2020]. In a by-now notorious questionnaire [John et al., 2012], more
than 55% of the interviewed psychologists admitted to the practice of ‘adding
data until the results look good’. While classical methods lose their type-I error
guarantee if one does this (an example of this is provided in Appendix S2.D of
the Supplementary Material), e-variable based tests allow for it, while, due to the
option of stopping early, remaining competitive in terms of sample sizes needed
to obtain a desired power. We illustrate the practical advantage of our test in
Section 2.7 using the recent real-world example of the SWEPIS trial which was
stopped early for harm [Wennerholm et al., 2019]. Their analysis being based on
a p-value (by definition designed for fixed sampling plan), the question whether
there was indeed su�cient evidence available to stop early is very hard to answer,
since the sampling plan was not followed, and consequently the p-value based on
which they stopped the study was by definition incorrectly calculated. This also
makes it very di�cult to combine the test results with results from earlier or future
data while keeping anything like error control. We show that with our e-variable
based methodology we would have obtained su�cient evidence to stop for harm
after the same number of events had occurred, because we are allowed to perform
an interim analysis each time one pair of treatment and control samples have been
collected. Additionally, this e-variable, even though based on a stopped trial, can
be e↵ortlessly combined with e-variables from other trials while retaining error
guarantees. Also, our results are of interest beyond mere testing: the e-variables
we develop in this paper can be used to obtain anytime-valid confidence intervals
[Howard et al., 2021] that also remain valid under optional stopping [Turner and
Grünwald, 2023].

In Section 2.4 and 2.5 we refine our generic test to the 2⇥ 2 and k ⇥ 2 model.
An advantage of focusing on this simple setting is that it is arguably the simplest

22



and clearest example in which there is a nuisance parameter (the proportion un-
der the null) that does not admit a group invariance. Nuisance parameters that
satisfy such an invariance (such as the variance in the t-test, or the grand mean
in the two-sample t-test) are quite straightforward to turn into e-variables and
test martingales via the method of maximal invariants, as explained by Grünwald
et al. [2022a] and already put into practice by e.g. Robbins [1970], Lai [1976].
The present paper shows that the proportion under the null can also be handled
in a clean and simple manner. As explained below, the resulting instantiated
2⇥ 2 test appears to be quite di↵erent from existing sequential and Bayesian ap-
proaches. Thus, more than 85 years after the lady tasting tea, we are able to still
say something quite new about the age-old problem of contingency table testing.

Related Work A sequential test for the 2 ⇥ 2 setting has been suggested as
early as 1947 by Wald (1947). Wald’s test statistic can be viewed as a product
of e-variables and hence his test can be modified so as to remain valid under op-
tional stopping. Yet, as explained in Section 2.8.2, in the 2 ⇥ 2 setting, Wald’s
e-variables lack the optimality property of the ones we introduce here, and they
cannot be generalized to arbitrary models or e↵ect size notions. Other earlier ap-
proaches (e.g. [Siegmund, 2013, Section V.2] and [Johari et al., 2022]) are based
on asymptotic approximations, or consider a somewhat di↵erent problem in which
the null is simple [Lindon and Malek, 2022] (and then standard likelihood ratio
tests [Royall, 1997] can be used). In contrast, our e-variable based tests are exact
and nonasymptotic, meaning they are valid in (even the smallest) finite samples,
and hold for general composite null and alternative hypotheses. e-variables also
o↵er a lot more flexibility than traditional ↵-spending and group sequential meth-
ods: although these methods allow for interim looks at the data, most often at
pre-specified moments, a maximum sample size still needs to be set in advance,
which does not truly allow for optional stopping and optional continuation (a more
elaborate comparison of the two methods can be found in Ter Schure et al. [2020,
Section 1]).

In fact our tests are more closely related to, yet still di↵erent from, Bayes factor
tests: in the case of simple null hypotheses, e-variable based tests coincide with
Bayes factors [Grünwald et al., 2022a]. However, in the 2⇥2 setting the null is not
simple, and while the Bayes factor is a ratio of two Bayes marginal likelihoods, our
e-variables are ratios of more general, ‘prequential’ [Dawid, 1984] likelihood ratios.
In some special cases, the numerator is still a Bayes marginal likelihood, but the
denominator, in the 2 ⇥ 2 setting, almost never is (Section 2.3.2) . Thus, while
similar in ‘look’, our approach is in the end quite di↵erent from the default Bayes
factors for tests of two proportions that were proposed by Kass and Vaidyanathan
[1992] and by Jamil et al. [2017], the latter based on early work by Gunel and
Dickey [1974]. To illustrate, in Appendix S2.C (Supplementary Material) we show
that none of the variants of the Gunel-Dickey Bayes factor that are applicable in
our set-up yield valid e-variables (are anytime-valid).

Another recent approach that bears some similarity to ours are the two-sample
tests from Manole and Ramdas [2023], Shekhar and Ramdas [2021]. They focus
on a nonparametric setting and their test martingales satisfy optimality properties
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Chapter 2

as the sample size gets large. Instead, we focus on the parametric case and, for
this case, manage to derive e-variables that are equal to or closely approximate to
“optimal” (see section 2.2.2) e-variables, thus optimizing for the small-sample case
(in principle, our tests could be used in a nonparametric setting as well, but since
they rely on using a prior on the alternative, the test martingales of Manole and
Ramdas [2023], Shekhar and Ramdas [2021] might be easier to use in that case).
Another general nonparametric two-sample approach with a sequential flavor, but
without optional stopping error guarantees, is Lhéritier and Cazals [2018].

Contents In section 2.2 we formally introduce the notation used throughout this
paper and restate the concepts of e-variables, optional stopping and the Growth
Rate Optimality (GRO) criterion, GRO being the analogue of ‘optimal power’ in
our optional continuation setting. In Section 2.3 we propose our generic e-variable
for tests of two streams in general and investigate when it has the GRO property.
In Section 2.4 and 2.5 we specifically show how these general e-variables can be
applied in the setting of a test of two proportions, with and without restrictions on
the alternative hypothesis. In Sections 2.6 and 2.7 we provide, through simulations
and a real-world example, comparisons of various e-variables and Fisher’s exact
test with respect to GRO and power. In Section 2.8 we compare our generic
approach to other e-variables one might define for this problem, including the
ones based on Wald’s test. We end with a conclusion. All proofs are in the
Supplementary Material.

2.2 Setup, notation and preliminaries

In this section we describe our setup and notation in detail, and cover the neces-
sary preliminaries from the theory of safe anytime-valid inference with e-variables.
We refer to Ramdas et al. [2022], Grünwald et al. [2022a], Shafer et al. [2021], re-
spectively, for an extensive introduction to this theory, to the use of e-variables in
‘optional continuation’ over several studies in particular, and to their enlightening
betting interpretation.

2.2.1 Setup

Suppose we collect samples from two distinct groups, denoted a and b. In both
groups, data are i.i.d. and come in sequentially — even though, as explained
underneath (2.2) below, our approach can also be fruitfully used in the fixed design
case. We thus have two data streams, Y1,a, Y2,a, . . . i.i.d. ⇠ P✓a and Y1,b, Y2,b, . . .

i.i.d. ⇠ P✓b with ✓a, ✓b 2 ⇥, {P✓ : ✓ 2 ⇥} representing some parameterized
underlying family of distributions, all assumed to have a probability density or
mass function denoted by p✓ on some outcome space Y. We will use notation
P(✓a,✓b) (density p(✓a,✓b)) to represent the joint distribution of both streams. Since
it considerably simplifies notation and treatment, we focus on two-sample tests
throughout the paper, pointing out at the relevant places how to extend our results
to the k-sample setting for k > 2. We further assume that all streams are mutually
fully independent, so that (returning to k = 2), the (marginal) probability of the
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first t = ta + tb outcomes, given that ta of these are in group a and tb in group b,
and writing y

t = (y1, . . . , yt), is given by the probability density (or mass function)

p✓a,✓b(y
ta
a , y

tb
b ) := p✓a(y

ta
a )p✓b(y

tb
b ) =

taY

t=1

p✓a(yt,a)
tbY

t=1

p✓b(yt,b). (2.1)

To indicate that random vector (Y ta
a , Y

tb
b ) := (Y1,a . . . , Yta,a, Y1,b, . . . , Ytb,b) has a

distribution represented by (2.1) we write ‘Y ta
a , Y

tb
b ⇠ P✓⇤

a,✓
⇤
b
’. According to the

null hypothesis H0 = {P✓a,✓b : (✓a, ✓b) 2 ⇥0}, ⇥0 = {(✓, ✓) : ✓ 2 ⇥}, both processes
coincide. Thus, we have that ✓⇤a = ✓

⇤
b = ✓0 for some ✓0 2 ⇥ and then the density

of data y
ta
a , y

tb
b is given by p✓0(y1,a, . . . , yta,a, y1,b, . . . , ytb,b). The alternative H1

expresses that d(✓a, ✓b) > � for some divergence measure d and some e↵ect size
� � 0.

To enable sequential application of our e-variables, we define a block Y(j) as
a set of data consisting of na outcomes in group a and nb outcomes in group b,
for some pre-specified na and nb. The na and nb used for the j-th block Y(j) are
allowed to depend on past data, but they must be fixed before the first observation
in block j occurs (this rule can be loosened to some extent, see Section 2.3.1 and
Appendix S2.E). A classical paired one-sample test corresponds to the special case
with na = nb = 1 and data coming in in the order a, b, a, b, . . ..

2.2.2 e-variables and test martingales

While to some extent going back as far as Darling and Robbins [1967], interest in
e-variables has exploded only very recently [Howard et al., 2021, Ramdas et al.,
2020, Vovk and Wang, 2021, Shafer et al., 2021, Grünwald et al., 2022a, Pace
and Salvan, 2020, Manole and Ramdas, 2023, Henzi and Ziegel, 2022]. In its
simplest form, an e-variable is a nonnegative random variable S such that under
all distributions P in the null hypothesis,

EP [S]  1. (2.2)

We use the term e-value for the realized value of S, analogously to its classical
counterpart, the p-value. Our test works by first designing e-variables for a single
block of data, and then later extending these to sequences of blocks Y(1), Y(2), . . .

by multiplication. At each point in time, the running product of block e-values
observed so far is itself an e-variable, and the random process of the products is
known as a test martingale:

Definition 2.1. Let {Y(j)}j2N, with all Y(j) taking values in some set Y, represent
a discrete-time random process. Let H0 be a collection of distributions for the
process {Y(j)}j2N. For all j 2 N, let S(j) be a non-negative random variable that

is adapted to �(Y (j)), with Y
(j) = (Y(1), . . . , Y(j)), i.e. there exists a function s

such that S(j) = s(Y (j)).

1. We say that S(j) is an e-variable for Y(j) conditionally on Y
(j�1) if for all
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P 2 H0,
EP

⇥
S(j) | Y(1), . . . , Y(j�1)

⇤
 1. (2.3)

That is, for each y
(j�1)

2 Y
j�1, all P0 2 H0, (2.2) holds with

S = s(y(1), . . . , y(j�1), Y(j)) and P set to P0 | Y
(j�1) = y

(j�1).

2. If, for each j, S(j) is an e-variable conditional on Y(1), . . . , Y(j�1), then we
call the process {S(j)}j2N a sequential e-variable process relative to the given

H0 and {Y(j)}j2N and we call {S(m)
}m2N with S

(m) =
Qm

j=1 S(j) the corre-
sponding test martingale.

Henceforth, we omit the phrase ‘relative to H0 and {Y(j)}j2N’ whenever it is
clear from the context. By the tower property of conditional expectation, one
verifies that for any process of conditional e-variables {S(j)}j2N, we have for all

m that the product S
(m) is itself an ‘unconditional’ e-variable as in (2.2), i.e.

EP [S(m)]  1 for all P 2 H0. Definition 2.1 adapts and slightly modifies termi-
nology from [Ramdas et al., 2022, Shafer et al., 2011].

Safety The interest in e-variables and test martingales derives from the fact that
we have type-I error control irrespective of the stopping rule used: for any test
martingale {S

(j)
}j2N, Ville’s inequality [Shafer et al., 2021] tells us that, for all

0 < ↵  1, P 2 H0,

P (there exists j such that S(j)
� 1/↵)  ↵. (2.4)

Thus, if we measure evidence against the null hypothesis after observing j data
units by S

(j), and we reject the null hypothesis if S(j)
� 1/↵, then our type-I error

will be bounded by ↵, no matter what stopping rule we used for determining j.
We thus have type-I error control even if we use the most aggressive stopping rule
compatible with this scenario, where we stop at the first j at which S

(j)
� 1/↵ (or

we run out of data, or money to generate new data). We also have type-I error
control if the actual stopping rule is unknown to us, or determined by external
factors independent of the data Y(j). We will call any test based on {S

(j)
}j2N and

a (potentially unknown) stopping time ⌧ that, after stopping, rejects i↵ S
(⌧)

� 1/↵
a level ↵-test that is safe under optional stopping, or simply a safe test.

GRO-Optimality, Simple H1 Grünwald et al. [2022a] (in the first version of
their paper put on arXiv in 2019) introduced a definition of e-variable optimality
that has by now become standard. To explain it, first consider a simple H1 = {Q}

and consider
EQ[logS(j)] ; EQ[logS

(m)] (2.5)

where S(j) and S
(m) are e–variables (i.e. non-negative random variables satis-

fying (2.2)) that, respectively, can be written as a function of Y(j) and Y
(m) =

(Y(1), . . . , Y(m)). The e-variable which maximizes the quantity on the left among
all e-variables that can be written as a function of Y(j), assuming it exists, is called
the Growth Rate Optimal e-variable for Y(j) relative to Q, or simply ‘Q-GRO for
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Y(j)’, and denoted as Sgro(Q),(j). Similarly, the e-variable maximizing the quan-

tity on the right, among all e-variables that can be written as function of Y (m),
is called Q-GRO for Y

(m). Grünwald et al. [2022a], Shafer et al. [2021], Ramdas
et al. [2022] explain why the logarithm is the appropriate function to use here.

In ‘nice’ cases, the Q-GRO e-variable for m outcomes can be obtained by
multiplying the individual Q-GRO e-variables:

Proposition 1. Let H1 = {Q} be simple and H0 be potentially composite, and
‘nondegenerate’ in the sense that for some P 2 H0, D(QkP ) < 1, D(·k·) denoting
the KL divergence. We define the following condition, with q, p the density of Q
and P , respectively:

There exists a P 2 H0 such that S(1) = q(Y(1))/p(Y(1)) is an e-variable. (2.6)

When this condition holds, S(1) = Sgro(Q),(1) is the Q-GRO e-variable for Y(1).
An e-variable of this form automatically exists if H0 is simple. If we further
assume that Y(1), Y(2), . . . are i.i.d. according to all distributions in H0 [H1, then

S
(m)
gro(Q) =

Qm
j=1 Sgro(Q),(j).

If Condition (2.6) holds and Y(1), Y(2), . . . are i.i.d. according to all distributions
in H0 [ H1, it thus makes sense to define the Q-GRO test martingale to be the

test martingale (S(j)
gro(Q))j2N. We will then have that Sgro(Q),(j) = sQ(Y(j)) for a

fixed function sQ : Y ! R+
0 .

In Section 2.3 (Theorem 2.1) we develop functions sQ (denoted
s(·;na, nb, ✓

⇤
a, ✓

⇤
b ) there) for simple H1 = {Q} so that SQ,(1) = sQ(Y(1)) is an e–

variable even though H0 is composite and not convex, so that Proposition 1 does
not apply. Since we invariably assume the Y(j) are i.i.d., SQ,(j) := sQ(Y(j)) is an

e–variable as well and with S
(m)
Q :=

Qm
j=1 SQ,(j), (S

(m)
Q )m2N is a test martingale.

The construction works for the general setting of two data streams discussed in
the introduction, and for some special H0 (even though composite), the SQ,(j)

will in fact be Q-GRO and (S(m)
Q )m2N will be the Q-GRO test martingale. These

include the H0 that arise in the 2 ⇥ 2 setting, our main application. For other
H0, the e-variables SQ,(j) will not necessarily have the Q-GRO-property; they are
designed to have (2.5) large, but it may be even larger for other e-variables.

2.2.3 From simple to composite setting: choice of the e-
variable and optimality

In case H1 is composite, no direct analogue of the GRO-criterion for designing
e-variables exists, since it is not clear under what distribution Q 2 H1 we should
maximize (2.5). In this paper, we deal with this situation by learning Q from the
data in a Bayesian fashion. It is now convenient to write H1 = {P✓ : ✓ 2 ⇥1} in a
parameterized manner (accordingly, henceforth we shall write ✓1-GRO e-variable
instead of P✓1 -GRO e–variable and Sgro(✓),(j) instead of Sgro(P✓),(j)). We will
assume i.i.d. data, thus, if H1 were true, then data would be i.i.d. ⇠ P✓⇤

1
for

some ✓
⇤
1 2 ⇥1. Starting with a distribution W on ⇥1, i.e. a prior, at each point
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in time j, we determine the Bayesian posterior W | Y
(j�1) and use the Bayes

predictive PW |Y (j�1) :=
R
⇥1

P✓dW (✓ | Y
(j�1)) as an estimate for the ‘true’ P✓⇤

1
. As

is well-known, under conditions on W and H1 (which, if H1 is finite-dimensional
parametric, are very mild), the posterior will concentrate around ✓

⇤ and hence
PW |Y (j�1) will resemble P✓⇤

1
more and more, with very high probability, as more

data becomes available.

At each point in time j, we use our current estimate PW |Y (j�1) to design a
conditional e-variable S(j). Note that even though our test depends on the choice
of a prior distribution on the alternative, the choice of prior does not a↵ect the
type-I error safety guarantee, hence it is fine, even from a frequentist point of view,
if such a prior is chosen based on vague prior knowledge. On an informal level,
as long as PW |Y (j�1) converges to the ‘true’ P✓⇤

1
, the S(j) will in fact also start to

more and more resemble the e–variables Sgro(✓⇤
1 ),(j)

we designed for H1 = {P✓⇤
1
}

and which were designed to have a large expected growth under the ‘true’ P✓⇤
1
.

If we had known the true P✓⇤
1
all along, the best test martingale we could have

used is S
(m)
gro(✓⇤

1 )
=
Qm

j=1 Sgro(✓⇤
1 ),(j)

, which maximizes EY (m)⇠P✓⇤1
[logS] over all

e-variables S for Y
(m). Assuming the convergence happens fast, we expect the

following quantity to be small:

EY (m)⇠P✓⇤1

2

4logS(m)
gro(✓⇤

1 )
� log

mY

j=1

S(j)

3

5 , (2.7)

i.e., we may expect that the test martingale
Qm

j=1 S(j) grows not much slower than

S
(m)
gro(✓⇤

1 )
.

2.3 Two-stream safe tests

2.3.1 A generic e-variable for 2-stream–blocks

We first consider the case in which the alternative hypothesis is simple: ⇥1 =
{✓1} for some fixed ✓1 = (✓⇤a, ✓

⇤
b ) 2 ⇥2. Consider a fixed sample size of size

n, and assume that we will observe a block of na outcomes in group a and nb

outcomes in group b. In this case, we can define an e-variable as the likelihood ratio
between p✓⇤

a,✓
⇤
b
and a carefully chosen distribution that is a product of mixtures of

distributions from ⇥0: for na, nb 2 N, n := na + nb and y
na
a = (y1,a, . . . , yna,a) 2

Y
na and y

nb
b = (y1,b, . . . , ynb,b) 2 Y

nb , we define:

s(yna
a , y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) :=

p✓⇤
a
(yna

a )
Qna

i=1

�
na
n p✓⇤

a
(yi,a) +

nb
n p✓⇤

b
(yi,a)

� ·
p✓⇤

b
(ynb

b )
Qnb

i=1

�
na
n p✓⇤

a
(yi,b) +

nb
n p✓⇤

b
(yi,b)

� . (2.8)

Theorem 2.1. The random variable S[na,nb,✓⇤
a,✓

⇤
b ]

:= s(Y na
a , Y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) is
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an e-variable, i.e. we have:

sup
✓2⇥

EV n⇠P✓ [s(V
n;na, nb, ✓

⇤
a, ✓

⇤
b )]  1.

Moreover, if {P✓ : ✓ 2 ⇥} is a convex set of distributions, then S[na,nb,✓⇤
a,✓

⇤
b ]

is the
(✓⇤a, ✓

⇤
b )-GRO e-variable: for any non-negative function s

0 on Y
na+nb satisfying

sup✓2⇥ EV n⇠P✓ [s
0(V n)]  1, we have:

EY na
a ,Y

nb
b ⇠P✓⇤a,✓⇤

b

[log s(Y na
a , Y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b )] �

EY na
a ,Y

nb
b ⇠P✓⇤a,✓⇤

b

[log s0(Y na
a , Y

nb
b )].

Crucially, in the second part of the theorem, we do not require convexity of
H0, a set of distributions over Y

na+nb (if H0 were convex, the GRO property
would already follow automatically [Koolen and Grünwald, 2022]), but instead of
{P✓ : ✓ 2 ⇥}, a set of distributions on Y. In the 2⇥ 2 case H0 is not convex, since
the set of i.i.d. Bernoulli distributions over na + nb > 1 outcomes is not convex.
Nevertheless, {P✓ : ✓ 2 ⇥} is just the Bernoulli model on one outcome, which is
convex, so in this setting, we get the GRO e-variable.

To illustrate, consider the basic case in which data comes in in fixed batches
Y(1), Y(2), . . ., with each batch Y(j) = ((Y(j�1)na+1,a, Y(j�1)na+2,a, . . . , Yjna,a)
, (Y(j�1)nb+1,b, Y(j�1)nb+2,b, . . . , Yjnb,b)), having exactly na outcomes in group a

and nb outcomes in group b, and let n = na + nb. This case would obtain, for
example, in a sequential clinical trial in which patients come in one by one, each
odd patient is given the treatment and each even patient is given the placebo.
Then n = 2, na = nb = 1. We may then measure the evidence against the null
hypothesis by the product E variable

S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]
:=

mY

j=1

S(j),[na,nb,✓⇤
a,✓

⇤
b ]

; S(j),[na,nb,✓⇤
a,✓

⇤
b ]
:= s(Y(j);na, nb, ✓

⇤
a, ✓

⇤
b ).

(2.9)
By Ville’s inequality (2.4), the probability under any distribution in the null that

there is an m with S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]

larger than 1/↵, is bounded by ↵, hence, type-I

error guarantees are preserved under optional stopping if we perform the test based

on {S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]
}m2N as defined underneath (2.4), as long as we stop between

and not ‘within’ batches (if we stop within a batch, the E-variable S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]

is

undefined).
If the data do not come in batches of equal size, we may proceed as follows.

First, we need to fix some na � 1 and nb � 1 of our own choice. The treatment
below will give valid e-variables irrespective of our choice of na and nb, but it
will be seen that some choices are much more reasonable (will lead to much more
evidence against the null, if the null is false) than others.

Thus, fix na and nb, set n = na + nb. At each time t, we will have observed,
so far, some number ta of outcomes in group a, and tb in group b. Now let mt be
the largest m such that mna  ta and mnb  tb. Now, for m = 1, 2, . . ., define
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Y(m) as above. At any given time t, Y(1), Y(2), . . . , Y(mt) will have been observed,
and there may be a number n

0
j remaining observations in group j 2 {a, b} so

that either n
0
a < na or n

0
b < nb or both. Since the {Y(j)}j2N determine a test

martingale in the sense of Definition 2.1, optional stopping while preserving type-I
error guarantees is then possible at any point in time t, as long as the e-variable
is calculated as (2.9) above for m = mt, thus ignoring the final n0

a + n
0
b outcomes.

How should na and nb be chosen in practice? For example, consider a variation
of the clinical trial setting above in which the treatment-control assignment is
randomized: for each incoming patient, a fair coin is flipped to decide treatment
(a) or placebo (b). Then at any given time the number of patients in group a and
b will not be precisely equal, but if we choose na = nb = 1 as above it is highly
unlikely that the amount of data we have to ignore at any given time t is very
large. Similarly, if Gt, the group membership of the t-th observation, is itself i.i.d.
according to some distribution P

⇤, we might have some idea of the probability
p
⇤(a) assigned to group a; if p⇤(a) = 2/5 (say), we would choose na = 2, nb = 3.
We can add a significant amount of extra flexibility by allowing for variable

group sizes, i.e., the chosen na and nb may depend on the past. Appendix S2.E
in the supplementary material describes how to do this. In this way, one can in
principle learn p

⇤(a) from the data, changing group sizes na and nb flexibly as
data come in. For simplicity, we have not followed this approach here, but all our
results readily extend to this case.

Extension to k-sample streams It is entirely straightforward to extend (2.8)
to the scenario where we do not compare 2, but k i.i.d. data streams. Indeed, in
the supplementary material we state and prove the generalization of Theorem 2.1
to k data streams. We again consider some fixed ~✓ = (✓a, ✓b, ..., ✓k) 2 ⇥k. The

probability of the first t =
Pk

g=1 tg outcomes is now given by the density or mass

function p~✓
:= p✓a(y

ta
a )p✓a(y

tb
b )...p✓k(y

tk
k ). We now need to fix the k group outcome

numbers ~n := (na, nb, ..., nk) in advance, which allows us to define the extended

e-variable as a function of the data ~y
n = (yna

a , y
nb
b , ..., y

nk
k ), with n =

Pk
g=1 ng for

testing the null where ✓a = ✓b = ... = ✓k:

s(~yn;~n, ~✓⇤) :=
kY

g=1

p✓⇤
g
(y

ng
g )

Qng

i=1

⇣Pk
g0=1

ng0

n p✓⇤
g0
(yi,g)

⌘ . (2.10)

This e-variable is again GRO if {P✓ : ✓ 2 ⇥} is convex. To keep notation as
clear as possible, we now return to the simpler 2-sample case except for a short
example of an application of this extension as a flexible and exact (non-asymptotic)
alternative to the chi-square test in section 2.6.

2.3.2 The generic e-variable with Bayesian alternative

Now fix some prior W1 with density w1 on the alternative ⇥1 ✓ ⇥2. We can
trivially extend the definition of our generic e–variable relative to singleton (✓⇤a, ✓

⇤
b )

to an e–variable relative to arbitrary prior W1 on (✓⇤a, ✓
⇤
b ): define pW1,a(y) :=
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R
p✓a(y)dW1(✓a), the integration being over the marginal prior distribution over ✓a,

and similarly, pW1,b(y) :=
R
p✓b(y)dW1(✓b). Then, as a corollary of Theorem 2.1,

the following is also an e–variable:

s(yna
a , y

nb
b ;na, nb,W1) :=Qna

i=1 pW1,a(yi,a)Qna

i=1

�
na
n pW1,a(yi,a) +

nb
n pW1,b(yi,a)

� ·
Qnb

i=1 pW1,b(yi,b)Qnb

i=1

�
na
n pW1,a(yi,b) +

nb
n pW1,b(yi,b)

� .

(2.11)

This follows from applying Theorem 2.1 with a ‘meta’-set of distributions, which
is possible since we made no assumptions at all on the set ⇥ in Theorem 2.1:
we replace ⇥ by W(⇥), the set of distributions on ⇥; we replace the background
set of distributions {p✓ : ✓ 2 ⇥} by the set of distributions {pW : W 2 W(⇥)};
we replace the simple H1 = {P✓⇤

a,✓
⇤
b
} by a ‘simple’ H

0
1 = {PWa,Wb} for some

distributions Wa and Wb on ⇥. Such W1-based generic e–variables can be used
to learn the parameters ✓

⇤
a, ✓

⇤
b as more data in both streams come in, and this

is how we will use them in a sequential context with optional stopping. Thus,
assume again that data comes in batches Y(1), Y(2), . . . with each Y(j) consisting
of na outcomes in group a and nb outcomes in group b (generalization to flexible
group sizes changing in time and depending on the past as described at the end of
Section 2.3.1 is straightforward). We start with some prior W1 for the first batch
Y(1) but we now use, for the j-th batch Y(j), the Bayesian posterior W1 | Y

(j�1)

as prior to define the j-th e–variable with:

S
(m)
[na,nb,W1]

:=
mY

j=1

S(j),[na,nb,W1] ; S(j),[na,nb,W1] := s(Y(j);na, nb,W1|Y
(j�1)).

(2.12)
Again, {S(j),[na,nb,W1]}j2N is a sequential e–variable process, so testing based on
the corresponding test martingale is safe under optional stopping by (2.4). If data
are sampled from some alternative hypothesis (✓⇤a, ✓

⇤
b ), then as data accumulates,

the posterior W1 will, with high probability, concentrate narrowly around (✓⇤a, ✓
⇤
b )

and so S(j),[na,nb,W1] will behave more and more similarly to the ‘best’ (✓⇤a, ✓
⇤
b )

e-variable. Still, with the exception of a special case we indicate below, in general
we cannot expect it to be the W1-GRO E-variable. But we are not particularly
concerned by this: our experiments in Section 2.6 indicate that, at least in the
2⇥2 table setting, it behaves quite well in terms of power, which is often the main
practical interest.
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Simplification when {P✓ : ✓ 2 ⇥} is Convex and Y is finite Denoting
W1,g|Y

(m) as the marginal posterior for ✓g, for g 2 {a, b}, we can rewrite (2.12) as

S
(m)
[na,nb,W1]

=
mY

j=1

Qna

i=1 pW1,a|Y (j�1)(Y(j�1)na+i,a)
Qnb

i=1 pW1,b|Y (j�1)(Y(j�1)nb+i,b)
Q

g2{a,b}
Qng

i=1

⇣
na
n pW1,a|Y (j�1)(Y(j�1)ng+i,g) +

nb
n pW1,b|Y (j�1)(Y(j�1)ng+i,g)

⌘

if {P✓ : ✓ 2 ⇥} convex, Y finite
=

mY

j=1

naY

i=1

pW1,a|Y (j�1)(Y(j�1)na+i,a)

p✓̆0|Y (j�1)(Y(j�1)na+i,a)

nbY

i=1

pW1,b|Y (j�1)(Y(j�1)nb+i,b)

p✓̆0|Y (j�1)(Y(j�1)nb+i,b)
. (2.13)

Here we define ✓̆0|Y
(j�1)

2 ⇥ s.t.
p✓̆0|Y (j�1) = (na/n)pW1,a|Y (j�1) + (nb/n)pW1,b|Y (j�1) , the existence of ✓̆0|Y

(j�1)

being guaranteed if {P✓ : ✓ 2 ⇥} is convex and the sample space is finite (for then,
by Carathéodory’s Theorem [Eckho↵, 1993], for any distribution W on ⇥ there is
a distribution W

0 on ⇥ with finite support such that pW = pW 0 , and by convexity,
there is ✓� such that pW 0 = p✓�). This rewrite will enable several additional results
for such ⇥.

Connection to Bayes Factors Consider W1 such that ✓a and ✓b are indepen-
dent under W1 with marginal distributions Wa and Wb, and now further take
na = nb = 1. By basic telescoping, and using that if ✓a and ✓b are independent
under the prior, they must also be independent under the posterior, we can then
further rewrite (2.12) as

R
p✓a(Y

m
a )dWa(✓a)

R
p✓b(Y

m
b )dWb(✓b)

Qm
j=1

Q
g2{a,b}

⇣
1
2pW1,a|Y (j�1)(Yj,g) +

1
2pW1,b|Y (j�1)(Yj,g)

⌘ if {P✓ : ✓ 2 ⇥} convex
=

(2.14)
R
p✓a(Y

m
a )dWa(✓a)

R
p✓b(Y

m
b )dWb(✓b)Qm

j=1

Q
g2{a,b} p✓̆0|Y (j�1)(Yj,g)

. (2.15)

The equality holds if {P✓ : ✓ 2 ⇥0} is convex and Y is finite so that (2.13) holds. As
seen from (2.14), even without finiteness or convexity, the numerator of the generic
product e-variable is now equal to the Bayesian marginal likelihood of the data
based on priorW1. Thus, in this special case (i.e. na = nb = 1, prior independence;
the derivation breaks down if these do not hold), if the denominator could also
be written as a Bayes marginal likelihood, then our e-variable would really be a
Bayes factor. Yet, even if {P✓ : ✓ 2 ⇥} is convex, it cannot be written in this
way, though it is very ‘close’: each of the m factors in the denominator in (2.15)
is the product density function of two identical distributions for one outcome, and
Proposition 2 below shows that, in the special case of the 2⇥2 model with Wa and
Wb independent beta priors, this distribution may itself be the Bayes predictive
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distribution obtained by equipping ⇥0 with another beta prior. Still, for a real
Bayes factor corresponding to H0, for each j, the two outcomes Yj,a, Yj,b in the
j-th block would not be independent given Y

(j�1), whereas in (2.15) they are, so
we may conclude that in general, our e-variables are not equivalent to any Bayes
factor.

2.4 Safe tests for two proportions

We assume the setting above and, for now, assume that both streams are Bernoulli.
This will substantially simplify the formulae. Thus, ⇥ = [0, 1] and (2.1) now
specializes to

p✓a,✓b(y
ta
a , y

tb
b ) := p✓a(y1,a, . . . , yta,a)p✓b(y1,b, . . . , ytb,b)

= ✓
ta1
a (1� ✓a)

ta�ta1✓
tb1
b (1� ✓b)

tb�tb1 . (2.16)

ta1 represents the number of outcomes 1 in stream a among the first ta ones, and
tb1 the number of outcomes 1 in stream b among the first tb ones. According to
the null hypothesis, we have that ✓

⇤
a = ✓

⇤
b = ✓0 for some ✓0 2 ⇥ = [0, 1]. (2.16)

now simplifies to:
p✓0(y

ta
a , y

tb
b ) := ✓

t1
0 (1� ✓0)

t0 .

t1 represents the number of ones in the sequence y
ta+tb = y1, . . . , yta+tb , and

similarly for t0.

We now run through the results of the previous section for this instantiation
of our test. Again, we start with the case of a simple H1 = {P✓⇤

a,✓
⇤
b
}. (2.8) can

now be written as:

s(yna
a , y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) :=

p✓⇤
a
(yna

a )

p✓0(y
na
a )

·
p✓⇤

b
(ynb

b )

p✓0(y
nb
b )

; ✓0 =
na

n
✓
⇤
a +

nb

n
✓
⇤
b . (2.17)

Theorem 2.1 tells us that this is an e-variable. Since {P✓ : ✓ 2 ⇥}, the Bernoulli
model, is convex, the theorem also tells us that in this case the generic e-variable
with simple alternative is always (✓⇤a, ✓

⇤
b )-GRO.

We now turn to the generic e–variable relative to arbitrary prior W1. For the
Bernoulli model the Bayes posterior predictive distribution is itself a Bernoulli
distribution, with its parameter equal to the posterior mean. Therefore, while the
generic e–variable relative to prior W1 is still given by (2.11), this now simplifies
to:

s(yna
a , y

nb
b ;na, nb,W1) = s(yna

a , y
nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) ; ✓

⇤
g = E✓g⇠W1 [✓g], g 2 {a, b}.

(2.18)
Combining this with (2.13) we infer that

S
(m)
[na,nb,W1]

=
mY

j=1

naY

i=1

p✓̆a|Y (j�1)(Y(j�1)na+i,a)

p✓̆0|Y (j�1)(Y(j�1)na+i,a)

nbY

i=1

p✓̆b|Y (j�1)(Y(j�1)nb+i,b)

p✓̆0|Y (j�1)(Y(j�1)nb+i,b)
(2.19)
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where ✓̆a|Y (j�1) = E✓a⇠W |Y (j�1) [✓a] and ✓̆b|Y
(j�1) = E✓b⇠W |Y (j�1) [✓b] and ✓̆0|Y

(j�1) =

(na/n)✓̆a | Y
(j�1) + (nb/n)✓̆b | Y (j�1).

Simplified Calculations with Independent Beta Priors Now take the spe-
cial case in which ✓a and ✓b are independent under the prior W1 with marginals
Wa and Wb. In this case, ✓a and ✓b are also independent under the posterior, and
we can simplify ✓̆a|Y

(j�1) = E
✓a⇠Wa|Y (j�1)na

a
[✓a], the expectation of ✓a under the

posterior Wa given all data so far in group a, and similarly for group b. Using
beta priors, this expectation is easy to calculate and we get:

Proposition 2. Let ✓a, ✓b be independent under W1, with marginals Wa and Wb

respectively. Suppose that these are beta priors with parameters (↵a,�a) and

(↵b,�b) respectively. Then, upon defining Ua =
P(j�1)na

i=1 Yi,a,

Ub =
P(j�1)nb

i=1 Yi,b, U =
P(j�1)n

i=1 (Yi,a + Yi,b) we have that ✓̆a, ✓̆b, ✓̆0 as above

satisfy: ✓̆a|Y (j�1) = (Ua +↵a)/((j � 1)na +↵a + �a), ✓̆b|Y (j�1) = (Ub +↵b)/((j �
1)nb + ↵b + �b) respectively, and ✓̆0|Y

(j�1) is as further above. In the special
case that we fix the prior parameters in the groups proportional to the group size
fraction  := nb/na, i.e we fix ↵b = ↵a, �b = �a, the expression for ✓̆0 simplifies
to ✓̆0|Y

(j�1) = (U + (1 + )↵a)/((j � 1)n+ (1 + )↵a + (1 + )�a).

2.5 (Un)Restricted composite H1 in the 2⇥ 2 setting

In this section we describe the main instantiations of the 2 ⇥ 2 stream testing
scenario that are relevant in practice. These di↵er in the choice of H1: the choice
can be fully unrestricted (we simply want to find whether there is any discrepancy
from H0 at all); restricted in terms of e↵ect size; or restricted because we have
prior knowledge about either ✓⇤a or ✓⇤b . We consider each in turn, the second and
third scenario in a separate subsection. Section 2.6 provides extensive numerical
simulations for all three scenarios.

In the first scenario, a researcher wants to perform a two-sided test ; they simply
aim to find any discrepancy from H0 if it exists, with no restrictions are placed
on H1. In this case, if we choose W1 as independent beta priors on ✓a and ✓b, we
can simply proceed as described in Proposition 2 above, taking a beta prior for
simplicity. We will develop a reasonable ‘default’ choice for the hyper parameters
by experiment in Section 2.6.

2.5.1 Dealing with E↵ect Sizes

In the second scenario we really want to test H0 against a restricted H1 consisting
of those hypotheses that have a certain minimal e↵ect size �. This would then be a
one-sided test. For example, a researcher might know that a new treatment must
cure at least a certain number of patients more compared to a control treatment to
provide a clinically relevant treatment e↵ect �. In this case, H1 could be restricted
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to either of the sets ⇥(�) or ⇥+(�), where

⇥(�) =
�
✓ 2 [0, 1]2 : d(✓) = �

 
; ⇥+(�) =

(�
✓ 2 [0, 1]2 : d(✓) � �

 
if � > 0�

✓ 2 [0, 1]2 : d(✓)  �
 

if � < 0,

(2.20)
where we set d((✓a, ✓b)) = ✓b � ✓a. A second notion of e↵ect size that often will
be applicable in this sort of research is the log odds ratio between ✓b and ✓a, with
restricted parameter space again given by (2.20) but d set to

d((✓a, ✓b)) = log

✓
✓b

1� ✓b
·
1� ✓a

✓a

◆
. (2.21)

These are the two e↵ect size notions that will feature in our experiments. An
illustration of both divergence measures and the resulting restricted parameter
spaces is given in Figure 2.1. A third popular notion of e↵ect size, the relative
risk, behaves, for small ✓a and � > 0, very similarly to the odds ratio, and will
therefore not be separately considered in our experiments.

If we pick H1 restrict to ⇥(�0), then we could simply use the beta prior men-
tioned before with support conditioned on this set. What about the more realistic
case of a H1 with � 2 ⇥+(�0)? A first, intuitive (and certainly defensible) approach
would be to use a prior W 0

1 that is spread out over ⇥+(�0), e.g. (if �0 > 0) the beta
prior as above conditioned on � � �

0. However, in terms of the GRO criterion,
there are good reasons to still use a prior W ⇤

1 that puts all prior mass on ⇥(�0), the
boundary of the real parameter space ⇥(�+). Namely, for the resulting e-variable

process S(1)
[na,nb,W⇤

1 ], S
(2)
[na,nb,W⇤

1 ], . . ., it holds for every m that

for all (✓a, ✓b) with d((✓a, ✓b)) > �
0
, EY (m)⇠P(✓a,✓b)

[logS(m)
[na,nb,W⇤

1 ]] �

min
✓2⇥(�0)

EY (m)⇠P✓
[logS(m)

[na,nb,W⇤
1 ]]. (2.22)

Thus, we might want to use the prior W ⇤
1 also if � can be more extreme than �

0,
since if � is actually more extreme, the expected (log-) evidence against H0 using
W

⇤
1 (even though designed for �0) will actually get larger anyway.

The advantage of the first approach is that it will lead to a much higher growth

rate (EP(✓a,✓b)
[logS(m)

[na,nb,W 0
1]
] much larger than EP(✓a,✓b)

[logS(m)
[na,nb,W⇤

1 ]]) if we are

‘lucky’ and |d(✓a, ✓b)| � |�
0
|. The price to pay is that it will lead to somewhat

smaller growth if d((✓a, ✓b)) is (still arger than but) close to �
0 (experiments omit-

ted). It is easy to see why: the prior W
0
1 must spread out its mass over a much

larger subset of [0, 1]2 than W
⇤
1 . Therefore, the E-variables based on W

0
1 will per-

form somewhat worse than those based on W
⇤
1 if the data are sampled from a point

(✓⇤a, ✓
⇤
b ) in the support of W ⇤

1 , simply because W
⇤
1 gives much larger prior support

in a neighborhood of (✓⇤a, ✓
⇤
b ). For this reason, and also because it is computation-

ally a lot simpler, we decided to focus our experiments on the second approach
rather than the first.
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(a) d((✓a, ✓b)) = ✓b � ✓a

(b) d((✓b, ✓a)) = log
h

✓b
(1�✓b)

(1�✓a)
✓a

i

Figure 2.1: Examples of restricted alternative hypothesis parameter spaces for
several values of two divergence measures; the di↵erence between group means
and the log odds ratio. ⇥0 denotes the null hypothesis parameter space; ⇥+

1 (�)
the restricted alternative hypothesis parameter space.
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Calculating the prior and posterior for restricted H1 For both notions of
e↵ect size, ✓a and ✓b can no longer be independent for any prior on ⇥(�). Hence,
the prior and posterior do not longer admit the composition in terms of beta
densities as in Proposition 2. For example, when putting a prior on ⇥(�) with the
additive e↵ect size notion, we know the new domain of ✓a would be [0, 1 � �]. ✓b

is completely determined by ✓a and � in this case. We will still use a beta prior
on ⇥(�) and calculate posteriors by a numerical approach, explained in Appendix
S2.B in the Supplementary Material.

2.5.2 Working with Restrictions on event rate

In practice, researchers often already have estimates of the occurrence rate of
events in the control group in their experiments; for example, estimates of the
proportion of patients that recover from a disease under standard care are known,
and researchers investigate whether the proportion of recovered patients is higher
in a group receiving an experimental treatment. This restriction on ✓a can be
incorporated in the e-variable. This incorporation becomes especially easy if H1

is already restricted to a set ⇥+(�0) with minimal relevant e↵ect size �
0. For then

⇥(�0) contains just one point (✓⇤a, ✓
⇤
b ) (in the case of the linear e↵ect size, this

is (✓a, ✓a + �)), and the e–variable constructed according to the guidelines of the
previous subsection, which puts all its mass on �

0 even though we allow � � �
0,

would be the generic e–variable corresponding to putting prior mass 1 on (✓⇤a, ✓
⇤
b ).

2.6 Illustration via simulated data

In this section, we illustrate properties of our e-variables for 2 ⇥ 2 application
through simulated data, generated with our software package [Ly et al., 2022].
First, we determine a reasonable choice of beta prior hyper-parameter to use in
(2.19) in terms of the GRO-criterion. Thereafter, we show by more simulations
that our proposal for the beta prior hyper-parameter based on GRO also performs
well in terms of power. Finally, we compare the power of our e-variable with this
default prior choice and di↵erent restrictions on H1 to Fisher’s exact test.

REGROW For simplicity, in all our experiments we will invariably set the beta
prior hyper-parameters to ↵a = ↵b = �a = �b = � for some � > 0 (recall that
any such choice leads to a valid e-variable). We will aim for the � that minimizes
(2.7) in the worst-case over all ✓⇤1 2 [0, 1]2, thereby following the REGROW (rel-
ative growth-rate optimality in worst-case) criterion of Grünwald et al. [2022a],
who give a minimax regret motivation for this choice. In essence, the prior mini-
mizing, among all distributions over [0, 1]2, the maximum of (2.7) over all ✓⇤1 can
be viewed as the prior that allows us to learn ✓

⇤
1 as fast as possible (based on a

minimal sample) in the worst-case. Here we are contented to adopt a sub-optimal
but computationally convenient prior by restricting the minimum to be over a
1-dimensional family of beta priors with hyper parameter �. We find the mini-
mizing � through experiments: results are depicted in Figure 2.2. It depends on
the number of data blocks m, which is unknown in advance, but for large m, in
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the setting with na = nb = 1, it converges to � ⇡ 0.18, and this is the value we
will take as our default choice — our experiments below indicate that it remains
a good choice, also when our main concern is power, and also under restrictions
on H1.

(a) min� regretS
(m)

(b) argmin� regretS
(m)

Figure 2.2: Minimized regret w.r.t. Beta prior hyperparameter � for the two-
sample stream e-variable for two proporions (2.18). Relative growth rate (see
(2.7)) was estimated through 10000 simulations and regret was calculated as
the maximum over ✓⇤1 .

Power Whereas growth rate is the natural performance measure in experiments
that may always be continued at some point in the future, traditionally oriented
researchers may be more interested in power. The question is then whether the
optimal asymptotic choice � ⇡ 0.18 in terms of the relative GRO property for
unrestricted H1 is also the optimal choice in terms of power (which is usually
considered in combination with some minimal e↵ect size, i.e. a restricted H1).
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The following experiment shows that by and large it is. For simplicity we only
illustrate the case na = nb = 1 and a desired power of 0.8. For various e↵ect sizes
�, and various values of �, we first determined the smallest sample size (number
of blocks) m such that, under optional stopping up until and including m, the
power is � 0.8 in the worst case over all (✓a, ✓b) with � = ✓b � ✓a. Here by
‘optional stopping up until and including m’, we mean ‘we stop and reject the null

i↵ S
(m0)
[na,nb,W[�]

> ↵
�1 for some m0

2 {1, 2, . . . ,m}, and we stop and accept the null

if this is not the case (so m is the maximal sample size we consider)’. We call
this m the worst-case sample size needed for 80% power at e↵ect size � with prior
parameter �. The reason for calling it worst-case is that in practice, by engaging
in optional stopping with a fixed maximal sample size, the expected sample size of

this procedure is smaller: if, for m0
< m, we already have S

(m0)
[na,nb,W[�]

> ↵
�1 then

we stop and reject early; if not, we go on until we have seen m blocks and then stop

(and reject i↵ S
(m)
[na,nb,W[�]

> ↵
�1). We thus performed two simulation experiments:

first, to estimate the worst-case sample size (at ↵ = 0.05), and second, to estimate
the expected sample size. Again, the estimates were obtained by re-simulating a
sequence of data blocks K times for a large number of K, making sure the bias
and variance of the estimates were su�ciently small.

In Figure 2.3 results of these experiments are depicted. We make two obser-
vations: first, almost no di↵erence in sample sizes to plan for between � = 0.18
and � = 0.05 was observed for distributions with small expected sample sizes
(represented by the triangles and the dots, which overlap for most data points),
and other values of � obtained smaller power, indicating that the relative growth-
optimal � = 0.18 could in practice be used as a default setting for our e-variable
— and as a consequence, we recommend it as such. Second, in the rightmost panel
we see that for distributions with very small relative di↵erences between ✓a and ✓b,
e.g. P0.5,0.58, values of � higher than 0.18 yielded a higher power, whereas for such
�, the relative GROW criterion was optimized for � = 0.18 for the corresponding
(very large) stopping times in our simulation experiments. This is not surprising
given what is known for simple H0 = {P✓0}: when testing a point null ✓0 with
a 1-dimensional exponential family alternative, safe tests based on Bayes factors
with standard Bayesian (e.g. Gaussian or conjugate) priors do not obtain optimal
power in an asymptotic sense: they reject if |✓̂� ✓0|

2 & (log n)/n (with ✓̂ denoting
the MLE; see the example on Z-tests by Grünwald et al. [2022a]) whereas based
on nonstandard ‘switching’ [Van der Pas and Grünwald, 2018] or ‘stitching’ meth-
ods [Howard et al., 2021], corresponding to special priors with densities going to
infinity as e↵ect size goes to 0, one can get rejection if |✓̂ � ✓0|

2 & (log log n)/n.
However, there is a significant price to pay in terms of the constants hidden in the
asymptotics, and in practice, ‘standard’ priors may very well perform better at all
but very large sample sizes [Maillard, 2019]. Given that the higher �, the more the
beta prior behaves like a switch prior, we conjecture that what we see in Figure 2.3
on the right at very small � is a version of the switching/stitching phenomenon
with a composite null; since it only kicks in at very large sample sizes, we prefer
� = 0.18 as the default choice after all.

Finally, we compared the performance of our e-variables with the “default”
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Figure 2.3: In 2000 simulations the natural logarithm, left, or identity, right, of
the number of data blocks m (“sample sizes”) needed for achieving 80% power
while testing at ↵ = 0.05 for distributions with varying group means and varying
di↵erences between group means were estimated for di↵erent beta prior parameter
values.

40



beta priors with � = 0.18 with their classical counterpart, Fisher’s exact test.
We show that with Fisher’s exact test, type-I error probability guarantee is lost,
whereas with the e-variables it remains bounded — since these results are exactly
as would be expected from the theory they have been placed in the supplementary
material (Figure S2.2 in the Supplementary Material). In the main text below,
we compare worst-case and expected stopping times of the e-variables with- and
without restrictions on H1 for sample sizes one would need to plan for when
analyzing experiment results with Fisher’s exact test; see Figure 2.4. We noticed
that the expected sample sizes achieved under optional stopping with the e-variable
with unrestricted H1 were very similar to the sample sizes needed to plan for
with Fisher’s exact test. When using a correctly specified restriction on H1 (the
leftmost data points in the second and third subfigures), this expected number of
samples is even considerably lower than the sample size to plan for with Fisher’s
exact test. However, under misspecification, when the di↵erence or log odds ratio
used in the design of the e-variable turns out to be a lot smaller than the real
di↵erence present in the data generating machinery, one should expect to collect
more samples (the data points towards the right in the second subfigure). This
e↵ect would disappear if we were to put a prior on the full ⇥+(�) rather than the
boundary ⇥(�), at the price of slightly worse behaviour in the well-specified case
when data is sampled from ⇥(�). Note that in Figure 2.4 we used the default beta
prior parameters � = 0.18 found optimal for the unrestricted case for the restricted
cases as well; some first experiments revealed that changing the prior parameter
values did not lead to significant changes in power for the restricted e-variables
(results not shown). We do however o↵er the possibility in our software package
[Ly et al., 2022] to run similar experiments for users to determine the optimal prior
parameter � for a given expected sample size and ⇥(+)(�0).

Beyond Two-Stream Data: Safe Tests for k Proportions We also com-
pared the performance of the extended version of our e-variable for k Bernoulli
data streams to the corresponding classical, nonsequential counterpart, the chi-
squared test [McHugh, 2013]. In this setting, we have a k ⇥ 2 contingency table
test, where we test whether k Bernoulli data streams come from the same source.
The extension of (2.19) to k data streams analogously to (2.10) is straightforward.
In simulation experiments, it was observed that our e-variable with uniform priors
significantly outperforms the chi-square test for small sample sizes and large e↵ect
sizes (see Figure 2.5). For absolute di↵erences of at least �max = 0.45, the expected
sample size becomes significantly smaller than the fixed sample size needed for the
chi-squared test. This is probably partially explained by the fact that the statistic
used for the chi-squared test only asymptotically follows a chi-squared distribu-
tion, in contrast to our e-variable test, which is exact, valid under finite sample
sizes. This means that for expected cell counts smaller than 5 the chi-square test
should not be used, reflected in an increased number of samples needed for similar
power [McHugh, 2013].
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Figure 2.4: Estimates from 1000 simulations of worst-case and expected sample
sizes for achieving 80% power estimated for three types of e-variables with di↵er-
ent restrictions on H1, and the sample size to plan for with Fisher’s exact test.
Hypothesized e↵ect sizes were 0.04 for the e-variables with prior information on
the absolute di↵erence and were converted equivalently for the log odds ratio prior
information case, and we set � = 0.18 for the beta priors.

2.7 Illustration via real world data

We will now demonstrate the approach through a real-world example: the SWEPIS
study on labor induction [Wennerholm et al., 2019]. Wagenmakers and Ly [2020]
have used this example before to illustrate how using single p-values to make
decisions can hide valuable information in research data.

In the SWEPIS study, two groups of pregnant women were followed. In the
first group labor was induced at 41 weeks, and in the second labor was induced
after 42 weeks. The study was stopped early, as 6 cases of stillbirth were observed
in the 42-weeks group (at nb = 1379), as compared to 0 in the 41-weeks group
(at na = 1381). These data yield a significant Fisher’s exact test, p ⇡ 0.015,
for testing that the number of stillbirths in the 42-weeks group is higher, when
(wrongly) assuming that na and nb were fixed in advance to the above values.

If we had used e-variables for continuously analyzing this data, would we then
have found evidence for superiority of the 41 weeks approach, and would we have
stopped the study earlier? As the e-variables we propose are not exchangeable, i.e.,
their values change under permutations of the data sequences, a direct comparison
to the results of the SWEPIS study is not possible as the exact data stream is not
available. To simulate a “real-time” scenario equivalent to the SWEPIS study, we
assume we collect a total of 1380 data blocks, with na = nb = 1, with a total of
2760 observations. We already know that in group a, 0 events are observed. In
group b, 6 events are observed, of which we know that the last event was observed
in data block 1380, directly before the study was stopped. Hence, we can simulate
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Figure 2.5: Estimates from 1000 simulations of worst-case and expected sample
sizes for achieving 80% power estimated for testing with the k-stream e-variable,
and the sample size to plan for with the chi-square test. Data were simulated with
balanced data blocks, ~n = (1, 1, 1, 1) and ~✓ was set as an equally spaced grid from
✓a = 0.1 to ✓k = ✓a + �max. We set � = 1 for the beta priors.

the “real-time” data by permuting the indices of the observations in group b in
the 1379 first data blocks.

Four di↵erent approaches for analyzing the data with e-variables were explored:
without any restriction on H1, with a restriction based on the additive divergence
measure (the minimal di↵erence between the groups), with a restriction based on
the log odds ratio, and with a restriction on the event rate in the control group and
on the minimal di↵erence. The minimal di↵erence, log odds ratio and event rate
used were chosen based on a large recent meta-analysis on stillbirths [Muglu et al.,
2019]; we used � = 0.00318 as a restriction on the di↵erence between the groups,
log(2) for the log odds ratio and 0.0001 as the event rate. For all e-variables, the
default beta prior hyperparameters with � = 0.18 as earlier were used.

In Figure 2.6 the spread of the evidence collected with the four types of e-
variables in 1000 simulations analogous to the SWEPIS setting is depicted. Be-
cause the observed e↵ect size was higher than expected, e-values obtained with
the (too low) restriction on the e↵ect size were lower than the e-values obtained
with the e-variable without restrictions. Adding the restriction on the event rate
increased the e-values, and in all 1000 simulations, the SWEPIS study would have
been stopped before the occurrence of the sixth stillbirth. Figure 2.6 also depicts
results of a second simulation experiment, where we sampled 1000 data streams
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from P0,6/1380 and recorded the stopping times while analyzing the streams with
the four e-variables with di↵erent restrictions on H1. With the e-variables with-
out restriction, or with a restriction on the event rate and di↵erence between the
groups, we would have often stopped data collection earlier than in the SWEPIS
setting.

Wagemakers and Ly with their method also found evidence for the existence
of a di↵erence between the two groups, but not nearly of the same degree: they
reported Bayes factors that varied, depending on the choice of the prior, between
1 and 5.4 (note that whenever we reject, our product of e-values, which like a
Bayes factor can be thought of as a prequential likelihood ratio, must be � 20).
A possible explanation for this di↵erence could be that the Bayes factors used for
collecting evidence in their study are not designed for analyzing stream data. As
we also saw in our experiments, choosing the wrong prior or restriction on H1 can
make a large di↵erence for the evidence collected.

We can thus conclude that, would the monitoring of the study have been per-
formed with e-variables instead of p-values, first of all we would have collected
correct evidence for a higher proportion of stillbirths in the 42-weeks group, and
second, the degree of evidence is quite similar to that collected with the (incor-
rectly determined) p-value: both are significant at the 0.05 level. The study design
with e-variables could e↵ortlessly follow the classical flow of clinical trial design:
before the start of the trial, a power analysis could be carried out to determine the
minimum sample sizes that one needs to arrange resources for under the desired
sampling scheme (balanced or unbalanced, see [Ly et al., 2022, Vignettes]). In col-
laboration with experts, a restriction could be put on the event rate or di↵erence
between the groups to potentially improve the power. During the study, because
the SWEPIS design is balanced, an e-value is calculated each time a new patient
has come in in the control and treatment groups, and the researchers and data
safety monitoring boards are allowed to look at the results and decide to stop the
study at any time, not a↵ecting Type-I error probability guarantees. After the
study or in case the study is stopped early because of reasons beyond rejecting
the null hypothesis, because e-values were used, one can always continue a study
later or combine e-values across multiple studies in an anytime-valid meta-analysis
[Ter Schure, 2022].

2.8 Other e-Variables for two data streams

2.8.1 The GRO e-variable for some Exponential and Loca-
tion Families

The simplification (2.17) shows that in the Bernoulli case with simple ⇥1 =
{(✓⇤a, ✓

⇤
b )}, we can take in our denominator p✓0 with ✓0 = na

n ✓
⇤
a + nb

n ✓
⇤
b — which

can also be interpreted as the distribution in the null corresponding to a mix-
ture of the means, rather than the mixture of two distributions in the null. The
Bernoulli model is a special case of 1-parameter exponential families which can
all be parameterized in terms of their means so that ⇥ ⇢ R and EP✓ [Y ] = ✓;
this is also possible for some location families that are not of exponential form.

44



(a) Simulated e-values in SWEPIS setting, stopping at
m = 1380 or when E � 20

(b) Simulated stopping times in setting with continuing
until E � 20

Figure 2.6: Spread of e-values and stopping times observed with safe analysis of
1000 simulations of data streams analogous to the SWEPIS scenario, with four
di↵erent types of restrictions on H1.
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This suggests that, for all such models, instead of (2.8) we might also consider the
likelihood ratio (2.17). For the Bernoulli model, both definitions will coincide, but
for general 1-parameter exponential families they do not since their correspond-
ing set of densities is not convex. The question is now whether (2.17) defines
an e-variable for general exponential families. It turns out that the answer is no
in general, but yes in some special cases. For a negative example, consider the
case with ⇥ = R+ representing the family of exponential distributions in their
mean-value parameterization, i.e. p✓(y) = � exp(��y) with � = 1/✓ and take
na = nb = 1. A simple calculation shows that for any ✓

⇤
a 6= ✓

⇤
b 2 ⇥, we have

lim✓!1 EYa,Yb i.i.d.⇠P✓ [p✓⇤
a
(Ya)p✓⇤

b
(Yb)/p(✓⇤

a+✓⇤
b )/2

(Ya, Yb)] = 1. The negative bi-
nomial families provide, by a similar calculation, another negative example. For a
positive example, consider the case with ⇥ = R representing the Gaussian location
family with fixed variance 1 and again take na = nb = 1. A simple calculation
shows that (2.17) is equal to the likelihood ratio for testing whether the di↵erence
Z = Ya � Yb is a Gaussian with variance

p
2 with either mean 0 or mean ✓b � ✓a.

This is in fact the standard paired-sample Z-test that would normally be advised
in this situation. In fact it is the GRO e-variable for this situation:

Proposition 3. Let {P✓ : ✓ 2 ⇥} represent a family of probability distributions
with densities p✓, with ⇥ a convex set in Rk for some k � 1. For any ✓

⇤
a, ✓

⇤
b 2 ⇥

we have: if (2.17) is an e-variable for ⇥1 = {(✓⇤a, ✓
⇤
b )} then it is the GRO e-variable

for ⇥1 = {(✓⇤a, ✓
⇤
b )}.

The proof is immediate from Proposition 1. The proposition implies that in
the special cases in which (2.17) does provide an e-variable, it is to be preferred
(achieves better growth) above our original construction (2.8). (2.8) has the ad-
vantage that it provides an e-variable relative to arbitrary models. We plan to
study the cases in which (2.17) can be used instead in future work.

2.8.2 The Conditional e-variable for Tests of Two Propor-
tions

Wald [1947] proposed a 2-sample sequential probability ratio test (SPRT) for the
2 ⇥ 2 setting. Since SPRTs can be written in terms of products of e-variables
(although products of e-variables often do not give SPRTs; see the discussion by
Grünwald et al. [2022a]), let us see what e-variables Wald’s test corresponds to.
The setting is restricted to size-2 blocks with na = nb = 1. We measure e↵ect size
with d the log-odds ratio (2.21) and consider an alternative with a d(✓a, ✓b) that
is at least some given �. Using that, for all (✓a, ✓b) 2 (0, 1)2, z 2 {0, 1, 2}, the
conditional probability mass function p✓a,✓b(Ya, Yb |

P
Ya + Yb = z) only depends

on the log-odds ratio, we can write it, as q�(ya, yb|z) where q� is a probability
mass function whose definition depends on (✓a, ✓b) only via � = d((✓a, ✓b)). We
then take as our e-variable Scond,� := q�(Ya, Yb | Ya + Yb)/q0(Ya, Yb | Ya + Yb).
Since the conditional distribution q0(Ya, Yb | Z) is the same for all distributions
in the null, this conditional likelihood gives an e-variable and can be used instead
of our generic e-variable. Since for this Bernoulli case, our e-variable is in fact
GRO, we would expect this new conditional e-variable to perform worse in terms
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of GRO (and for the reasons given in Section 2.2 also in terms of the amount
of data needed before one can reject at a desired power), and experiments (not
reported here) confirm that it indeed performs slightly worse for � close to 0, and
substantially worse for larger �. This is already suggested by the fact that, unlike
the GRO e-variable, Scond,� takes on value 1 whenever ya = yb, e↵ectively ignoring
data blocks in which both outcomes are the same. Another disadvantage is that
it can only be used in combination with e↵ect size given by the odds ratio or
any monotonic transformation thereof; whereas the GRO e-variable can also be
combined with the di↵erence ✓b � ✓a or any other desirable notion of e↵ect size.

2.9 Conclusion

We have established e-variables and test martingales for the general i.i.d.-data
streams problem. We have demonstrated, using theory, simulations and a real-
world example that, for tests of two proportions, by choosing an appropriate prior
on ⇥1, the method can be made competitive with classical methods that do not
allow for optional stopping. Whereas in this paper, we have focused on testing,
our e-variables can also be extended to get anytime-valid confidence sequences
[Howard et al., 2021, Lai, 1976], i.e. confidence sequences for e↵ect sizes that are
valid even under optional stopping. This requires us to first extend the testing to
scenarios with � � �1 vs. �  �0 for �0 6= 0, that is, null hypotheses with ✓a 6= ✓b.
We have reported on this extension in Turner and Grünwald [2023]. Our work also
suggests a question for future work that is practically relevant, easy to state but
hard to answer: to what extent do our findings generalize to logistic regression?
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