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Chapter 1

Introduction

Classical research methods, such as p-value hypothesis testing, have come under in-
tense scrutiny over the past decade [Wasserstein and Lazar, 2016, Benjamin et al.,
2018]. It has proven very di�cult for researchers to apply them correctly: the pre-
vailing methods taught to applied researchers are actually too rigid for performing
research in a modern environment, especially when working in a dynamic manner
with lots of collaborations. Sadly, this leads to faulty use of the aforementioned
methods and subsequent invalidity of experiment conclusions, which has even led
to a call to abandon significance testing altogether [Amrhein et al., 2019].

Partly as a consequence of the above, recently, interest in sequential testing and
particularly safe, anytime-valid inference (SAVI) with e-values has emerged [Wang
and Ramdas, 2020, Waudby-Smith and Ramdas, 2020, Vovk and Wang, 2021,
Shafer et al., 2021, Orabona and Jun, 2021, Henzi and Ziegel, 2022, Grünwald
et al., 2022a]. This framework potentially o↵ers the same functionality as the
classical significance testing methods and also provides researchers with plenty of
flexibility, for example through enabling optional stopping, optional continuation,
anytime-valid e↵ect size estimation and federated learning.

In this thesis, the theory of e-values is further developed for performing SAVI in
scenarios applicable to healthcare (specifically, for several use-cases in psychiatry),
where one wants to estimate treatment e↵ects for small subgroups of patients. It
is then explored how one could actually set up a real-time inference process in
practice in an automated manner, combining text mining with network analysis
techniques for data preparation and exploration and then confirming hypotheses
with SAVI [Tukey, 1980]. The overall aim of this work is to contribute to answering
the research question “how can one perform real-time research in healthcare using
routinely collected clinical data?”.

This introductory chapter starts with a sketch of the bigger scope of the re-
search in this thesis: the Enabling Personalized Interventions project, a Dutch
nation-wide project with the goal of working toward a digital health twin in sec-
tion 1.1. This section also discusses the potential importance of federated learning
for the construction of such a digital health twin. Next, an important potential
solution for inference in the online, federated setting, the SAVI framework, is in-
troduced in section 1.2. In section 1.3, the psychiatry use-case for the methods
developed in this thesis is introduced, together with an overview of the current
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Chapter 1

state of the art for knowledge discovery in psychiatry. The content of this thesis
is introduced in detail in sections 1.4, 1.5 and 1.6. Section 1.4 describes chapters
2 and 3, where the development of new instantiations of SAVI are discussed. In
section 1.5 chapters 4, 5 and 6 are discussed, where knowledge discovery in psychi-
atry through network analysis plays a central role. Finally, section 1.6 contains an
introduction of chapter 7, where the SAVI techniques are refined specifically for
setting up confirmatory (i.e., with the goal of inference) experiments in psychiatry.

1.1 Toward a digital health twin: on the potential role of
federated learning and SAVI

The work in this thesis is part of the Dutch nation-wide Enabling Personalized
Interventions (EPI) project. The EPI consortium recognizes three current limita-
tions for using the full potential of healthcare data: data and knowledge extracted
from data remain in their original location and are not shared, (the correct type
of) data is not analyzed to arrive at useful clinical insights, and insights that are
generated are not available to clinicians and patients. The goal of this project
is to “liberate, analyze and action (healthcare) data in a trustworthy way” [The
EPI Consortium, 2019]. To this end, EPI strives to develop a framework that
will facilitate the development and use of a digital health twin (DHT) framework
[Bruynseels et al., 2018].

Digital (health) twins are “in silico representations of an individual that dy-
namically reflect molecular status, physiological status and life style over time”
(Bruynseels et al. [2018], p. 1). In more detail, a complete DHT in practice would
comprise of a patient’s health records from all their care providers, amplified with
for example wearable data, data from their mobile devices and smart devices. The
DHT is updated in real time each time new data becomes available in one of the
data sources. The added value of the DHT lies within the potential for continuous
learning and providing feedback : data from many (possibly similar) individuals
can be used to learn patterns in the data, in particular to learn about the e↵ects
of certain interventions.

One can imagine that realizing a DHT framework in practice would be a com-
plicated task, both from a data-infrastructure and a legal perspective. A schematic
representation of one possible realization of a DHT framework is depicted in figure
1.1. The first component needed is a data infrastructure that links the EHR and
other devices with patient data to their corresponding DHT, and that links the
DHTs to the learning algorithms that eventually will produce the clinical insights.
The second component are the regulatory constraints placed on these links. Pa-
tients should be able to withdraw their consent to transfer (part of) their data
to the DHT, or to transfer data from their DHT to the learning algorithms, or
even just to generate general clinical insights from their data. The researchers
providing the learning algorithms and the health practitioners providing the use
cases should not be allowed to access all data in the DHT, but only the data they
contractually have access to for their specific projects. The third component con-
sists of the actual knowledge discovery process and the corresponding algorithms
that learn from the DHT data: these can receive input from the DHTs and health
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Figure 1.1: Schematic representation of a digital health twin framework. Adapted
from The EPI Consortium [2019].

practitioners, who can enrich the DHTs’ data with existing knowledge from liter-
ature. Note that this is a continuous process: each time DHT data is updated or
new clinical context is provided, the algorithms are updated. The resulting trained
algorithms are then sent back to the digital health twin, to finally enable generat-
ing personalized clinical insights to o↵er decision support and enable personalized
interventions through shared decision making.

Key part of the DHT are these learning algorithms that can learn from and
make predictions for patients in (near-)real-time. Particularly in the healthcare
domain, training such algorithms raises some interesting challenges regarding pri-
vacy of patients. During the past decade, two seemingly paradoxical developments
have taken place. On the one hand, there has been a rise in initiatives to make
research more democratized, accessible and transparent, for example through the
development of EU-wide regulations on data availability [Nederlandse Rijksover-
heid, 2021]. On the other hand, (European) privacy laws have become much more
strict, prohibiting sharing identifiable data without explicit consent for each spe-
cific instance [Otto, 2018]. These laws complicate learning in a patient-tailored
manner, as learning tailored to smaller and smaller groups of patients (i.e., pa-
tients stratified according to more and more characteristics) requires learning from
increasing numbers of examples. Collecting all this data in one place and learning
from it centrally is often not possible, because of infeasibility in obtaining consent
from patients to share data.

Possible solutions lie within not sharing the patient data, but only (parts of)
algorithms trained on the data. This is called federated learning [Konečnỳ et al.,
2016]. There are two major federated learning scenarios: in the first one, we have
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“incomplete” digital health twin versions for single patients stored in separate
locations, for example when part of patient data is stored in the general practi-
tioner’s system, and part at an academic hospital, and we want to learn from both
sources to predict a course of treatment. This is called vertically partitioned data.
In the second scenario, data are partitioned horizontally. We do have complete
digital health twins, but they are stored at multiple locations, for example in a
setting where multiple academic centers are collaborating to train an algorithm
for personalized recommendations and need lots of examples.

The work in this thesis focuses on developing learning methods for SAVI for
the real-time analysis of horizontally partitioned patient data. The other parts of
the DHT and the EPI framework are described in work of S. Amiri on di↵erential
privacy (see for example Amiri et al. [2021] and Amiri et al. [2022]), the work of
C. Allaart on learning from vertically partitioned data [Allaart et al., 2022], the
work of M. Kebede on access control [Kebede, 2021] and the work of J. Kassem
on developing an adaptive computing infrastructure that enables implementation
all of the aforementioned methods [Kassem et al., 2021].

1.2 Safe, anytime-valid inference

In this section, current methods for confirmatory (inferential) research are de-
scribed, and it is explained why they are not particularly suitable for implementa-
tion in frameworks for distributed, real-time learning such as the EPI framework
and the DHT. Next, e-values and their extension to anytime-valid e-processes, the
federated learning setting and confidence sequences are described. Throughout
this section, we will use a running example of testing and estimating the mean
value of the height of a population.

Definitions We will use notation analogously to Ramdas et al. [2022] throughout
this introduction. We define ⇧, a set of distributions on our sample space ⌦, and
assume that some distribution P 2 ⇧ generates our data, for example a stream
of observations Y1, Y2, Y3, ..., where we will abbreviate Y

n = (Y1, Y2, Y3, ..., Yn).
Typically, we want to test whether P aligns with some null hypothesis that we
have, or if we can reject this null hypothesis for some alternative hypothesis. For
example, our null hypothesis might be that the height of people in the Netherlands
is distributed according to a normal distribution with a mean of 175 (cm) and
an arbitrary standard deviation, and our alternative might be that the height is
distributed according to any other normal distribution. Formally we define the set
of distributions P reflecting our null hypothesis H0 and the set of distributions Q
reflecting our alternativeH1 as (often non-intersecting) subsets of ⇧. When the set
of distributions corresponding to a hypothesis comprises of only one distribution,
we refer to the hypothesis as simple; otherwise, we call it composite. Often, we will
consider distributions P✓ (or Q✓) parameterized by some ✓ 2 ⇥, with parameter
space ⇥0 ⇢ ⇥ corresponding to H0 and ⇥1 ⇢ ⇥ to H1. Uppercase will be used to
indicate probability distributions and lowercase for the corresponding probability
mass functions or densities.
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Current practices and developments in confirmatory research As briefly
mentioned in the previous sections, there are a lot of di�culties with the confirma-
tory phase of research [Peterson, 2021]. One major contributor to these problems
is the hypothesis testing methodology, and fundamental disagreements thereon. In
the field of statistics, roughly four (partly overlapping) views on hypothesis testing
can be recognized. They will be briefly introduced in this subsection, alongside
the most important “ingredients” in hypothesis testing, and later the SAVI will
be placed in perspective of these practices.

The Fisherian point of view places the emphasis on rejecting a null hypothesis
[Fisher, 1925]. Within this Fisherian view, we would set up a study and then
calculate a P-value:

Definition 1.1 (P-value). A P-value for P is a random variable pval such that
P (pval  ↵)  ↵ for all P 2 P and ↵ 2 [0, 1].

We thus have P (pval  ↵) = ↵
0 for some ↵

0
 ↵, with ↵

0 possibly depend-
ing on P ; for standard p-values, usually ↵

0 = ↵, or ↵
0 is very close to ↵. For

conservative p-values, ↵0 is substantially smaller than ↵.

In words, this definition implies that the lower the P-value, the less compati-
bility the data have with the null hypothesis. For example, if a (well-designed and
executed) study and analysis to test the null hypothesis that the mean value of
the height distribution equals 175 cm revealed a p-value of 0.024, the probability
of this occurring under the null hypothesis is at most 0.024. Now imagine an-
other study, organized independently of the first, revealing a p-value of 0.0011 for
testing the same null hypothesis: a Fisherian would say that in the second study,
more evidence against the null hypothesis has been collected, as the probability
of observing the second p-value under the null hypothesis would be a lot smaller
(at most 0.0011). Another example: if we assume a normal distribution with fixed
variance, pval  ↵ means that the data have fallen in the 1/2↵ left-tail or right-
tail of the distribution. Note that there is no mention of the alternative hypothesis
in this view of hypothesis testing.

Closely related is the Neyman-Pearsonian view on testing [Neyman and Pear-
son, 1933]. This is a binary view with a focus on the probability (and penalty) of
making an erroneous decision: upper bounds for acceptable error probabilities of
wrongly rejecting the null hypothesis (↵, “type-I error”) and failing to reject the
null hypothesis while the alternative is true (�, “type-II” error) are specified before
each experiment. Experiments are planned based on the ↵ and � thresholds, and
only the decision whether the null is rejected or not (rejecting i↵ pval  ↵) is
reported. Hence the name “frequentist statistics” that is often used to refer to
these methods: they are entirely based on the hypothetical scenario where many
experiments are carried out, and the highest acceptable frequency of erroneous
decisions in such a collection of experiments. Continuing the height example, an
experiment could be planned for testing the null hypothesis that the mean value
of the height distribution equals 175 (cm). Planning this experiment with anal-
ysis with a classical t-test in mind reveals that when a type-I error probability
of 0.05 and type-II error probability of 0.15 are deemed acceptable, the height
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of 326 Dutch people would have to be collected to detect a deviation of at least
1 cm to the mean value of 175 cm in at least 85 percent of experiments. After
collecting the heights of these 326 people we would perform one t-test, and only
report whether the p-value was smaller than or equal to (“reject H0”), or bigger
than 0.05 (“accept H0”).

The actual observed p-value does not give extra information in this view of
testing. Interestingly, in applied research, often a mixture of the two is used: the
decision to reject the null hypothesis is for example often requested to be reported
alongside the p-value in medical journals [Lang and Altman, 2014], complicating
the (intended) interpretation of study results.

Note that, irrespective of whether we use Fisherian or NP p-value testing,
calculating a p-value requires very precise definitions of the stopping rule and the
corresponding experiment setup. In practice, p-values are often used wrongly: for
example in an interview study, 56 percent of psychology researchers admitted to
“deciding whether to collect more data after looking to see whether the results
were significant” [John et al., 2012]. In this scenario, the distribution under the
null hypothesis has shifted because the researcher peeks at the data and based
on that observation decides to continue sampling. A p-value designed for the null
hypothesis where data is collected and only analyzed once (i.e., the ones used in the
most well-known frequentist hypothesis tests, such as the t-test or Fisher’s exact
test) is no longer valid in this scenario. Type-I error can blow up quickly under
this kind of malpractice, yielding interpretation of experiment results impossible.
See for example an experiment from chapter 2 in this thesis: after collection of
1000 samples and “peeking” at the p-value after each new sample, the type-I error
probability increased to 0.30.

The third view of hypothesis testing discussed here is Bayesian, which leaves
the frequentist principles and error probabilities behind and instead focuses on
updating prior beliefs based on new evidence. Central roles in Bayesian statistics
are played by prior distributions and Bayes marginal distributions.

Definition 1.2 (Bayes marginal distribution). A prior distribution Wj with den-
sity wj corresponding to hypothesis Hj is a probability distribution on ⇥j associ-
ated with Hj . The Bayes marginal distribution for data Y , where Y could be a
single data point or a vector Y n as above, is defined as

pWj (Y ) =

Z

✓
p✓(Y )wj(✓)d✓.

When we have formulated prior distributions (beliefs) for the null hypothe-
sis (W0) and the alternative hypothesis (W1), we can define a Bayes factor to
represent the evidence in favour of the alternative, against the null:

BF10(Y ) =
pW1(Y )

pW0(Y )
. (1.1)

In contrast with the p-values seen above, the value of the Bayes factor directly
represents evidence for the hypotheses: the higher the value, the more evidence
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present in the data for the alternative hypothesis. Standardized “levels of evi-
dence” and cut-o↵ values have been proposed for evaluating study results with
Bayes factors [Jamil et al., 2017].

Evidently, the choice of prior distributions plays an essential role in the value
and generalizability of the Bayes factor. The value of a Bayes factor calculated
by one research group will o↵er little useful information to another research group
that does not agree with the prior beliefs the first group incorporated in the Bayes
factor. Unfortunately, how to choose prior distributions is still a major topic of
discussion within the Bayesian field. On one end of the scale, there are subjective
Bayesians, who argue that it only makes sense to express probability as one’s
pure beliefs in the likeliness of outcomes [De Finetti, 2017, Ramsey, 1931]. No
or little weight should be placed on outcomes that in the belief of the researcher
are unlikely to ever occur. Returning to our height example, most people would
find it very unlikely to find an average length of 190 cm in a random sample
of Dutch people, so almost no prior mass should be assigned to this parameter
value. Someone who has played a lot of basketball might have a di↵erent view
of the world and might disagree, and would put more mass on this outcome. On
the other end of the scale, there are the objective Bayesians, who strife to define
informationless prior distributions that attach equal weight to all distributions in
the hypotheses [Berger et al., 1998, Je↵reys, 1998, Jaynes, 1957, Savage, 1954].
Looking at the length example again, in this scenario, one might put equal prior
mass on the average length being 190 cm, 173 cm, 90 cm, and any other possible
human length. Applying such a prior would make it easier to collaborate with
research groups with disagreeing views on a subject. However, defining such priors
is an intricate process and there exist critical appraisals of objective Bayesianism,
arguing that the principles of informationless priors conflict with the factorization
of conditional probabilities central in Bayes’ theorem [Seidenfeld, 1979].

The last view of hypothesis testing places even more emphasis on evidence in
the data collected: this view advocates abolishing the testing process altogether
and replace this by estimation with an emphasis on confidence intervals [Berner
and Amrhein, 2022].

Definition 1.3 (Confidence set). A set CI is a confidence set for some parameter
of interest � : ⇧ ! � (for example, an odds ratio or mean di↵erence) if:

P (�(P ) 2 CI) � 1� ↵ for all P 2 ⇧.

That is, the probability that we exclude the parameter value corresponding
to distribution P when the data are generated by that same P is bounded by
↵. Usually, � ⇢ R, and CI are confidence intervals, hence the abbreviation
“CI”. For example, returning to the length example, our entire set of distributions
⇧ comprises of all normal distributions with mean µ and standard deviation �:
⇧ = {Pµ,� : (µ,�) 2 ⇥}, ⇥ = {(µ,�) : µ 2 R,� > 0}. We might want to create
a confidence interval around the mean, and would have the mean length as our
measure of interest: we then set �(Pµ,�) = µ. When the heights in the population
in reality follow some normal distribution Pµ0,�0 , a valid confidence interval at level
↵ = 0.05 would include the true mean length µ

0 in 100⇥ (1� ↵) = 95 percent of
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experiments.
However, with this approach, we run into the same problems as before: we

need an exact definition of our experimental setup to define valid confidence in-
tervals, which means that we again need a very strict description of our study
design including setting the final sample size in advance, as with the calculation
of p-values described above. Standard confidence intervals cannot be applied for
federated, anytime-valid learning, and hence cannot be implemented in settings
such as the DHT.

e-values We will now introduce the e-value, the key player in SAVI, and illus-
trate how it relates to the concepts introduced above. The idea of using e-values
for testing hypotheses was originally introduced a long time ago, in the field of
information theory by Leonid Levin: he named them tests of randomness [Levin,
1976]. However, the theory was not further developed and translations to the field
of statistics in terms of interpretation, type-I error guarantee, power and opti-
mality remained non-existent. Around 2019, interest in e-values from a statistical
viewpoint suddenly rose, first through separate independent initiatives [Grünwald
et al., 2022a, Vovk and Wang, 2021, Shafer et al., 2021, Wasserman et al., 2020],
and later through joint work by the pioneers [Ramdas et al., 2022].

Definition 1.4 (e-value). An e-value1 for null hypothesis P is a nonnegative
random variable E such that the expected value EP [E] is at most 1 for all P 2 P.

Definition 1.4 says that under the null hypothesis, we do not expect to observe
big e-values, as under the null, their expected value is at most 1. We may think
of the realized e-value as a betting score: we buy a ticket for 1 euro, and retrieve
e euro as the outcome of the bet. Definition 1.4 expresses that we do not expect
to gain money under the null hypothesis. This betting score can thus directly be
used as a measure of evidence against the null hypothesis [Shafer et al., 2021]: if
our score is unexpectedly high, i.e., much higher than 1, we make a large profit
in the betting game, and we might reject our null hypothesis. The reader might
notice that this interpretation has a lot of parallels to the hypothesis testing with
Bayes factors described earlier. In fact, in the case where we have a simple null
hypothesis P = {P0} with corresponding density or mass function p0, the Bayes
factor pW1(Y )/p0(Y ), for any choice of W1, is an e-value for {P0}, as

EP0


pW1(Y )

p0(Y )

�
=

Z

Y
p0(Y )

pW1(Y )

p0(Y )
dY =

Z

Y
pW1(Y )dY = 1. (1.2)

However, (1.2) will for most Bayes factors not hold for composite null hypotheses,
as most Bayes factors for composite null hypotheses are not e-values. Nevertheless,
interestingly, further on we will see that in a certain sense optimal e-values also
take on the form of Bayes factors. Besides this evidential interpretation, there

1Throughout the other chapters in this thesis we will make a distinction between the random
variables, e-variables, and their realized values, e-values, but to improve readability of this in-
troductory chapter we will use the term e-values for both concepts here, analogous to the way
in which we refer to p-values.

8



is also a connection to frequentist testing and p-values. By Markov’s inequality,
it is straightforward that we can also use e-values in a frequentist manner, in a
hypothesis test with type-I error probability guarantee at level ↵:

P

✓
E �

1

↵

◆
 ↵EP [E]  ↵.

Similarly, it can be derived that 1/E is a conservative p-value (see definition 1.1,
the conservativeness resulting from the trading of some of the test’s power for the
improved flexibility of e-values, as we will see below. Interestingly, with e-values,
we now are able to combine the frequentist and Fisherian views discussed earlier,
as they allow for post-hoc determination of the type-I error probability threshold,
allowing for better utilization of extreme observations in frequentist hypothesis
testing scenarios [Grünwald, 2022].

From e-values to e-processes The introduction on e-values so far only con-
sidered single tests: now, we will extend the e-values to safe, anytime-valid e-
processes, which will be the main concern in this thesis. Let us again consider
the sample space ⌦, now equipped with filtration F.2 We define our “start-
ing capital” (as in the betting interpretation) E0 = 1. The stream of e-values
(E0, E1, E2, E3, ..., Et) calculated on data stream Y

t = (;, Y1, Y2, Y3, ..., Yt) is then
a conditional e-process if:

EP [Et|Ft�1]  1. (1.3)

The collection of e-values in equation (1.3) are called a conditional e-process. Each
e-value Et for a new batch of data Yt can be calculated taking into account any
combination of information available up to (not including) time t. Multiplication
of the elements of a conditional e-process also yields an e-value, which is key:

E
(t) = ⇧t

j=1Ej .

The collection (E(1)
, E

(2)
, E

(3)
, ...) is an (unconditional) e-process (proposition 2 in

Grünwald et al. [2022a])3. Combining this fact with Ville’s inequality shows that
we can use these e-processes to perform safe anytime-valid tests ([Ville, 1939],
corollary 1 from Grünwald et al. [2022a]):

For all P 2 P : P

✓
there exists t s.t. E(t)

�
1

↵

◆
 ↵. (1.4)

2This is a measure theoretic concept. Ft can be interpreted as all possible combinations of
information we may have observed during our experiments up to and including time t. This
may also include side information we do not necessarily directly incorporate in our hypothesis
test, for example our research budget or information about the work of other research groups.
In standard cases, Ft will often simply coincide with the data observed up to and including time
t, Y t.

3An e-process is a generalization of a test martingale: all e-processes that we encounter in
this thesis are test martingales.
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Chapter 1

Hence, the probability that we will ever reject the null hypothesis, while data are
in fact generated under the null, is bounded by ↵. These findings o↵er some very
useful potential applications. No matter the stopping rule we apply in our study
design (e.g., sampling until all of the research budget has been spent, sampling
until a prespecified date or number of participants), the e-process can be applied
in an anytime-valid test with type-I error guarantee at level ↵. The definition
of the conditional e-process in equation (1.3) even allows us to look at each E

(t)

to decide whether to continue data collection for batch Yt+1: we can now test
each time a new data entry has become available. This is fundamentally di↵erent
from methods such as alpha spending, where testing moments really have to be
committed to in advance, and changing testing moments on the fly is a costly
process [Demets and Lan, 1994].

Returning to the heights example, we could instantiate an e–value for testing
the null hypothesis that the height in a population is distributed according to a
normal distribution with mean 175 and an arbitrary standard deviation. We could
then start calculating e-values and testing our null hypothesis as soon as we have
measured the height of the first subject: after our first subject, we calculate E1,
peek if E(1)

� 1/↵, and decide if we want to continue data collection. If we move
on to the second subject, we calculate E2, peek if E(2) = E1 ⇥ E2 � 1/↵, and so
forth. In chapter 2 it can be observed that in certain cases, studies can be finished
a lot quicker due to this optional stopping.

“Good” e-values: the simple case The definitions above so far only men-
tioned the null hypothesis. However, of course we want e-values with good power
(1� �, with � the type-II error mentioned earlier) under the alternative. Taking
into account the multiplicative definition of e-processes, one would at all cost want
to avoid observing Ej = 0 under the alternative, as this would mean all further
experiments would then be futile and the value of the e-process would stay zero
from there on. In terms of betting, we have lost all our capital in this scenario.
To avoid this, Grünwald et al. [2022a] proposed to design e-values that maximize
expected logarithmic return, also called growth rate, a concept introduced by Kelly
[1956].

Definition 1.5 (Growth rate optimal (GRO) (Grünwald et al. [2022a], theorem
1)). Let Y be a given random variable. Let Q be a distribution for Y with given
mass or density function q. Grünwald et al. [2022a] show that there always exists
a probability mass or density function p

⇤
0 such that E(Y ) = q(Y )/p⇤0(Y ) is (a) an

e-value and (b) it achieves the following supremum:

sup
E2E(P)

EY⇠Q[logE],

where EY (P) is the set of all possible e-values for P that can be written as a
function of the given random variable Y . We call this e-value the Q-GRO e-value.

By using the logarithm as optimality criterion, we avoid choosing e-values that
can take on the value 0 (as would happen in the case where we would directly
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optimize for power), as this would imply a growth rate toward minus infinity.
We also have an idea of the evidence we expect to collect under the alternative
if Y1, Y2, ... ⇠ i.i.d. Q: E

(t) will up to first order in the exponent converge to
exp(tEQ[logE(j)]) [Kelly, 1956]. More elaborate discussions on other advantages
of optimizing growth rate can be found in Grünwald et al. [2022a] and Ramdas
et al. [2022].

Figure 1.2: The connections between important concepts in safe anytime-valid
testing. In the “simple” case where we consider a point null and alternative hy-
pothesis, e–values and likelihood ratios are closely connected and even coincide
when optimizing with respect to expected growth rate. When we consider the
case where we have a composite null and/ or alternative however, simple likeli-
hood ratios no longer provide valid sequential tests. All concepts and connections
are explained in detail in the text of section 1.2.

As we already saw in equation (1.2), in case of a simple, singleton null hypoth-
esis {P} the likelihood ratio between any Bayes marginal distribution and P is an
e-value, that can be used to build an e-process. It even turns out that in the case
where we also have a simple alternative hypothesis Q = {Q}, the likelihood ratio
of Q and P (i.e., equation (1.2) with W1 a point prior such that PW1 = Q) coin-
cides with the GRO e-value. This is also depicted schematically in figure 1.2: in
the simple case, the likelihood ratio is an e-process, coincides with (a good choice
of) an e-value and can be used for sequential testing. In these scenarios with a
simple null, GRO e-values are closely related to and have been studied before but
under di↵erent names, for example as Wald’s sequential probability ratio test and
in Royall’s work on the universal bound for likelihood ratios [Royall, 1997].
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Chapter 1

“Good” e-values: the composite case In case of a composite null hypoth-
esis, defining “good” e-values is not straightforward anymore. The Bayes factor
pW1(Y )/pW0(Y ) is in general not an e-value in this case, as we do not necessar-
ily have EP [pW1(Y )/pW0(Y )]  1 for all P 2 P as in equation (1.2). For an
elaborate discussion on the potential use and di�culties of Bayesian statistics for
anytime-valid inference, see for example De Heide and Grünwald [2021].

So far, two major distinguishable approaches toward defining e-values for com-
posite null hypotheses have been proposed. The first one, introduced by Wasser-
man et al. [2020], is named universal inference: as its name implies, it is applicable
to a wide variety of parametric and nonparametric settings. The idea is based on
calculating the maximum likelihood estimator for the null distribution Pt based
on all data seen up to and including time t. When plugging this into a likelihood
ratio, one ends up with a process that is by construction dominated by other test
martingales, which is then by definition an e-value at each time t and a building
block of an e-process.

In this thesis, we will instead focus on the second approach, based on extend-
ing the GRO-criterion introduced above and a process called reverse information
projection (RIPr). Restating theorem 1 by Grünwald et al. [2022a]:

Theorem 1.1 (RIPr). For a given alternative distribution Q = {Q} and com-
posite null P parameterized by some ⇥0, there exists a Q-GRO e-value E(Y ) =
q(Y )/p⇤0(Y ) as in definition 1.5 that uniquely can be found through reverse infor-
mation projection of Q onto P. That is, it satisfies:

sup
E2E(P)

EY⇠Q[logE] = inf
W0

D(Q||PW0),

where the infimum is over all distributions on ⇥0, and D(.||.) is the Kullback-
Leibler divergence (“relative entropy”).

In other words, for composite null, the Q-GRO e-value can be found through
minimizing the Kullback-Leibler divergence between Q and PW0 with respect to
W0. This concept can also be extended to a composite alternative: for example
when a prior on ⇥1 is available, a W1-GRO e-value can be defined. In absence
of such a prior, to provide practical alternatives to the discussions on objective
and subjective views on Bayesianism, an e-value could be optimized for worst-case
GRO (for example see [Grünwald et al., 2022a] section 3, or [Turner, 2019] for an
implementation), or the GRO e-value relative to the information we are missing
about the true Q 2 Q, called REGROW (see [Grünwald et al., 2022a] section 4,
and chapter 2 in this thesis).

Concurrently with the emerging work on e-values, there have been develop-
ments around anytime-valid p-values [Johari et al., 2022]. Interestingly, the two
are in fact connected (as can be observed in figure 1.2): as stated before, 1/E
is a conservative p-value, but p-values can also be converted into e-values by a
process called calibration [Vovk and Wang, 2021]. This makes this e-value always
substantially smaller than 1/pval: this calibration comes at a cost. It is however
unclear what the costs of this calibration would be for specific implementations,
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and how these p/e-values would compare in terms of power to GRO e-values. Be-
cause anytime-valid p-values lack the nice combination properties of e-values in
the federated setting, they are beyond the scope of this thesis.

Applications of e-processes: federated setting and confidence
sequences Especially the property that the product of e-values and e-processes
again yields e-values and e-processes, with the same “safety” guarantees (type-I
error guarantees), makes them interesting potential candidates for implementation
in a federated learning scenario with horizontally partitioned data. Traditionally,
in healthcare research, study results from separate medical centers are combined
through meta-analysis. However, most of the classical meta-analysis methods are
actually not valid under the “shifting” null hypothesis scenario described earlier,
where decisions to perform more studies are based on peeking at other study re-
sults. A striking example of this “gold rush” is given in Ter Schure and Grünwald
[2019], where it is also illustrated clearly how meta-analysis with e-values can guar-
antee type-I error probability control. Using e-processes for meta-analysis would
even enable meta-analysis “on-the-fly”: each time a new data point has become
available in one of the participating centers, the global e-process value can be up-
dated, in theory leading to much faster and robust decisions compared to classical
meta-analyses [Ter Schure, 2022]. Such processes would also be ideal to implement
in DHT scenarios such as in figure 1.1: e-values based on new data entries could
be computed locally (in local centers or even within patients’ data storage sys-
tems), with only the need to share small floating point numbers with the central
algorithmic node to update the estimates used for patient recommendations.

The e–value based hypothesis tests described so far can also be extended to
anytime-valid confidence sequences (CS) [Howard et al., 2021, Pace and Salvan,
2020]. These extend the definition of confidence intervals above, and can be con-
structed by inverting e-value-based tests for testing a whole set of null hypotheses,
each for a specific value of � = �(P ):

CSt = {� 2 � : E(t)
� < 1/↵}.

For example, returning to our height example one last time, we now define a set
of null hypotheses, for a grid of possible mean values of the distribution of the
population height. We define the corresponding set of e-values, i.e. Eµ0 is an e-
value for the null hypothesis that the data are generated by a normal distribution
with mean µ

0 (and arbitrary standard deviation). Each time a new data point has

come in we update E(t)
µ0 for every value of µ0: once E(t)

µ0 � 1/↵ at any t we exclude
that µ0 from the confidence sequence.

These confidence sequences could again easily be applied to obtain safe, anytime-
valid estimations in the federated setting described in the previous paragraph: in-
stead of one e-value, now the individual e-values for a grid of values of �(P ) are
shared with a central algorithmic node. These ideas will further be explored in
chapters 3 and 7.

13



Chapter 1

1.3 Knowledge discovery in psychiatry: current state of the
art and the potential role of machine learning

Progress made over the past decades has not been equal for all fields of medicine
[Krumholz, 2014]. Especially in psychiatry, clear clinical progress has come to a
halt [Dean, 2017]. Over the past century, focus has shifted from a psychoanalyt-
ical view to a more biological view of psychiatry, especially with the introduction
of psychopharmacology, imaging techniques and genomics. The concurrent intro-
duction of the Diagnostic and Statistical Manual of Mental Disorders (DSM) for
classification of mental disorders strengthened this biological view: each patient
should match with at least one mental disorder from the DSM, which in theory
has one specific biological cause that can be treated, predicted or even prevented
in some way. However, plenty of evidence suggests that this biological approach
toward psychiatry has not lead to an improvement to psychiatry’s global burden
of disease [Dean, 2017]. Over the past decade, this has led to an emerging number
of calls for paradigm shifts and transitioning to completely new, less biologically
oriented, diagnostic systems.

The complex nature of psychiatry research One possible explanation for
this halt in progress could be that the complex, multi-faceted nature of psychi-
atric pathology does not match the traditional gold-standard research methods
well. Within this evidential framework, most value is put on randomized con-
trolled clinical trials, where treatment arms are compared between homogeneous
groups of patients with well-defined, well-framed syndromes [Burns et al., 2011].
As a first consequence, definitions of study populations in these trials are strict
and narrow, resulting in them being not representative for the heterogeneous pre-
sentations of psychiatric illness [Lee et al., 2007]. This leads to selection bias, with
a mismatch between study populations and the clinical population, and a discrep-
ancy of drugs’ performance in clinical trials versus performance in daily clinical
practice [Hernán et al., 2004]. Second, the relatively simple statistical models used
to detect treatment e↵ects in these trials might not capture the complex interplay
between mental health disorders, patient characteristics and psychotropic drugs.
As per standard, most trials are analyzed with the classical p-value based null-
hypothesis testing described in section 1.2, only able to capture (linear) e↵ects
on mean changes on (semi-)continuous outcome measures, such as standardized
questionnaires.

Fully utilizing the EHR One very rich source of information that until recently
remained vastly underused are the electronic health records: the entire corpus of
data generated during routine (and, optionally, trial) clinical care. Using EHR
data for developing clinical insights o↵ers lots of potential benefits when com-
pared to databases specifically set up for clinical trials: less information remains
hidden, the burden on clinical sta↵ is significantly relieved through a reduction in
administration and patients’ consent is easier to manage [Coorevits et al., 2013].

Already thirty years ago, the potential value of using databases for knowledge
discovery was recognized. Knowledge discovery is described by Frawley as the dis-
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covery of patterns among data entries in a database: once the pattern is interesting
to a user and (probabilistically) certain, it is new knowledge [Frawley et al., 1992].
Unfortunately, knowledge discovery processes are not yet part of routine reflection
and improvement processes at (academic) clinical institutes, perhaps because of
the lack of infrastructure and appropriate algorithms as described in section 1.1.
Recently, Menger and others made first steps toward adapting Frawley’s ideas to
and implementing them structurally at several mental health institutes throughout
the Netherlands in his PhD dissertation [Menger, 2019].

Besides developments on analyzing EHR data, over the past years, incorporat-
ing smartphones and other smart devices as data sources for running algorithms
to improve mental health has emerged as a new promising topic of research (for
example, among many others, De Loo↵ et al. [2019] and Susaiyah et al. [2021]).
Unfortunately, these devices are not part of routine clinical care or even most clini-
cal trials in the Netherlands, because of many technical and legal hurdles. Perhaps
some of the infrastructural innovations proposed in 1.1 can contribute to future
implementations, but for the exploratory and confirmatory research in this theses
these types of data were not available yet.

Algorithmic learning in psychiatry Clinical applications of machine learning
in psychiatry have scarcely been implemented in actual clinical practice so far. A
recent review of applications for predicting in-patient violence by Parmigiani et al.
[2022] highlighted that the wide variety of (often black-box) algorithms used re-
sulted in non-intersecting sets of predictors in 8 independent studies, complicating
generalizablity and interpretation of results. They especially advocate the need for
large, insightful studies into learning from data. Ermers et al. also recognize that
the black-box nature of many machine learning models could hinder adaptation in
practice. They distinguish several additional potential caveats for implementing
machine learning in psychiatry [Ermers et al., 2020]. Machine learning models
could interfere with self-reflection and critical thinking of clinicians during the de-
cision making process. Further, a potential demise of context could create biased
models, only utilizing information that can be used for machine learning in deci-
sions. And lastly, the ground-truth problem might hinder training well-performing
models [Liang et al., 2017].

To enable learning for small groups of patients, or even individual patients,
studying large groups of patients is key. However, large-scale studies into (severe)
mental disorders are limited. Treatment is often divided over large-scale, highly
specialized centers, and data sharing is often completely o↵ the table to ensure
patients’ privacy, especially of rich data sources such as clinical notes. The e-
values and safe anytime-valid e↵ect estimation methods described in section 1.2
could potentially o↵er a solution: federated learning enables learning locally from
psychiatry patients’ data, and only require sharing the locally trained algorithms
between mental health institutes.

However, e-values for complex e↵ect estimation scenarios such as logistic (pe-
nalized) regression have not been established yet. Therefore, another method
especially suitable for transparent and federated learning in the exploratory phase
of research will also be studied in this thesis: Bayesian network analysis [Brig-
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anti et al., 2022]. Bayesian networks flexibly o↵er the possibility to incorporate
prior knowledge on associations and e↵ect sizes based on earlier research. Over
the past decade, Bayesian network analysis has been an emerging technique in the
field of mental health, because such networks are especially suitable for modeling
the complex interplay between symptoms of mental health disorders [Borsboom,
2017]. In chapter 5, an extensive introduction is given into the composition of
Bayesian networks.

1.4 Chapters 2 and 3: implementations of safe, anytime-
valid inference

The SAVI paradigm is still relatively novel and had, before the work in this thesis
was started (2019), mainly been developed theoretically. For example, theory as
described in section 1.2 about methods to define e-values with good properties for
discovering evidence for an alternative hypothesis has been well-developed, but the
actual development of optimal e-values, corresponding software implementations
and feasibility studies for specific hypothesis testing scenarios were still lacking.
To work toward integrating e-values and SAVI as a core component of common
research practice, it is essential that such software and illustrations of implemen-
tations exist. Such implementations are the subject of chapters 2 and 3, and the
corresponding R software is available on CRAN [Ly et al., 2022].

Setting In this thesis, GRO e-values and corresponding confidence sequences are
developed for a common hypothesis testing scenario: the comparison of multiple
treatments. In this scenario, multiple groups of patients (or potentially other units
of analysis: the e-values presented in this paper are also relevant as an alternative
to traditional A/B testing methods, commonly used in econometric and marketing
research [Kaufmann et al., 2014]), are treated with various strategies, classically
placebo versus treatment, or gold standard versus new treatment. Formally, we
consider k data streams of data blocks with stream index g 2 (1, . . . , k), where
Y

(t),g = (Y(1),g, Y(2),g, . . . , Y(t),g), with a di↵erent treatment for each stream g.
The outcomes in each stream are distributed according to some distribution P✓g ,
with ✓g 2 ⇥. According to the null hypothesis, the distributions of the outcomes
Y coincide over the streams:

H0 : ✓1 = ✓2 = ... = ✓k = ✓ for some ✓ 2 ⇥. (1.5)

With the e-values, we can gather evidence or test to investigate whether the out-
come distributions are similar under the di↵erent treatments, and with the confi-
dence sequences, we can estimate the magnitude of the di↵erence in outcomes (for
example a mean di↵erence or relative risk ratio) between the treatments. Because
we use an e-process for the tests and confidence intervals, we can gather this evi-
dence each time a new block of data is complete, where we have prespecified only
the number of observations we are going to collect for each treatment arm in this
specific block. For example, in a balanced design, we could test each time one new
observation has been made for each treatment.
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Contributions In chapter 2, a general definition of an e-value for the above-
described hypothesis testing scenario for two or more data streams is presented.
The e-value definition presented there o↵ers a lot of flexibility, as it presents a
simple analytical definition that can be implemented for arbitrary data streams.
Further, it closely resembles the relative GRO e-value (see section 1.2) in some
testing scenarios with a compound alternative, for example in the scenario of
k ⇥ 2 contingency table testing. Concisely, to construct the e-value, one makes a
point estimate of the alternative distribution Q̂ based on data seen in the data
stream and/or expert knowledge, and further constructs the Q̂-relative GRO e-
value through RIPr onto P. The faster our estimate of Q converges to the truth
during data collection, the closer we get to the real GRO e-value and the more
powerful the test. We illustrate the power of the sequential test based on our e-
value through simulations and a comparison to classical methods in a clinical study
performed previously. In chapter 3, we extend the simple e-value to anytime-valid
confidence sequences. We also implemented the e-values and confidence sequences
in a software package for the statistical programming language R [Ly et al., 2022].

1.5 Chapters 4 – 6: data preparation and exploratory anal-
ysis in clinical psychiatry research

Research into Bayesian network analysis of the complex interplay between symp-
toms in mental health disorders has really taken flight over the past decade. How-
ever, most research again concerns well-defined, homogeneous groups of patients,
and uses long, standardized questionnaires, yielding models that cannot be imple-
mented straightforwardly in routine clinical psychiatry. To work toward Bayesian
networks that can be implemented in a clinical decision support process in routine
practice, in the work in this thesis, we built on the previous work on exploratory
and predictive analysis of existing EHR data at UMC Utrecht and Parnassia Groep
by Vincent Menger to discover new, possibly causal patterns in psychiatry data
using Bayesian network analysis.

To discover such patterns across heterogeneous groups of patients, first we
needed to define a treatment outcome measure with clinical relevance for the entire
spectrum of mental health disorders. Gold standards that are registered in the
EHR during routine clinical care for such an outcome measure were currently
lacking. However, to enable learning from the EHR for large, heterogeneous groups
of patients in a retrospective manner, the information covering these treatment
outcome themes needed to be extracted from free text.

Contributions In chapter 4, we define psychiatry treatment outcome measures
applicable to the entire spectrum of mental health disorders through a combination
of systematic review, interviews with clinical sta↵ and qualitative analysis. We
then develop an information extraction pipeline that combines rule-based and
deep-learning based text mining techniques that can recover phrases regarding
these outcome measures from free clinical text, and convert these retrieved texts
into scores for each patients on the outcome topics.
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In chapter 5, we combine this information extraction pipeline with data from
structured (tabular) sources in the EHR to develop a Bayesian network of patient
characteristics, treatment characteristics and treatment outcomes. We do this for
a relatively large and heterogeneous patient population of patients who received
antidepressants during an admission at UMC Utrecht or Parnassia Groep, the
second line mental health institute for the entire west of the Netherlands. Patterns
of associations found for specific small patient groups are clinically assessed.

In chapter 6, we look at a clinical question of a slightly di↵erent nature and
investigate how incorporating expert clinical knowledge and summary statistics
from other centers can improve Bayesian network analysis. This chapter focuses on
modeling outcomes of electroconvulsive treatment for depressive episodes at UMC
Utrecht. For this select population, plenty of clinical trial data is already available,
and we set out to investigate how incorporating this data a↵ects predictions and
prediction accuracy of a Bayesian model.

1.6 Chapter 7: stratified anytime-valid e↵ect estimation
and application to a psychiatry use-case

The retrospective, exploratory findings from chapters 4 and 5 revealed interest-
ing new patterns in the data of UMCU and PG. For patients and clinicians at
these specific institutes, these patterns in itself might be of enough added value
to incorporate them in decision support models. However, before these results
can be generalized, confirmatory research in a prospective (perhaps even random-
ized) manner is essential. In chapter 7, we develop safe anytime-valid tests and
confidence sequences for these kinds of settings, where we want to estimate treat-
ment e↵ects in data streams stratified according to one or more characteristics.
To achieve this, we extend the e-values and confidence sequences developed for
testing Bernoulli streams in chapters 2 and 3. We then illustrate through simu-
lations how a prospective, federated trial design to test some of the hypotheses
formulated based on chapters 4 and 5 with these tests could be planned, and how
many patients we expect to include in such a design.

Setting In this chapter, we specifically focus on count data in a stratified con-
tingency table setting. The outcomes in the streams now not only depend on their
treatment, but also on certain stratification characteristics. We now (purely for
simplicity) focus on the case of two treatment groups, g 2 {a, b}. We will now use
g to indicate the treatment groups, and from now on k stands for the number of
strata k 2 1, . . . ,K. Outcomes in treatment group g and stratum k are Bernoulli
distributed according to P✓g,k . Under the null hypothesis, we then have:

H0 : ✓a,k = ✓b,k for all k. (1.6)

This is also the underlying idea of the Cochran-Mantel-Haenszel test, the classical
frequentist method for analyzing stratified (count) data [Mantel and Haenszel,
1959]. Giving a clinical example: a clinical researcher might suspect that the fact
whether a patient was admitted to ward A or B, and whether they were younger or
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older than 65 might interact with recovery probabilities and treatment allocation,
thus being a confounder in the relation between the treatment patients receive
and patient recovery. For analysis, the data thus need to be stratified according
to the four possible combinations of properties (the ward and the age). Under our
null hypothesis, the probability of the outcome does not depend on the treatment
after stratification: none of the treatments is superior with respect to the outcome
measure.

The tests and confidence sequences developed in chapter 7 are again valid
under optional continuation and especially apt for learning in a federated setting.
Each time a data block consisting of a prespecified number of observations in both
treatment arms is complete within one stratum, results can be calculated based
on only that block of data and previously stored summary statistics. To compute
the global e-value and confidence sequences, only the e-values corresponding to
the individual data blocks have to be shared with a central computing unit.

Contributions In chapter 7, we illustrate the development of an e-value for
testing (1.6). As mentioned above, the value of this e-value is computed by cal-
culating e-values for data blocks within the separate strata separately; we show
that through implementing cross-talk techniques from the field of machine learn-
ing the power of the e-value can be improved. In more detail: as we can see in
equation (1.3) we are allowed to look back at all information that we had before
we started collecting data for our current block. We use the data of all previously
seen strata and determine the best mix of information across the strata for each
stratum to determine the hyperparameters of our e-value: for example, we can
share the success rate or odds of success between certain strata.

We next show that, as a substantial novelty, we can also incorporate this cross-
talk to construct confidence sequences for arbitrary e↵ect sizes for each stratum.
We also show that we can combine and invert our e-values to construct confidence
sequences for the minimal, maximal and mean e↵ect, even when success rates and
treatment e↵ects are heterogeneous over strata.

1.7 The composition of this dissertation

Chapters 2 throughout 7 have all been written as stand-alone publications in
scientific journals or conference proceedings and can therefore be read as self-
contained papers. An overview of the papers corresponding to the chapters can be
found on pages i and ii. As the work in this thesis is of multidisciplinary nature, the
chapters were written for di↵erent audiences, and di↵erent background knowledge
is required to read them.
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Chapter 2

Generic E-Variables for Exact Se-
quential k-Sample Tests that allow
for Optional Stopping
Rosanne J. Turner1,2, Alexander Ly1,3, Peter D. Grünwald1,4
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2: University Medical Center Utrecht, Brain Center, Netherlands
3: University of Amsterdam, Department of Psychology, Netherlands
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Abstract
We develop e-variables for testing whether two or more data streams come from
the same source or not, and more generally, whether the di↵erence between the
sources is larger than some minimal e↵ect size. These e-variables lead to exact,
nonasymptotic tests that remain safe, i.e., keep their type-I error guarantees, under
flexible sampling scenarios such as optional stopping and continuation. In special
cases our e-variables also have an optimal ‘growth’ property under the alternative.
While the construction is generic, we illustrate it through the special case of k⇥ 2
contingency tables, i.e. k Bernoulli streams, allowing for the incorporation of
di↵erent restrictions on the composite alternative. Comparison to p-value analysis
in simulations and a real-world 2 ⇥ 2 contingency table example show that e-
variables, through their flexibility, often allow for early stopping of data collection
— thereby retaining similar power as classical methods — while also retaining the
option of extending or combining data afterwards.
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Chapter 2

2.1 Introduction

We develop hypothesis tests that remain statistically valid under flexible sampling
scenarios, in which one is allowed to engage in optional continuation and optional
stopping. We focus on the setting with data coming from several groups (often:
treatment(s) versus control), with the goal of testing whether the underlying dis-
tributions are all the same. We design a family of tests for this scenario based
on e-variables and test martingales that preserve type-I error guarantees under
optional stopping. Hence, if the level ↵-test is performed and the null hypothesis
holds true, the probability that the null will ever be rejected is bounded by ↵.
Our tests can be implemented, and are exact, for composite null and alternative
hypotheses, arbitrary distributions and in combination with arbitrary divergence
measures. While our e-variable construction works for general parametric models,
in the practical part of this paper we restrict ourselves to sequential categorical
data, i.e. Bernoulli streams, for which we provide explicit implementation details
and test scenarios.

Relevance Even in this age of big data and huge models, simple tests for com-
paring two populations are still used as heavily as ever in clinical trials, psycholog-
ical studies and so on — areas heavily plagued by the reproducibility crisis [Pace
and Salvan, 2020]. In a by-now notorious questionnaire [John et al., 2012], more
than 55% of the interviewed psychologists admitted to the practice of ‘adding
data until the results look good’. While classical methods lose their type-I error
guarantee if one does this (an example of this is provided in Appendix S2.D of
the Supplementary Material), e-variable based tests allow for it, while, due to the
option of stopping early, remaining competitive in terms of sample sizes needed
to obtain a desired power. We illustrate the practical advantage of our test in
Section 2.7 using the recent real-world example of the SWEPIS trial which was
stopped early for harm [Wennerholm et al., 2019]. Their analysis being based on
a p-value (by definition designed for fixed sampling plan), the question whether
there was indeed su�cient evidence available to stop early is very hard to answer,
since the sampling plan was not followed, and consequently the p-value based on
which they stopped the study was by definition incorrectly calculated. This also
makes it very di�cult to combine the test results with results from earlier or future
data while keeping anything like error control. We show that with our e-variable
based methodology we would have obtained su�cient evidence to stop for harm
after the same number of events had occurred, because we are allowed to perform
an interim analysis each time one pair of treatment and control samples have been
collected. Additionally, this e-variable, even though based on a stopped trial, can
be e↵ortlessly combined with e-variables from other trials while retaining error
guarantees. Also, our results are of interest beyond mere testing: the e-variables
we develop in this paper can be used to obtain anytime-valid confidence intervals
[Howard et al., 2021] that also remain valid under optional stopping [Turner and
Grünwald, 2023].

In Section 2.4 and 2.5 we refine our generic test to the 2⇥ 2 and k ⇥ 2 model.
An advantage of focusing on this simple setting is that it is arguably the simplest

22



and clearest example in which there is a nuisance parameter (the proportion un-
der the null) that does not admit a group invariance. Nuisance parameters that
satisfy such an invariance (such as the variance in the t-test, or the grand mean
in the two-sample t-test) are quite straightforward to turn into e-variables and
test martingales via the method of maximal invariants, as explained by Grünwald
et al. [2022a] and already put into practice by e.g. Robbins [1970], Lai [1976].
The present paper shows that the proportion under the null can also be handled
in a clean and simple manner. As explained below, the resulting instantiated
2⇥ 2 test appears to be quite di↵erent from existing sequential and Bayesian ap-
proaches. Thus, more than 85 years after the lady tasting tea, we are able to still
say something quite new about the age-old problem of contingency table testing.

Related Work A sequential test for the 2 ⇥ 2 setting has been suggested as
early as 1947 by Wald (1947). Wald’s test statistic can be viewed as a product
of e-variables and hence his test can be modified so as to remain valid under op-
tional stopping. Yet, as explained in Section 2.8.2, in the 2 ⇥ 2 setting, Wald’s
e-variables lack the optimality property of the ones we introduce here, and they
cannot be generalized to arbitrary models or e↵ect size notions. Other earlier ap-
proaches (e.g. [Siegmund, 2013, Section V.2] and [Johari et al., 2022]) are based
on asymptotic approximations, or consider a somewhat di↵erent problem in which
the null is simple [Lindon and Malek, 2022] (and then standard likelihood ratio
tests [Royall, 1997] can be used). In contrast, our e-variable based tests are exact
and nonasymptotic, meaning they are valid in (even the smallest) finite samples,
and hold for general composite null and alternative hypotheses. e-variables also
o↵er a lot more flexibility than traditional ↵-spending and group sequential meth-
ods: although these methods allow for interim looks at the data, most often at
pre-specified moments, a maximum sample size still needs to be set in advance,
which does not truly allow for optional stopping and optional continuation (a more
elaborate comparison of the two methods can be found in Ter Schure et al. [2020,
Section 1]).

In fact our tests are more closely related to, yet still di↵erent from, Bayes factor
tests: in the case of simple null hypotheses, e-variable based tests coincide with
Bayes factors [Grünwald et al., 2022a]. However, in the 2⇥2 setting the null is not
simple, and while the Bayes factor is a ratio of two Bayes marginal likelihoods, our
e-variables are ratios of more general, ‘prequential’ [Dawid, 1984] likelihood ratios.
In some special cases, the numerator is still a Bayes marginal likelihood, but the
denominator, in the 2 ⇥ 2 setting, almost never is (Section 2.3.2) . Thus, while
similar in ‘look’, our approach is in the end quite di↵erent from the default Bayes
factors for tests of two proportions that were proposed by Kass and Vaidyanathan
[1992] and by Jamil et al. [2017], the latter based on early work by Gunel and
Dickey [1974]. To illustrate, in Appendix S2.C (Supplementary Material) we show
that none of the variants of the Gunel-Dickey Bayes factor that are applicable in
our set-up yield valid e-variables (are anytime-valid).

Another recent approach that bears some similarity to ours are the two-sample
tests from Manole and Ramdas [2023], Shekhar and Ramdas [2021]. They focus
on a nonparametric setting and their test martingales satisfy optimality properties
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as the sample size gets large. Instead, we focus on the parametric case and, for
this case, manage to derive e-variables that are equal to or closely approximate to
“optimal” (see section 2.2.2) e-variables, thus optimizing for the small-sample case
(in principle, our tests could be used in a nonparametric setting as well, but since
they rely on using a prior on the alternative, the test martingales of Manole and
Ramdas [2023], Shekhar and Ramdas [2021] might be easier to use in that case).
Another general nonparametric two-sample approach with a sequential flavor, but
without optional stopping error guarantees, is Lhéritier and Cazals [2018].

Contents In section 2.2 we formally introduce the notation used throughout this
paper and restate the concepts of e-variables, optional stopping and the Growth
Rate Optimality (GRO) criterion, GRO being the analogue of ‘optimal power’ in
our optional continuation setting. In Section 2.3 we propose our generic e-variable
for tests of two streams in general and investigate when it has the GRO property.
In Section 2.4 and 2.5 we specifically show how these general e-variables can be
applied in the setting of a test of two proportions, with and without restrictions on
the alternative hypothesis. In Sections 2.6 and 2.7 we provide, through simulations
and a real-world example, comparisons of various e-variables and Fisher’s exact
test with respect to GRO and power. In Section 2.8 we compare our generic
approach to other e-variables one might define for this problem, including the
ones based on Wald’s test. We end with a conclusion. All proofs are in the
Supplementary Material.

2.2 Setup, notation and preliminaries

In this section we describe our setup and notation in detail, and cover the neces-
sary preliminaries from the theory of safe anytime-valid inference with e-variables.
We refer to Ramdas et al. [2022], Grünwald et al. [2022a], Shafer et al. [2021], re-
spectively, for an extensive introduction to this theory, to the use of e-variables in
‘optional continuation’ over several studies in particular, and to their enlightening
betting interpretation.

2.2.1 Setup

Suppose we collect samples from two distinct groups, denoted a and b. In both
groups, data are i.i.d. and come in sequentially — even though, as explained
underneath (2.2) below, our approach can also be fruitfully used in the fixed design
case. We thus have two data streams, Y1,a, Y2,a, . . . i.i.d. ⇠ P✓a and Y1,b, Y2,b, . . .

i.i.d. ⇠ P✓b with ✓a, ✓b 2 ⇥, {P✓ : ✓ 2 ⇥} representing some parameterized
underlying family of distributions, all assumed to have a probability density or
mass function denoted by p✓ on some outcome space Y. We will use notation
P(✓a,✓b) (density p(✓a,✓b)) to represent the joint distribution of both streams. Since
it considerably simplifies notation and treatment, we focus on two-sample tests
throughout the paper, pointing out at the relevant places how to extend our results
to the k-sample setting for k > 2. We further assume that all streams are mutually
fully independent, so that (returning to k = 2), the (marginal) probability of the
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first t = ta + tb outcomes, given that ta of these are in group a and tb in group b,
and writing y

t = (y1, . . . , yt), is given by the probability density (or mass function)

p✓a,✓b(y
ta
a , y

tb
b ) := p✓a(y

ta
a )p✓b(y

tb
b ) =

taY

t=1

p✓a(yt,a)
tbY

t=1

p✓b(yt,b). (2.1)

To indicate that random vector (Y ta
a , Y

tb
b ) := (Y1,a . . . , Yta,a, Y1,b, . . . , Ytb,b) has a

distribution represented by (2.1) we write ‘Y ta
a , Y

tb
b ⇠ P✓⇤

a,✓
⇤
b
’. According to the

null hypothesis H0 = {P✓a,✓b : (✓a, ✓b) 2 ⇥0}, ⇥0 = {(✓, ✓) : ✓ 2 ⇥}, both processes
coincide. Thus, we have that ✓⇤a = ✓

⇤
b = ✓0 for some ✓0 2 ⇥ and then the density

of data y
ta
a , y

tb
b is given by p✓0(y1,a, . . . , yta,a, y1,b, . . . , ytb,b). The alternative H1

expresses that d(✓a, ✓b) > � for some divergence measure d and some e↵ect size
� � 0.

To enable sequential application of our e-variables, we define a block Y(j) as
a set of data consisting of na outcomes in group a and nb outcomes in group b,
for some pre-specified na and nb. The na and nb used for the j-th block Y(j) are
allowed to depend on past data, but they must be fixed before the first observation
in block j occurs (this rule can be loosened to some extent, see Section 2.3.1 and
Appendix S2.E). A classical paired one-sample test corresponds to the special case
with na = nb = 1 and data coming in in the order a, b, a, b, . . ..

2.2.2 e-variables and test martingales

While to some extent going back as far as Darling and Robbins [1967], interest in
e-variables has exploded only very recently [Howard et al., 2021, Ramdas et al.,
2020, Vovk and Wang, 2021, Shafer et al., 2021, Grünwald et al., 2022a, Pace
and Salvan, 2020, Manole and Ramdas, 2023, Henzi and Ziegel, 2022]. In its
simplest form, an e-variable is a nonnegative random variable S such that under
all distributions P in the null hypothesis,

EP [S]  1. (2.2)

We use the term e-value for the realized value of S, analogously to its classical
counterpart, the p-value. Our test works by first designing e-variables for a single
block of data, and then later extending these to sequences of blocks Y(1), Y(2), . . .

by multiplication. At each point in time, the running product of block e-values
observed so far is itself an e-variable, and the random process of the products is
known as a test martingale:

Definition 2.1. Let {Y(j)}j2N, with all Y(j) taking values in some set Y, represent
a discrete-time random process. Let H0 be a collection of distributions for the
process {Y(j)}j2N. For all j 2 N, let S(j) be a non-negative random variable that

is adapted to �(Y (j)), with Y
(j) = (Y(1), . . . , Y(j)), i.e. there exists a function s

such that S(j) = s(Y (j)).

1. We say that S(j) is an e-variable for Y(j) conditionally on Y
(j�1) if for all
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P 2 H0,
EP

⇥
S(j) | Y(1), . . . , Y(j�1)

⇤
 1. (2.3)

That is, for each y
(j�1)

2 Y
j�1, all P0 2 H0, (2.2) holds with

S = s(y(1), . . . , y(j�1), Y(j)) and P set to P0 | Y
(j�1) = y

(j�1).

2. If, for each j, S(j) is an e-variable conditional on Y(1), . . . , Y(j�1), then we
call the process {S(j)}j2N a sequential e-variable process relative to the given

H0 and {Y(j)}j2N and we call {S(m)
}m2N with S

(m) =
Qm

j=1 S(j) the corre-
sponding test martingale.

Henceforth, we omit the phrase ‘relative to H0 and {Y(j)}j2N’ whenever it is
clear from the context. By the tower property of conditional expectation, one
verifies that for any process of conditional e-variables {S(j)}j2N, we have for all

m that the product S
(m) is itself an ‘unconditional’ e-variable as in (2.2), i.e.

EP [S(m)]  1 for all P 2 H0. Definition 2.1 adapts and slightly modifies termi-
nology from [Ramdas et al., 2022, Shafer et al., 2011].

Safety The interest in e-variables and test martingales derives from the fact that
we have type-I error control irrespective of the stopping rule used: for any test
martingale {S

(j)
}j2N, Ville’s inequality [Shafer et al., 2021] tells us that, for all

0 < ↵  1, P 2 H0,

P (there exists j such that S(j)
� 1/↵)  ↵. (2.4)

Thus, if we measure evidence against the null hypothesis after observing j data
units by S

(j), and we reject the null hypothesis if S(j)
� 1/↵, then our type-I error

will be bounded by ↵, no matter what stopping rule we used for determining j.
We thus have type-I error control even if we use the most aggressive stopping rule
compatible with this scenario, where we stop at the first j at which S

(j)
� 1/↵ (or

we run out of data, or money to generate new data). We also have type-I error
control if the actual stopping rule is unknown to us, or determined by external
factors independent of the data Y(j). We will call any test based on {S

(j)
}j2N and

a (potentially unknown) stopping time ⌧ that, after stopping, rejects i↵ S
(⌧)

� 1/↵
a level ↵-test that is safe under optional stopping, or simply a safe test.

GRO-Optimality, Simple H1 Grünwald et al. [2022a] (in the first version of
their paper put on arXiv in 2019) introduced a definition of e-variable optimality
that has by now become standard. To explain it, first consider a simple H1 = {Q}

and consider
EQ[logS(j)] ; EQ[logS

(m)] (2.5)

where S(j) and S
(m) are e–variables (i.e. non-negative random variables satis-

fying (2.2)) that, respectively, can be written as a function of Y(j) and Y
(m) =

(Y(1), . . . , Y(m)). The e-variable which maximizes the quantity on the left among
all e-variables that can be written as a function of Y(j), assuming it exists, is called
the Growth Rate Optimal e-variable for Y(j) relative to Q, or simply ‘Q-GRO for
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Y(j)’, and denoted as Sgro(Q),(j). Similarly, the e-variable maximizing the quan-

tity on the right, among all e-variables that can be written as function of Y (m),
is called Q-GRO for Y

(m). Grünwald et al. [2022a], Shafer et al. [2021], Ramdas
et al. [2022] explain why the logarithm is the appropriate function to use here.

In ‘nice’ cases, the Q-GRO e-variable for m outcomes can be obtained by
multiplying the individual Q-GRO e-variables:

Proposition 1. Let H1 = {Q} be simple and H0 be potentially composite, and
‘nondegenerate’ in the sense that for some P 2 H0, D(QkP ) < 1, D(·k·) denoting
the KL divergence. We define the following condition, with q, p the density of Q
and P , respectively:

There exists a P 2 H0 such that S(1) = q(Y(1))/p(Y(1)) is an e-variable. (2.6)

When this condition holds, S(1) = Sgro(Q),(1) is the Q-GRO e-variable for Y(1).
An e-variable of this form automatically exists if H0 is simple. If we further
assume that Y(1), Y(2), . . . are i.i.d. according to all distributions in H0 [H1, then

S
(m)
gro(Q) =

Qm
j=1 Sgro(Q),(j).

If Condition (2.6) holds and Y(1), Y(2), . . . are i.i.d. according to all distributions
in H0 [ H1, it thus makes sense to define the Q-GRO test martingale to be the

test martingale (S(j)
gro(Q))j2N. We will then have that Sgro(Q),(j) = sQ(Y(j)) for a

fixed function sQ : Y ! R+
0 .

In Section 2.3 (Theorem 2.1) we develop functions sQ (denoted
s(·;na, nb, ✓

⇤
a, ✓

⇤
b ) there) for simple H1 = {Q} so that SQ,(1) = sQ(Y(1)) is an e–

variable even though H0 is composite and not convex, so that Proposition 1 does
not apply. Since we invariably assume the Y(j) are i.i.d., SQ,(j) := sQ(Y(j)) is an

e–variable as well and with S
(m)
Q :=

Qm
j=1 SQ,(j), (S

(m)
Q )m2N is a test martingale.

The construction works for the general setting of two data streams discussed in
the introduction, and for some special H0 (even though composite), the SQ,(j)

will in fact be Q-GRO and (S(m)
Q )m2N will be the Q-GRO test martingale. These

include the H0 that arise in the 2 ⇥ 2 setting, our main application. For other
H0, the e-variables SQ,(j) will not necessarily have the Q-GRO-property; they are
designed to have (2.5) large, but it may be even larger for other e-variables.

2.2.3 From simple to composite setting: choice of the e-
variable and optimality

In case H1 is composite, no direct analogue of the GRO-criterion for designing
e-variables exists, since it is not clear under what distribution Q 2 H1 we should
maximize (2.5). In this paper, we deal with this situation by learning Q from the
data in a Bayesian fashion. It is now convenient to write H1 = {P✓ : ✓ 2 ⇥1} in a
parameterized manner (accordingly, henceforth we shall write ✓1-GRO e-variable
instead of P✓1 -GRO e–variable and Sgro(✓),(j) instead of Sgro(P✓),(j)). We will
assume i.i.d. data, thus, if H1 were true, then data would be i.i.d. ⇠ P✓⇤

1
for

some ✓
⇤
1 2 ⇥1. Starting with a distribution W on ⇥1, i.e. a prior, at each point
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in time j, we determine the Bayesian posterior W | Y
(j�1) and use the Bayes

predictive PW |Y (j�1) :=
R
⇥1

P✓dW (✓ | Y
(j�1)) as an estimate for the ‘true’ P✓⇤

1
. As

is well-known, under conditions on W and H1 (which, if H1 is finite-dimensional
parametric, are very mild), the posterior will concentrate around ✓

⇤ and hence
PW |Y (j�1) will resemble P✓⇤

1
more and more, with very high probability, as more

data becomes available.

At each point in time j, we use our current estimate PW |Y (j�1) to design a
conditional e-variable S(j). Note that even though our test depends on the choice
of a prior distribution on the alternative, the choice of prior does not a↵ect the
type-I error safety guarantee, hence it is fine, even from a frequentist point of view,
if such a prior is chosen based on vague prior knowledge. On an informal level,
as long as PW |Y (j�1) converges to the ‘true’ P✓⇤

1
, the S(j) will in fact also start to

more and more resemble the e–variables Sgro(✓⇤
1 ),(j)

we designed for H1 = {P✓⇤
1
}

and which were designed to have a large expected growth under the ‘true’ P✓⇤
1
.

If we had known the true P✓⇤
1
all along, the best test martingale we could have

used is S
(m)
gro(✓⇤

1 )
=
Qm

j=1 Sgro(✓⇤
1 ),(j)

, which maximizes EY (m)⇠P✓⇤1
[logS] over all

e-variables S for Y
(m). Assuming the convergence happens fast, we expect the

following quantity to be small:

EY (m)⇠P✓⇤1

2

4logS(m)
gro(✓⇤

1 )
� log

mY

j=1

S(j)

3

5 , (2.7)

i.e., we may expect that the test martingale
Qm

j=1 S(j) grows not much slower than

S
(m)
gro(✓⇤

1 )
.

2.3 Two-stream safe tests

2.3.1 A generic e-variable for 2-stream–blocks

We first consider the case in which the alternative hypothesis is simple: ⇥1 =
{✓1} for some fixed ✓1 = (✓⇤a, ✓

⇤
b ) 2 ⇥2. Consider a fixed sample size of size

n, and assume that we will observe a block of na outcomes in group a and nb

outcomes in group b. In this case, we can define an e-variable as the likelihood ratio
between p✓⇤

a,✓
⇤
b
and a carefully chosen distribution that is a product of mixtures of

distributions from ⇥0: for na, nb 2 N, n := na + nb and y
na
a = (y1,a, . . . , yna,a) 2

Y
na and y

nb
b = (y1,b, . . . , ynb,b) 2 Y

nb , we define:

s(yna
a , y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) :=

p✓⇤
a
(yna

a )
Qna

i=1

�
na
n p✓⇤

a
(yi,a) +

nb
n p✓⇤

b
(yi,a)

� ·
p✓⇤

b
(ynb

b )
Qnb

i=1

�
na
n p✓⇤

a
(yi,b) +

nb
n p✓⇤

b
(yi,b)

� . (2.8)

Theorem 2.1. The random variable S[na,nb,✓⇤
a,✓

⇤
b ]

:= s(Y na
a , Y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) is
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an e-variable, i.e. we have:

sup
✓2⇥

EV n⇠P✓ [s(V
n;na, nb, ✓

⇤
a, ✓

⇤
b )]  1.

Moreover, if {P✓ : ✓ 2 ⇥} is a convex set of distributions, then S[na,nb,✓⇤
a,✓

⇤
b ]

is the
(✓⇤a, ✓

⇤
b )-GRO e-variable: for any non-negative function s

0 on Y
na+nb satisfying

sup✓2⇥ EV n⇠P✓ [s
0(V n)]  1, we have:

EY na
a ,Y

nb
b ⇠P✓⇤a,✓⇤

b

[log s(Y na
a , Y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b )] �

EY na
a ,Y

nb
b ⇠P✓⇤a,✓⇤

b

[log s0(Y na
a , Y

nb
b )].

Crucially, in the second part of the theorem, we do not require convexity of
H0, a set of distributions over Y

na+nb (if H0 were convex, the GRO property
would already follow automatically [Koolen and Grünwald, 2022]), but instead of
{P✓ : ✓ 2 ⇥}, a set of distributions on Y. In the 2⇥ 2 case H0 is not convex, since
the set of i.i.d. Bernoulli distributions over na + nb > 1 outcomes is not convex.
Nevertheless, {P✓ : ✓ 2 ⇥} is just the Bernoulli model on one outcome, which is
convex, so in this setting, we get the GRO e-variable.

To illustrate, consider the basic case in which data comes in in fixed batches
Y(1), Y(2), . . ., with each batch Y(j) = ((Y(j�1)na+1,a, Y(j�1)na+2,a, . . . , Yjna,a)
, (Y(j�1)nb+1,b, Y(j�1)nb+2,b, . . . , Yjnb,b)), having exactly na outcomes in group a

and nb outcomes in group b, and let n = na + nb. This case would obtain, for
example, in a sequential clinical trial in which patients come in one by one, each
odd patient is given the treatment and each even patient is given the placebo.
Then n = 2, na = nb = 1. We may then measure the evidence against the null
hypothesis by the product E variable

S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]
:=

mY

j=1

S(j),[na,nb,✓⇤
a,✓

⇤
b ]

; S(j),[na,nb,✓⇤
a,✓

⇤
b ]
:= s(Y(j);na, nb, ✓

⇤
a, ✓

⇤
b ).

(2.9)
By Ville’s inequality (2.4), the probability under any distribution in the null that

there is an m with S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]

larger than 1/↵, is bounded by ↵, hence, type-I

error guarantees are preserved under optional stopping if we perform the test based

on {S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]
}m2N as defined underneath (2.4), as long as we stop between

and not ‘within’ batches (if we stop within a batch, the E-variable S
(m)
[na,nb,✓⇤

a,✓
⇤
b ]

is

undefined).
If the data do not come in batches of equal size, we may proceed as follows.

First, we need to fix some na � 1 and nb � 1 of our own choice. The treatment
below will give valid e-variables irrespective of our choice of na and nb, but it
will be seen that some choices are much more reasonable (will lead to much more
evidence against the null, if the null is false) than others.

Thus, fix na and nb, set n = na + nb. At each time t, we will have observed,
so far, some number ta of outcomes in group a, and tb in group b. Now let mt be
the largest m such that mna  ta and mnb  tb. Now, for m = 1, 2, . . ., define
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Y(m) as above. At any given time t, Y(1), Y(2), . . . , Y(mt) will have been observed,
and there may be a number n

0
j remaining observations in group j 2 {a, b} so

that either n
0
a < na or n

0
b < nb or both. Since the {Y(j)}j2N determine a test

martingale in the sense of Definition 2.1, optional stopping while preserving type-I
error guarantees is then possible at any point in time t, as long as the e-variable
is calculated as (2.9) above for m = mt, thus ignoring the final n0

a + n
0
b outcomes.

How should na and nb be chosen in practice? For example, consider a variation
of the clinical trial setting above in which the treatment-control assignment is
randomized: for each incoming patient, a fair coin is flipped to decide treatment
(a) or placebo (b). Then at any given time the number of patients in group a and
b will not be precisely equal, but if we choose na = nb = 1 as above it is highly
unlikely that the amount of data we have to ignore at any given time t is very
large. Similarly, if Gt, the group membership of the t-th observation, is itself i.i.d.
according to some distribution P

⇤, we might have some idea of the probability
p
⇤(a) assigned to group a; if p⇤(a) = 2/5 (say), we would choose na = 2, nb = 3.
We can add a significant amount of extra flexibility by allowing for variable

group sizes, i.e., the chosen na and nb may depend on the past. Appendix S2.E
in the supplementary material describes how to do this. In this way, one can in
principle learn p

⇤(a) from the data, changing group sizes na and nb flexibly as
data come in. For simplicity, we have not followed this approach here, but all our
results readily extend to this case.

Extension to k-sample streams It is entirely straightforward to extend (2.8)
to the scenario where we do not compare 2, but k i.i.d. data streams. Indeed, in
the supplementary material we state and prove the generalization of Theorem 2.1
to k data streams. We again consider some fixed ~✓ = (✓a, ✓b, ..., ✓k) 2 ⇥k. The

probability of the first t =
Pk

g=1 tg outcomes is now given by the density or mass

function p~✓
:= p✓a(y

ta
a )p✓a(y

tb
b )...p✓k(y

tk
k ). We now need to fix the k group outcome

numbers ~n := (na, nb, ..., nk) in advance, which allows us to define the extended

e-variable as a function of the data ~y
n = (yna

a , y
nb
b , ..., y

nk
k ), with n =

Pk
g=1 ng for

testing the null where ✓a = ✓b = ... = ✓k:

s(~yn;~n, ~✓⇤) :=
kY

g=1

p✓⇤
g
(y

ng
g )

Qng

i=1

⇣Pk
g0=1

ng0

n p✓⇤
g0
(yi,g)

⌘ . (2.10)

This e-variable is again GRO if {P✓ : ✓ 2 ⇥} is convex. To keep notation as
clear as possible, we now return to the simpler 2-sample case except for a short
example of an application of this extension as a flexible and exact (non-asymptotic)
alternative to the chi-square test in section 2.6.

2.3.2 The generic e-variable with Bayesian alternative

Now fix some prior W1 with density w1 on the alternative ⇥1 ✓ ⇥2. We can
trivially extend the definition of our generic e–variable relative to singleton (✓⇤a, ✓

⇤
b )

to an e–variable relative to arbitrary prior W1 on (✓⇤a, ✓
⇤
b ): define pW1,a(y) :=
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R
p✓a(y)dW1(✓a), the integration being over the marginal prior distribution over ✓a,

and similarly, pW1,b(y) :=
R
p✓b(y)dW1(✓b). Then, as a corollary of Theorem 2.1,

the following is also an e–variable:

s(yna
a , y

nb
b ;na, nb,W1) :=Qna

i=1 pW1,a(yi,a)Qna

i=1

�
na
n pW1,a(yi,a) +

nb
n pW1,b(yi,a)

� ·
Qnb

i=1 pW1,b(yi,b)Qnb

i=1

�
na
n pW1,a(yi,b) +

nb
n pW1,b(yi,b)

� .

(2.11)

This follows from applying Theorem 2.1 with a ‘meta’-set of distributions, which
is possible since we made no assumptions at all on the set ⇥ in Theorem 2.1:
we replace ⇥ by W(⇥), the set of distributions on ⇥; we replace the background
set of distributions {p✓ : ✓ 2 ⇥} by the set of distributions {pW : W 2 W(⇥)};
we replace the simple H1 = {P✓⇤

a,✓
⇤
b
} by a ‘simple’ H

0
1 = {PWa,Wb} for some

distributions Wa and Wb on ⇥. Such W1-based generic e–variables can be used
to learn the parameters ✓

⇤
a, ✓

⇤
b as more data in both streams come in, and this

is how we will use them in a sequential context with optional stopping. Thus,
assume again that data comes in batches Y(1), Y(2), . . . with each Y(j) consisting
of na outcomes in group a and nb outcomes in group b (generalization to flexible
group sizes changing in time and depending on the past as described at the end of
Section 2.3.1 is straightforward). We start with some prior W1 for the first batch
Y(1) but we now use, for the j-th batch Y(j), the Bayesian posterior W1 | Y

(j�1)

as prior to define the j-th e–variable with:

S
(m)
[na,nb,W1]

:=
mY

j=1

S(j),[na,nb,W1] ; S(j),[na,nb,W1] := s(Y(j);na, nb,W1|Y
(j�1)).

(2.12)
Again, {S(j),[na,nb,W1]}j2N is a sequential e–variable process, so testing based on
the corresponding test martingale is safe under optional stopping by (2.4). If data
are sampled from some alternative hypothesis (✓⇤a, ✓

⇤
b ), then as data accumulates,

the posterior W1 will, with high probability, concentrate narrowly around (✓⇤a, ✓
⇤
b )

and so S(j),[na,nb,W1] will behave more and more similarly to the ‘best’ (✓⇤a, ✓
⇤
b )

e-variable. Still, with the exception of a special case we indicate below, in general
we cannot expect it to be the W1-GRO E-variable. But we are not particularly
concerned by this: our experiments in Section 2.6 indicate that, at least in the
2⇥2 table setting, it behaves quite well in terms of power, which is often the main
practical interest.
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Simplification when {P✓ : ✓ 2 ⇥} is Convex and Y is finite Denoting
W1,g|Y

(m) as the marginal posterior for ✓g, for g 2 {a, b}, we can rewrite (2.12) as

S
(m)
[na,nb,W1]

=
mY

j=1

Qna

i=1 pW1,a|Y (j�1)(Y(j�1)na+i,a)
Qnb

i=1 pW1,b|Y (j�1)(Y(j�1)nb+i,b)
Q

g2{a,b}
Qng

i=1

⇣
na
n pW1,a|Y (j�1)(Y(j�1)ng+i,g) +

nb
n pW1,b|Y (j�1)(Y(j�1)ng+i,g)

⌘

if {P✓ : ✓ 2 ⇥} convex, Y finite
=

mY

j=1

naY

i=1

pW1,a|Y (j�1)(Y(j�1)na+i,a)

p✓̆0|Y (j�1)(Y(j�1)na+i,a)

nbY

i=1

pW1,b|Y (j�1)(Y(j�1)nb+i,b)

p✓̆0|Y (j�1)(Y(j�1)nb+i,b)
. (2.13)

Here we define ✓̆0|Y
(j�1)

2 ⇥ s.t.
p✓̆0|Y (j�1) = (na/n)pW1,a|Y (j�1) + (nb/n)pW1,b|Y (j�1) , the existence of ✓̆0|Y

(j�1)

being guaranteed if {P✓ : ✓ 2 ⇥} is convex and the sample space is finite (for then,
by Carathéodory’s Theorem [Eckho↵, 1993], for any distribution W on ⇥ there is
a distribution W

0 on ⇥ with finite support such that pW = pW 0 , and by convexity,
there is ✓� such that pW 0 = p✓�). This rewrite will enable several additional results
for such ⇥.

Connection to Bayes Factors Consider W1 such that ✓a and ✓b are indepen-
dent under W1 with marginal distributions Wa and Wb, and now further take
na = nb = 1. By basic telescoping, and using that if ✓a and ✓b are independent
under the prior, they must also be independent under the posterior, we can then
further rewrite (2.12) as

R
p✓a(Y

m
a )dWa(✓a)

R
p✓b(Y

m
b )dWb(✓b)

Qm
j=1

Q
g2{a,b}

⇣
1
2pW1,a|Y (j�1)(Yj,g) +

1
2pW1,b|Y (j�1)(Yj,g)

⌘ if {P✓ : ✓ 2 ⇥} convex
=

(2.14)
R
p✓a(Y

m
a )dWa(✓a)

R
p✓b(Y

m
b )dWb(✓b)Qm

j=1

Q
g2{a,b} p✓̆0|Y (j�1)(Yj,g)

. (2.15)

The equality holds if {P✓ : ✓ 2 ⇥0} is convex and Y is finite so that (2.13) holds. As
seen from (2.14), even without finiteness or convexity, the numerator of the generic
product e-variable is now equal to the Bayesian marginal likelihood of the data
based on priorW1. Thus, in this special case (i.e. na = nb = 1, prior independence;
the derivation breaks down if these do not hold), if the denominator could also
be written as a Bayes marginal likelihood, then our e-variable would really be a
Bayes factor. Yet, even if {P✓ : ✓ 2 ⇥} is convex, it cannot be written in this
way, though it is very ‘close’: each of the m factors in the denominator in (2.15)
is the product density function of two identical distributions for one outcome, and
Proposition 2 below shows that, in the special case of the 2⇥2 model with Wa and
Wb independent beta priors, this distribution may itself be the Bayes predictive
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distribution obtained by equipping ⇥0 with another beta prior. Still, for a real
Bayes factor corresponding to H0, for each j, the two outcomes Yj,a, Yj,b in the
j-th block would not be independent given Y

(j�1), whereas in (2.15) they are, so
we may conclude that in general, our e-variables are not equivalent to any Bayes
factor.

2.4 Safe tests for two proportions

We assume the setting above and, for now, assume that both streams are Bernoulli.
This will substantially simplify the formulae. Thus, ⇥ = [0, 1] and (2.1) now
specializes to

p✓a,✓b(y
ta
a , y

tb
b ) := p✓a(y1,a, . . . , yta,a)p✓b(y1,b, . . . , ytb,b)

= ✓
ta1
a (1� ✓a)

ta�ta1✓
tb1
b (1� ✓b)

tb�tb1 . (2.16)

ta1 represents the number of outcomes 1 in stream a among the first ta ones, and
tb1 the number of outcomes 1 in stream b among the first tb ones. According to
the null hypothesis, we have that ✓

⇤
a = ✓

⇤
b = ✓0 for some ✓0 2 ⇥ = [0, 1]. (2.16)

now simplifies to:
p✓0(y

ta
a , y

tb
b ) := ✓

t1
0 (1� ✓0)

t0 .

t1 represents the number of ones in the sequence y
ta+tb = y1, . . . , yta+tb , and

similarly for t0.

We now run through the results of the previous section for this instantiation
of our test. Again, we start with the case of a simple H1 = {P✓⇤

a,✓
⇤
b
}. (2.8) can

now be written as:

s(yna
a , y

nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) :=

p✓⇤
a
(yna

a )

p✓0(y
na
a )

·
p✓⇤

b
(ynb

b )

p✓0(y
nb
b )

; ✓0 =
na

n
✓
⇤
a +

nb

n
✓
⇤
b . (2.17)

Theorem 2.1 tells us that this is an e-variable. Since {P✓ : ✓ 2 ⇥}, the Bernoulli
model, is convex, the theorem also tells us that in this case the generic e-variable
with simple alternative is always (✓⇤a, ✓

⇤
b )-GRO.

We now turn to the generic e–variable relative to arbitrary prior W1. For the
Bernoulli model the Bayes posterior predictive distribution is itself a Bernoulli
distribution, with its parameter equal to the posterior mean. Therefore, while the
generic e–variable relative to prior W1 is still given by (2.11), this now simplifies
to:

s(yna
a , y

nb
b ;na, nb,W1) = s(yna

a , y
nb
b ;na, nb, ✓

⇤
a, ✓

⇤
b ) ; ✓

⇤
g = E✓g⇠W1 [✓g], g 2 {a, b}.

(2.18)
Combining this with (2.13) we infer that

S
(m)
[na,nb,W1]

=
mY

j=1

naY

i=1

p✓̆a|Y (j�1)(Y(j�1)na+i,a)

p✓̆0|Y (j�1)(Y(j�1)na+i,a)

nbY

i=1

p✓̆b|Y (j�1)(Y(j�1)nb+i,b)

p✓̆0|Y (j�1)(Y(j�1)nb+i,b)
(2.19)
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where ✓̆a|Y (j�1) = E✓a⇠W |Y (j�1) [✓a] and ✓̆b|Y
(j�1) = E✓b⇠W |Y (j�1) [✓b] and ✓̆0|Y

(j�1) =

(na/n)✓̆a | Y
(j�1) + (nb/n)✓̆b | Y (j�1).

Simplified Calculations with Independent Beta Priors Now take the spe-
cial case in which ✓a and ✓b are independent under the prior W1 with marginals
Wa and Wb. In this case, ✓a and ✓b are also independent under the posterior, and
we can simplify ✓̆a|Y

(j�1) = E
✓a⇠Wa|Y (j�1)na

a
[✓a], the expectation of ✓a under the

posterior Wa given all data so far in group a, and similarly for group b. Using
beta priors, this expectation is easy to calculate and we get:

Proposition 2. Let ✓a, ✓b be independent under W1, with marginals Wa and Wb

respectively. Suppose that these are beta priors with parameters (↵a,�a) and

(↵b,�b) respectively. Then, upon defining Ua =
P(j�1)na

i=1 Yi,a,

Ub =
P(j�1)nb

i=1 Yi,b, U =
P(j�1)n

i=1 (Yi,a + Yi,b) we have that ✓̆a, ✓̆b, ✓̆0 as above

satisfy: ✓̆a|Y (j�1) = (Ua +↵a)/((j � 1)na +↵a + �a), ✓̆b|Y (j�1) = (Ub +↵b)/((j �
1)nb + ↵b + �b) respectively, and ✓̆0|Y

(j�1) is as further above. In the special
case that we fix the prior parameters in the groups proportional to the group size
fraction  := nb/na, i.e we fix ↵b = ↵a, �b = �a, the expression for ✓̆0 simplifies
to ✓̆0|Y

(j�1) = (U + (1 + )↵a)/((j � 1)n+ (1 + )↵a + (1 + )�a).

2.5 (Un)Restricted composite H1 in the 2⇥ 2 setting

In this section we describe the main instantiations of the 2 ⇥ 2 stream testing
scenario that are relevant in practice. These di↵er in the choice of H1: the choice
can be fully unrestricted (we simply want to find whether there is any discrepancy
from H0 at all); restricted in terms of e↵ect size; or restricted because we have
prior knowledge about either ✓⇤a or ✓⇤b . We consider each in turn, the second and
third scenario in a separate subsection. Section 2.6 provides extensive numerical
simulations for all three scenarios.

In the first scenario, a researcher wants to perform a two-sided test ; they simply
aim to find any discrepancy from H0 if it exists, with no restrictions are placed
on H1. In this case, if we choose W1 as independent beta priors on ✓a and ✓b, we
can simply proceed as described in Proposition 2 above, taking a beta prior for
simplicity. We will develop a reasonable ‘default’ choice for the hyper parameters
by experiment in Section 2.6.

2.5.1 Dealing with E↵ect Sizes

In the second scenario we really want to test H0 against a restricted H1 consisting
of those hypotheses that have a certain minimal e↵ect size �. This would then be a
one-sided test. For example, a researcher might know that a new treatment must
cure at least a certain number of patients more compared to a control treatment to
provide a clinically relevant treatment e↵ect �. In this case, H1 could be restricted
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to either of the sets ⇥(�) or ⇥+(�), where

⇥(�) =
�
✓ 2 [0, 1]2 : d(✓) = �

 
; ⇥+(�) =

(�
✓ 2 [0, 1]2 : d(✓) � �

 
if � > 0�

✓ 2 [0, 1]2 : d(✓)  �
 

if � < 0,

(2.20)
where we set d((✓a, ✓b)) = ✓b � ✓a. A second notion of e↵ect size that often will
be applicable in this sort of research is the log odds ratio between ✓b and ✓a, with
restricted parameter space again given by (2.20) but d set to

d((✓a, ✓b)) = log

✓
✓b

1� ✓b
·
1� ✓a

✓a

◆
. (2.21)

These are the two e↵ect size notions that will feature in our experiments. An
illustration of both divergence measures and the resulting restricted parameter
spaces is given in Figure 2.1. A third popular notion of e↵ect size, the relative
risk, behaves, for small ✓a and � > 0, very similarly to the odds ratio, and will
therefore not be separately considered in our experiments.

If we pick H1 restrict to ⇥(�0), then we could simply use the beta prior men-
tioned before with support conditioned on this set. What about the more realistic
case of a H1 with � 2 ⇥+(�0)? A first, intuitive (and certainly defensible) approach
would be to use a prior W 0

1 that is spread out over ⇥+(�0), e.g. (if �0 > 0) the beta
prior as above conditioned on � � �

0. However, in terms of the GRO criterion,
there are good reasons to still use a prior W ⇤

1 that puts all prior mass on ⇥(�0), the
boundary of the real parameter space ⇥(�+). Namely, for the resulting e-variable

process S(1)
[na,nb,W⇤

1 ], S
(2)
[na,nb,W⇤

1 ], . . ., it holds for every m that

for all (✓a, ✓b) with d((✓a, ✓b)) > �
0
, EY (m)⇠P(✓a,✓b)

[logS(m)
[na,nb,W⇤

1 ]] �

min
✓2⇥(�0)

EY (m)⇠P✓
[logS(m)

[na,nb,W⇤
1 ]]. (2.22)

Thus, we might want to use the prior W ⇤
1 also if � can be more extreme than �

0,
since if � is actually more extreme, the expected (log-) evidence against H0 using
W

⇤
1 (even though designed for �0) will actually get larger anyway.

The advantage of the first approach is that it will lead to a much higher growth

rate (EP(✓a,✓b)
[logS(m)

[na,nb,W 0
1]
] much larger than EP(✓a,✓b)

[logS(m)
[na,nb,W⇤

1 ]]) if we are

‘lucky’ and |d(✓a, ✓b)| � |�
0
|. The price to pay is that it will lead to somewhat

smaller growth if d((✓a, ✓b)) is (still arger than but) close to �
0 (experiments omit-

ted). It is easy to see why: the prior W
0
1 must spread out its mass over a much

larger subset of [0, 1]2 than W
⇤
1 . Therefore, the E-variables based on W

0
1 will per-

form somewhat worse than those based on W
⇤
1 if the data are sampled from a point

(✓⇤a, ✓
⇤
b ) in the support of W ⇤

1 , simply because W
⇤
1 gives much larger prior support

in a neighborhood of (✓⇤a, ✓
⇤
b ). For this reason, and also because it is computation-

ally a lot simpler, we decided to focus our experiments on the second approach
rather than the first.
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(a) d((✓a, ✓b)) = ✓b � ✓a

(b) d((✓b, ✓a)) = log
h

✓b
(1�✓b)

(1�✓a)
✓a

i

Figure 2.1: Examples of restricted alternative hypothesis parameter spaces for
several values of two divergence measures; the di↵erence between group means
and the log odds ratio. ⇥0 denotes the null hypothesis parameter space; ⇥+

1 (�)
the restricted alternative hypothesis parameter space.
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Calculating the prior and posterior for restricted H1 For both notions of
e↵ect size, ✓a and ✓b can no longer be independent for any prior on ⇥(�). Hence,
the prior and posterior do not longer admit the composition in terms of beta
densities as in Proposition 2. For example, when putting a prior on ⇥(�) with the
additive e↵ect size notion, we know the new domain of ✓a would be [0, 1 � �]. ✓b

is completely determined by ✓a and � in this case. We will still use a beta prior
on ⇥(�) and calculate posteriors by a numerical approach, explained in Appendix
S2.B in the Supplementary Material.

2.5.2 Working with Restrictions on event rate

In practice, researchers often already have estimates of the occurrence rate of
events in the control group in their experiments; for example, estimates of the
proportion of patients that recover from a disease under standard care are known,
and researchers investigate whether the proportion of recovered patients is higher
in a group receiving an experimental treatment. This restriction on ✓a can be
incorporated in the e-variable. This incorporation becomes especially easy if H1

is already restricted to a set ⇥+(�0) with minimal relevant e↵ect size �
0. For then

⇥(�0) contains just one point (✓⇤a, ✓
⇤
b ) (in the case of the linear e↵ect size, this

is (✓a, ✓a + �)), and the e–variable constructed according to the guidelines of the
previous subsection, which puts all its mass on �

0 even though we allow � � �
0,

would be the generic e–variable corresponding to putting prior mass 1 on (✓⇤a, ✓
⇤
b ).

2.6 Illustration via simulated data

In this section, we illustrate properties of our e-variables for 2 ⇥ 2 application
through simulated data, generated with our software package [Ly et al., 2022].
First, we determine a reasonable choice of beta prior hyper-parameter to use in
(2.19) in terms of the GRO-criterion. Thereafter, we show by more simulations
that our proposal for the beta prior hyper-parameter based on GRO also performs
well in terms of power. Finally, we compare the power of our e-variable with this
default prior choice and di↵erent restrictions on H1 to Fisher’s exact test.

REGROW For simplicity, in all our experiments we will invariably set the beta
prior hyper-parameters to ↵a = ↵b = �a = �b = � for some � > 0 (recall that
any such choice leads to a valid e-variable). We will aim for the � that minimizes
(2.7) in the worst-case over all ✓⇤1 2 [0, 1]2, thereby following the REGROW (rel-
ative growth-rate optimality in worst-case) criterion of Grünwald et al. [2022a],
who give a minimax regret motivation for this choice. In essence, the prior mini-
mizing, among all distributions over [0, 1]2, the maximum of (2.7) over all ✓⇤1 can
be viewed as the prior that allows us to learn ✓

⇤
1 as fast as possible (based on a

minimal sample) in the worst-case. Here we are contented to adopt a sub-optimal
but computationally convenient prior by restricting the minimum to be over a
1-dimensional family of beta priors with hyper parameter �. We find the mini-
mizing � through experiments: results are depicted in Figure 2.2. It depends on
the number of data blocks m, which is unknown in advance, but for large m, in
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the setting with na = nb = 1, it converges to � ⇡ 0.18, and this is the value we
will take as our default choice — our experiments below indicate that it remains
a good choice, also when our main concern is power, and also under restrictions
on H1.

(a) min� regretS
(m)

(b) argmin� regretS
(m)

Figure 2.2: Minimized regret w.r.t. Beta prior hyperparameter � for the two-
sample stream e-variable for two proporions (2.18). Relative growth rate (see
(2.7)) was estimated through 10000 simulations and regret was calculated as
the maximum over ✓⇤1 .

Power Whereas growth rate is the natural performance measure in experiments
that may always be continued at some point in the future, traditionally oriented
researchers may be more interested in power. The question is then whether the
optimal asymptotic choice � ⇡ 0.18 in terms of the relative GRO property for
unrestricted H1 is also the optimal choice in terms of power (which is usually
considered in combination with some minimal e↵ect size, i.e. a restricted H1).
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The following experiment shows that by and large it is. For simplicity we only
illustrate the case na = nb = 1 and a desired power of 0.8. For various e↵ect sizes
�, and various values of �, we first determined the smallest sample size (number
of blocks) m such that, under optional stopping up until and including m, the
power is � 0.8 in the worst case over all (✓a, ✓b) with � = ✓b � ✓a. Here by
‘optional stopping up until and including m’, we mean ‘we stop and reject the null

i↵ S
(m0)
[na,nb,W[�]

> ↵
�1 for some m0

2 {1, 2, . . . ,m}, and we stop and accept the null

if this is not the case (so m is the maximal sample size we consider)’. We call
this m the worst-case sample size needed for 80% power at e↵ect size � with prior
parameter �. The reason for calling it worst-case is that in practice, by engaging
in optional stopping with a fixed maximal sample size, the expected sample size of

this procedure is smaller: if, for m0
< m, we already have S

(m0)
[na,nb,W[�]

> ↵
�1 then

we stop and reject early; if not, we go on until we have seen m blocks and then stop

(and reject i↵ S
(m)
[na,nb,W[�]

> ↵
�1). We thus performed two simulation experiments:

first, to estimate the worst-case sample size (at ↵ = 0.05), and second, to estimate
the expected sample size. Again, the estimates were obtained by re-simulating a
sequence of data blocks K times for a large number of K, making sure the bias
and variance of the estimates were su�ciently small.

In Figure 2.3 results of these experiments are depicted. We make two obser-
vations: first, almost no di↵erence in sample sizes to plan for between � = 0.18
and � = 0.05 was observed for distributions with small expected sample sizes
(represented by the triangles and the dots, which overlap for most data points),
and other values of � obtained smaller power, indicating that the relative growth-
optimal � = 0.18 could in practice be used as a default setting for our e-variable
— and as a consequence, we recommend it as such. Second, in the rightmost panel
we see that for distributions with very small relative di↵erences between ✓a and ✓b,
e.g. P0.5,0.58, values of � higher than 0.18 yielded a higher power, whereas for such
�, the relative GROW criterion was optimized for � = 0.18 for the corresponding
(very large) stopping times in our simulation experiments. This is not surprising
given what is known for simple H0 = {P✓0}: when testing a point null ✓0 with
a 1-dimensional exponential family alternative, safe tests based on Bayes factors
with standard Bayesian (e.g. Gaussian or conjugate) priors do not obtain optimal
power in an asymptotic sense: they reject if |✓̂� ✓0|

2 & (log n)/n (with ✓̂ denoting
the MLE; see the example on Z-tests by Grünwald et al. [2022a]) whereas based
on nonstandard ‘switching’ [Van der Pas and Grünwald, 2018] or ‘stitching’ meth-
ods [Howard et al., 2021], corresponding to special priors with densities going to
infinity as e↵ect size goes to 0, one can get rejection if |✓̂ � ✓0|

2 & (log log n)/n.
However, there is a significant price to pay in terms of the constants hidden in the
asymptotics, and in practice, ‘standard’ priors may very well perform better at all
but very large sample sizes [Maillard, 2019]. Given that the higher �, the more the
beta prior behaves like a switch prior, we conjecture that what we see in Figure 2.3
on the right at very small � is a version of the switching/stitching phenomenon
with a composite null; since it only kicks in at very large sample sizes, we prefer
� = 0.18 as the default choice after all.

Finally, we compared the performance of our e-variables with the “default”
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Figure 2.3: In 2000 simulations the natural logarithm, left, or identity, right, of
the number of data blocks m (“sample sizes”) needed for achieving 80% power
while testing at ↵ = 0.05 for distributions with varying group means and varying
di↵erences between group means were estimated for di↵erent beta prior parameter
values.
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beta priors with � = 0.18 with their classical counterpart, Fisher’s exact test.
We show that with Fisher’s exact test, type-I error probability guarantee is lost,
whereas with the e-variables it remains bounded — since these results are exactly
as would be expected from the theory they have been placed in the supplementary
material (Figure S2.2 in the Supplementary Material). In the main text below,
we compare worst-case and expected stopping times of the e-variables with- and
without restrictions on H1 for sample sizes one would need to plan for when
analyzing experiment results with Fisher’s exact test; see Figure 2.4. We noticed
that the expected sample sizes achieved under optional stopping with the e-variable
with unrestricted H1 were very similar to the sample sizes needed to plan for
with Fisher’s exact test. When using a correctly specified restriction on H1 (the
leftmost data points in the second and third subfigures), this expected number of
samples is even considerably lower than the sample size to plan for with Fisher’s
exact test. However, under misspecification, when the di↵erence or log odds ratio
used in the design of the e-variable turns out to be a lot smaller than the real
di↵erence present in the data generating machinery, one should expect to collect
more samples (the data points towards the right in the second subfigure). This
e↵ect would disappear if we were to put a prior on the full ⇥+(�) rather than the
boundary ⇥(�), at the price of slightly worse behaviour in the well-specified case
when data is sampled from ⇥(�). Note that in Figure 2.4 we used the default beta
prior parameters � = 0.18 found optimal for the unrestricted case for the restricted
cases as well; some first experiments revealed that changing the prior parameter
values did not lead to significant changes in power for the restricted e-variables
(results not shown). We do however o↵er the possibility in our software package
[Ly et al., 2022] to run similar experiments for users to determine the optimal prior
parameter � for a given expected sample size and ⇥(+)(�0).

Beyond Two-Stream Data: Safe Tests for k Proportions We also com-
pared the performance of the extended version of our e-variable for k Bernoulli
data streams to the corresponding classical, nonsequential counterpart, the chi-
squared test [McHugh, 2013]. In this setting, we have a k ⇥ 2 contingency table
test, where we test whether k Bernoulli data streams come from the same source.
The extension of (2.19) to k data streams analogously to (2.10) is straightforward.
In simulation experiments, it was observed that our e-variable with uniform priors
significantly outperforms the chi-square test for small sample sizes and large e↵ect
sizes (see Figure 2.5). For absolute di↵erences of at least �max = 0.45, the expected
sample size becomes significantly smaller than the fixed sample size needed for the
chi-squared test. This is probably partially explained by the fact that the statistic
used for the chi-squared test only asymptotically follows a chi-squared distribu-
tion, in contrast to our e-variable test, which is exact, valid under finite sample
sizes. This means that for expected cell counts smaller than 5 the chi-square test
should not be used, reflected in an increased number of samples needed for similar
power [McHugh, 2013].
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Figure 2.4: Estimates from 1000 simulations of worst-case and expected sample
sizes for achieving 80% power estimated for three types of e-variables with di↵er-
ent restrictions on H1, and the sample size to plan for with Fisher’s exact test.
Hypothesized e↵ect sizes were 0.04 for the e-variables with prior information on
the absolute di↵erence and were converted equivalently for the log odds ratio prior
information case, and we set � = 0.18 for the beta priors.

2.7 Illustration via real world data

We will now demonstrate the approach through a real-world example: the SWEPIS
study on labor induction [Wennerholm et al., 2019]. Wagenmakers and Ly [2020]
have used this example before to illustrate how using single p-values to make
decisions can hide valuable information in research data.

In the SWEPIS study, two groups of pregnant women were followed. In the
first group labor was induced at 41 weeks, and in the second labor was induced
after 42 weeks. The study was stopped early, as 6 cases of stillbirth were observed
in the 42-weeks group (at nb = 1379), as compared to 0 in the 41-weeks group
(at na = 1381). These data yield a significant Fisher’s exact test, p ⇡ 0.015,
for testing that the number of stillbirths in the 42-weeks group is higher, when
(wrongly) assuming that na and nb were fixed in advance to the above values.

If we had used e-variables for continuously analyzing this data, would we then
have found evidence for superiority of the 41 weeks approach, and would we have
stopped the study earlier? As the e-variables we propose are not exchangeable, i.e.,
their values change under permutations of the data sequences, a direct comparison
to the results of the SWEPIS study is not possible as the exact data stream is not
available. To simulate a “real-time” scenario equivalent to the SWEPIS study, we
assume we collect a total of 1380 data blocks, with na = nb = 1, with a total of
2760 observations. We already know that in group a, 0 events are observed. In
group b, 6 events are observed, of which we know that the last event was observed
in data block 1380, directly before the study was stopped. Hence, we can simulate
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Figure 2.5: Estimates from 1000 simulations of worst-case and expected sample
sizes for achieving 80% power estimated for testing with the k-stream e-variable,
and the sample size to plan for with the chi-square test. Data were simulated with
balanced data blocks, ~n = (1, 1, 1, 1) and ~✓ was set as an equally spaced grid from
✓a = 0.1 to ✓k = ✓a + �max. We set � = 1 for the beta priors.

the “real-time” data by permuting the indices of the observations in group b in
the 1379 first data blocks.

Four di↵erent approaches for analyzing the data with e-variables were explored:
without any restriction on H1, with a restriction based on the additive divergence
measure (the minimal di↵erence between the groups), with a restriction based on
the log odds ratio, and with a restriction on the event rate in the control group and
on the minimal di↵erence. The minimal di↵erence, log odds ratio and event rate
used were chosen based on a large recent meta-analysis on stillbirths [Muglu et al.,
2019]; we used � = 0.00318 as a restriction on the di↵erence between the groups,
log(2) for the log odds ratio and 0.0001 as the event rate. For all e-variables, the
default beta prior hyperparameters with � = 0.18 as earlier were used.

In Figure 2.6 the spread of the evidence collected with the four types of e-
variables in 1000 simulations analogous to the SWEPIS setting is depicted. Be-
cause the observed e↵ect size was higher than expected, e-values obtained with
the (too low) restriction on the e↵ect size were lower than the e-values obtained
with the e-variable without restrictions. Adding the restriction on the event rate
increased the e-values, and in all 1000 simulations, the SWEPIS study would have
been stopped before the occurrence of the sixth stillbirth. Figure 2.6 also depicts
results of a second simulation experiment, where we sampled 1000 data streams
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from P0,6/1380 and recorded the stopping times while analyzing the streams with
the four e-variables with di↵erent restrictions on H1. With the e-variables with-
out restriction, or with a restriction on the event rate and di↵erence between the
groups, we would have often stopped data collection earlier than in the SWEPIS
setting.

Wagemakers and Ly with their method also found evidence for the existence
of a di↵erence between the two groups, but not nearly of the same degree: they
reported Bayes factors that varied, depending on the choice of the prior, between
1 and 5.4 (note that whenever we reject, our product of e-values, which like a
Bayes factor can be thought of as a prequential likelihood ratio, must be � 20).
A possible explanation for this di↵erence could be that the Bayes factors used for
collecting evidence in their study are not designed for analyzing stream data. As
we also saw in our experiments, choosing the wrong prior or restriction on H1 can
make a large di↵erence for the evidence collected.

We can thus conclude that, would the monitoring of the study have been per-
formed with e-variables instead of p-values, first of all we would have collected
correct evidence for a higher proportion of stillbirths in the 42-weeks group, and
second, the degree of evidence is quite similar to that collected with the (incor-
rectly determined) p-value: both are significant at the 0.05 level. The study design
with e-variables could e↵ortlessly follow the classical flow of clinical trial design:
before the start of the trial, a power analysis could be carried out to determine the
minimum sample sizes that one needs to arrange resources for under the desired
sampling scheme (balanced or unbalanced, see [Ly et al., 2022, Vignettes]). In col-
laboration with experts, a restriction could be put on the event rate or di↵erence
between the groups to potentially improve the power. During the study, because
the SWEPIS design is balanced, an e-value is calculated each time a new patient
has come in in the control and treatment groups, and the researchers and data
safety monitoring boards are allowed to look at the results and decide to stop the
study at any time, not a↵ecting Type-I error probability guarantees. After the
study or in case the study is stopped early because of reasons beyond rejecting
the null hypothesis, because e-values were used, one can always continue a study
later or combine e-values across multiple studies in an anytime-valid meta-analysis
[Ter Schure, 2022].

2.8 Other e-Variables for two data streams

2.8.1 The GRO e-variable for some Exponential and Loca-
tion Families

The simplification (2.17) shows that in the Bernoulli case with simple ⇥1 =
{(✓⇤a, ✓

⇤
b )}, we can take in our denominator p✓0 with ✓0 = na

n ✓
⇤
a + nb

n ✓
⇤
b — which

can also be interpreted as the distribution in the null corresponding to a mix-
ture of the means, rather than the mixture of two distributions in the null. The
Bernoulli model is a special case of 1-parameter exponential families which can
all be parameterized in terms of their means so that ⇥ ⇢ R and EP✓ [Y ] = ✓;
this is also possible for some location families that are not of exponential form.
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(a) Simulated e-values in SWEPIS setting, stopping at
m = 1380 or when E � 20

(b) Simulated stopping times in setting with continuing
until E � 20

Figure 2.6: Spread of e-values and stopping times observed with safe analysis of
1000 simulations of data streams analogous to the SWEPIS scenario, with four
di↵erent types of restrictions on H1.
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This suggests that, for all such models, instead of (2.8) we might also consider the
likelihood ratio (2.17). For the Bernoulli model, both definitions will coincide, but
for general 1-parameter exponential families they do not since their correspond-
ing set of densities is not convex. The question is now whether (2.17) defines
an e-variable for general exponential families. It turns out that the answer is no
in general, but yes in some special cases. For a negative example, consider the
case with ⇥ = R+ representing the family of exponential distributions in their
mean-value parameterization, i.e. p✓(y) = � exp(��y) with � = 1/✓ and take
na = nb = 1. A simple calculation shows that for any ✓

⇤
a 6= ✓

⇤
b 2 ⇥, we have

lim✓!1 EYa,Yb i.i.d.⇠P✓ [p✓⇤
a
(Ya)p✓⇤

b
(Yb)/p(✓⇤

a+✓⇤
b )/2

(Ya, Yb)] = 1. The negative bi-
nomial families provide, by a similar calculation, another negative example. For a
positive example, consider the case with ⇥ = R representing the Gaussian location
family with fixed variance 1 and again take na = nb = 1. A simple calculation
shows that (2.17) is equal to the likelihood ratio for testing whether the di↵erence
Z = Ya � Yb is a Gaussian with variance

p
2 with either mean 0 or mean ✓b � ✓a.

This is in fact the standard paired-sample Z-test that would normally be advised
in this situation. In fact it is the GRO e-variable for this situation:

Proposition 3. Let {P✓ : ✓ 2 ⇥} represent a family of probability distributions
with densities p✓, with ⇥ a convex set in Rk for some k � 1. For any ✓

⇤
a, ✓

⇤
b 2 ⇥

we have: if (2.17) is an e-variable for ⇥1 = {(✓⇤a, ✓
⇤
b )} then it is the GRO e-variable

for ⇥1 = {(✓⇤a, ✓
⇤
b )}.

The proof is immediate from Proposition 1. The proposition implies that in
the special cases in which (2.17) does provide an e-variable, it is to be preferred
(achieves better growth) above our original construction (2.8). (2.8) has the ad-
vantage that it provides an e-variable relative to arbitrary models. We plan to
study the cases in which (2.17) can be used instead in future work.

2.8.2 The Conditional e-variable for Tests of Two Propor-
tions

Wald [1947] proposed a 2-sample sequential probability ratio test (SPRT) for the
2 ⇥ 2 setting. Since SPRTs can be written in terms of products of e-variables
(although products of e-variables often do not give SPRTs; see the discussion by
Grünwald et al. [2022a]), let us see what e-variables Wald’s test corresponds to.
The setting is restricted to size-2 blocks with na = nb = 1. We measure e↵ect size
with d the log-odds ratio (2.21) and consider an alternative with a d(✓a, ✓b) that
is at least some given �. Using that, for all (✓a, ✓b) 2 (0, 1)2, z 2 {0, 1, 2}, the
conditional probability mass function p✓a,✓b(Ya, Yb |

P
Ya + Yb = z) only depends

on the log-odds ratio, we can write it, as q�(ya, yb|z) where q� is a probability
mass function whose definition depends on (✓a, ✓b) only via � = d((✓a, ✓b)). We
then take as our e-variable Scond,� := q�(Ya, Yb | Ya + Yb)/q0(Ya, Yb | Ya + Yb).
Since the conditional distribution q0(Ya, Yb | Z) is the same for all distributions
in the null, this conditional likelihood gives an e-variable and can be used instead
of our generic e-variable. Since for this Bernoulli case, our e-variable is in fact
GRO, we would expect this new conditional e-variable to perform worse in terms
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of GRO (and for the reasons given in Section 2.2 also in terms of the amount
of data needed before one can reject at a desired power), and experiments (not
reported here) confirm that it indeed performs slightly worse for � close to 0, and
substantially worse for larger �. This is already suggested by the fact that, unlike
the GRO e-variable, Scond,� takes on value 1 whenever ya = yb, e↵ectively ignoring
data blocks in which both outcomes are the same. Another disadvantage is that
it can only be used in combination with e↵ect size given by the odds ratio or
any monotonic transformation thereof; whereas the GRO e-variable can also be
combined with the di↵erence ✓b � ✓a or any other desirable notion of e↵ect size.

2.9 Conclusion

We have established e-variables and test martingales for the general i.i.d.-data
streams problem. We have demonstrated, using theory, simulations and a real-
world example that, for tests of two proportions, by choosing an appropriate prior
on ⇥1, the method can be made competitive with classical methods that do not
allow for optional stopping. Whereas in this paper, we have focused on testing,
our e-variables can also be extended to get anytime-valid confidence sequences
[Howard et al., 2021, Lai, 1976], i.e. confidence sequences for e↵ect sizes that are
valid even under optional stopping. This requires us to first extend the testing to
scenarios with � � �1 vs. �  �0 for �0 6= 0, that is, null hypotheses with ✓a 6= ✓b.
We have reported on this extension in Turner and Grünwald [2023]. Our work also
suggests a question for future work that is practically relevant, easy to state but
hard to answer: to what extent do our findings generalize to logistic regression?
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Exact Anytime-valid Confidence
Intervals for Contingency Tables and
Beyond
Rosanne J. Turner1,2, Peter D. Grünwald1,3

1: CWI, Machine Learning group, Netherlands
2: University Medical Center Utrecht, Brain Center, Netherlands
3: Leiden University, Department of Mathematics, Netherlands

Abstract

E-variables are tools for retaining type-I error guarantee with optional stopping.
We extend E-variables for sequential two-sample tests to general null hypotheses
and anytime-valid confidence sequences. We provide implementations for estimat-
ing risk di↵erence, relative risk and odds-ratios in contingency tables.
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3.1 Introduction

We consider a setting where we collect samples from two distinct groups, denoted
a and b. In both groups, data come in sequentially and are i.i.d. We thus have
two data streams, Y1,a, Y2,a, . . . i.i.d. ⇠ P✓a and Y1,b, Y2,b, . . . i.i.d. ⇠ P✓b where we
assume that ✓a, ✓b 2 ⇥, {P✓ : ✓ 2 ⇥} representing some parameterized underlying
family of distributions, all assumed to have a probability density or mass function
denoted by p✓ on some outcome space Y.

e-variables [Grünwald et al., 2022a, Vovk and Wang, 2021] are a tool for con-
structing tests that keep their Type-I error control under optional stopping and
continuation. Previously, Turner et al. [2021] developed e-variables for testing
equality of both data streams, i.e. with null hypothesis ~⇥0 := {(✓a, ✓b) 2 ⇥2 :
✓a = ✓b}. Here we first generalize these e-variables to more general null hypothe-
ses in which we may have ✓a 6= ✓b. We then use these generalized e-variables to
construct anytime-valid confidence sequences; these provide confidence sets that
remain valid under optional stopping [Darling and Robbins, 1967, Howard et al.,
2021].

As in [Turner et al., 2021], we first design e-variables for a single block of
data (Y na

a , Y
nb
b ), where a block is a set of data consisting of na outcomes Y

na
a =

(Ya,1, . . . , Ya,na) in group a and nb outcomes Y nb
b = (Yb,1, . . . , Yb,nb) in group b, for

some pre-specified na and nb. An e-variable is then, by definition, any nonnegative
random variable S = s

0(Y na
a , Y

nb
b ) such that

sup
(✓a,✓b)2~⇥0

EY na
a ⇠P✓a ,Y

nb
b ⇠P✓b

[s0(Y na
a , Y

nb
b )]  1. (3.1)

Turner et al. [2021] first defined such an e-variable for ~⇥0 = {()2 ⇥2 : ✓a = ✓b}

so that it would tend to have high power against a given simple alternative ~⇥1 =
{(✓⇤a, ✓

⇤
b )}. Their e-variable is of the following simple form (with n = na + nb):

s
0(Y na

a , Y
nb
b ) =

p✓⇤
a
(Y na

a )Qna

i=1(
na
n p✓⇤

a
(Ya,i) +

nb
n p✓⇤

b
(Ya,i))

·
p✓⇤

b
(Y nb

b )
Qnb

i=1(
na
n p✓⇤

a
(Yb,i) +

nb
n p✓⇤

b
(Yb,i))

. (3.2)

These e-variables can be extended to sequences of blocks Y(1), Y(2), . . . by multi-
plication, and can be extended to composite alternatives by sequentially learning
(✓⇤a, ✓

⇤
b ) from the data, for example via a Bayesian prior on ~⇥1. The na and nb

used for the j-th block Y(j) are allowed to depend on past data, but they must be
fixed before the first observation in block j occurs. For simplicity, in this note we
only consider the case with na and nb that remain fixed throughout; extension to
the general case is straightforward.

By a general property of e-variables, at each point in time, the running product
of block e-variables observed so far is itself an e-variable, and the random process
of the products is known as a test martingale [Grünwald et al., 2022a, Shafer et al.,
2021]. An e-variable-based test at level ↵ is a test which, in combination with any
stopping rule ⌧ , reports ‘reject’ if and only if the product of e-values correspond-
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ing to all blocks that were observed at the stopping time and have already been
completed, is larger than 1/↵. Such a test has a type-I error probability bounded
by ↵ irrespective of the stopping time ⌧ that was used; see the aforementioned ref-
erences for much more detailed introductions and, for example [Henzi and Ziegel,
2022], for a practical application.

In case {P✓ : ✓ 2 ⇥} is convex, the e-variable (3.2) has the so-called GRO-
(growth-rate-optimality) property: it maximizes, over all e-variables (i.e. over all
nonnegative random variables S = s

0(Y na
a , Y

nb
b ) satisfying (3.1)) the logarithmic

growth rate
EY na

a ⇠P✓⇤a ,Y
nb
b ⇠P✓⇤

b

[logS] , (3.3)

which implies that, under (✓⇤a, ✓
⇤
b ), the expected number of data points before the

null can be rejected is minimized [Grünwald et al., 2022a].

Below, in Theorem 3.1 in section 3.2, which generalizes Theorem 1 in Turner
et al. [2021], we extend (3.2) to the case of general null hypotheses, ~⇥0 ⇢ ⇥2,
allowing for the case that the elements of ~⇥0 have two di↵erent components, and
provide a condition under which it has the GRO property. From then onwards
we focus on what we call ‘the 2 ⇥ 2 contingency table setting’ in which both
streams are Bernoulli, ✓j denoting the probability of 1 in group j. For this case,
Theorem 3.2 gives a simplified expression for the e-variable and shows that the
GRO property holds if ~⇥0 ⇢ [0, 1]2 is convex. Then we will extend this e-variable to
deal with composite ~⇥1 and use this to define anytime-valid confidence sequences.
We illustrate these through simulations. All proofs are in Appendix S3.A.

3.2 General Null Hypotheses

In this section, we first construct an e-variable for general null hypotheses that
generalizes (3.2). We then instantiate the new result to the 2 ⇥ 2 case. The
following development and results require {P✓ : ✓ 2 ⇥} to be ‘nondegenerate’
in the sense that there exists ✓ 2 ⇥ such that for all ✓0 2 ⇥, D(P✓kP✓0) < 1.
This mild condition holds, for example, for exponential families; we tacitly assume
nondegeneracy from now on.

Our goal is thus to define an e-variable for a block of n = na + nb data points
with ng points in group g, g 2 {a, b}. For notational convenience we define,
for ✓a, ✓b 2 ⇥, P✓a,✓b as the joint distribution of Y

na
a ⇠ P✓a and Y

nb
b ⇠ P✓b ,

so that p✓a,✓b(y
na
a , y

nb
b ) =

Qna

i=1 p✓a(ya,i)
Qnb

i=1 p✓b(yb,i) so that we can write the

null hypothesis as H0 := {P✓a,✓b : (✓a, ✓b) 2 ~⇥0}. Our strategy will be to first
develop an e–variable for a modified setting in which there is only a single outcome,
falling with probability na/n in group a and nb/n in group b. To this end, for
~✓ = (✓a, ✓b), we define p

0
~✓
(Y |a) := p✓a(y), p

0
~✓
(Y |b) := p✓b(y), all distributions with

a 0 refering to the modified setting with just one outcome. We let W�(~⇥0) be the
set of all distributions on ~⇥0 with finite support. For W 2 W

�(~⇥0), we define

p
0
W (Y |g) =

R
p
0
~✓
(Y |g)dW (~✓). We set p

0
W (yk|g) :=

Qk
i=1 p

0
W (yi|g). We further

define, for given alternative ~⇥1 = {(✓⇤a, ✓
⇤
b )}, p

�(·|g), g 2 {a, b} to be, if it exists,
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the conditional probability density satisfying

EG⇠Q0EY⇠P✓⇤
G
[� log p�(Y | G)] = inf

W2W�(~⇥0)
EG⇠Q0EY⇠P✓⇤

G
[� log p0W (Y | G)]

(3.4)
with Q

0(G) the distribution for G 2 {a, b} with Q
0(G = a) = na/n. Clearly we

can rephrase (3.4) equivalently as:

D(Q0(G, Y )kP �(G, Y )) = inf
W2W�(~⇥0)

D(Q0(G, Y )kP 0
W (G, Y )), (3.5)

where D is the KL divergence. Here we extended the conditional distributions
P

0
W (Y |G) and P

�(Y |G) (corresponding to densities p
0
W (Y |G) and p

�(Y |G)) to a
joint distribution by setting P

0
W (G, Y ) := Q

0(G)P 0
W (Y |G) (and similarly for P

�)
and we extended Q

0(G, Y ) := Q
0(G)P✓⇤

G
(Y ). We have now constructed a modified

null hypothesis H0
0 = {P

0
~✓
(G, Y ) : ~✓ 2 ~⇥0} of joint distributions for a single ‘group’

outcome G 2 {a, b} and ‘data’ outcome Y 2 Y. We let H̄
0
0 = {PW (G, Y ) : W 2

W
�(~⇥0)} be the convex hull of H0

0.

The p
� satisfying (3.5) is commonly called the reverse information projection

of Q0 onto H̄
0
0. Li [1999] shows that p

� always exists under our nondegeneracy
condition, though in some cases it may represent a sub-distribution (integrating
to strictly less than one); see [Grünwald et al., 2022a, Theorem 1] (re-stated for
convenience in the supplementary material) who, building on Li’s work, established
a general relation between reverse information projection and e–variables. Part 1
of that theorem establishes that if the minimum in (3.4) (or (3.5)) is achieved by

some W
�
2 W

� then p
�(·|·) = p

0
W�(·|·) and, with ~✓

⇤ = (✓⇤a, ✓
⇤
b ), for all

~✓ 2 ~⇥0,

EG⇠Q0EY⇠P 0
~✓
|G

"
p
0
~✓⇤(Y |G)

p�(Y |G)

#
= EG⇠Q0EY⇠P 0

~✓
|G

"
p
0
~✓⇤(G, Y )

p�(G, Y )

#
 1. (3.6)

This expresses that p0~✓⇤(Y |G)/p�(Y |G) is an e-variable for our modified problem, in
which within a single block we observe a single outcome in group g, with g chosen
with probability ng/n. If we were to interpret the e–variable of the modified
problem as in (3.6) as a likelihood ratio for a single outcome, its corresponding
likelihood ratio for a single block of data in our original problem with ng outcomes
in group g would be:

s(yna
a , y

nb
b ;na, nb, (✓

⇤
a, ✓

⇤
b ); ~⇥0) :=

p
0
(✓⇤

a,✓
⇤
b )
(yna

a |a)p0(✓⇤
a,✓

⇤
b )
(ynb

b |b)

p�(yna
a |a)p�(ynb

b |b)

=
p✓⇤

a
(yna

a )p✓⇤
b
(ynb

b )

p�(yna
a |a)p�(ynb

b |b)
. (3.7)

The following theorem expresses that this ‘extension’ of the e-variable in the mod-
ified problem gives us an e-variable in our original problem:

Theorem 3.1. S[na,nb,✓⇤
a,✓

⇤
b ;

~⇥0]
:= s(Y na

a , Y
nb
b ;na, nb, (✓⇤a, ✓

⇤
b );

~⇥0) as in (3.7) is an
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E-variable, i.e. with s
0(·) = s(·;na, nb, (✓⇤a, ✓

⇤
b );

~⇥0), we have (3.1). Moreover, if

H
0
0 = {P

0
~✓
: ~✓ 2 ~⇥0} (the null hypothesis for the modified problem) is a convex

set of distributions and Y is finite (so that H
0
0 = H̄

0
0) and furthermore H

0
0 is

compact in the weak topology, then (a) p
�(·|·) = p

0
~✓
(·|·) for some ~✓ 2 ~⇥0 and (b)

S[na,nb,✓⇤
a,✓

⇤
b ;

~⇥0]
is the (✓⇤a, ✓

⇤
b )-GRO e-variable for the original problem, maximizing

(3.3) among all e-variables.

In the case that H
0
0 is not convex and compact, we do not have a simple

expression for p� in general, and we may have to find it numerically by minimizing
(3.4). In the 2 ⇥ 2 table (Bernoulli ⇥) case though, there are interesting H0 for
which the corresponding H

0
0 is convex, and we shall now see that this leads to

major simplifications.

3.2.1 General Convex ~⇥0 for the 2⇥ 2 contingency table

In this subsection and the next, {P✓a,✓b} refers to the 2 ⇥ 2 model again, with

Y = {0, 1} and ✓ denoting the probability of 1. We now let ~⇥0 be any closed
convex subset of [0, 1]2 that contains a point in the interior of [0, 1]2. Again, note

that the corresponding H0 = {P~✓ : ~✓ 2 ~⇥0} need not be convex; still, H0
0, the

null hypothesis for the modified problem as defined above, must be convex if ~⇥0 is
convex, and this will allow us to design e-variables for such ~⇥0. Let H1 = {P✓⇤

a,✓
⇤
b
}

with (✓⇤a, ✓
⇤
b ) in the interior of [0, 1]2, and let

kl(✓a, ✓b) := D(P✓⇤
a,✓

⇤
b
(Y na

a , Y
nb
b )kP✓a,✓b(Y

na
a , Y

nb
b )) =

X

yna
a 2{0,1}na ,y

nb
b 2{0,1}nb

p✓⇤
a
(yna

a )p✓⇤
b
(ynb

b ) log
p✓⇤

a
(yna

a )p✓⇤
b
(ynb

b )

p✓a(y
na
a )p✓b(y

nb
b )

(3.8)

stand for the KL divergence between P✓⇤
a,✓

⇤
b
and P✓a,✓b restricted to a single block

(note that in the previous subsection, KL divergence was defined for a single
outcome Y ). The following result builds on Theorem 3.1:

Theorem 3.2. min(✓a,✓b)2~⇥0
kl(✓a, ✓b) is uniquely achieved by some (✓�a, ✓

�
b ). If

(✓⇤a, ✓
⇤
b ) 2 ~⇥0, then (✓�a, ✓

�
b ) = (✓⇤a, ✓

⇤
b ). Otherwise, (✓�a, ✓

�
b ) lies on the boundary

of ~⇥0, but not on the boundary of [0, 1]2. The e–variable (3.7) is given by the
distribution W that puts all its mass on (✓�a, ✓

�
b ), i.e.

s(yna
a , y

nb
b ;na, nb, (✓

⇤
a, ✓

⇤
b ); ~⇥0) =

p✓⇤
a
(yna

a )p✓⇤
b
(ynb

b )

p✓�
a
(yna

a )p✓�
b
(ynb

b )
(3.9)

is an e-variable. Moreover, this is the (✓⇤a, ✓
⇤
b )-GRO e-variable relative to ~⇥0.

We can extend this e-variable to the case of a composite H1 = {P✓a,✓b :

(✓a, ✓b) 2 ~⇥1} by learning the true (✓⇤a, ✓
⇤
b ) 2 ~⇥1 from the data [Turner et al.,

2021]. We thus replace, for each j = 1, 2, . . ., for the block Y(j) consisting of na

points Y(j),a,1, . . . , Y(j),a,na
in group a and nb points Y(j),b,1, . . . , Y(j),b,nb

in group
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(a) linear boundary (b) odds boundary

Figure 3.1: Examples of null hypothesis parameter spaces for two types of bound-
aries.

b, the ‘true’ ✓⇤g for g 2 {a, b} by an estimate ✓̆g | Y
(j�1) based on the previous

j� 1 data blocks. The e-variable corresponding to m blocks of data then becomes

S
(m)

[na,nb,W1;~⇥0]
=

mY

j=1

naY

i=1

p✓̆a|Y (j�1)(Y(j),a,i)

p✓̆�
a|Y (j�1)(Y(j),a,i)

nbY

i=1

p✓̆b|Y (j�1)(Y(j),b,i)

p✓̆�
b |Y (j�1)(Y(j),b,i)

(3.10)

where, for g 2 {a, b}, ✓̆g|Y
(j�1) can be an arbitrary estimator (function from

Y
(j�1) to ✓g) and (✓̆�a | Y

(j�1)
, ✓̆

�
b | Y

(j�1)) is defined to achieve
min(✓a,✓b)2~⇥0

D(P✓̆a|Y (j�1),✓̆b|Y (j�1)(Y na
a , Y

nb
b )kP✓a,✓b(Y

na
a , Y

nb
b )).

No matter what estimator we choose, (3.10) gives us an e-variable. In Section 3.3,
as in [Turner et al., 2021], we implement this estimator by fixing a prior W and us-
ing the Bayes posterior mean, ✓̆g|Y (j�1) := E✓g⇠W |Y (j�1) [✓g]. Let us now illustrate

Theorem 3.2 for two choices of ~⇥0.

~⇥0 with linear boundary First, we let ~⇥0(s, c), for s 2 R, c 2 R, stand for
any straight line through [0, 1]2 : ~⇥0(s, c) := {()2 [0, 1]2 : ✓b = s + c✓a}. This
can be extended to ~⇥0(s, c) :=

S
s0s

~⇥0(s0, c) and similarly to ~⇥0(�s, c) :=
S

s0�s
~⇥0(s0, c). For example, we could take ~⇥0 = ~⇥0(s, c) to be the solid line

in Figure 3.1(a) (which would correspond to s = 0.1, c = 1), or the whole area
underneath the line (~⇥0( s, c)) including the line itself, or the whole area above
it including the line itself (~⇥0(�s, c)). Now consider a ~⇥0(s, c) that has nonempty
intersection with the interior of [0, 1]2 and that is separated from the point alter-
native (✓⇤a, ✓

⇤
b ), i.e. min(✓a,✓b)2~⇥0

kl(✓a, ✓b) > 0. Utilizing the independence of the

observations, we can rewrite (3.8) as follows:

kl(✓a, ✓b) := naEY⇠p✓⇤a


log

p✓⇤
a
(Y )

p✓a(Y )

�
+ nbEY⇠p✓⇤

b


log

p✓⇤
b
(Y )

p✓b(Y )

�
.
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As we defined ✓b to be completely determined as ✓b = s + c✓a, substituting and
combining with simple di↵erentiation w.r.t. ✓a gives that the minimum is achieved
by the unique (✓�a, ✓

�
b ) 2

~⇥0 satisfying:

na

✓
�
✓
⇤
a

✓�a
+

1� ✓
⇤
a

1� ✓�a

◆
+ nb · c ·

✓
�
✓
⇤
b

✓�b
+

1� ✓
⇤
b

1� ✓�b

◆
= 0. (3.11)

This can now be plugged into the e-variable (3.9) if the alternative is the simple
alternative, or otherwise into its sequential form (3.10). In the basic case in which
~⇥0 = {()2 [0, 1]2 : ✓a = ✓b}, the solution to (3.11) reduces to the familiar ✓

�
a =

✓
�
b = (na✓

⇤
a + nb✓

⇤
b )/n from Turner et al. [2021].

If (✓⇤a, ✓
⇤
b ) lies above the line ~⇥0(s, c), then by Theorem 3.2,

min(✓a,✓b)2~⇥0(s,c) kl(✓a, ✓b) must lie on ~⇥0(s, c). Theorem 3.2 gives that it must

be achieved by the (✓�a, ✓
�
b ) satisfying (3.11). Similarly, if (✓⇤a, ✓

⇤
b ) lies below the

line ~⇥0(s, c), then min(✓a,✓b)2~⇥0(�s,c) kl(✓a, ✓b) is again achieved by the (✓�a, ✓
�
b )

satisfying (3.11).

~⇥0 with log odds ratio boundary Similarly, we can consider ~⇥0(�), ~⇥0( �),
~⇥0(��) that correspond to a given log odds e↵ect size �. That is, we now take

~⇥0(�) :=

⇢
(✓a, ✓b) 2 [0, 1]2 : log

✓b(1� ✓a)

(1� ✓b)✓a
= �

�

~⇥0(�) :=

⇢
(✓a, ✓b) 2 [0, 1]2 : log

✓b(1� ✓a)

(1� ✓b)✓a
 �

�

~⇥0(��) :=

⇢
(✓a, ✓b) 2 [0, 1]2 : log

✓b(1� ✓a)

(1� ✓b)✓a
� �

�
.

For example, we could now take ~⇥0 = ~⇥0(�) to be the area under the curve
(including the curve boundary itself) in Figure 3.1(b), which would correspond
to � = 2. Now let � and point alternative (✓⇤a, ✓

⇤
b ) be such that � > 0 and

~⇥0(�) is separated from (✓⇤a, ✓
⇤
b ), i.e. min(✓a,✓b)2~⇥0(�) kl(✓a, ✓b) > 0. Let

(✓�a, ✓
�
b ) := argmin(✓a,✓b)2~⇥0(�)

kl(✓a, ✓b). As Figure 3.1(b) suggests, ~⇥0(�) is

convex. Theorem 3.2 now tells us that min(✓a,✓b)2~⇥0(�) kl(✓a, ✓b) is achieved by

(✓�a, ✓
�
b ). Plugging these into (3.9) thus gives us an e-variable. (✓�a, ✓

�
b ) can easily

be determined numerically. Similarly, if � < 0, ~⇥0(��) is convex and closed and
if (✓⇤a, ✓

⇤
b ) is separated from ~⇥0(��), the (✓�a, ✓

�
b ) minimizing KL on ~⇥0(�) gives an

e-variable relative to ~⇥0(��).

3.3 Anytime-valid confidence sequences for the 2⇥ 2 case

We will now use the e-variables defined above to construct anytime-valid confidence
sequences. Let � = �(✓a, ✓b) be a notion of e↵ect size such as the log odds ratio
(see above) or absolute risk ✓b � ✓a or relative risk ✓b/✓a. A (1�↵)-anytime-valid
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(AV) confidence sequence [Darling and Robbins, 1967, Howard et al., 2021] is a
sequence of random (i.e. determined by data) subsets CS↵,(1),CS↵,(2), . . . of �,

with CS↵,(m) being a function of the first m data blocks Y
(m), such that for all

(✓a, ✓b) 2 [0, 1]2,

P✓a,✓b

�
9m 2 N : �(✓a, ✓b) 62 CS↵,(m)

�
 ↵.

We first consider the case in which for all values � 2 � that � can take, ~⇥0(�) :=
{(✓a, ✓b) 2 [0, 1]2 : �(✓a, ✓b) = �} is a convex set, as it will be for absolute and
relative risk. Fix a prior W1 on [0, 1]2. Based on (3.10) we can make an exact
(nonasymptotic) AV confidence sequence

CS↵,(m) =

⇢
� : S(m)

[na,nb,W1;~⇥0(�)]


1

↵

�
(3.12)

where S
(m)

[na,nb,W1;~⇥0(�)]
is defined as in (3.10) and is a valid e-variable by Theo-

rem 3.2. To see that (CS↵,(m))m2N really is an AV confidence sequence, note
that, by definition of the CS↵,(m), we have
P✓a,✓b

�
9m 2 N : �(✓a, ✓b) 62 CS↵,(m)

�
is given by

P✓a,✓b

✓
9m 2 N : S(m)

[na,nb,W1;~⇥0(�)]
�

1

↵

◆
 ↵,

by Ville’s inequality [Grünwald et al., 2022a, Turner et al., 2021]. Here the CS↵,(m)

are not necessarily intervals, but, potentially losing some information, we can make
a AV confidence sequence consisting of intervals by defining CI↵,(m) to be the
smallest interval containing CS↵,(m). We can also turn any confidence sequences
(CS↵,(m))m2N into an alternative AV confidence sequence with sets CS0

↵,(m) that
are always a subset of CS↵,(m) by taking the running intersection

CS0
↵,(m) :=

\

j=1..m

CS↵,(j).

In this form, the confidence sequences CS0
↵,(m) can be interpreted as the set of

�’s that have not yet been rejected in a setting in which, for each null hypothesis
~⇥0(�) we stop and reject as soon as the corresponding e-variable exceeds 1/↵.
The running intersection can also be applied to the intervals (CI↵,(m))m2N. To
simplify calculations, it is useful to take W1 a prior under which ✓a and ✓b have
independent beta distributions with parameters ↵a,�a,↵b,�b. We can, if we want,
infuse some prior knowledge or hopes by setting these parameters to certain values
— our confidence sequences will be valid irrespective of our choice [Howard et al.,
2021]. In case no such knowledge can be formulated (as in the simulations below),
we advocate the prior, which, among all priors of the simple form asymptotically
achieves the REGROW criterion (a criterion related to minimax log-loss regret, see
[Grünwald et al., 2022a]), i.e for the case na = nb = 1 we set W1 to an independent
beta prior on ✓a and ✓b with � = 0.18 as was empirically found to be the ‘best’
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value [Turner et al., 2021].

Log Odds Ratio E↵ect Size The situation is slightly trickier if we take the
log odds ratio as e↵ect size, for ~⇥0(�) is then not convex. Without convexity,
Theorem 3.2 cannot be used and hence the validity of AV confidence sequences as
constructed above breaks down. We can get nonasymptotic anytime-valid confi-
dence sequences after all as follows. First, we consider a one-sided AV confidence
sequence for the submodel of positive e↵ect sizes {(✓a, ✓b) : �(✓a, ✓b) � 0}, defining

CS+
↵,(m) = {� � 0 : S(m)

[na,nb,W1;~⇥0(�)]
 ↵

�1
, }

where we note that ~⇥0( �) is convex (since � � 0) and also contains (✓a, ✓b)
with �(✓a, ✓b) < 0. This confidence sequence can give a lower bound on �.
Analogously, we consider a one-sided AV confidence sequence for the submodel
{(✓a, ✓b) : �(✓a, ✓b)  0}, defining

CS�
↵,(m) = {�  0 : S(m)

[na,nb,W1;~⇥0(��)]
 ↵

�1
},

and derive an upper bound on �. By Theorem 3.2, both sequences
(CS+

↵,(m))m=1,2,... and (CS�
↵,(m))m=1,2,... are AV confidence sequences for the sub-

models with � � 0 and �  0 respectively. Defining CS↵,(m) = CS+
↵,(m)[CS�

↵,(m),

we find, for (✓a, ✓b) with �(✓a, ✓b) > 0,

P✓a,✓b

�
9m 2 N : �(✓a, ✓b) 62 CS↵,(m)

�
=

P✓a,✓b

⇣
9m 2 N : �(✓a, ✓b) 62 CS+

↵,(m)

⌘
 ↵,

and analogously for (✓a, ✓b) with �(✓a, ✓b) < 0. We have thus arrived at a confidence
sequence that works for all �, positive or negative.

3.3.1 Simulations

In this section some numerical examples of confidence sequences for the two types
of e↵ect sizes are given. All simulations were run with code available in our software
package [Ly et al., 2022].

Risk di↵erence Risk di↵erence is defined as the di↵erence between success prob-
abilities in the two streams: � = ✓b � ✓a. Figure 3.2 shows running intersections
of confidence sequences with � as the risk di↵erence for simulations for various
distributions and stream lengths. These sequences are constructed by testing null
hypotheses based on ~⇥0(s, c), with c = 1 and s = �. CI↵,(m) for the risk di↵erence

on ~⇥0 is an interval, corresponding to the ‘beam’ of (✓a, ✓b) 2 [0, 1]2 bounded
by the lines ✓b = ✓a + �l and ✓b = ✓a + �r with �l > �r being values such that

S
(m)

[na,nb,W1;~⇥0(�l)]
= S

(m)

[na,nb,W1;~⇥0(�r)]
= 1/↵. In Appendix S3.B we illustrate the
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(a) Risk di↵erence

(b) Relative risk

Figure 3.2: Depiction of parameter space with running intersection of confidence
sequence for data generated under various e↵ect sizes, at di↵erent time points m
in a data stream. The asterisks indicate the maximum likelihood estimator at that
time point. The significance threshold was set to 0.05. The design was balanced,
with data block sizes na = 1 and nb = 1.
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calculations leading to Figure 3.2. Figure S3.1 in the Appendix illustrates that
the running intersection indeed improves the confidence sequence, albeit slightly.

Relative risk Relative risk is defined as the ratio between the success proba-
bilities in group b and a: � = ✓b/✓a. Hence, confidence sequences for this e↵ect
size measure can again be constructed using the linear boundary form ~⇥0(s, c)
again, but now with s = 0 and c = �. Figure 3.2 shows running intersections of
confidence sequences with � as the relative risk.

Log odds ratio boundary If the maximum likelihood estimate based on Y
(m)

lies in the upper left corner as in Figure 3.3(a), the confidence sets CS(m) we get
at time m have a one-sided shape such as the shaded region, or the shaded region
in Figure 3.3(c), if the estimate lies in the lower right corner. Again, we can
improve these confidence sequences by taking the running intersection; running
intersections over time are illustrated in Figures 3.3(b) and 3.3(d).

3.4 Conclusion

We have shown how e-variables for data streams can be extended to general null
hypotheses and non-asymptotic always-valid confidence sequences. We specifically
implemented the confidence sequences for the 2⇥2 contingency tables setting; the
resulting confidence sequences are e�ciently computed and show quick convergence
in simulations. For estimating risk di↵erences or relative risk ratios between pro-
portions in two groups, to our knowledge, such exact confidence sequences did not
yet exist. For the log odds ratio we could also have used the sequential probability
ratio (SPR) in Wald’s SPR test [Wald, 1945] test, which can be re-interpreted as a
(product of) e-variables [Grünwald et al., 2022a]. However, the SPR does not sat-
isfy the GRO property making it sub-optimal (see also [Adams, 2020]); moreover,
as should be clear from the development, our method for constructing confidence
sequences can be implemented for any e↵ect size notion with convex rejection sets
~⇥0( �) and ~⇥0(� �), not just the log odds ratio. A main goal for future work is
to use Theorem 3.2 to provide such sequences for sequential two-sample settings
that go beyond the 2⇥ 2 table.

59



Chapter 3

(a) CS+ at n = 500, true
lOR 2.5

(b) Running lower bound
CS+, true lOR 2.5

(c) CS� at n = 500, true
lOR �2.5

(d) Running upper bound
CS�, true lOR �2.5

Figure 3.3: One-sided confidence sequences for odds ratios. 500 data blocks were
generated under P✓a,✓b with ✓a = 0.2 and log of the odds ratio (lOR) 2.5 for figures
a and b, and ✓a = 0.8 and lOR �2.5 for figures c and d. The asterisks indicate
the maximum likelihood estimator at n = 500. The significance threshold was set
to 0.05. The design was balanced, with data block sizes na = 1 and nb = 1. Note
that CS

� is empty for (a) and (b) and CS
+ for (c) and (d) in these confidence

sequences.
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Information Extraction from Free
Text for Aiding Transdiagnostic Psy-
chiatry: constructing NLP Pipelines
Tailored to Clinicians’ Needs

Dr. Rosanne J. Turner1,2, Femke Coenen1, Femke Roelofs1, Karin Hagoort1, Dr.
Aki Härmä3, Prof. Peter D. Grünwald2,4, Dr. Fleur P. Velders1, Prof. Dr. Floortje
E. Scheepers1

1: University Medical Center Utrecht, Brain Center, Netherlands
2: CWI, Machine Learning group, Netherlands
3: Philips research, Eindhoven, Netherlands
4: Leiden University, Department of Mathematics, Netherlands

Abstract

Background Developing predictive models for precision psychiatry is challeng-
ing because of unavailability of the necessary data: extracting useful information
from existing electronic health record (EHR) data is not straightforward, and avail-
able clinical trial datasets are often not representative for heterogeneous patient
groups. The aim of this study was constructing a natural language processing
(NLP) pipeline that extracts variables for building predictive models from EHRs.
We specifically tailor the pipeline for extracting information on outcomes of psychi-
atry treatment trajectories, applicable throughout the entire spectrum of mental
health disorders (“transdiagnostic”).

Methods A qualitative study into beliefs of clinical sta↵ on measuring treat-
ment outcomes was conducted to construct a candidate list of variables to extract
from the EHR. To investigate if the proposed variables are suitable for measur-
ing treatment e↵ects, resulting themes were compared to transdiagnostic outcome
measures currently used in psychiatry research and compared to the HDRS (as a
gold standard) through systematic review, resulting in an ideal set of variables.
To extract these from EHR data, a semi-rule based NLP pipeline was constructed
and tailored to the candidate variables using Prodigy. Classification accuracy and

61



Chapter 4

F1-scores were calculated and pipeline output was compared to HDRS scores using
clinical notes from patients admitted in 2019 and 2020.

Results Analysis of 34 questionnaires answered by clinical sta↵ resulted in four
themes defining treatment outcomes: symptom reduction, general well-being, so-
cial functioning and personalization. Systematic review revealed 242 di↵erent
transdiagnostic outcome measures, with the 36-item Short-Form Survey for qual-
ity of life (SF36) being used most consistently, showing substantial overlap with the
themes from the qualitative study. Comparing SF36 to HDRS scores in 26 studies
revealed moderate to good correlations (0.62 - 0.79) and good positive predictive
values (0.75 - 0.88). The NLP pipeline developed with notes from 22170 patients
reached an accuracy of 95 to 99 percent (F1 scores: 0.38 – 0.86) on detecting these
themes, evaluated on data from 361 patients.

Conclusions The NLP pipeline developed in this study extracts outcome mea-
sures from the EHR that cater specifically to the needs of clinical sta↵ and align
with outcome measures used to detect treatment e↵ects in clinical trials.
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4.1 Background

In psychiatry, it is still di�cult to choose the best treatment for individual patients
based on their specific characteristics. For example, in major depressive disorder,
only one third of patients achieves remission after first-line treatment [Rybak et al.,
2021]. This is why there is a plethora of attempts at developing machine learning
models that support shared decision making and precision psychiatry (for exam-
ple see Ermers et al. [2020] for a recent overview of machine learning models in
major depressive disorder, and Sanfelici et al. [2020] for psychosis). However, as
patient needs are personal and treatment outcomes are never binary in psychiatry
[Wigman et al., 2013], choosing a representative outcome measure on which the
machine learning models should report is key, but not straightforward.

In clinical trials, diagnosis-specific symptom rating scales are frequently used
to detect treatment e↵ects. However, these measures restrict developing decision
support models to just one group of patients with the same “diagnostic label”,
whereas in practice, there almost never is a one-to-one correspondence between
diagnostic labels and patients [Meiseberg and Moritz, 2020]. In addition, avail-
ability of patients’ scores on rating scales in the electronic health records (EHR)
is limited in practice, as they are mostly registered structurally in the clinical trial
setting. Lastly and perhaps most importantly, symptom rating scales may not
cover all information patients and clinicians are actually interested in with regard
to recovery, for example insights into daily and social functioning.

Hence, alternative outcome measures for machine learning models to support
patients and clinicians in (shared) decision making seem warranted. One alter-
native could be using scores that represent the patient’s functioning, as they can
be used to follow up treatment e↵ectiveness in patients with di↵erent psychiatric
disorders. This way, predictive models in which patients from a wide spectrum of
mental disorders are included could utilize these outcome measures. Functional
outcome measures may also better reflect added value for patients and the com-
munity [Glied et al., 2015], making machine learning models’ predictions more
insightful in comparison to predicting improvements on symptom rating scales.

This kind of information is not registered in a structured manner in the EHR,
and extracting such outcome variables from clinical free text is a time-consuming
process. On the other hand, it is unwarranted to introduce new questionnaires to
clinical sta↵ to collect data prospectively in a structured format for each predictive
model that is built, as this would disproportionally increase administrative burden.
Therefore, the aim of this study was to build a natural language processing (NLP)
pipeline that can easily be tailored towards extracting specific information from
clinical notes, and to show a specific application for extracting transdiagnostic
outcome measures for mental health disorders.

To investigate which information would be valuable to report on in psychi-
atric clinical practice, psychiatry clinical sta↵ of an academic hospital answered
questionnaires to assess which outcome measures they would find appropriate
to determine the e↵ectiveness of treatment throughout the entire spectrum of
mental health disorders. So far, most predictive models in psychiatry have been
built around diagnosis-specific outcome measures [Fusar-Poli et al., 2018], hence
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it is currently unknown whether treatment e↵ects could be reflected adequately
through more transdiagnostic and functional outcome measures, and whether it
would be sensible to construct predictive models for these outcome measures at all.
Therefore, to assess which transdiagnostic outcome measures resulting from the
questionnaires were candidates, an overview of transdiagnostic measures used for
detecting treatment e↵ects in the research setting was created through systematic
review. Second, the aptness of the found transdiagnostic measures for measuring
treatment e↵ects was assessed through comparing transdiagnostic domain scores
in depression clinical trials with the gold standard in depression, the Hamilton De-
pression Rating Scale (HDRS), also through systematic review [Hamilton, 1960,
Williams, 2001].

The results of the questionnaires and systematic reviews were combined into
a list of candidate transdiagnostic outcome measures. Finally, it was assessed
whether these could be accurately extracted from the EHR data with our proposed
NLP pipeline. To compare the extracted outcomes to a gold standard measure in a
subgroup of patients with symptoms of depression, analogously to the comparison
of the outcome measures and HDRS through the systematic review, the association
between the outcome measures constructed with the NLP pipeline and HDRS
scores of patients at the academic hospital was assessed.

4.2 Methods

Determining which information on treatment outcomes is valuable in
clinical practice To investigate which transdiagnostic outcome measures con-
tain useful information for clinical practice, online questionnaires were devel-
oped and distributed among clinical sta↵ at the Psychiatry department of UMCU
(through Castor EDC, Ciwit B.V.). Questionnaires contained a combination of
seven closed and seven open questions on defining recovery and treatment goals
relevant for clinical decision making. For the analysis of the open questions, the
framework for thematic analysis by Braun and Clarke was used [Braun and Clarke,
2006]. Detailed methods can be found in the additional information file, section
2.

Identifying transdiagnostic outcome measures used in research To fur-
ther assess which outcome measures would be potential candidate measures for
measuring treatment e↵ects throughout the entire spectrum of mental health dis-
orders, we aimed to find all transdiagnostic outcome measures that have been used
in clinical trials from 2015 up to July 2020 through systematic review. The six-
year cuto↵ was chosen to be able to focus on currently relevant outcome measures
applicable to the Diagnostic and Statistical Manual of Mental Disorders, fifth Edi-
tion [American Psychiatric Association, 2013]. Studies concerning adult patients
primarily diagnosed with a psychiatric disorder where at least one transdiagnos-
tic outcome measure was used were included (details in additional information,
section 3).
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Assessing transdiagnostic outcomes for measuring treatment e↵ects In
the second review, the aptness of a transdiagnostic outcome measure to mea-
sure treatment e↵ects was investigated through comparing changes in the 36-item
Short-Form Survey for quality of life (SF36) with the gold standard in depression,
the HDRS. All clinical trials up to July 2020 concerning patients with depression
where both the HDRS and the SF36 were utilized as primary or secondary outcome
measures were included. Mean SF36 subcomponent score changes were compared
to the mean HDRS score changes through weighted correlation, and a confusion
matrix was created to investigate the ability of the SF36 to reveal a significant
treatment e↵ect (details in additional information, section 4).

Assessing routinely collected information in the EHR as information
sources To find sources to extract information on candidate themes after sys-
tematic review and qualitative analysis, the full spectrum of EHR data available at
the psychiatry department of UMCU until 2020 was assessed, which included data
from 22170 patients: de-identified doctors’ and nurses’ notes [Menger et al., 2018b],
referral and dismissal letters, standardized forms containing treatment and pre-
vention plans, standardized questionnaires performed (semi-)structurally, juridical
status, destination after dismissal, lab measurements and prescribed medication.
These sources were qualitatively assessed with regard to frequency of availability,
relevance and quality.

Constructing an NLP pipeline To extract outcome measures from the un-
structured data sources, the doctors’ and nurses’ notes, an NLP pipeline for an-
alyzing Dutch clinical notes was developed, using as many available clinical text
as possible, including notes from 5664 inpatient trajectories and from 18689 pa-
tients that were treated ambulatory. The main aim of the pipeline was to find for
each patient all sentences that contain clinically relevant information about the
candidate themes resulting from the qualitative study and reviews, and to attach
a sentiment score for each theme to the sentences to be able to see if observations
were positive or negative. As there is often a lot of repetition in daily written
clinical notes (e.g., “Situation has not changed, patient still lacks initiative and
still has a depressed mood”), we aimed to let the pipeline only filter and score
sentences that contained an indicator of change in the patient’s situation. This
would probably give clinicians information that is more relevant to the course
of treatment, compared to including sentences without change indicators in the
scores.

A schematic overview of the proposed NLP pipeline with a hypothetical exam-
ple of the analysis of a piece of clinical text can be found in figure 4.1. The five
steps of analysis are briefly described in the next two paragraphs. Main units of
analysis in the pipeline are sentences: in the first step, clinical notes are prepro-
cessed by splitting them into sentences with a spaCy tokenizer [Honnibal et al.,
2020]. In the second step, the sentences pass the theme filter, passing only when
at least one phrase corresponding to one of the candidate themes is detected. In
the third step, sentences pass through the change filter when they contain a phrase
indicating a moment of change. This could either be a word directly describing
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Figure 4.1: Schematic depiction of the NLP pipeline for extracting moments of
change for each patient from clinical notes with a hypothetical example of a clinical
text passing through all steps. Note that because in step 3 no change word was
detected in sentence 1, further analysis of that sentence is cancelled. Note also
that in step 4, a negated context is detected for the word “improve” in sentence 3,
hence this change word and the corresponding theme word are not passed further
through the analysis.
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change (e.g. “improvement”), or a comparative form of an adjective (e.g. “an-
grier”). For the theme and change filters, lists of phrases for rule-based filtering
(in Dutch) were needed. These were composed with the annotation tool Prodigy
by authors RJT and FC (Prodigy, ExplosionAI, Berlin, Germany). Prodigy takes
as input a spaCy model and a list of seed terms, and based on these seed terms
and the word embeddings in the model e�ciently suggests new phrases to add to
the list. One of the major advantages of this method for composing a phrase list
is that frequent spelling errors are included. Examples of parts of the composed
lists with translations to English can be found in additional table 1, and complete
composed phrase lists (in Dutch) can be found in the online repository for this
project, available on GitHub [Turner, 2021].

In the fourth step, a context filter was applied to check if the theme phrase
and change phrase were mentioned in a correct sentence context. Five checks
were performed: whether the phrases were current, not hypothetical, concerned
the patient, not negated, and whether the change concerned the theme (e.g., we
need to detect “Today, anxiety symptoms increased”, but not “We increased the
medication doses but the patient’s anxiety did not respond”). This filter uses part-
of-speech and dependency tagging based on a previously developed spaCy model,
regular expressions and literal phrases; details and a tutorial of the software can
be found in Menger [2020] and Menger et al. [2018a]. In the fifth and final step,
the sentences received scores for all themes that passed the filter for that specific
sentence. This was done by RJT and FC through assigning sentiment scores to the
theme and change phrases. For this project, we chose to assign negative phrases
(e.g. “anxiety”, “anger”) the value -1, and positive phrases (e.g., “joy”, “hygiene”)
the value 1. Change words indicating an increase were assigned the value 1, and
those indicating a decrease the value -1. Final sentiment scores per sentence were
calculated by multiplying each theme phrase score with its corresponding change
phrase score. This way, an increase in something with a negative connotation, such
as “more anxiety”, would result in a score of -1, and an increase in something with
a positive connotation, such as “participation improved”, would result in a score of
+1 (see also figure 4.1). When a sentence contained multiple theme phrases with
a corresponding change phrase, e.g., “The patient was more anxious and sad”, the
scores were added, this example sentence resulting in a score of -2.

To assess if this pipeline could accurately extract sentences containing a mo-
ment of change with respect to the themes (regardless of sentiment), four validation
datasets, one for each theme, were composed e�ciently with the use of spaCy and
Prodigy. As validation data, clinical notes from adult patients with one or more
inpatient treatment trajectories at UMCU in 2020 were used, which were unseen
during the phrase list development process described above. Using the theme
phrases as a warm start, Prodigy selected sentences from the total data pool to
label based on classification di�culty. Sentences were then labelled manually by
RJT and FC, labelling a sentence as “accept” when it was judged that it should
pass through all filters, and “reject” when it was judged to not contain a moment
of change concerning the theme, in the correct contexts. The pipeline was also
applied to this validation set, also labelling a sentence as “accept” when it passed
through all filters for that specific theme, and “reject” when it did not pass. Given
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and predicted labels were then compared, and classification accuracy, precision,
recall and F1-scores were calculated.

Comparison of our candidate transdiagnostic outcomes to a gold stan-
dard Finally, to compare our structured and unstructured transdiagnostic out-
come measures to a more symptom-specific gold standard, the NLP theme scores
and scores on domains extracted from structured sources (e.g., juridical status and
medication prescriptions) were compared to HDRS scores for patients admitted in
2019 and 2020 through linear regression with stepwise AIC-based model selection
in R. Summary scores for each patient were obtained by calculating the mean sen-
timent over all sentences that passed the filters for that patient for each theme.
E.g., if for the theme “symptoms” three sentences passed the filter for a patient,
with scores -2, 1 and 2, the mean symptom sentiment score for this patient would
be 1/3. Only complete cases, with clinical notes and information from all selected
structured sources available, were analyzed. The scores from structured sources
were incorporated as categorical data, either having worsened (e.g. more benzo-
diazepine prescriptions at the end of an admission compared to the start), having
stayed the same or having improved. In potential, such a linear model trained to
reflect gold standard HDRS scores could be used to in the end compose a combined
weighted score from the NLP scores and information from structured data.

For all analyses, R (version 4.0.3) and Python (version 3.7.4) were used.

4.3 Results

Clinicians’ views on outcomes Between June 23, 2020, and July 27, 2020, 38
healthcare professionals gave consent to participate in a survey on defining goals
of treatment and recovery. 34 completed at least one item of the questionnaire.
The group comprised 12 nurses, 3 nurse practitioners, 9 residents in psychiatry,
and 10 psychiatrists. Through qualitative analysis, four distinct themes were iden-
tified that comprise the concepts “goals of treatment” and “recovery of a patient”:
personalization, symptom reduction, general well-being and social functioning.
Detailed descriptions of the themes are depicted in table 4.1.
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Table 4.1: Qualitative analysis of clinical sta↵’s responses to a questionnaire on
defining goals of treatment and recovery

Theme Description Examples
Personali-
zation

Recovery is a highly personal
process that is shaped by
the patient’s goals, story and
views. Therefore, the treat-
ment goals are dependent on
the needs and goals of the pa-
tient. A situation is pursued
in which professional care is no
longer needed and the patient
returns to his usual environ-
ment and position before ill-
ness.

“The patient’s request, what
he/she requires to function to
his/her own needs. . . ”; “In this
respect it is always necessary
to look at the patient’s position
before his illness, what he/she
aims to accomplish, and which
other factors are hindering, re-
spectively facilitating the pa-
tient.”

Symptom re-
duction

Treatment goals include reduc-
tion of symptoms, encompass-
ing both psychiatric and so-
matic complaints. This reduc-
tion ranges from complete re-
mission to mere stabilization in
the acute phase of the illness.
The recovery process is hard
work and sometimes involves
an initial aggravation (e.g., side
e↵ects). The aim is that the
symptoms are diminished in a
way that the patient is not re-
stricted by them anymore (e.g.,
in daily functioning), or that
the patient can function on his
previous level again.

“Supporting patients in their
recovery by treatment of psy-
chiatric illness or symptoms.;
“Reduction or recovery of
symptoms.”; “. . . as symptom-
free as possible...”; “Recovery
to the level of premorbid
functioning and reduction of
symptoms to premorbid”

General well-
being

Another treatment goal is to
raise general well-being and
quality of life. The treat-
ment stimulates that the pa-
tient gains insight into his ill-
ness and learns to cope with it
and the vulnerability that re-
mains when the symptoms are
reduced. A new balance is es-
tablished between the patient’s
capacities and the burden of
the illness. This gives room for
positive experiences, joy and a
regained purpose in life.

“Improvement of quality of
life.”; “Feeling like living and
being able to experience life
satisfaction again.”; “Regain-
ing a purpose and a balance be-
tween the patient’s capacities
and the burden of the illness.”
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Table 4.1, continued
Theme Description Examples
Social func-
tioning

Finally, treatment aims to im-
prove the patient’ social and
societal functioning. The
healthcare professionals try to
enhance autonomy and self-
su�ciency, so that the patient
becomes able to participate in
society again. This entails e.g.,
living independently, engaging
in activities that are important
to the patient, having a job and
meaningful relationships with
others.

“Treatment of complaints, that
give severe hinder in daily life,
of the patient so that the pa-
tient is able to gradually re-
sume his/her life and partici-
pate in society again.”; “Recov-
ery of healthy functioning on
life domains like work, relation-
ships, living and spare time.”

Transdiagnostic outcome measures in research The search for clinical tri-
als where transdiagnostic outcomes were used yielded 1962 studies, of which 362
were included (details of exclusion criteria and an overview of included studies can
be found in additional information, section 3 and additional table 2). In these
studies, 242 di↵erent transdiagnostic outcome measures were applied. The most
prevalent outcome measures were the Clinical Global Impression (CGI), Short
Form Health Survey (SF), Global Assessment of Functioning (GAF), EuroQol 5d
(EQ-5D) and World Health Organization Quality of Life (WHOQOL) question-
naires [Busner and Targum, 2007, Brazier et al., 1992, Jones et al., 1995, Rabin
and de Charro, 2001, World Health Organization, 1995]. An overview of the ten
most-used outcome measures is provided in the additional information, additional
table 3. The CGI and the GAF concern very short surveys, but the SF, EQ-5D
and WHOQOL all three concern longer, detailed questionnaires with overlapping
themes concerning physical, mental and emotional well-being, and social and so-
cietal functioning.

In figure 4.2 the frequency of usage of these outcome measures per diagnosis
is illustrated. The SF is used in a substantial portion of studies for all diagnoses,
whereas for the other questionnaires the usage varies depending on the specific
diagnosis. The 36-item, most widely used version of the SF (SF36) consists of
eight subcomponents; physical health, physical role perception, bodily pain, gen-
eral health perception, mental health, emotional role perception, vitality and social
functioning, which together roughly cover the spectrum of topics covered by the
other most-used questionnaires. As the SF36 also is the most widely-used method
to quantify health-related quality of life [Cordier et al., 2018], these SF36 subcom-
ponents were used for further investigation of the extent to which a transdiagnostic
outcome measure is as sensitive to changes over the course of treatment compared
with diagnosis-specific questionnaires.

Transdiagnostic outcomes for measuring treatment e↵ects Systematic
review yielded 26 studies where both SF36 and HDRS were measured during treat-
ment trajectories of patients with depression; detailed results can be found in the
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Figure 4.2: Top 5 most-used transdiagnostic outcome measures during the past five
years. The prevalence of usage of the top 5 most-used transdiagnostic outcome
measures for the most prevalent diagnoses for which general outcome measures
were used during the past 5 years in clinical trials are shown.

additional information, additional table 4. The strength of the Pearson correla-
tion coe�cients between SF36 subscores and changes in HDRS scores varied from
moderate to strong with bodily pain to be the lowest, and physical health per-
ception to be the highest (R = -0.601, and R = -0.786, respectively), i.e., better
scores on the subcomponents of the SF36 indicate an improvement of symptoms
of depression (additional table 5). The positive predictive value of most of the
SF36 subscores was high, indicating that the SF36 is apt for detecting treatment
e↵ects (additional table 6).

Interestingly, the themes resulting from the interviews with psychiatry sta↵
show substantial overlap with the subcomponents of the ten most prevalent ques-
tionnaires found in our systematic reviews, which also mainly focused on (physical
and) mental health symptoms, social and societal functioning and more general
emotional well-being. Specifically comparing them to the SF36, the theme “symp-
tom reduction” corresponds to the subcomponents physical health, bodily pain
and mental health, the theme “social functioning” directly to its social function-
ing counterpart, “general well-being” to vitality and general health perception and
“personalization” to physical role perception, general health perception and emo-
tional role perception. With the SF36 subcomponents deemed as good alternatives
for measuring treatment e↵ects compared to a syndrome-specific gold standard in
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the systematic review above, it was hypothesized that these four themes would
be good candidate treatment e↵ect measures as well, while also catering to the
specific needs of clinicians in psychiatry practice.

Extraction from the EHR To report on outcomes on the four found themes
for individual patient treatment trajectories, all EHR sources available at the
psychiatry department of UMCU until 2020 (22170 patients) were assessed with
regard to availability of information on the themes, and for relevance and quality
of this information. An overview of assessed sources and their aptness is given in
the additional information, additional table 7. For the information extraction, the
definition of the “personalization” theme was narrowed down to “patient experi-
ence”, and for this theme, the EHR sources were searched for information on the
thoughts and remarks of patients about their treatment trajectory. Sources se-
lected as feasible for calculating theme scores were clinical notes (for each theme),
juridical status (for symptoms and social functioning), medication prescriptions
during admission (for symptoms) and destination after dismissal (for symptoms
and social functioning).

NLP pipeline assessment To validate the NLP pipeline for extracting infor-
mation from unstructured EHR sources, validation sets were composed for each
theme with all clinical notes of admitted, adult patients at the UMCU in 2020.
This set comprised 439 trajectories of 361 patients with a mean duration of 57
days; 39 percent was admitted to emergency care, 31 percent to a ward specialized
in the diagnosis of first episode psychosis and 26 percent to a ward specialized in
a↵ective and psychotic disorders. In table 4.2, the average number of sentences
containing a phrase for each of the four themes per inpatient treatment trajec-
tory, the number of sentences selected by the pipeline as mentioning a change in
the theme in the correct context and some example sentences can be found. On
validation sets with 663, 292, 328 and 269 sentences for symptoms, social, well-
being and patients’ experience, respectively, 0/1 accuracies between 95 and 99
percent were achieved on each of the themes (also see table 4.2). Remarkable is
the high precision, but low recall for the symptom reduction and general well-being
themes; reviewing the false negative sentences revealed that a large part could be
contributed to missed verb conjugations in the change phrases, and specifically
conjugation breaks, which occur a lot in Dutch. Also notable is the low precision
but high recall for the patient experience theme.
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Chapter 4

As an example of clinical applicability, to assess the aptness of these scores,
in addition to the scores from the structured sources (medication prescriptions,
juridical status and destination after dismissal) to reflect treatment e↵ects during
an inpatient treatment trajectory, they were compared to changes in HDRS scores
in patients with symptoms of depression. These were available for 120 patients in
2019 and 2020; 80 of these patients were admitted to the ward for a↵ective and
psychotic disorders, and 40 to other wards. The mean HDRS score at the end of
inpatient treatment trajectories was 14, with a minimum of 2 and a maximum of
33. On average, 2802 sentences of clinical notes were available for each patient,
and 88 change sentences passed the filter. Linear regression with stepwise model
selection revealed that the most parsimonious model (based on AIC) for predict-
ing HDRS scores at the end of inpatient treatment trajectories included mean
sentiment scores for the symptom and social functioning themes, juridical status,
benzodiazepine prescriptions and other psychiatric medication prescriptions as co-
variates (table 4.3). Negative model coe�cients were found for the sentiment of
psychiatric core symptoms and a decrease (i.e. improvement) in benzodiazepine
prescriptions, implying that improvements on these themes are associated with
improvement of depression symptoms.

Table 4.3: The most parsimonious linear regression model after stepwise model
selection with AIC for predicting HDRS scores at the end of treatment

Predictor Coe�cient Standard error P-value
(Intercept) 8.549 3.151 0.00777
Mean sentiment psychiatry
symptoms

-3.711 1.336 0.00645

Mean sentiment social func-
tioning

2.354 1.318 0.07692

No change in juridical status 5.496 0.920 0.35966
Juridical status improved 5.412 2.698 0.04739
No change in benzodiazepine
prescriptions

-3.769 1.774 0.03589

Decrease in benzodiazepine
prescriptions

-3.467 2.288 0.13264

No change in other psychiatry
medication prescriptions

2.346 1.628 0.15243

Decrease in other psychiatry
medication prescriptions

3.403 1.881 0.07315

4.4 Discussion

With the research described in this paper, we aimed to identify useful and real-time
extractable outcome measures for machine learning models in psychiatry. Through
systematic review, transdiagnostic outcome measures concerning core symptoms,
social functioning and general well-being were identified. Comparison of scores
on these themes with Hamilton scores through systematic review showed that
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these themes appropriately reflect outcomes of treatment trajectories. Themes
defined by clinicians at the academic hospital that together cover the spectrum of
defining successful treatment trajectories were symptom reduction, general well-
being, social functioning and personalization, which show substantial overlap with
the themes found through systematic review. Through combining structured and
unstructured EHR data that was already available, an NLP pipeline was developed
through which scores on the subthemes could be extracted from the EHR, with
good F1-scores for detecting information on symptoms and social functioning. .
The symptom reduction and social functioning themes were associated with HDRS
scores for patients admitted in 2019 and 2020.

In this study we composed the phrase lists for text mining each theme our-
selves, tailored to the current specific problem and clinician writing styles, which
required a substantial time investment. In future research the performance of our
phrase lists could be compared with existing medical ontologies like Systemized
Nomenclature of Medicine Clinical Terminology (SNOMED-CT) [Stearns et al.,
2001]. However, existing medical ontologies do not address issues like spelling mis-
takes and form variability, which might decrease their sensitivity. Similarly, the
rule-based nature of our pipeline did not allow for enough flexibility to cover all
verb conjugations in Dutch, possibly explaining the low recall on the symptom and
well-being themes. The pipeline also had a low precision for the patient experience
theme, probably also explained by the rule-based nature; because of the broad,
unspecific nature of this theme, many generic phrases were included in the filter-
ing lists. A tool which could potentially handle more flexibility is the open-source
Medical Concept Annotation Toolkit (MedCAT) [Kraljevic et al., 2021]. This is
a novel self-supervised machine learning algorithm that uses concept vocabulary
(including SNOMED-CT) for extracting concepts and also supports contextual-
ization through unsupervised learning, matching ambiguous concepts to the best
fitting overarching concepts.

To enable comparing the transdiagnostic measures we selected based on the
qualitative study into clinical sta↵’s beliefs and literature review to an objective
measure, a linear model with stepwise model selection was fitted with the trans-
diagnostic measures as predictors, and HDRS scores as outcomes. Ideally, one
would compare the candidate outcome measures to an existing transdiagnostic
outcome questionnaire such as SF36 to be able to extend this comparison beyond
depressive symptoms, but these are not often part of routine clinical care and
were not available for our retrospectively collected cohort. The second systematic
review performed in this study however revealed that changes in HDRS scores are
correlated with changes in SF36 scores. The HDRS quantifies depression symp-
toms; with this analysis, we have shown that several of the candidate outcome
measures are associated with this gold standard. For the NLP themes, the themes
reflecting social functioning and psychiatric symptoms were associated, perhaps
reflecting the symptom-oriented nature of the HDRS. These associations might
indicate that the theme scores developed in this study could potentially be used
to measure treatment e↵ects transdiagnostically, but to prove this, comparison
with an objective transdiagnostic standard such as the SF36 or syndrome specific
gold standards reflecting other mental illnesses would be necessary.
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Not for all patients for whom clinical notes were available, sentences with
changes were present for every theme in the clinical notes. This highlights the
possibility of the existence of bias in these retrospective clinical notes: possibly,
only more remarkable changes during treatment trajectories are denoted. When
trying to gain qualitative insights into treatment trajectories for individual patients
these “noisy” observations being omitted might actually be helpful, but when
trying to create quantitative overviews or to find associations results could be
misleading. This is an unavoidable challenge when trying to use existing data
to develop predictive models, and warrants the need for prospective studies into
the coherence between transdiagnostic outcomes measured through standardized
questionnaires, and the content of clinical notes.

The research in this paper emphasizes the need for standardized outcome mea-
sures for comparing and combining machine learning models in mental health. The
Core Outcome Measures in E↵ectiveness Trials (COMET) initiative has initiated
this sort of work with the goal of streamlining clinical trial initiatives [Prinsen
et al., 2014]; it would be interesting to further formalize standards for prediction
models as well, as this would certainly aid working towards FAIR use of data
and initiatives for sharing and collectively training machine learning models in
healthcare [Wilkinson et al., 2016, Deist et al., 2020].

4.5 Conclusions

This paper highlights information extraction from clinical notes as a good alterna-
tive for standardized questionnaires when one aims to gain insight into treatment
outcomes at their facility. We have shown that it is not only feasible to extract in-
formation on outcome measures of interest from clinical text, but we also validated
that these transdiagnostic themes might accurately reflect treatment outcomes in a
subgroup of patients with symptoms of depression, as compared with the Hamilton
questionnaire. This approach has a closer connection to clinical practice and indi-
vidual patients, as it is directly based on real data and clinical practice as opposed
to measuring instruments for clinical research. From here forward, pipelines like
this could be used to generate better insights into treatment outcomes for all pa-
tients in a cohort for which clinical notes are available, as opposed to only patients
for which standardized questionnaires are available, a possible source of selection
bias. Clinicians could for example be o↵ered real-time insights into treatment out-
comes for diverse patient groups at their department through a dashboard with
summary statistics of all the outcome measures. An interesting addition would be
the construction of a combined weighted outcome score, with weights for example
based on a linear regression model, such as the one trained in this paper, with the
HDRS scores at outcomes.
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Abstract

It is currently di�cult to successfully choose the correct type of antidepressant
for individual patients. To discover patterns in patient characteristics, treatment
choices and outcomes, we performed retrospective Bayesian network analysis com-
bined with natural language processing (NLP).

This study was conducted at two mental healthcare facilities in the Nether-
lands. Adult patients admitted and treated with antidepressants between 2014
and 2020 were included. Outcome measures were antidepressant continuation,
prescription duration and four treatment outcome topics: core complaints, social
functioning, general well-being and patient experience, extracted through NLP
of clinical notes. Combined with patient and treatment characteristics, Bayesian
networks were constructed at both facilities and compared.

Antidepressant choices were continued in 66% and 89% of antidepressant tra-
jectories. Score-based network analysis revealed 28 dependencies between treat-
ment choices, patient characteristics and outcomes. Treatment outcomes and pre-
scription duration were tightly intertwined and interacted with antipsychotics and
benzodiazepine co-medication. Tricyclic antidepressant prescription and depres-
sive disorder were important predictors for antidepressant continuation.

We show a feasible way of pattern discovery in psychiatry data, through com-
bining network analysis with NLP. Further research should explore the found pat-
terns in patient characteristics, treatment choices and outcomes prospectively, and
the possibility of translating these into a tool for clinical decision support.
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5.1 Introduction

Patients seeking treatment for severe depression symptoms often have a long tra-
jectory ahead of them; only approximately one third continues their medication
of first choice and about 30 percent has still not achieved remission after four
treatment steps [Rybak et al., 2021, Rush et al., 2006, Gaynes et al., 2009]. Mean-
while, the contribution of mental health disorders to the global burden of disease
is substantial [Whiteford et al., 2015]. Despite the limitations, pharmacological
treatment of severe depression is still the most common treatment choice. Since
it is still di�cult to predict the response to a specific antidepressant type in an
individual, the prescription process is one of trial and error. For a patient this
can result in unnecessary and possibly harmful side e↵ects and delayed recovery.
Especially challenging in the prescription of antidepressants is that both the choice
of the antidepressant and the response are influenced by multiple variables relat-
ing to the prescriber, the patient, illness characteristics and the drug itself [Bayes
and Parker, 2019]. Insights into the interactions between these factors and their
e↵ects on treatment outcomes could allow greater precision in the choice of an
antidepressant for a given patient, but are currently lacking [Pradier et al., 2020].

To empower patients and clinician during treatment choices, the multi-faceted,
non-binary aspects of psychiatric care are hard, but essential to account for [Kirtley
et al., 2022]. During the last decade many machine learning models with the
aim of personalizing treatment recommendations for patients with symptoms of
depression have been developed [Ermers et al., 2020]. However, little has changed
in actual clinical psychiatry practice yet, perhaps because of the “black box” nature
of most clinical machine learning models [Kundu, 2021].

Network analysis is a promising candidate from the joint field of statistical
learning and machine learning that could potentially o↵er the desired multi-faceted
insights into psychopathology in an explainable and transparent manner [Bors-
boom and Cramer, 2013]. It comprises of methods of data analysis where depen-
dencies and/or causal pathways between all variables in a dataset are learned and
visualized [Scutari and Strimmer, 2011]. Because mental health syndromes often
present as a collection of tightly intertwined signs and symptoms, which sustain
and influence each other and can be intervened on through multiple pathways,
network analysis appears especially apt for capturing these concepts.

Previous studies on network analysis in mental health mainly focused on mod-
elling symptom networks and yielded promising results. A study with a penalized
Gaussian graphical model, including 1029 participants and 16 depression and anx-
iety symptoms, resulted in stable networks [Beard et al., 2016]. In a greedy search
Bayesian network approach with a relatively small sample size of 353 subjects
where relations between 10 stress-related variables were investigated, moderate
classification accuracy of the network was achieved [Lee et al., 2019]. Network
analyses studies with similar sample sizes and numbers of variables on obsessive-
compulsive disorder and depression, and suicidal ideation (408 and 336) also re-
vealed key gateway symptoms influencing symptom clusters [McNally et al., 2017,
De Beurs et al., 2021]. A pilot with personalized feedback to patients through
symptom network analysis showed promising results with respect to increasing a
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patient’s understanding of their psychopathology [Kroeze et al., 2017].
The above-mentioned studies illustrate the aptness of network analysis for

showing and interpreting associations between symptoms. In the future, a tool
for explainable personalized insights into antidepressant recommendations based
on these kinds of networks could potentially be of significant value in clinical de-
cision making. To work toward this goal, for this study, we intended to explore if
treatment characteristics (antidepressant choices and co-medication), patient char-
acteristics and treatment outcomes in addition to symptom scores can be incor-
porated in network analysis, using retrospective data from two mental healthcare
facilities in the Netherlands. To extract information on mental health symptoms
and treatment outcomes from the retrospective data, the network analysis was
combined with a natural language processing (NLP) model [Turner et al., 2022].

Since our end goal is to develop a tool for explainable personalized insights
into antidepressant recommendations we were primarily interested in causal paths
and discovering (conditional) dependence relations among patient characteristics,
treatment choices and outcomes. Hence, we have chosen to perform a Bayesian
network (BN) analysis instead of a partial correlation network analysis or Markov
random field analysis [Briganti et al., 2022]. The final BN, the found dependencies
and predictions for hypothetical patients were compared to expert opinion to assess
the potential of the model for future implementation in a tool for clinical decision
support.

5.2 Methods

Main units of analysis Main units of analysis were first-time inpatient an-
tidepressant treatment trajectories at participating mental health care facilities;
consecutive prescriptions for one type of antidepressant were viewed as a single
treatment trajectory. New prescriptions for the same type of antidepressant that
started within 30 days after the old prescription were viewed as belonging to the
same trajectory. Antidepressant treatment trajectories between 2014 and 2020 at
two mental healthcare facilities involved were included. The first mental healthcare
facility, Parnassia Group (PG), provides basic and specialized services for preven-
tion, treatment (inpatient and outpatient), support and care after treatment. The
second facility, UMC Utrecht (UMCU), is an academic specialized facility for ter-
tiary care. As PG and UMCU deliver care in di↵erent regions in the Netherlands,
the probability of overlap in patient populations is negligible.

To ensure a homogeneous patient population, only trajectories with (partial)
inpatient treatment were included. We ultimately aim to assist a broader group
of patients than only those with a clear-cut classification fitting the Diagnostic
and Statistical Manual of Mental Disorders (DSM) categories. Therefore, all an-
tidepressant trajectories were included regardless of DSM classification [American
Psychiatric Association, 1994]. However, to keep the populations from both facili-
ties comparable we did not include patients with addiction as a primary diagnosis,
since PG includes a few clinics specialized in addiction treatment and UMCU does
not, and addiction as a primary diagnosis has a dominant impact on all interven-
tions [Naglich et al., 2018]. Patients with addiction as a secondary diagnosis were
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included, to still enable investigating the possible interactions between depressive
symptoms, choice of antidepressant and treatment with disulfiram.

Predictor variables Predictor variables available at the start of (or becoming
available during) the treatment trajectories comprised of gender, age, antidepres-
sant type, co-medication, psychiatric (co-)morbidities according to the DSM clas-
sification system and global assessment of functioning (GAF) scores as registered
in the DSM classification system. Antidepressant types were grouped into selective
serotonin reuptake inhibitors (SSRI), non-selective serotonin reuptake inhibitors
(nSSRI), tricyclic antidepressants (TriCA), tetracyclic antidepressants such as mir-
tazapine and mianserine (TetraCA), monoamine oxidase inhibitors (MAOI) and a
remainder category (other), including for example bupropion (for a full overview,
see supplementary table S5.1). Co-medication subgroups included in analysis were
lithium, antipsychotics, tranquilizers (benzodiazepines) and disulfiram. Disulfi-
ram was included because of its strong interactions with TriCAs [Ciraulo et al.,
1985]. As information on other forms of treatment running concurrently, such
as psychotherapy, was not available in a homogeneous format within and across
treatment facilities, we did not incorporate these other treatments as predictor
variables. (Co-)morbidities included were depression, anxiety disorder, personal-
ity disorder and problems in the social environment. Information on all variables
except GAF scores was complete; missing data on GAF scores were imputed using
the MICE software in R [Van Buuren and Groothuis-Oudshoorn, 2011].

Outcome variables Acceptability and e�cacy are the main categories of out-
come variables in antidepressant research. In this study acceptability is opera-
tionalized in prescription duration (>= 5 weeks indicating an “e↵ective” duration,
i.e., long enough for a treatment e↵ect to be observed), and continuation of the
antidepressant type (the final type prescribed at the mental healthcare facility
during consecutive treatment for that patient). E�cacy was measured in terms
of change scores on four mental health recovery themes: psychiatric core com-
plaints, general well-being, social functioning and patient’s experience. These last
four scores were extracted from doctors’ and nurses’ notes with an NLP model,
as described in previous work [Turner et al., 2022]. We explicitly chose not to
use Hamilton scores as outcomes in this study, as those only focus on symptom
reduction and are not systematically registered during routine clinical care in the
Netherlands. Concisely, all available clinical notes during the patients’ antide-
pressant treatment trajectories were screened for sentences concerning moments
of change on one of the four themes, mentioned in a correct context (including, for
example, “Today, the patient’s mood significantly improved” but not “last year,
after their grandmother died, the patient’s mood declined”). The detected words
were then combined with a sentiment score (1 or -1 for each detected word), a
positive score indicating a positive change and vice versa, and a mean score for
the entire treatment trajectory was calculated for each theme.

Medication doses At least 24 di↵erent antidepressants were prescribed at PG
and UMC Utrecht between 2014 and 2020. To ensure faulty entries in the electronic
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patient files were not included in the dataset, prescriptions where less than half
of the minimal therapeutic dose according to the Dutch national standards of
care was prescribed were excluded [Dutch National Healthcare Institute, 2020].
These minimal doses as listed May 2020 are summarized in supplementary table
S5.2. Further, prescriptions exceeding five times the maximal therapeutic dose
were excluded as well, as these can only be faulty entries in the electronic patient
records.

Bayesian network analysis All analyses were performed with R (version 4.0.0)
using the “bnlearn” package [Scutari, 2010], and network visualizations were con-
structed with the “qgraph” package [Epskamp et al., 2012]. A BN is a repre-
sentation of the presence and strength of dependencies between all variables in a
dataset (these could be predictive and/ or causal, see further below). A BN rep-
resents qualitative and quantitative information. It includes the structure of the
dependencies (sometimes also called relations or associations), often depicted in a
schematic figure called a graph, and the corresponding quantitative model built
with these dependencies. For example, in the toy BN depicted in figure 5.1, the
dependencies between the three variables are indicated with arrows in the graph
on the left, and the corresponding model quantification in the form of a conditional
probability table is depicted on the right. Learning a BN from data and/ or ex-
pert knowledge also follows these two stages: first one performs structure learning,
identifying the relevant dependencies and their direction; and secondly parame-
ter learning, estimating the parameters that quantify the dependencies [Briganti
et al., 2022, Scutari, 2010].

Figure 5.1: Toy example of a depiction of the structure of a Bayesian network
with three binary variables and the corresponding predictive model: in this case,
a conditional probability table.

Learning the structure of the BN teaches us which other variables in the dataset
influence the probability that a variable takes on a certain value. Going back to the
toy example, variable B has one incoming arrow, from variable A, indicating that
we can write our prediction of the probability that B will occur in terms of A, “B
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depends on A”. Variable C has two incoming arrows, indicating that “C depends
on both A and B”. Conveniently, this dependency also gives us information in
the other direction [Scutari and Strimmer, 2011]: if we have observed that B has
taken on the value 1, we have a better estimate of which value A has compared to
the scenario where we do not have any information at all, which we will also use
for making predictions in the final part of this paper.

In general, there are two approaches for structure learning: constraint-based
and score-based. Constraint-based learning aims to optimize the learning process
to discover conditional dependencies between variables based on statistical infer-
ence and hypothesis testing. Score-based structure learning is aimed at optimizing
the predictions the model makes for the data (formally: the likelihood of the joint
probability distribution of all variables in the dataset). In this paper, both ap-
proaches were applied (“pcStable” was used as a constraint-based method, and
“tabu” as a score-based method). To reduce the possibility of including spurious
dependencies, model averaging was performed with bootstrap resampling, with 100
iterations. To ensure stability of the found associations, only edges that appeared
in more than 85% of bootstrap samples were included in the averaged network
[Briganti et al., 2022]. To investigate stability of associations across the two men-
tal healthcare facilities, bootstrapped averaged networks were obtained at both
facilities with both methods and compared with respect to found dependencies
between variables.

To quantify the model, the current version of the Bayesian network software
we used only o↵ers the possibility of incorporating discrete variables as predictors
of discrete variables; discrete variables cannot depend on continuous variables,
potentially limiting the structures that can be found. To account for this, all
variables were converted to binary variables. Age and GAF scores were compared
to their respective median value at PG to ensure comparability across locations,
with age being converted to older or younger than 48 (the median age in the
PG data), and GAF being higher or lower than 50. Antidepressant prescriptions
durations were converted to >=5 weeks or < 5 weeks (minimum time for an
expected clinical e↵ect), and mean sentiment scores being positive (>= 0) or
negative (< 0).

Model parameters were fitted for the average model according to their max-
imum likelihood estimators and the resulting conditional probability tables were
recorded. A toy example of such a table is included in figure 5.1. For example,
because B depends on A, it can be observed that the probability of B occurring
increases from 0.4 to 0.7 if we know A has occurred. C depends on both A and
B, and it can also be observed that the model captures an interaction between
A and B: in the absence of B, the e↵ect of A on C disappears. Such model pre-
dictions in the presence or absence of information on specific hypothetical patient
and treatment characteristics were also generated for the final network using the
logic sampling functionality in the bnlearn package and compared to expert (FS)
knowledge.

Ethics statement This study (number 22–705/DB) was assessed and approved
to not fall under the scope of the Medical Research Involving Human Subjects
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Act (WMO) by MREC NedMec: a recognized medical research ethics committee
to which the Antoni van Leeuwenhoek, the Princess Máxima Center for pediatric
oncology and the UMC Utrecht are a�liated. Complying with the guidelines
issued by the MREC NedMec for research not falling under the Medical Research
Involving Human Subjects Act (WMO), informed consent was waived by a quality
o�cer from the research and ethics board of the Brain Center of UMC Utrecht on
behalf of the MREC NedMec. It was deemed a disproportional e↵ort to obtain
informed consent of each individual patient because of the retrospective nature of
the study and number of patients, of which many could not be contacted anymore
because they continued their treatment elsewhere. However, the centers where
this study was carried out uses an opt-out policy for patients who do not want
their data to be used for research. Only data from patients who did not object
to the use of their routinely collected electronic health record data were analyzed.
According to Dutch national guidelines, the board of each university medical center
is responsible for research quality control [Netherlands Federation of University
Medical Centers, 2020]. For this study, the protocol was approved by a quality
o�cer from the research and ethics board of the Brain Center of UMC Utrecht,
appointed by the board of UMC Utrecht. This study conforms to the declaration
of Helsinki for ethical principles involving human participants. To assure patients’
privacy data were de-identified, for which the DEDUCE software was used [Menger
et al., 2018b].

5.3 Results

4808 and 735 trajectories of patients with first-time inpatient antidepressant pre-
scriptions were included in PG and UMCU respectively. In table 5.1 summary
statistics of included trajectories are depicted. At PG, there is generally a long
outpatient follow-up of patients, as the facility o↵ers a wide range of levels of care:
the mean period during which follow-up treatment was given at PG after the start
of a first inpatient antidepressant trajectory was 1175 days (median follow-up du-
ration: 866 days). At UMCU however, care is very specialized and patients are
referred to other care facilities after dismissal: one month after dismissal, for 261
trajectories where patients were released into ambulatory care there still was an
(ambulatory) care path at UMCU. For 174 trajectories, patients were referred to
inpatient care at another facility. This resulted in a mean (inpatient) follow up
duration of only 52 days after the start of antidepressant prescriptions.

Table 5.1: Overview of patient and treatment characteristics of included treatment
trajectories

PG UMCU
(n = 4808) (n = 735)

Variable Mean (sd) or pro-
portion

Mean (sd) or pro-
portion

Follow-up from start pre-
scription (days)

1175 (804) 52.7 (59.8)
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Table 5.1, continued
PG UMCU

Age 48.42 (17.97) 43.861 (17.02)
Sex: female 0.577 0.615
Prescription group MAOI 0.013 0.061
Prescription group other 0.047 0.020
Prescription group SSRI 0.467 0.430
Prescription group nSSRI 0.161 0.200
Prescription group TCA 0.177 0.261
Prescription group TetraCA 0.172 0.060
Benzodiazepine prescription 0.643 0.848
Lithium prescription 0.081 0.165
Antipsychotics prescription 0.423 0.574
Disulfiram prescription 0.015 0.003
DSM: Depression 0.401 0.571
DSM: Personality disorder 0.268 0.242
DSM: Anxiety disorder 0.077 0.125
DSM: Social problems 0.025 0.211
GAF score at start treatment 48.03 (9.463) 33.33 (13.56)
Medication trajectory dura-
tion (days)

162.7 (234.1) 109.4 (236.0)

Continuation of antidepres-
sant

0.663 0.894

Mean change sentiment core
complaints

-0.152 (0.752) -0.206 (0.703)

Mean change sentiment social
functioning

0.321 (0.698) 0.464 (0.696)

Mean change sentiment well-
being

0.293 (0.618) 0.162 (0.696)

Mean change sentiment expe-
rience

-0.094 (0.681) -0.160 (0.590)

Duration and continuation The average prescription duration of the first-
time antidepressant trajectories at PG was 163 days and 109 days at UMCU. At
PG, 33.7% of patients switched to a di↵erent antidepressant type during follow-
up, whereas at UMCU, only 10.6% of patients switched. This could partially be
explained by the shorter follow-up period at UMCU, or the fact that more patients
at UMCU had a history of ine↵ective antidepressant use. Note that the average
prescription duration at UMCU exceeds the mean follow-up time, as many patients
were dismissed with a prescription to continue their antidepressant use as at home
or in another clinic. Outcome measures are summarized in detail for each type of
initially prescribed antidepressant in supplementary table S5.3. At both facilities,
patients were most likely to continue their prescription when they started with
SSRI or TriCA. Patients were most likely to switch when they started with an
“other” type of antidepressant (often bupropion), a MAO inhibitor (UMCU) or a
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tetracyclic antidepressant (PG). Prescription durations were also the shortest for
tetracyclic antidepressants, and relatively long for MAO inhibitors and nSSRIs.

Figure 5.2: Flow diagram of antidepressant type switches for patients who did
not continue their initial prescription for PG (left) and UMCU (right). Note the
existence of flows from an antidepressant type to that same type during follow-up:
these occur when a patient started with a single type of antidepressant and later
switched to a combination of types or switched and thereafter returned to the
original type. Pauses in prescriptions of the same antidepressant type were not
regarded as switches.

In figure 5.2 (constructed using the ggalluvial package [Brunson and Read,
2020]), antidepressant type prescription switches for patients who did not continue
their initial type(s) of antidepressant are depicted. At PG, SSRI is the biggest
group that patients switch to, and at UMCU, patients more often switch to a
tricyclic antidepressant. At UMCU, MAO inhibiters form a significant fraction
of follow-up medication, including patients that tried an nSSRI, SSRI or tricyclic
antidepressant first.

Mental health recovery outcome measures Examples of (translated) found
sentences for each of the analyzed themes, core complaints, social functioning,
well-being and patient’s experience, are “Anxiety complaints less than Tuesday
last week and manageable”, “Patient says they have the feeling they are improv-
ing every day”, “Patient likes working more, because it improves daily structure”
and “Patient experiences more peaceful feelings”. At PG, on average 4.06, 1.65,
4.04 and 5.69 sentences indicating a moment of change with respect to complaints,
social functioning, well-being and experience were detected during antidepressant
prescription periods. At UMCU, 11.2, 4.63, 10.0 and 16.7 sentences were on aver-
age detected for the respective themes. A possible explanation for this di↵erence
could be the nature of the patient reports at both centers: at the UMCU, follow-up
was entirely inpatient, reflected in a higher mean number of days with available
clinical notes (34) and total length of all clinical notes combined (mean 82.691
characters per patient). At PG the follow-up was mostly outpatient, where clini-
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cal notes were on average available on 28 days with a mean total length of 26.674
characters per patient.

Bayesian networks With the constraint-based algorithm, the bootstrapped av-
eraged network contained 24 arcs connecting the variables in the network for the
PG data (figure 5.3). The UMCU bootstrapped averaged network only contained 9
arcs, of which 2 were also present in the PG network. Interestingly, many depen-
dencies were found between the text-mined outcome measures and prescription
duration nodes, indicating that trajectory outcomes are tightly intertwined. In
the PG data, the use of benzodiazepines and antipsychotics during antidepressant
prescriptions were directly linked to these outcomes. Whether a patient switched
antidepressant types was directly dependent on TetraCA prescriptions and a DSM
diagnosis of a (type of) depressive disorder.

Figure 5.3: Bayesian networks found through constraint-based estimation (with
the pcStable algorithm) on the PG data. Outcome variables are highlighted in
grey. Dependencies that were also present in the UMCU network are highlighted
with bold arrows. Abbreviations: Personality; personality disorder; Social fc:
social functioning; Social pr.: social problems according to DSM.

The analysis was repeated with a score-based algorithm (tabu). In the PG
data, 28 dependencies were found in the bootstrapped averaged network (see figure
5.4), of which 19 overlapped with the constraint-based network (irrespective of
the direction of the dependency). In the UMCU data, only 9 dependencies were
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found, of which 5 overlapped with the PG network. The direct dependencies
between benzodiazepines, antipsychotic prescriptions and the outcome measures
remained present. A direct e↵ect of tricyclic antidepressants on the probability of
switching to another type of antidepressant was found in this network, instead of
an indirect e↵ect through the DSM diagnosis of a specific depressive disorder, and
no dependency on the prescription of tetracyclic antidepressants was found.

Figure 5.4: Bayesian networks found score-based estimation (with the tabu algo-
rithm) on the PG data. Outcome variables are highlighted in grey. Dependencies
that were also found for the UMCU data are highlighted in bold. Connections
that were not found with the constraint-based method on the PG data are indi-
cated with dashed lines. Abbreviations: Personality; personality disorder; Social
fc: social functioning; Social pr.: social problems according to DSM.

Found dependencies and comparison to expert opinion Below a few ex-
amples are given of hypothetical patients and quantification of the dependencies
found in the network. These patterns could give some interesting pointers for
future confirmatory research. Note that even though sometimes variables are not
direct neighbors in the network, they can depend on each other indirectly, in the
absence of information on other nodes. For example, if we are unsure whether we
are going to diagnose a patient as having depressive disorder as a main diagnosis,
the patient’s age and DSM classification for social problems can give us extra in-
formation about whether the patient will switch antidepressants according to the
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score-based network. When we decide on the patient’s depression diagnosis, these
paths become “blocked” and these variables do not give us extra information on
a possible future switch anymore [Peters et al., 2017].

Building on this example, we see that the network predicts that for patients
with social problems that are also prescribed antipsychotics, the probability of
choosing the correct antidepressant type (not having the switch) increases with 6%
when they are prescribed a TriCA instead of another antidepressant type. This
could potentially be explained by the fact that the prescription of anti-psychotics
suggests severe, possibly psychotic, depression and TriCAs are more e↵ective in
more severe depression states, possibly due to anticholinergic e↵ects that more
strongly reduce stress or anxiety. For patients without social problems and without
antipsychotics prescriptions, this “profit” after choosing a TriCA is even bigger
and increases to 11%. A possible rationale could be the beneficial e↵ect of TriCAs
being explained by its anticholinergic, sedating properties, which would have a
smaller e↵ect on patients already taking antipsychotics [Schneider et al., 2019].

Focusing on the other outcome measures, we see that these are completely
determined by each other and the decision to prescribe benzodiazepines and an-
tipsychotics. If our hypothetical patient is treated with both benzodiazepines and
antipsychotics, the probability of su�cient prescription duration to experience a
clinical e↵ect would be 76%. The probability of well-being having a positive sen-
timent score in clinical notes would be 52%. However, if our hypothetical patient
is not going to take benzodiazepines and antipsychotics, the probability of con-
tinuing the initial antidepressant prescription beyond 5 weeks drops to 52%, and
the probability of positive well-being scores drops to 46%. There appears to exist
some interaction between benzodiazepine and antipsychotic use that strengthens
or dominates the e↵ect of the antidepressant prescribed which makes switching
less necessary.

The outcome measures prescription duration, core complaints, social function-
ing, well-being and patient experience were tightly connected in the found net-
works. For example, a net positive well-being score improved the probability of
obtaining a positive score on the core complaints domain with 15.2%. Incorpo-
rating the di↵erent domains in the network also allows for possible personalized
recommendations in future decision support tools. For example, in the score-based
network, adding benzodiazepine and antipsychotics to a treatment regimen only
improved the probability of a positive net mean score on the complaints domain
with 1.4%, but the social domain score improved with 6.9%. A patient that is es-
pecially interested in improving social functioning might find information on these
outcome domains presented separately in a decision support tool especially useful,
in contrast to a single pooled outcome measure.

5.4 Discussion

This work in this manuscript concerned using Bayesian network analysis combined
with NLP for pattern discovery in patient characteristics, treatment choices and
outcomes during antidepressant trajectories. Several interesting trends were ob-
served in the routinely collected clinical data studied. In the secondary and tertiary
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care settings studied, antidepressant choices had a higher continuation rate (66%
and 89%) than expected from literature. Bayesian networks based on the data
from PG, the secondary care mental healthcare facility, revealed 28 (predictive)
dependencies between treatment choices, patient characteristics and outcomes. At
UMCU, the tertiary care mental healthcare facility, most of these dependencies
could not be replicated.

We have shown that using NLP to preprocess routinely collected clinical data
can allow pattern discovery through Bayesian network analysis in a relatively big
corpus of patient data. The combination with NLP enables large-scale studies
without burdening clinical sta↵ with extra administrative tasks for research pur-
poses, such as separately registering patient prescriptions and specific treatment
outcome measures. These tools could be combined in future research for investi-
gating similar exploratory research questions. The possibility of using Bayesian
network analysis for confirmatory research is discussed further below.

In patients who switched their antidepressant type during follow-up, switches
were quite evenly distributed over other antidepressant types, although switch-
ing occurred more often after describing tetracyclic antidepressants or “other”
antidepressants (for example buproprion) at PG. Interestingly, these types of an-
tidepressants, frequently prescribed as third-line therapy options, appear slightly
less e↵ective in actual clinical practice. This leads to the hypothesis that specific
subtypes of depression, perhaps not studied in clinical trials, need di↵erent an-
tidepressant working mechanisms. This makes it even more relevant to search for
patterns that can predict the right prescription in an early phase of treatment.
Unfortunately, follow-up at the tertiary care facility UMCU was limited, possibly
explaining the absence of most dependencies found at PG. As the network we are
estimating here appears to be sparse and we do not expect variables in the net-
work to have more than five predictive factors, the 735 patient trajectories used
for learning at the tertiary care facility should have su�ced [Briganti et al., 2022],
thus not explaining the missing dependencies. Another possible explanation could
be the specialized nature of the care given at UMCU, with the di↵erent types of
patients really having another network graph underlying the antidepressant tra-
jectory data, where perhaps di↵erent variables should be included.

Patterns discovered in this study should be purely interpreted in an exploratory
manner, as Bayesian networks require several assumptions to be met to enable
causal interpretations [Briganti et al., 2022]. Two important assumptions are that
there should be no selection bias in the data, and there should be no (hidden)
confounding variables. These are two assumptions that are very di�cult to verify
when working with retrospective data. Exploratory analysis did not show a con-
founding e↵ect of treatment location on model outcomes (data not shown), but to
truly fulfill these assumptions a randomized controlled trial should be performed
where patients are randomly allocated to a (combination of) antidepressant(s).
Such a trial would probably be unattainable in clinical practice because of eth-
ical constraints (assigning a MAO inhibitor with severe potential side e↵ects to
someone with mild symptoms of depression, for example).

Nevertheless, a prospective study design with a more transparent process of
data collection and structured questionnaires could already o↵er a lot of improve-
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ment on data quality. We studied first-time inpatient antidepressant treatment
trajectories, but limited information on the trajectory leading up to this inpatient
treatment period was available in the retrospective data, routinely collected during
inpatient care. It could possibly add a lot of value to incorporate antidepressant
types tried before inpatient treatment into the model. As it is known that individ-
ual psychiatrists make treatment choices for therapy resistant depression based on
personal experience, studies on the interplay between the specific psychiatrist pre-
scribing the antidepressant, treatment choices made and treatment outcomes are
warranted as well [Zimmerman et al., 2004]. Moreover, a prospective study would
enable registering which antidepressants were actually administered, in addition
to knowing which were prescribed, and a comparison with standard measuring
instruments of depressive disorder to formalize findings.

Such a prospective study could also enable the opportunity to include more de-
tailed information on di↵erent symptoms patients are experiencing, and possible
side e↵ects of antidepressants. Since side e↵ects are an important cause of dis-
continuation of antidepressants, the incorporation of di↵erent types of side e↵ects
could be of great value in the decision making about the type of antidepressant
and medication adherence. Cipriani et al. (2018) found significant di↵erences
between types of antidepressants and continuation rates and also highlighted the
importance of strategies to distinguish di↵erences in response to antidepressants
on an individual level [Cipriani et al., 2018]. The NLP model used in this study
was specifically developed to model broadly defined treatments for diverse groups
of patients.

In the further retrospective studies or in the absence of the possibility to collect
more detailed information on symptoms or side e↵ects, more specific NLP models
such as MedCAT could be used to extract this type of data from routinely collected
clinical notes [Kraljevic et al., 2021]. A recent pilot study on using MedCAT for
extracting information on cognitive side e↵ect during depression treatment with
electroconvulsion therapy showed promising results [Schepper et al., 2022]. These
approaches with reuse of clinical data could be of great value for personalized
medicine because it will enable learning for a wider spectrum of patient types.
For personalized modelling this is needed because the current strict selection cri-
teria for patients to be included in clinical trials limits the extrapolation of study
outcomes to individuals in daily practice [Bayes and Parker, 2019].

In the future, networks like the one described in this study could be trans-
lated to decision support tools in clinical practice. Individual patients could for
example choose the outcomes they are most interested in, and the characteristics
that influence the predicted outcomes for individual patients the most could be
highlighted [Sevilla, 2021]. A systematic review of Samalin (2018) showed positive
e↵ects of shared decision making interventions on medication adherence and de-
pression outcome. A personalized tool to facilitate this process would be of great
value [Samalin et al., 2018]. Essential for such a decision support tool is the in-
corporation of prospectively collected data, and the incorporation of uncertainty
estimates. Recent advances in the field of statistics have revealed new possibilities
to give these kind of estimates, for example confidence sequences for discrete (con-
ditional) independence relations that are robust under sequential testing [Turner
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and Grünwald, 2023]. Incorporating these into a Bayesian-network based clini-
cal decision tool that is prospectively updated would enable o↵ering patients and
clinicians robust and up-to-date estimates.
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Abstract

We developed and tested a Bayesian network(BN) model to predict ECT remission
for depression, with non-response as a secondary outcome.

We performed a systematic literature search on clinically available predictors.
We combined these predictors with variables from a dataset of clinical ECT trajec-
tories (performed in the University Medical Center Utrecht) to create priors and
train the BN. Temporal validation was performed in an independent sample.

The systematic literature search yielded three meta-analyses, which provided
prior knowledge on outcome predictors. The clinical dataset consisted of 248 treat-
ment trajectories in the training set and 49 trajectories in the test set at the same
medical center. The AUC for the primary outcome remission was 0.783(95%CI
0.647-0.921), accuracy 0.78, sensitivity 0.67, specificity 0.81, after temporal valida-
tion in the independent sample. Prior literature information marginally increased
AUC and reduced CI width.

A BN model comprised of prior knowledge and clinical data can predict re-
mission of depression after ECT with reasonable performance. This approach can
be used to make outcome predictions in psychiatry, and o↵ers a methodological
framework to weigh additional information, such as patient characteristics, symp-
toms and biomarkers. In time, it may be used to improve shared decision-making
in clinical practice.
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6.1 Introduction

Depression is a leading cause of disability according to the World Health Organi-
zation, a↵ecting one in six people during their lifetime [Kessler et al., 2005, World
Health Organization, 2022]. Electroconvulsive therapy (ECT) is the most e↵ec-
tive available treatment for severe depression [Lisanby, 2007]. In practice, ECT
is usually reserved for patients who show insu�cient response to antidepressant
medications and psychotherapy, in part because of stigma and anticipated cogni-
tive side e↵ects [Leiknes et al., 2012]. Although highly e↵ective on a group level,
a substantial number of patients show no or insu�cient response to ECT. There
are several factors associated with response to ECT, including age and presence
of psychotic symptoms [Van Diermen et al., 2018]. However, in current psychi-
atric practice, neither systematic assessment of these independent predictors, nor
assessment of cumulative predictive value of multiple predictors are routinely used
in the decision to initiate ECT for individual patients. As a result, treatment
outcome on the individual level remains largely unpredictable.

Clinical decision support systems (CDSSs) are computerized tools which pro-
vide clinicians individualized information based on various sources of information,
for instance demographic characteristics and information from electronic health
records (EHRs). CDSSs make use of prediction models or algorithms for system-
atic assessment of information. CDSSs are used in several clinical specialties, such
as in cardiovascular medicine [ESC Cardiovasc Risk Collaboration et al., 2021,
Hageman et al., 2022]. In psychiatry, the availability of CDSSs is modest at best,
as was illustrated by Koposov and colleagues [Koposov et al., 2017]. Bright and
colleagues give an overview of clinically implemented CDSSs across all medical
specialties in a systematic review and meta-analysis of randomized controlled tri-
als. They found that clinicians more likely to appoint the appropriate treatment
when informed by CDSSs compared to clinicians who did not use these systems,
based on 46 studies across diverse venues and systems (OR 1.57, 95%CI 1.35 –
1.82) [Bright et al., 2012]. A recent Cochrane review by Stacey and colleagues,
which assessed the e↵ect of decision aids, reported that patients who used CDSSs
were better informed on treatment options, felt more knowledgeable, and were
likely to have more accurate risk perceptions [Stacey et al., 2017]. A CDSS which
can predict the e↵ect of ECT for individual patients could be useful to inform
patients and facilitate shared decision making before treatment is initiated. In
order to realize this, a prediction model for ECT outcome is required.

In this study, we developed a personalized e↵ect prediction model for the
prediction of remission after ECT, and, secondary, ECT non-response, using a
Bayesian network (BN) model. BNs are a combination of intuitive graphical
representations of causal or predictive dependencies between variables, and the
corresponding underlying quantitative model (for an insightful tutorial aimed at
psychopathology researchers see Briganti et al. [2022]). The presence and under-
lying quantitative model of these dependencies can be derived from data, can be
obtained from expert opinion, or both [Arora et al., 2019]. The aim was to pre-
dict e↵ect of an ECT trajectory using data which was clinically available before
ECT was initiated. We used a systematic review to identify predictors of ECT
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outcome to inform a BN with prior knowledge from literature. Subsequently, we
used expert knowledge to further design the BN, and tested its performance in
clinical data. Finally, we validated the performance of this prediction model in a
validation dataset.

6.2 Methods

We used a stepwise approach to create the BN model for ECT outcome predic-
tion: 1) acquiring prior knowledge by performing a literature search for clinically
obtainable predictors; 2) Creation and training of a BN using prior knowledge
from literature and a clinical dataset; and 3) validation of the trained model in a
validation cohort.

6.2.1 Acquiring prior knowledge

Systematic review To acquire high quality prior knowledge from literature, we
performed a systematic review on predictors of ECT outcome, in which we only
searched for high quality meta-analyses. We performed a literature search in the
online libraries MEDLINE and EMBASE according to the PRISMA guidelines
for systematic reviews [Page et al., 2021]. The protocol of this review was not
registered in advance and is not available for review as such. The question this
systematic review addressed was formulated as: “for adult patients undergoing
ECT, what are clinical predictors for outcome (response or remission) of ECT”.
Search terms used were: (ect OR electroconv*) AND predict* AND (remission OR
respons* OR outcome*); all published articles available before 16-11-2022 were re-
viewed. Articles were excluded in screening of title and abstract if they were:
non-human, non-English language, when treatment was not ECT and if study de-
sign was not a meta-analysis. Systematic reviews without meta-analysis were ex-
cluded. When the full-text studies were not available, the authors were contacted.
Eligibility criteria for inclusion were studies on predictors of ECT outcomes of
which data were readily available at baseline in most patients. These were defined
as demographic predictors, clinical assessment predictors, comorbidity predictors,
pharmacological or technical ECT aspects predictors. The definition did not in-
clude MRI findings predictors, because MRI scans are not performed as standard
practice at the start of ECT.

The screening and quality assessment of articles were performed by two in-
dependent reviewers (YD and AM), without automation tools. Discrepancies in
results were resolved by consensus, or by a third reviewer in case of disagreement
(ED). We performed a ROBIS quality assessment to assess the risk of bias in the
identified meta-analyses [Whiting et al., 2016]. Only studies with an overall low
risk of bias were included in model development.

Data were collected from each individual predictor for both remission and re-
sponse. Standardized mean di↵erences with 95% confidence intervals (95%CI) were
collected for continuous predictors, odds ratios (ORs) with 95%CI were collected
for dichotomous predictors. Outcome was defined as “remission” or “response”,
without further specification, in order to include all relevant studies. When two or
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more meta-analyses provided data for a single predictor and outcome, the authors
would, after consensus, only extract data from the most relevant meta-analysis
available, based on date of publication and quality assessment. Results of the
data extraction were used as priors for the BN model.

6.2.2 Bayesian network model development

Study population For the BN model, we used individual patient data from
patients who were treated with ECT in the University Medical Center Utrecht
(UMCU) in the Netherlands between 1 January 2008 and 27 September 2019. We
included all patients receiving ECT for a depressive episode, including patients
with bipolar and schizoa↵ective disorders, who had a discharge letter with conclu-
sion of ECT trajectory available When patients had multiple ECT trajectories, a
subsequent trajectory was only included after a time interval of at least 90 days. As
many clinical patient characteristics structurally collected in routine clinical care
were acquired retrospectively and were used as predictors of outcome. These were
age, sex, somatic comorbidity, age of onset of symptoms, duration of depressive
episode, ECT naivety, co-morbid personality disorder, severity of depression, psy-
chotic features, catatonic features, and diagnostic context of ECT indication (e.g.
depressive disorder, bipolar disorder, or schizoa↵ective disorder). Clinical patient
characteristics were extracted from Electronic Health Records (EHRs). Patient
data were anonymized using DEDUCE and therefore the institutional medical
ethics review board waived informed consent [Menger et al., 2018b]. Validation
of the model was performed in a cohort which consisted of patients who received
ECT in the UMCU between 17 July 2018 and 22 October 2021.

Outcomes The primary outcome was remission after ECT. Remission outcome
was assessed by deriving the conclusion from the psychiatrist’s discharge letter ,
stating “remission”, indicating an absence of depressive symptoms. This dichoto-
mous outcome has been used in meta-analytic research and has clinical useful-
ness, because it is informative and understandable for both clinicians and patients
[Pagnin et al., 2004]. Non-response was assessed as secondary outcome, and was
defined as absence of any amelioration of symptoms of depression. This was also
assessed by deriving the conclusion from the discharge letter.

Statistical analysis To explore the data used for training the model, group
means or proportions for the predictor variables were compared between remis-
sion and non-remission using the appropriate hypothesis tests, where we used
Bonferroni correction to correct for multiple testing. In case of missing data we
used multiple imputation, using IterativeImputer (Python) for the training set and
MICE for the validation set (R). To gain insight into the associations and/or causal
relations between predictors on multiple levels, a BN was fitted on the UMCU data
with the “bnlearn” package in R [Scutari, 2010]. Prior to learning the structure
of the network, black- and whitelists were created based on the data derived from
the meta-analyses combined with expert knowledge from authors YD, MS and ED.
Associations on these lists were either by default included (for the whitelist)) in, or
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excluded (for the blacklist) from the network. Adding this sort of prior knowledge
can vastly improve the stability of overparameterized networks [Briganti et al.,
2022]. On the blacklist, response or remission was excluded as a predictor of other
variables in the network, and age and gender were excluded as being dependent
on other variables in the network. Somatic comorbidity and cognitive disorder
were also excluded as possible direct predictors of non-response or remission. On
the whitelist, all predictors except catatonic symptoms, forced care and first ECT
trajectory were included as direct predictors of response or remission. Personality
disorder was included as a direct predictor of somatic comorbidity, age of onset,
relapse, episode duration and psychotic and catatonic symptoms. The structure
of the BN was determined through applying the score-based (i.e., aimed at opti-
mizing the predictive performance of the network) “Hill-Climbing” algorithm on
the data 100 times through bootstrapping: to improve stability, only dependencies
occurring in at least 85% of the bootstrapped networks were included in the final
structure [Briganti et al., 2022].

Based on the dependencies found in the BN a hierarchical Bayesian logistical
regression model was fitted specifically for predicting response to ECT with the
“arm” package in R, as the bnlearn package did not o↵er fitting such models
with prior information. As predictors, all variables found to be associated with
response to ECT from the meta-analyses and all variables included as predictors of
the outcome variable in the BN were included. Priors on coe�cients were chosen to
be normal, with mean and standard deviation either estimated through the meta-
analysis, or set to 0 and 1 in the absence of prior information; all prior settings
can be found in table 6.2.

To generate insights into model performance, 5-fold cross-validation was per-
formed and mean accuracy, ROC-AUC (receiver operator characteristics area un-
der the curve) and corresponding 95% confidence intervals were calculated. ROC-
AUC can be interpreted as the ability of the predictor to distinguish between true
positive and negative cases (or probability that it will do so correctly). The model
was subsequently validated in the independent dataset, where ROC-AUC curves,
sensitivity, specificity and calibration curves were calculated to assess the external
validity of the model. The model creation and validation were in accordance with
the TRIPOD statement [Collins et al., 2015].

6.3 Results

6.3.1 Acquiring prior knowledge

Systematic review We found a total of 1638 articles after removing duplicates.
Of these, 1614 were excluded after screening of title and abstract. A total of 24 ar-
ticles were sought for retrieval, of which six were eventually not available. Full text
screening for eligibility was performed in 18 articles, of which five were included
[Van Diermen et al., 2018, Oxlad and Baldwin, 1996, Haq et al., 2015, Havaki-
Kontaxaki et al., 2006, Kho et al., 2003]. One additional article was found while
screening manually for relevant references in the included articles [Heijnen et al.,
2010]. Flowchart and quality assessment summary are reported in the supplemen-
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tary material. We included three meta-analyses with an overall low risk of bias
[Van Diermen et al., 2018, Haq et al., 2015, Heijnen et al., 2010]. All meta-analyses
showed overlap of included studies. For the predictors psychotic symptoms, age,
melancholic symptoms and depression severity, two studies reported data on re-
sponse outcome [Van Diermen et al., 2018, Haq et al., 2015]. For these predictors,
we only extracted data from the meta-analysis of Van Diermen and colleagues,
because this meta-analysis was more recent and was assessed as having an overall
lower risk of bias in the ROBIS quality assessment [Van Diermen et al., 2018].
For the predictor medication failure, data for remission outcome from Heijnen
and others and data for response outcome was extracted from the meta-analysis
from Haq and others [Heijnen et al., 2010, Haq et al., 2015]. Extracted data of
predictors of ECT outcomes were reported in supplementary material.

6.3.2 Bayesian network model development

Training and validation datasets We included a total of 248 treatment tra-
jectories of patients receiving ECT at the UMCU between 2009 and 2019 in the
training dataset, of which 90 (36%) were classified as remission and 63 (25%) as
non-response. The validation set consisted of 49 independent treatment trajecto-
ries, of which 12 (24%) were classified as remission and 6 (12%) as non-response.
Summary statistics (mean values or proportions for patients with and without
remission) of both datasets can be found in table 6.1. In the training data, nine
treatment trajectories had an unknown episode duration. In the independent val-
idation cohort, 28 cases had missing data, for the relapse, episode duration, cata-
tonic symptoms and age of onset predictors. All missing variables were imputed.
Age was the only predictor with statistically significant di↵erences after Bonfer-
roni correction between non-responders and patients with response/remission, with
higher age being associated with higher remission rate, in both the training set
and in the test set (p = 0.0005 and p = 0.0016 respectively).
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A total of five patients with were included in both the training set and the
validation set, because they had multiple ECT trajectories. For completeness,
we also ran the analyses without these trajectories in the validation set (n=44)
(summary table is available in supplementary data).

Bayesian network model and hierarchical model for predicting remission
The Bayesian network found with the Hill-Climbing algorithms revealed no new
direct dependencies between predictor variables and outcome variable remission
that were not already present on the whitelist provided by the experts and meta-
analysis (supplementary figure 1.)

The model containing solely priors from literature had an AUC of 0.63 (95%
CI 0.56 – 0.70) and an accuracy of 0.63 for predicting remission of UMCU pa-
tients in the training set. After updating the model coe�cients using the data
of UMCU patients, the AUC was 0.629 (values 0.505 – 0.763 observed in 5-fold
cross-validation) and the classification accuracy estimated through 5-fold cross-
validation was 0.637. The trained hierarchical Bayesian logistic regression model
and an overview of priors can be found in table 6.2. For completeness, a model con-
taining only patient derived data with no prior information, showed a mean AUC
of 0.59 (values 0.53 – 0.82 observed in 5-fold cross-validation) and a mean accuracy
for remission of 0.66 (values 0.60 – 0.81 observed in 5-fold cross-validation).

Table 6.2: The final logistic regression model for predicting remission, and the
priors used for fitting the model. NA indicates “not available”: prior estimates
of mean and sd were available for four out of 18 predictors. 13 predictors were
selected to be included in the final model through the Bayesian network analysis.

Predictor Mean es-
timate

Sd esti-
mate

Coe�cient Coe�cient
SE

Medication failure -0,65393 0,143841 -0,55991 0,13831

Severe depressive

Episode -0,097 0,05 -0,08764 0,049603

Age 0,258 0,063 0,052953 0,013273

Psychotic symptoms 0,383901 0,116449 0,388671 0,109663

Personality disorder NA NA -0,50342 0,34052

Bipolar disorder NA NA -0,46309 0,657538

Relapse NA NA -0,37544 0,41086

ECT trajectory number NA NA -0,2943 0,270555

Major depressive disorder NA NA -0,18883 0,618723

Schizoa↵ective disorder NA NA -0,10911 0,700235

Age of onset NA NA -0,02874 0,013801

Episode duration NA NA -0,01756 0,007355

Female NA NA 0,489148 0,295852

First ECT NA NA NA NA

Catatonic symptoms NA NA NA NA

Forced care NA NA NA NA

Somatic comorbidity NA NA NA NA
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Table 6.2, continued
Predictor Mean es-

timate
Sd esti-
mate

Coe�cient Coe�cient
SE

Cognitive impairment NA NA NA NA

Validation of the updated model on the 49 patients in the validation set re-
sulted in an AUC of 0.783 (95%CI 0.647-0.921), with an accuracy of 0.78, with
for predicting remission. Remission occurred in 12 patients: there were 30 true
negatives (61.2% of the validation set), 8 true positives (16.3% of the validation
set), 4 false negatives (8.2% of the validation set) and 7 false positives (14.3%
of the validation set). The corresponding sensitivity of the model assessed on the
validation set was 0.67 and the specificity 0.81. A model without prior information
resulted in an AUC of 0.773 (95%CI 0.623-0.922) and an accuracy of 0.75. For
completeness, validation of the model excluding five patients who also had a ECT
trajectory in the training set resulted in an AUC of 0.686 (95%CI 0.513-0.859).
Summary data are reported in the supplementary material.

An overview of data of misclassified cases of remission is given below in Table
6.3. False negative cases (patients predicted as not achieving remission after ECT
while in reality they did), were generally younger, without psychotic symptoms.
False positive cases were generally older, with psychotic symptoms, and did not
have personality disorders, which were strong predictors in the final model for re-
mission (see Table 6.2). These false positives could possibly explain the decreasing
trend in the calibration plot in the bins with the highest predicted probabilities
of remission, where the model overestimates the success probabilities (see Figure
6.1).

Table 6.3: Group means (for continuous data) or proportions with the correspond-
ing property (for dichotomous data) for misclassified cases in the validation set,
split based on false negative or false positive misclassification.

False negative False positive

(n = 4) (n = 7)

Relapse 1 1

Episode duration 24 10

Age 53.3 76.7

First ECT 0.667 0.714

Psychotic symptoms 0 0.571

Catatonic features 0 0.143

Severe depressive episode 0.500 0.143

Forced care 0 0.286

ECT trajectory number 1.00 1.14

Somatic comorbidity 0.500 0.429

Female 0.500 1.0

Age of onset 33.7 65.6

Medication failure 0 0

Personality disorder 0.750 0.143
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Table 6.3, continued
False negative False positive

Bipolar disorder 0.25 0.00

Cognitive impairment 0 0.143

Major depressive disorder 0.750 1.00

Schizoa↵ective disorder 0 0

Figure 6.1: Calibration plots of the model for prediction remission (left) and non-
response (right) on the validation set. Patients in the validation set were divided
into 5 or 4 equal bins, depending on the probability of remission or non-response
as predicted by the model. For those bins, the observed probability of remission
or non-response and corresponding upper- and lower confidence bounds were esti-
mated based on the patient data, resulting in the figures depicted above.

Bayesian network model and hierarchical model for predicting sec-
ondary outcome non-response In the training set, 63 (25%) of trajectories
was classified as non-response, in the . The AUC for the model for predicting the
secondary outcome, ECT non-response, was 0.644 (values 0.603-0.675 observed
in 5-fold cross-validation), with a classification accuracy estimated through 5-fold
cross-validation of 0.746. In the validation set, non-response occurred in 6 out of
49 patients. Validation of the updated model resulted in an AUC of 0.624 (95%CI
0.377-0.871) for predicting (non-)response, with an accuracy of 0.78, a sensitivity of
0.33 and a specificity of 0.84. The trained hierarchical Bayesian logistic regression
model and an overview of priors for non-response can be found in supplementary
files.
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6.4 Discussion

In this study, we created and temporally validated BN model to predict outcome
after ECT for depression, using prior knowledge from literature combined with
single center clinical patient data. We found a mean AUC of 0.629 (values 0.505
– 0.763 observed in 5-fold cross-validation) for the training set and an AUC for
the validation set of 0.783 (95%CI 0.647-0.921) for predicting remission to ECT.
These findings suggest that probability of remission of a depressive episode using
ECT can be reasonably well estimated with readily available clinical predictors
for individual patients. For non-response, we found a mean AUC of 0.644 and an
AUC for the validation set of 0.624 (95%CI 0.377-0.871).

High-quality meta-analyses are considered as the highest level of evidence in
evidence-based medicine. However, one of the downsides of meta-analyses is that
the aggregated data have no direct clinical value to individual patients [Berlin
and Golub, 2014]. In this study we used the knowledge from the best meta-
analyses available in a BN model to create a clinical decision support system which
calculates personalized outcome predictions for ECT. Although these methods
have been studied before, this study is, to our knowledge, the first to investigate
the outcome of ECT using a BN. Previous studies of BNs in psychiatry focused on
dementia and cognitive impairment [Jin et al., 2016, Gross et al., 2018, Moreira
and Namen, 2018]. BNs are mostly used in the fields of cardiology and oncology,
but have not yet been adopted as a standard technique in medical decision making.
One explanation is that previous publications on BNs mostly emphasized technical
aspects instead of clinical usefulness [McLachlan et al., 2020, Kyrimi et al., 2021].
We found that the addition of prior information to our model increased the AUC
for remission marginally and marginally reduced CI width, from an AUC of 0.773
(95%CI 0.623 – 0.922) in the no priors model, to an AUC of 0.783 (95%CI 0.647
– 0.921) in the final model. Based on these findings, including prior information
hypothetically decreases the sampling variability in a model, by increasing the
number of samples of which data is derived. An additional value of priors is that
they can be used as an extra validation of findings in a study cohort. If significant
discrepancies are observed, further investigation on bias is warranted.

Our findings showed that the presence of psychotic symptoms was a strong
predictor for remission, as well as the absence of a personality disorder and the
absence of medication failure. These findings were expected because previous
studies which identified these variables were used as prior knowledge in our study
[Van Diermen et al., 2018, Heijnen et al., 2010]. Several studies found reduced
e↵ectiveness of ECT in patients with personality disorders [Yip et al., 2021, Prudic
et al., 2004]. Interestingly, higher age was no statistically significant predictor for
remission in our study, which is contrary to previous research [Van Diermen et al.,
2018]. In our analysis of misclassification, younger patients did not have psychotic
symptoms, and many elderly patients did. However, our findings were based on
a single sample, and selection bias may have had an e↵ect here. The secondary
outcome of non-response did not yield significant results.

In the misclassification analyses and calibration plots for both remission and
non-response, we found a decreasing trend in the plots in the higher predicted prob-
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abilities, resulting in an overestimation of success observed probabilities (figure 1).
Specificity was relatively high, but several cases were falsely positive, resulting in
low sensitivity. We infer that the dataset may be confounded. However, because
of the small sample size of the validation cohort, we cannot assess to what extent.
Exploratory analyses of potential confounders, preferably in a larger validation
cohort, may yield additional clinical predictors. Next to clinical and demograph-
ical parameters, several previous studies reported on biomarkers as predictors of
ECT outcome, including MRI, EEG and genetic findings [Luykx et al., 2022, Levy
et al., 2019, Simon et al., 2021]. Hypothetically, the accuracy of our model could
be increased by including these predictors. However, the problem with these data
is that these are not routinely obtained in clinical practice, and therefore often
unavailable for the treatment decision about ECT. Therefore, although we were
unable to include biomarkers in the model due to unavailability in our data, the
clinical model presented here may be easier to implement in clinical practice than
a model based on biomarker data.

A hypothetical “real-life” CDSS for ECT outcome prediction would be avail-
able for all patients who were eligible for ECT, including patients who were treated
previously. Therefore, such a model would include patient data of all previously
performed ECT trajectories. As an illustration, we performed the additional anal-
ysis of remission for the validation set with the exclusion of 5 patient trajectories
of patients who already were included in the training set with a previous ECT
trajectory. This resulted in an AUC of 0.686 (95%CI 0.513-0.859) without these
trajectories, compared to 0.783 (95%CI 0.647-0.921). The increase in AUC may be
attributable to the fact that ECT treatment was repeated in these specific patients
(resulting in a new validation set trajectory) because they responded successfully
to ECT before (in the training set). Prospective replication of these findings is
necessary to investigate the e↵ect of selection bias in these findings.

Although outcome prediction of ECT may benefit shared decision-making,
prospective studies are necessary before this model can be implemented as CDSS
in standard practice. For example, the subjective experience and needs of indi-
vidual patients are essential for treatment decisions but were not included here.
Moreover, in our sample, the decision to initiate ECT was already made. This
resulted in a selected population of patients who were willing to undergo ECT. To
assess clinical usefulness, it is necessary to also analyze the patients who decide not
to start ECT, and why this decision is made. Misclassification bias may arise after
implementation if treatment decisions are made di↵erently because they are in-
formed by a CDSS, and this adaptive change in decision making is not accounted
for. One solution for this potential bias is a stepped-wedge cluster randomized
controlled trial, in which the CDSS intervention (and its impact on outcomes)
is gradually introduced and evaluated at sites [Hemming et al., 2018]. Another
factor is the unknown generalizability of findings from our single center study at a
university hospital to other treatment settings. We speculate that this could have
resulted in an increased severity of depression in our sample, and maybe in other
unknown selection biases. An (inter)national, multicenter trial could increase gen-
eralizability of our current findings.

Our model did not include adverse e↵ects of ECT. This was due to the fact
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that adverse e↵ects were not recorded systematically, which may have led to a re-
porting bias. Adverse e↵ects of ECT consist of amnesia, headache and nausea and
occur in most patients during treatment [Andrade et al., 2016]. Adverse events
may be mild, but can also be a reason to halt ECT prematurely, for example in the
case of severe amnesia or delirium. Halting treatment may consequently influence
the outcome. We hypothesize that there may also be dependencies between these
predictors, and that these could be incorporated to the BN model. Additionally,
the inclusion of data generated during each session of ECT, such as seizure du-
ration could be used to predict outcomes more accurately during the treatment.
However, this would require a model with repeated measurements, with updated
probabilities after each session. This approach could guide psychiatrists and pa-
tients in their decision to continue, stop or alter frequency of ECT. We aim to
expand our model to include these factors and to further test for generalizability
in future work.

We used a systematic review of meta-analyses for the collection of prior knowl-
edge. A downside of this method is missing data of recent studies which are not
yet included in a meta-analysis. Another problem is that a single study is included
in more than one meta-analysis, and that meta-analyses on the same subject re-
ported di↵erent outcomes. We considered risk of bias smallest if we analyzed the
searches of multiple research groups and selected the one meta-analysis with the
highest quality, with the potential risk of sacrificing some recency of data. We
used clinical discharge letters with the final outcome of ECT to define the out-
comes remission and response. Quantitative assessment of depression, for instance
using the Hamilton Rating Scale for depression (HRSD) or Montgomery–Asberg
Depression Rating Scale (MADRS), is often used in clinical trials [Van Diermen
et al., 2018, Hamilton, 1967, Montgomery and Åsberg, 1979]. Outcomes remission
and (partial) response are defined using a reduction of the score by a certain per-
centage, or below an arbitrary threshold. The potential upside of this approach is
that, in theory, treatment can be evaluated objectively. However, there is an on-
going debate about the use of the reliability and validity of depression instruments
[Fried et al., 2022]. One of the hypothetical downsides of depression instruments
is that the score is comprised of several symptom clusters. An equal reduction in
scores of two patients after ECT may not resemble the same e↵ect. Additionally,
in clinical practice, standardized application of quantitative assessments requires
additional time and training of sta↵. Therefore, we chose to use the most clinically
relevant outcome assessment, the conclusion of the discharge letter. This outcome
included both clinician assessment and subjective patient experience. In 23 cases,
we had missing data on clinical variables. We used multiple imputation to make
optimal use of data. Although multiple imputation is superior to complete case
analysis regarding potential bias, it may influence model performance [Steyerberg,
2009].

Conclusion In this study, we found that a BN model comprised of prior knowl-
edge and clinical data can predict remission of depression after ECT with rea-
sonable performance. This approach can be used to make outcome predictions in
psychiatry, and o↵ers a methodological framework to weigh additional informa-
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tion, such as patient characteristics, symptoms and biomarkers. In time, it may
be used improve shared decision-making in clinical practice.
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Safe Sequential Testing and E↵ect
Estimation in Stratified Count Data

Rosanne J. Turner1,2, Peter D. Grünwald1,3

1: CWI, Machine Learning group, Netherlands
2: University Medical Center Utrecht, Brain Center, Netherlands
3: Leiden University, Department of Mathematics, Netherlands

Abstract

Sequential decision making significantly speeds up research and is more cost-
e↵ective compared to fixed-n methods. We present a method for sequential deci-
sion making for stratified count data that retains Type-I error guarantee or false
discovery rate under optional stopping, using e-variables. We invert the method
to construct stratified anytime-valid confidence sequences, where cross-talk be-
tween subpopulations in the data can be allowed during data collection to im-
prove power. Finally, we combine information collected in separate subpopulations
through pseudo-Bayesian averaging and switching to create e↵ective estimates for
the minimal, mean and maximal treatment e↵ects in the subpopulations.
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7.1 Introduction

Fixed-n hypothesis tests and confidence intervals limit research opportunities and
quick decision making, as they rely on static research designs where data are only
evaluated at one time point. We aim to develop hypothesis tests for conditional in-
dependence and anytime-valid confidence sequences for stratified treatment e↵ects
in subpopulations that retain a guarantee on the probability of falsely rejecting
the null hypothesis and coverage of the true e↵ect under continuous monitoring
of data. To this end we use e-values, tools for constructing tests that keep the
type-I error rate (or false positive rate) controlled under sequential testing with
optional stopping. Over the last four years, e-values have become the standard
tools (essentially, the appropriate alternative for p-values) for dealing with such
settings. Below we summarize the essentials; for much more background on the
budding field of e-processes (also known as ‘testing by betting’ and ‘safe testing’)
see the recent overview [Ramdas et al., 2022] and specifically for details on e-values
refer to Grünwald et al. [2022a], Vovk and Wang [2021]. In this paper, we develop
e-processes for stratified 2 ⇥ 2 tables, enabling, in Section 7.2, anytime-valid (i.e.
valid under optional stopping) conditional independence (CI) tests for Bernoulli
streams for two groups a and b (e.g. a is control, b is treatment), where the test
is conditional on a third variable, the stratum. Based on these CI tests, we then,
in Section 7.3, develop anytime-valid confidence sequences (henceforth just called
‘confidence sequences’) for a notion of e↵ect size representing divergence from CI.
The importance of our tests is ubiquitous in e.g. medical statistics — we can
think of the CI test in Section 7.2 as an an anytime-valid sequential version of
the Cochran-Mantel-Haenzel test, a work-horse in the field of epidemiology. Our
e-processes are generalizations of those designed for 2⇥ 2 tables (same setting as
ours, but with just a single stratum) by Turner et al. [2021], Turner and Grünwald
[2023]. To achieve the generalization, we employ tools from the theoretical ma-
chine learning literature, most notably the literature on prediction with expert ad-
vice [Cesa-Bianchi and Lugosi, 2006], which extends Bayesian learning techniques
with ideas such as ‘sleeping’, ‘switching’ and the like. Moreover, inspired by these
ideas, we develop the novel notion of cross-talk between strata, which allows us to
make confidence intervals narrower if outcomes in various strata are interrelated,
while nevertheless remaining valid even if they are not. While for many statistical
models, anytime-valid tests need more data to reach a desired conclusion than
fixed n methods and anytime-valid confidence intervals are somewhat wider than
standard ones [Ramdas et al., 2022, Grünwald et al., 2022a], we find in this paper
that we can partially counteract this di↵erence by employing the cross-talk strat-
egy (which is not available for fixed-n methods), as is illustrated by comparing
our confidence sequences to fixed-n confidence intervals for Mantel-Haenszel risk
di↵erences in Section 7.3.

E-Processes Consider a random process Y1, Y2, . . . and let H0, the null hypoth-
esis, be a set of distributions for this process. An e-variable for
Yj , Yj+1, . . . , Ym conditional on Y

(j�1) = (Y1, . . . , Yj�1) for testing H0 is any non-
negative random variable S that can be written as function of Y (m) = (Y1, . . . , Ym)
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such that
8P 2 H0 : EP [S | S

(j�1)]  1; (7.1)

for j = 1 we set EP [S | S
(0)] := EP [S] and call S an unconditional e-variable; an

e-value is the value an e-variable takes on a realized sample. It is easily shown
that for any sequence S1, S2, . . . where Sj is an e-variable for Y(j) conditional on

Y
(j�1), the product E

(m) :=
Qm

j=1 Sj is an unconditional e-variable for Y
(m).

E
(1)

, E
(2)

, . . . is called a test martingale or e-process (see Ramdas et al. [2022] on
how e-processes strictly generalize test martingales). Via Ville’s inequality, it is
shown that e-processes have the remarkable property that, for any 0 < ↵ < 1, the
probability that there exists an m such that E

(m)
� 1/↵ is bounded by ↵. As a

consequence, if we look at the data at some time m and reject if E(m)
� 1/↵, the

probability under the null of falsely rejecting the null is at most ↵ no matter how
we chose m; it may be determined by external circumstances (do we have money
to experiment further?) or by aggressive stopping rules such as ‘keep sampling
until you can reject the null’, or even by peeking into the future. Tests with this
property are called safe under optional stopping and Ramdas et al. [2020] show
that, in essence, all reasonable such tests should be based on e-processes. Just like
p-values can be converted into confidence intervals, e-process can be converted
into anytime-valid confidence tests, also known as confidence sequences — we will
explore these in Section 7.3.

Setting We consider the stratified contingency table setting/model. Under the
global null hypothesis (we consider more complicated nulls later), outcomes Y 2

{0, 1} are independent of groups X 2 {a, b} (e.g. representing interventions)
given their stratum k 2 [K] := {1, ...,K}. We formalize this by measuring time
in terms of blocks: we assume that at each time j = 1, 2, . . ., we are given a
stratum indicator kj 2 [K] and we observe a block of n = na + nb outcomes,
with na outcomes in group a and nb in group b, all in the same stratum kj .
We write Y

(m) = (Y1, . . . , Ym) with Yj the data vector corresponding to the j-
th block arriving. Hence Yj = (Yj,a,1, . . . , Yj,a,na , Yj,b,1, . . . , Yj,b,nb) is a vector in
{0, 1}n denoting n = na + nb outcomes in kj . Under both null and alternative,
all blocks are assumed independent, with each outcome in group x in stratum k

independently ⇠ Bernoulli(✓x,k). Formally, the null hypothesis then expresses that

H0 : ✓a,k = ✓b,k for all k. (7.2)

We will assume na = nb = 1 for all strata in simulation examples in this paper,
but these can be chosen freely in practice and can even be adapted in between data
blocks — as long as they are set at or before the beginning of a data block, they are
allowed to depend on the past. Of course, in practice, we often deal with 2K i.i.d.
streams of data, one for each group-stratum combination, with data not necessarily
coming in at the same rate for di↵erent strata/groups. While superficially di↵erent,
we can still recast this setting in terms of blocks: for example, participant may
sequentially enter a study and are each independently randomized with probability
1/2 to receive ‘treatment’ (group b) or ‘control/placebo’ (a). We then wait until
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the first time t1 that we have seen na outcomes in group a and nb outcomes in
group b in the same stratum; we call this stratum k1, denote these n outcomes
Y1, and proceed observing outcomes in the various streams until the first time t2

that there is another stratum k2 (potentially k2 = k1) so that we have seen na

outcomes in group a, nb in group b in stratum k2; we denote these n outcomes Y2,
and so on. If we want to stop at any time t, we take as data all blocks that have
been completed so far, and ignore all started-yet-unfinished blocks.

Related Work The first paper to use e-processes for conditional independence
testing is [Lindon and Malek, 2022], but their tests are very di↵erent from ours
and involve a simple null hypothesis, allowing them to use Bayes factors for their
e-processes. Further, Turner et al. [2021], Turner and Grünwald [2023] develop
independence tests and confidence sequence for 2⇥ 2 tables; our paper is a direct
extension of theirs, extending their techniques to the stratum-conditional case.
Very recently four other related papers have appeared: [Pandeva et al., 2022,
Grünwald et al., 2022b, Shaer et al., 2022, Duan et al., 2022]: these papers all
di↵er from ours in that they assume data are jointly i.i.d. (i.e. one observes a
single i.i.d. stream (X1, Y1,K1), (X2, Y2,K2), . . .). The latter three also make the
so-called Model-X assumption (the distribution of Xi | Ki is assumed known).
Our paper is complementary: we do not need the i.i.d. or Model-X assumption
and as explained above, our setting does not just capture data in blocks (such as
paired data) but also data in the form of 2K i.i.d. streams, one for each group in
each stratum, with no stochastic assumptions about what group or what stratum
arrives at what time. The price we have to pay is that we can only deal with
a small number of strata and with finite sets of outcomes and number of groups
(in this paper we focus on 2 but extension to the finite case is straightforward);
aforemetioned references can deal with arbitrary covariate and outcome random
variablesKi and Yi. Nevertheless, small-strata-count-studies are highly common in
the medical statistics world, and we show here how to construct e�cient sequential
tests for them.

The code used for experiments in this paper will initially be placed on the
repository linked to this publication [Turner, 2023], and will later be integrated in
the safestats R package [Ly et al., 2022].

7.2 E-variables for testing the global null

We first consider the case where there is only one stratum, kj = k
⇤ for each each j.

The problem is then reduced to testing whether two Bernoulli data streams come
from the same source. Turner et al. [2021] showed that in this case, for arbitrary
estimators ✓̆a|Y (j�1)

, ✓̆b|Y
(j�1), the following is an e-variable for Yj conditional on

Y
(j�1), i.e. (7.1) holds with S := Sj given by

Sj =
naY

i=1

p✓̆a|Y (j�1)(Yj,a,i)

p✓̆0|Y (j�1)(Yj,a,i)

nbY

i=1

p✓̆b|Y (j�1)(Yj,b,i)

p✓̆0|Y (j�1)(Yj,b,i)
, (7.3)
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where p✓(Y ) = ✓
Y (1� ✓)1�Y denotes the Bernoulli(✓) probability of Y 2 {0, 1}),

as long as we pick ✓̆0 2 ⇥0 = [0, 1] as follows:

✓̆0 = ✓̆0|Y
(j�1) := arg min

✓2[0,1]
D(P✓̆a,✓̆b

kP✓,✓)

(a)
=

na

n
✓̆a|Y

(j�1) +
nb

n
✓̆b|Y

(j�1)
. (7.4)

Here and in the sequel, P✓a,✓b represents the distribution on na + nb independent
binary outcomes with the first na outcomes ⇠ Bernoulli(✓a) and the subsequent
nb outcomes ⇠ Bernoulli(✓b), i.e. the distribution of outcomes in a single block
according to (✓a, ✓b), and D(P✓a,✓bkP✓0

a,✓
0
b
) abbreviates the KL divergence between

two such distributions. Equality (a) follows by simple calculus.

Importantly, in (7.3), (✓̆a, ✓̆b) 2 ⇥1 = [0, 1]2 can be chosen as a function of
past data anyway we like, not a↵ecting the Type-I error guarantee. Nevertheless,
if we were given the true probabilities ✓

⇤
a and ✓

⇤
b of the two groups in block j,

then we could set ✓̆a = ✓
⇤
a and ✓̆b = ✓

⇤
b and this choice is special: the e-variable

(7.3) then has, among all e-variables, the largest expected logarithm under the
true alternative P✓⇤

a,✓
⇤
b
. We then say it is growth-rate optimal (GRO) for collecting

evidence against the null hypothesis [Grünwald et al., 2022a]. Formally, we define

gro(✓⇤a, ✓
⇤
b ) := sup

S
EYj⇠P✓⇤a,✓⇤

b
[logS] (7.5)

where the supremum is over all random variables S that are e-variables for Yj

under H0. It directly follows from [Grünwald et al., 2022a, Theorem 1] that, if
we plug in ✓̆a = ✓

⇤
a and ✓̆b = ✓

⇤
b into (7.3), then the resulting Sj is GRO and its

growth rate is equal to the KL divergence, i.e.

EYj⇠P✓⇤a,✓⇤
b
[logSj ] = gro(✓⇤a, ✓

⇤
b ) = D(P✓⇤

a,✓
⇤
b
kP✓̃,✓̃), (7.6)

where ✓̃ = (na/n)✓⇤a + (nb/n)✓⇤b . Growth-rate optimality is the analogue of statis-

tical power in the sequential setting: if we plug in these ‘true’ ✓̆a = ✓
⇤
a, ✓̆b = ✓

⇤
b ,

we expect the product E
(m) to increase as fast as possible in m, enabling us to

reach 1/↵ and reject the null hypothesis as fast as possible, compared with all
other possible e-processes. In practice though, ✓⇤a and ✓

⇤
b are unknown, but to get

near-grow-optimal e-variables, we can estimate ✓̆a and ✓̆b based on all data seen
before data block j — then ✓̆a and ✓̆b converge to ✓

⇤
a, ✓

⇤
b and our e-variables Sj get

better and better in the GRO sense. We follow Turner et al. [2021] who success-
fully chose to place a beta prior on the parameter space and took the Bayesian
posterior mean as an estimate.

In treatment/ control test settings, there often exists prior knowledge of a
minimal clinically relevant or expected odds ratio OR(✓a, ✓b) := (✓b/(1� ✓b))((1�
✓a)/✓a), i.e. it is known that OR(✓a, ✓b) = � for some given �. In that case, one
can restrict estimating ✓̆a and ✓̆b to ⇥1(�) = {(✓a, ✓b); OR(✓a, ✓b) = �}, possibly
improving power and growth-rate of the test [Turner et al., 2021]. Both search
spaces are illustrated in Figure 7.1.
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Figure 7.1: Parameter space ✓̆a|Y (j�1) and ✓̆b|Y
(j�1) are estimated in, in 2⇥2 table

without strata; either through placing a beta prior on the entire unit square (in
light orange) and calculating the posterior mean with all data up to and including
time j�1 or through restricting the posterior estimation to a particular odds ratio
value � and placing a beta prior on all pairs (✓a, ✓b) corresponding to this odds
ratio value (for example the red curve, for � = 2).

Combining e-variables from individual strata We can use the e-variable
in (7.3) to calculate e-process values E(m),k for each stratum k separately. To be
precise, we set Sk

j to the equivalent of (7.3) if k = kj ,

S
k
j =

naY

i=1

p✓̆a,k|Y (j�1)(Yj,a,i)

p✓̆0,k|Y (j�1)(Yj,a,i)

nbY

i=1

p✓̆b,k|Y (j�1)(Yj,b,i)

p✓̆0,k|Y (j�1)(Yj,b,i)
, (7.7)

and S
k
j = 1 otherwise, i.e. if kj 6= k, and E

(m),k :=
Qm

j=1 S
k
j — note that at each

‘time j’, the product e-variable only changes for the k such that j-th block was a
block of outcomes in stratum k.

We now need to combine the e-processes-per-stratum into a single e-process
for (7.2) to measure evidence against H0 and allowing tests with type-I error
probability guarantee on (7.2), the global null hypothesis that the odds ratio of
the success probabilities equals 1 in each stratum. There are several ways to
do this. The first and most straightforward option is to multiply the individual
e-values across the strata:

E
(m) =

mY

j=1

S
kj

j =
mY

j=1

KY

k=1

S
k
j . (7.8)

To see that E(1)
, E

(2)
, . . . is an e-process, simply note that each S

kj

j is a conditional
e-variable (i.e. it satisfies (7.1) with S = S

kj

j ) since, given that Sj in (7.3) is a
conditional e-variable, S

kj

j must be an e-variable as well. When ✓a,k ⇡ ✓b,k in a
few of the strata, this might be a data-ine�cient approach, as one would need
to collect a lot of extra evidence in the strata where the success probabilities

114



are substantially di↵erent to counteract the expected small e-values in the other
strata. A second option that possibly better handles these cases is to create a
convex combination, i.e. a mixture, of e-values at each time point j (any convex
combination of e-variables is also an e-variable [Vovk and Wang, 2021]). A simple
first option is to pick some prior distribution on the strata ⇡(k), and to use that
distribution for calculating the mixture after each batch comes in:

Sj :=
KX

k=1

⇡(k)Sk
j ; E

(m) =
mY

j=1

Sj so that also

E
(m) =

KY

k=1

E
(m),k with E

(m),k =
mY

j=1

S
k
j . (7.9)

Extending the simple averaging above, we could replace the prior ⇡(k) in (7.9)
with a distribution ⇡(k|y(j�1)) that depends on previous data y

(j�1), since, since
we assume the data itself in each block are independent, dependency of ⇡ on past
data will not a↵ect guarantee (7.1). Such an approach is called the method of
mixtures in the anytime-valid testing literature [Ramdas et al., 2022]. Thus, any
distribution on [K] that depends on the past is allowed here, but an intuitive
choice is a pseudo-Bayesian posterior

⇡(k|y(j�1)) :=
⇡(k)(E(j�1),k)⌘P
k0 ⇡(k0)(E(j�1),k0)⌘

, (7.10)

where by definition, E(0) = 1 and we pick ⌘ beforehand as a learning rate: if we set
it to a higher value, we will focus on strata with higher e-values more quickly; with
⌘ = 1, (7.10) becomes similar to a Bayesian posterior. Just as the beta-posterior
used to determine ✓̆x,k in (7.7) allows us to learn ✓

⇤
x,k, this new posterior allows us

to learn which strata can help us most to reject the null. However, even for ⌘ = 1
the analogy to Bayes only goes so far — for example, at each j, only the e-variable
S
kj for stratum kj changes; the other S

k ‘sleep’ [Koolen and Van Erven, 2010]
and thus E

(j�1),k behaves di↵erently from a likelihood. This more general past-
determined updating originates in the area of machine learning called prediction
with expert advice where many other such ‘posterior’-updates have been considered
[Herbster and Warmuth, 1998, Van Erven et al., 2007, Koolen and De Rooij, 2013].
These include the more extreme approach called switching. With this approach,
we calculate (7.9) with ⇡(k) replaced by any distribution we like (the choice is
again allowed to depend on Y

(j�1)) up to and including a particular batch j
⇤.

Thereafter, for j � j
⇤, we set

⇡
⇤(k|y(j)) =

(
1 if k = k

⇤ with k
⇤ = argmaxk E(j⇤),k

0 otherwise
(7.11)

creating a new E-process E(1)
[j⇤], E

(2)
[j⇤], . . . such that, for m  j

⇤, E(m)
[j⇤] = E

(m) and,
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for m > j
⇤,

E
(m)
[j⇤] = E

(j⇤)
·

mY

j=j⇤+1

E
(j),k⇤

(7.12)

j
⇤ could arbitrarily be picked prior to the study, or we could also place a prior on
the moment of switching and take a weighted average over (7.12) for various values
of j⇤ for each �, thereby obtaining yet another e-process with j

⇤ ‘integrated out’
(see Figure S7.2 in the supplementary material for a more elaborate comparison
of switch priors in a simulation experiment for confidence sequences).

In Figure 7.2, the three di↵erent methods for combining e-variables for testing
H0 are compared with respect to power : the expected probability of rejecting H0

under some fixed data generating distribution. For Figure 7.2, data were sam-
pled from a distribution where risk di↵erences and control group rates all di↵ered
between strata. It can be observed that all methods that took the stratification
into account outperformed the unstratified approach, where just one sequential
e-variable was calculated for all strata combined. The three di↵erent methods will
be re-compared for confidence sequences in Figure 7.6.

Figure 7.2: Power for rejecting the null at level ↵ = 0.05 that the odds ratio
in all strata equals 1 estimated with 1000 repeated experiments for various e-
variable combination methods. 40 batches were collected in each of three strata (so
maximum sample size was m = 120) and sampling was stopped as soon as E(m)

�
1
↵ . Real control group success rates were 0.1, 0.2, 0.8 and real risk di↵erences were
0.05, 0.4,�0.6. Pseudo-Bayesian approaches were implemented with learning rates
(LR) 1 and 2. Switch approaches were implemented for switching at point j⇤ = 10,
or with a uniform prior on switch times j = 5 until m� 5.

Cross-talk between strata To further improve power of the hypothesis test,
we will allow for cross-talk between strata while estimating ✓̆a,k and ✓̆b,k based on
data seen so far. In the current simple setting of testing the global null, ‘cross-
talk’ simply amounts to design Sj that grow faster (allowing for faster rejecting of
the null) if the alternative satisfies certain constraints. For example, if one expects
treatment e↵ects (say, measured as odds ratios) to be stable (identical) throughout
di↵erent strata, but control group recovery rates to vary, one would like cross-talk
about the odds ratios between strata. Practically, this means that to arrive at the
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estimates ✓̆x,k | Y
(j�1), we first limit the parameter space to ⇥1(�̂(j�1)), i.e. all

vectors ✓x,k with odds ratio �̂
(j�1), set to be the maximum likelihood odds ratio

based on all previous data in all strata, i.e. calculated by ignoring strata. We
then calculate ✓̆x,k | Y

(j�1) as posterior means using beta priors conditioned on

the parameters being in ⇥1(�̂(j�1)). Similarly, when one expects control group
recovery rates to be stable, but the treatment e↵ects to vary because of a possible
interaction with stratum characteristics, allowing cross-talk about control group
recovery rates might improve power. In practice, we achieve this by using as
beta prior parameters for the control group rate ✓̆a,k|Y

(j�1) the total counts of
failures and successes aggregated over all strata (summed with some initial prior
parameters to ensure stable estimates at time point j = 1; we set initial prior
values 0.18 for both the fail and success rate based on a suggestion by [Turner
et al., 2021]). In the odds-ratio cross-talk scenario, we e↵ectively constrain the
parameters of the alternative ✓̆x,k | Y

(j�1) at each j to share the same odds-ratio;
in the control-group cross-talk scenario, we constrain these parameters to share
the same ✓a, i.e. ✓̆a,k|Y

(j�1) = ✓̆a,k0 |Y
(j�1) for each k, k

0. Would one be unsure
whether cross-talk would improve power at all, and if so, whether one should cross-
talk on the odds ratios or the cross ratios, one could put prior mass 1/3 on each of

the corresponding three e-values, say E
(m)
⇢ for ⇢ 2 {none,odds,control rate},

where none stands for the standard e-variable without cross-talk. One could then,
for each block j, use a mixture e-variable, where the three e-values are mixed as in

(7.10) with ⌘ = 1, k replaced by ⇢ and ‘E(j�1),k’ replaced by ’E(j�1)
⇢ ’ giving a new

‘mix’ e-process. All four cross-talk scenarios are explored in simulations in Figure
7.3, where data were generated from strata with similar control group success
rates, but di↵erent risk di↵erences, and di↵erent control group success rates, but
similar odds ratios showing that allowing for cross-talk on control rate or odds
ratio improves power in the respective scenarios. The cross-talk mixture performs
comparably to the optimal cross-talk options in both cases. Cross-talk can be
expected to improve power even if, in truth, under the alternative, the odds-ratio
resp. control-group rate is just similar, but not exactly the same under all groups;
and the confidence sequences of the next section remain valid (but will get wider)
even if the odds-ratios resp. control-group rates happen to be completely di↵erent.
Thus, the method described here cannot really be viewed as a constraint on the
model, and we chose to call it cross-talk instead: data in one stratum informs,
‘talks to’ estimates for other strata.

A GRO-Sanity Check While the simulations above and below show encour-
aging empirical results regarding the power of our methods, it is still useful to
have some theoretical assurance that, no matter the ‘true’ alternative generating
the data, all methods we consider produce e-values that grow fast (i.e. achieve
good power) under this alternative. We now provide a simple theorem to this end.
As usual in the e-value and safe-testing literature, and for reasons explained by
Grünwald et al. [2022a], we concentrate on GRO (7.5) rather than power.

Theorem 7.2.1. Suppose that we observe m = m1 + . . . +mK blocks, with mk

blocks lying in stratum k, each such block sampled independently from P✓⇤
a,k,✓

⇤
b,k

.
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Figure 7.3: Power for rejecting the null hypothesis at level ↵ = 0.05 that the odds
ratio in all strata equals 1 estimated with 100 repeated experiments for various
types of cross-talk. 40 batches were collected in each stratum and sampling was
stopped as soon as E

(m)
�

1
↵ . On the left, real control group success rates were

0.49, 0.5 and 0.51 in each stratum; risk di↵erences were �0.09,�0.49, 0.39. On the
right, real odds ratios were 4, 4.01, 2.95.

Then, with E denoting expectation under this distribution, the e-process E
(m)

defined by multiplication as in (7.8) and the mix e-process E
(m) as above with

constituent e-processes defined multiplicatively as in (7.8) both achieve:

KX

k=1

mkgro(✓
⇤
a,k, ✓

⇤
b,k) = E

h
logE(m)

i
+O(logm). (7.13)

To interpret the result, note that, if an oracle were to supply us with ✓
⇤
a =

(✓⇤a,1, . . . , ✓
⇤
a,k), ✓

⇤
b = (✓⇤b,1, . . . , ✓

⇤
b,k) i.e. if we were told ‘if the alternative were true,

then its parameters would be P✓⇤
a,✓

⇤
b
’, then we could use the GRO (growth optimal

e-variable) which, conditional on observing a block in stratum k, would obtain the
optimal, largest possible expected growth gro(✓⇤a,k, ✓

⇤
b,k). Since we assume data to

be independent, the best growth we could obtain with such an oracle is given by
the left-hand side of (7.13). The theorem expresses that the price for learning (via
Bayes predictive distributions ✓̆x,k based on beta-priors) rather than knowing ✓⇤a, ✓

⇤
b

is modest, namely logarithmic in m whereas the growth itself is linear in m; this
is the standard situation for parametric settings, described in detail by Grünwald
et al. [2022a]. We may expect the constant hidden in the O(logm) to become
substantially smaller if the preconditions for e↵ective cross-talk hold as described
above, e.g. odds ratios or group recovery rates are identical or similar across
strata; but determining this constant precisely across cases, as well as extending
the analysis to pseudo-Bayesian and switch e-processes, is complicated and will be
left for future research. The proof of this theorem can be found in the appendix.

7.3 Extension to confidence sequences

Turner and Grünwald [2023] showed that (7.3) in the 2⇥ 2-table (single stratum)
can be generalized, to test null hypotheses H0 := {P(✓a,✓b); (✓a, ✓b) 2 ⇥0} beyond
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(a) all di↵erent (b) same control rate (c) same OR

(d) all di↵erent (e) same control rate (f) same OR

Figure 7.4: Examples of 95% stratified confidence intervals ((a), (b) and (c)) and
mean confidence interval widths estimated over 100 runs ((d), (e) and (f)) with
di↵erent types of cross-talk. In (a), (b) and (c) the true risk di↵erence of the data
generating distribution in each stratum is indicated by a dashed line. For (a) and
(d), the data were generated by distributions with di↵erent control group success
rates (0.1, 0.2 and 0.8) and risk di↵erences (0.05, 0.4 and �0.6) in each stratum.
For (b) and (e), strata sizes were unbalanced: as can be seen for stratum 1, the
red points, data collection stopped after 10 batches. Control group success rates
were all 0.5 and risk di↵erences were di↵erent (�0.49, �0.25 and 0.1). For (c) and
(f), strata sizes were unbalanced as well, and now odds ratios were the same in
each stratum (2), but control group rates di↵ered again (0.2, 0.25 and 0.85).
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‘✓a = ✓b’:

Sj,[⇥0] =
naY

i=1

p✓̆a|Y (j�1)(Yj,a,i)

p✓̆�
a|Y (j�1)(Yj,a,i)

nbY

i=1

p✓̆b|Y (j�1)(Yj,b,i)

p✓̆�
b |Y (j�1)(Yj,b,i)

(7.14)

is an e-variable, as long as ⇥0 ⇢ [0, 1]2 is convex and closed. Here (✓̆�a | Y
(j�1)

, ✓̆
�
b |

Y
(j�1)) is defined to minimize KL divergence, i.e. is the pair (✓a, ✓b) 2 ⇥0 that

minimizes, over ⇥0,
D(P✓̆a|Y (j�1),✓̆b|Y (j�1)(Y na

a , Y
nb
b )kP✓a,✓b(Y

na
a , Y

nb
b )). (7.3) is a special case since

with ⇥0 = {(✓, ✓) : ✓ 2 [0, 1]}, this KL divergence is minimized by (✓̆�0 , ✓̆
�
0) with ✓̆

�

as defined underneath (7.3). Again, ✓̆a and ✓̆b are estimated based on past data
Y

(j�1) as in (7.3). Based on (7.14) one can construct an exact (nonasymptotic)
confidence sequence (CS)

CS↵,(m) =

⇢
� : E(m)

[⇥0(�)]


1

↵

�
, (7.15)

with ⇥0(�) ⇢ [0, 1]2 a null hypothesis determined by a divergence measure. By
construction, such a confidence sequence is always-valid [Ramdas et al., 2022] in
the sense that for any �, any ✓ 2 ⇥0(�), the P✓-probability that there will ever be
an m such that � 62 CS↵,(m) is at most ↵. This means that we can take the running
intersection of the confidence sequence while retaining coverage, which will be used
throughout the simulation experiments in this paper. In this paper, we are going
to construct confidence sequences for risk di↵erences as examples, where we are
going to test hypotheses of the form ⇥0(�) :=

�
(✓a, ✓b) 2 [0, 1]2 : ✓b � ✓a = �

 
—

below we extend this to the case that di↵erentiates in terms of the strata. Still,
everything could also easily be adapted to construct confidence intervals for other
divergence measures, such as odds and risk ratios [Turner and Grünwald, 2023].

7.3.1 One CS per stratum

If we expect the e↵ect size values to di↵er between the strata, one could decide
to report a separate confidence sequence for each stratum using (7.15) above. To
reach a better estimate sooner, we could however still allow cross-talk on control
group success rates or odds ratios between subpopulations, as described in section
2 above. In this setup, we would end up with a collection of k confidence sequences:

CSk
↵,(m) =

⇢
� : E(m),k

[⇥0(�)]


1

↵

�
, (7.16)

with ✓̆a and ✓̆b in E
(m),k estimated based on data seen up to time m and E

(m),k

defined as in (7.9) with S
k
j replaced by S

k
j,[⇥0]

as in (7.14), calculated for stratum
k. Illustrations of confidence intervals over time with the three options for cross-
talk are depicted in Figure 7.4. As can be observed there, not allowing cross-talk
gives the best results when the true data generating distributions in the strata
have di↵erent control group success rates and odds ratios (see the circle-shaped
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points in Figure 7.4d, especially in the third stratum, where the e↵ect size has a
di↵erent sign). However, when control group rates or odds ratios are similar across
strata, allowing cross-talk improves results. See for example Figure 7.4e, where
interval width decreases much faster in the smaller stratum 1 while allowing cross-
talk about the control group rate. Similar experiments for comparing confidence
sequences with and without the mixture of cross-talk methods can be found in the
supplementary material, Figure S7.1.

7.3.2 CS for the minimum or maximum

In some scenarios, for example when we do not have the means to collect a large
data sample, or when data is very unbalanced in one or more strata, it could be
more informative to create one CS for the minimum or maximum e↵ect size value
over all strata. To achieve this, we introduce two new forms of null hypotheses
and corresponding e-variables that will subsequently be inverted to create two
one-sided confidence sequences, for lower and upper bounds on the minimum or
maximum.

One-sided CS: upper bound We will first illustrate how to estimate an upper
bound on some minimal e↵ect size value over strata1. To this end, we consider
a null hypothesis of the form H0,� : 8k : ✓k 2 ⇥0(� �) (i.e. for risk di↵erence
e↵ect size, ⇥0(� �) = {(✓a, ✓b) 2 [0, 1]2 : ✓b � ✓a � �}) and aim to design e-
variables to test it. E.g. in the example depicted in Figure 7.5a, we aim to design
an e-variable that will reject H0,�00 at any batch j with probability less than ↵

(i.e., that o↵ers type-I error guarantee), when the data in the strata are in reality
generated by (✓a,1, ✓b,1) and (✓a,2, ✓b,2). We do eventually want to reject H0,�0

as �((✓a,2, ✓b,2)) < �
0. As we collect more and more data, we can reject null

hypotheses corresponding to values of �0 for which �
0
� �((✓a,2, ✓b,2)) gets closer

and closer to 0.
Let us denote the e-process consisting of the e-variables for testing ✓k 2 ⇥0(� �)

in each stratum combined, using any of the methods described above in Section 2,

as E⇤(m)
� . The one-sided confidence interval for the minimum e↵ect can be defined

as:

CS+↵,(m) :=


�1,min

⇢
� : E⇤(m)

� �
1

↵

��
. (7.17)

All possible approaches for combining e-variables from separate strata, as described
in Section 2 above, to find an upper bound for the minimal e↵ect size value are
compared in the confidence intervals in the paragraph below.

One-sided CS: lower bound We now also aim to estimate a lower bound for
the minimal e↵ect size value (or, analogously, an upper bound for the maximal
e↵ect size value). To achieve this, we now consider a null hypothesis of the form
H0,� : 9k : ✓k 2 ⇥0( �). Looking at Figure 7.5b as an example, where data are

1Analogously, with this method a lower bound on some maximal e↵ect size value can be
estimated by reversing all signs.
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(a) Examples of parameter spaces
for H0,� : 8k : ✓k 2 ⇥0(� �).

(b) Examples of parameter spaces
for H0,� : 9k : ✓k 2 ⇥0( �).

Figure 7.5: Parameter space examples for hypotheses tested to construct upper
and lower bounds on minima and maxima of e↵ect size values

generated by (✓a,1, ✓b,1) and (✓a,2, ✓b,2), we aim to design an e-variable that will
reject H0,�0 at any batch j with probability less than ↵ (i.e., we again want type-I
error guarantee if H0,�0 is true), as �((✓a,2, ✓b,2)) < �

0. We do want to reject as
quickly as possible H0,�00 , as 8k, �(✓(k)) > �

00. As we collect more data, we can
reject null hypotheses with values of �00 for which �((✓a,2, ✓b,2)) � �

00 gets closer
and closer to 0.

To build our one-sided confidence interval CS�↵,(m), we again want to construct

a compound e-variable E
⇤(m)
� testing the null hypothesis corresponding to each

value of �, but now take max{� : E⇤(m)
� � 1/↵} as our lower bound. To test H0,�

we will use the minimum of E(j),k
⇥0(�) over all k, which provides an e-variable for

H0,�. To see this, let us assume H0,� is true an that for some k
⇤, ✓k⇤ 2 ⇥0( �);

the other data generating distributions might or might not come from ⇥0( �).
Then: E(mink Sk)  mink E(Sk)  E(Sk⇤

)  1.

Combining into confidence interval We now combine the lower bound and
upper bound estimation methods established above to build confidence intervals for
the minimal e↵ect size value. This can be achieved through taking the intersection
of the one-sided confidence sequences introduced above: CS↵,(m) := CS�↵,(m) \

CS+↵,(m). Results from an experiment where in one of the strata the treatment

e↵ect was substantially smaller than in the others are depicted in Figure 7.6 (with
average interval widths in the supplementary material, Figure S7.3). In early
phases of data collection, multiplication gives the quickest convergence, but as
more data is collected, the “sequential learning” methods converge quicker. When
risk di↵erences where about the same across all strata, multiplication converged
the quickest (see Figure S7.4 in the Supplementary material).
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Figure 7.6: Example of confidence sequences for the lower- (LB) and upper (UB)
bounds of the minimum e↵ect. 30 observations were made in each stratum, and
the real di↵erences were 0.5, 0.4 and 0.05. With the switch method, a uniform
prior ranging from mswitch = 5 until 30 was applied. With the pseudo-Bayesian
approach, the learning rate ⌘ was set to 1 and 2. ↵ was set to 0.05.

7.3.3 CS for the mean e↵ect

In addition to estimating the minimum or maximum e↵ect in one of the strata, one
might be interested in estimating the mean e↵ect an intervention will have on an
entire population, given the existence of subpopulations. For example, one might
want to estimate the e↵ect a vaccination will have on the probability of people
being contaminated with a disease, taking into account that a certain proportion
of the population concerns elderly or immunocompromised citizens.

Assuming we have a trustworthy estimate of the proportion of subjects belong-
ing to each stratum k in the population of interest, ⇡k, we aim to estimate the
mean risk di↵erence (mean expected e↵ect of the intervention) �⇤ :=

P
k ⇡k�k. We

can build a confidence sequence for �⇤ by constructing an e-variable for the set of
all possible success probability distributions satisfying this �⇤, H0,�⇤ : {P~✓; d(

~✓) =P
k ⇡kd((✓a,k, ✓b,k)) = �

⇤
}. It is not directly clear what an optimal e-variable could

look like; one option that o↵ers both the type-I error guarantee with potentially
good power is to combine the growth-rate optimal e-variable (7.3) for a specific
�k in each stratum with the universal inference [Wasserman et al., 2020] method
for designing e-processes. Based on this strategy, we look at the set of all vectors
~� := (�1, ..., �K) that satisfy

P
k ⇡k�k = �

⇤. For one member of the set, we can
calculate the e-variable based on all batches of data seen up to and including time
m according to (7.3):

E
(m)

[~�]
=
Y

k

E
(m),k
[⇥0(�k)]

,

where E
(m),k
[⇥0(�k)]

can be calculated using estimates for ✓̆a,k and ✓̆b,k as before, only
including data seen up to and not including batch m. The e-variable for H0,�⇤

can then be calculated as [Wasserman et al., 2020]: E
⇤(m)
�⇤ = min~� E

(m)

[~�]
, and the

corresponding confidence sequence can be constructed as before, analogously to
(7.17).
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Figure 7.7: Simulated example of 95% confidence sequences for the mean e↵ect
across subpopulations. 25 observations were made in each stratum, and the real
risk di↵erence of 0.4 was homogeneous across subpopulations. The confidence
sequence for the mean e↵ect is plotted alongside the Miettinen-Nuninen confidence
interval, a fixed-n confidence interval method, at batch number 50 (the purple
triangles). In the supplementary materials, figure S7.5, the mean e↵ect CS is
further illustrated for heterogeneous risk di↵erences in strata.

Comparison to fixed-n CI for Mantel-Haenszel risk di↵erence Much of
the research into estimating stratified risk di↵erences with coverage guarantee has
considered Mantel-Haenszel risk di↵erences, where risk di↵erences or odds ratios
are homogeneous across strata but control group rates can vary (see for example
[Qiu et al., 2019]), with fixed-n designs. This is a strong assumption, and we do
not make it ourselves; but we can use cross-talk on the risk di↵erence to tailor
our confidence sequences so that they adapt (get narrow) if the risk di↵erence is
indeed homogeneous. One recent fixed-n approach for this setting was described
and implemented by Klingenberg [2014]. In Figure 7.7, our confidence sequence for
the mean e↵ect is compared to the Miettinen-Nuninen (MN) confidence interval
from Klingenberg [2014] at fixed time 50 in a setting where risk di↵erences were
homogeneous. The MN-interval is slightly narrower, but because we are allowed
to continuously monitor the confidence interval while retaining coverage with the
confidence sequence, we can exclude 0 from the CS considerably earlier than with
the fixed-n method — which is remarkable because unlike the MN fixed-n confi-
dence interval, our anytime-valid confidence sequences are also valid if in fact risk
di↵erences are not homogeneous.

7.4 Application in psychiatry use-case

We will now illustrate the process of planning and analyzing a study with the
stratified, safe anytime-valid tests described in this paper. As a use-case we will
look at a recent exploratory study at two major mental healthcare facilities in the
Netherlands. Data from 4808 and 735 patients in their first clinical antidepressant
treatment trajectory was analyzed in an exploratory Bayesian network analysis
[Turner, 2022] (this thesis, chapter 5). This retrospectively collected data set
revealed several potential interesting associations between patient characteristics,
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treatment choices and treatment outcomes. However, because of this retrospective
setup, these patterns cannot yet be interpreted as causal relations (an overview of
potential confounders is given in this thesis, chapter 5). Therefore, before these
results can be used in clinical applications, further inferential analysis is needed to
confirm the formed hypotheses and generate robust uncertainty estimates. Each
hypothesis and uncertainty estimates could then be investigated in a randomized
controlled trial or prospective study with safe anytime-valid inference. An example
of a power analysis and simulation of an anytime-valid confidence interval for one
of these hypotheses is given below.

(a) Power estimation (b) Confidence interval example

Figure 7.8: Power for rejecting the null hypothesis at level ↵ = 0.05 that the
odds ratio in all strata equals 1 estimated with 1000 repeated experiments, and an
example of a resulting confidence interval in such a sampling scheme. 300 batches
were sampled in each stratum according to the alternative hypothesis described in
the main text and sampling in the power analysis was stopped as soon as E(m)

�
1
↵ .

The cross-talk used was of the mixture type described in section 7.2.

One association to explore was that choosing a particular type of antidepres-
sant, a tricyclic antidepressant, increases treatment success, but at a di↵erent rate
for di↵erent groups of patients. For patients without social problems and with-
out antipsychotics prescriptions the probability increased from 63 to 74 percent
(stratum 4 in figure 7.8). This e↵ect was smaller for patients with a di↵erent
combination of characteristics: the success probability increased from 68 percent
to 74.3 percent for patients with social problems and antipsychotics prescriptions
(stratum 1), for patients with only social problems the increase was from 67 to
74.4 percent (stratum 2) and for patients with only antipsychotics from 66 to 74.1
percent (stratum 3). A power analysis to plan an experiment with safe, stratified
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analysis and a balanced design was performed, of which the result is depicted in
figure 7.8. In the power analysis, we took as the alternative hypothesis one based
on the numbers above. The balanced design implies that each time a patient has
been treated with and without a tricyclic antidepressant within one of the strata,
an interim analysis is performed, and a decision to stop the study or continue
can be taken. In figure 7.8 it can be observed that with this design and analysis,
we need 194 less batches of data (388 less patients) when we use the stratified
analysis with cross-talk, compared to an unstratified safe anytime-valid analysis.
In the example of a confidence interval constructed with cross-talk on the right,
it can be observed that we can already exclude 0 from the confidence interval in
stratum 2 after observing only 140 batches of patients. Would this confidence
interval have been displayed live on a dashboard during a study, clinicians could
have decided on their recommendation to prefer tricyclic antidepressants for these
patients way before the total 1000 batches of patients were seen: they could have
decided already much earlier, after the first 280 patients of stratum 2 had been
seen.

7.5 Conclusion and future work

We have introduced a new method for global null hypothesis testing and construct-
ing exact anytime-valid confidence sequences in stratified count data. Our method
is complementary to previously proposed methods for similar settings as we need
no stochastic assumptions about the arrival times of the subgroups or strata, and
no Model-X assumptions. We have shown that our tests and estimates are e�-
cient in terms of power, and that precise e↵ect size estimations can be reached
with less strong model assumptions compared to pre-existing fixed-n methods,
while retaining coverage guarantees and allowing sequential decision making. We
have also shown that we can improve the traditional model of global null testing
in the CMH-setting through incorporating ideas from machine-learning: allow-
ing for cross-talk between strata, and incorporating pseudo-Bayesian learning and
switching between strata for learning compound e↵ect measures.

Our work extends that of Turner et al. [2021] and Turner and Grünwald [2023]
to incorporate strata for count data. Their methods, however, are generally im-
plementable for any convex null hypothesis, and future work should explore if
they also can feasibly be extended to stratified sequential e↵ect estimation for
continuous outcome variables.
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Discussion

In this chapter, the work described in the other chapters of this thesis is reviewed
concisely, and placed in the context of other recent and related developments
and the overarching research question “how can one perform real-time research in
healthcare using routinely collected clinical data?”. Open problems and directions
for future work are discussed.

8.1 Implementations of safe, anytime-valid inference

To work toward enabling inferential statistics for real-time research, in chapters 2,
3 and 7 we studied and developed a generic analytical type of e-variables and the
corresponding confidence sequences for comparing two or more data streams. We
specifically implemented these for studying categorical data, for example for the
well-known 2⇥ 2 contingency table test setting and the Cochran-Mantel-Haenszel
test setting. For these settings, our “simple” e-variable proved to come very close
to the GRO measure, depending on the hyperparameter settings chosen, which
determine the speed at which the e-variables “learns” the true data generating
distribution (in case of a simple alternative, our e-variable coincides with the
relative GRO measure). Directions for future work should concern studying the
performance of this generic simple e-variable outside the categorical setting, for
example for count data or continuous data, where we know that it does not provide
the GRO measure. As in these settings, calculating a GRO e-variable analytically
is often impossible and approximating it can be computationally heavy, our simple
definition might provide an interesting feasible alternative in some scenarios (a first
step was made by Hao et al. [2023]). An extensive overview of testing scenarios,
and comparison of available (GRO or universal-inference based [Wasserman et al.,
2020]) approaches with respect to power would be of significant added value for
applied researchers wanting to apply safe, anytime-valid inference.

Other developments around GRO e-variables for categorical outcomes
In the work in this thesis, the problem of sequential testing on categorical stream
data was approached in a block-wise manner, conditioning on the number of data
entries per group collected in a block. A di↵erent approach was developed concur-
rently by Adams [2020] and a variation is considered by Hao et al. [2023], among
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others. They instead condition on (“fix in advance”) the number of successful out-
comes observed, which yields an especially elegant analytical expression for this
conditional GRO e-variable. This approach might be less applicable to common
substantive research designs, where funds are allocated for the inclusion of a set
number of participants or study units in advance. On the other hand, for com-
panies executing A/B testing on a large scale, it might be especially interesting,
for example re-evaluating the performance of two web page designs after a certain
number of sales has been made. A detailed comparison concerning power and
expected sample sizes of the methods in this thesis and conditional e-values and
development of an accompanying tutorial would be of great added value to sub-
stantive researchers that need to choose between the two approaches when setting
up an inferential study with real-time monitoring.

The work in chapter 7, where e-variables for stratified data and confidence
sequences for subgroups of patients were developed, already hinted at the need for
safe, anytime-valid logistic regression; a setting very common in clinical research.
A very interesting first step toward this, using an idea similar to the “simple” e-
variable presented in this thesis, was recently presented by Grünwald et al. [2022b].
In this work, an e-variable for testing conditional independence of any outcome
variable Y of some (treatment) characteristic variable X given other variables Z

is presented and illustrated in a logistic regression setting. The e-variable relies
on an accurate “Model-X assumption”: the full model or an accurately enough
estimate of the distribution of X given Z should be available for the e-variable to
remain valid. Nevertheless, since in healthcare practice X and Z often would be
treatment and patient characteristics, this is something that can be estimated with
retrospectively collected data, outside the costly clinical trial settings. Extension
to full logistic regression, including confidence sequences of the model parameters,
is still an open problem.

Computational limitations Despite the “simple”, analytical form of the e-
variables studied in this thesis, we did run into some computational limitations
during the work in chapters 3 and 7 which could be improved upon in future
work. For example for the confidence sequences described in this thesis, upper-
and lower bounds were determined by calculating e-values for a precise grid of
divergence parameter values. For the universal-inference based minimization for
the confidence sequences over several strata in chapter 7, iterative minimization
over multiple parameters for each stratum still limits the number of strata we
can implement our ideas for. In future work, statistics and computer science
experts should join forces to explore how these calculations and optimizations
could be carried out in a more e�cient way, enabling more precise results and
more flexibility in study designs, required for analyzing sets of clinical data with
many predictor or stratification variables.

8.2 Knowledge discovery in psychiatry

Chapters 4, 5 and 6 describe exploratory analysis of the EHR data of the clinical
psychiatry departments at UMC Utrecht (UMCU) and Parnassia Groep (PG),
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with the goal of exploring how a wide array of routinely collected clinical data can
be used for knowledge discovery, eventually in an automated, real-time setting.
In chapter 4, the focus was on defining clinically relevant psychiatric outcome
measures for information extraction and knowledge discovery processes in close
collaboration with clinicians, and the development of a corresponding text min-
ing model based on word embeddings [Menger et al., 2018a]. The selected topics
concerned psychiatric core complaints, social functioning, general well-being and
patient experience. In chapter 5, a Bayesian network analysis was performed at
UMCU and PG in a very heterogeneous group of patients who all were treated
with antidepressants during their admission. This analysis combined the infor-
mation extraction pipeline developed in chapter 4 with patient and treatment
characteristics available from structured (tabular) data sources in the EHR.

The exploratory analysis at PG highlighted several interesting possible associ-
ations and showed that treatment outcome topics were closely connected. These
findings point towards the existence of a tipping point in the mental health state
of psychiatry patients: if one would succeed in positively influencing one of the
aspects of a patients mental health, such as suddenly having many positive so-
cial interactions, this might further positively influence the other aspects of one’s
mental state and the probability of recovery. Nevertheless, besides the strong con-
nections between treatment outcomes, many of the associations between patient
characteristics and treatment outcomes found at PG could not be replicated at
UMCU. Possibly the study at UMCU was underpowered to find the relatively
small e↵ects of patient characteristics on treatment outcomes. Another explana-
tion could be that the nature of mental illness of patients at UMCU is substantially
more severe than at PG, and that in these severely ill patients other processes play
an important role in determining treatment outcomes than basic patient and treat-
ment characteristics, for example strict supervision in upholding activities of daily
living, or a certain interactions with particular types of caregivers.

In chapter 6, a di↵erent approach toward network analysis was taken. Here, a
more homogeneous group of patients was studied, namely patients receiving elec-
troconvulsive therapy for a depressive episode. For this select group of patients,
plenty of prior studies were performed and these were, together with expert knowl-
edge, incorporated in the modelling process through systematic review. Adding
this prior information to the Bayesian network and underlying logistic regression
model for predicting remission improved prediction accuracy and resulted in good
performance for predicting remission in a temporal sample for validation.

Future, prospective studies or even clinical trials to confirm the findings from
these exploratory studies are warranted for at least two major reasons. First,
using texts written during routine clinical care might be a source of reporting
bias: association may appear especially positive or negative for certain groups of
patients due to under- or overreporting. Second, to be able to report actual causal
associations instead of predictive associations, the possibilities of selection bias and
the presence of hidden variables should be excluded, which is nearly impossible in
a retrospective setting [Briganti et al., 2022].
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Innovations in clinical psychiatry Nevertheless, despite the wide array of
predictors included in the models in chapter 6, predictive accuracy could still
potentially be improved upon, indicating that important predictive information
was still missing in the datasets extracted from the routinely collected data in
the electronic health records. An important future development could be linking
data from wearables and other smart devices to the DHT [De Loo↵ et al., 2019].
This would also enable asking patients for feedback about their mental state and
thoughts about the treatment process in a fast and accessible manner, information
that was now incorporated in for example the models described in chapters 4 and
5 entirely as written down by a third person, the clinical sta↵.

Another possibility could be the improvement of information extraction for
knowledge discovery in routinely written clinical text: recently, a lot of exciting
new possibilities have emerged, such as improvements of the open-source, easily
shareable MedCAT (medical concept annotation tool) model [Van Es et al., 2023].
MedCAT is based on (often standardized) medical concept databases, such as
SNOMED and UMLS [Spackman et al., 1997, Bodenreider, 2004], and o↵ers the
possibility to refine these concept databases based on a local text corpus in an
accessible web-based interface. This makes it especially suitable for collaborating
on an information extraction project with clinicians, where clinicians through the
web-based interface can actively take part in the model training and evaluation
process.

It is evident that the final product (the fitted Bayesian networks) of the re-
search described above does not complete the entire process of clinical knowledge
discovery: the causal graphical models and conditional probability tables compris-
ing the Bayesian networks are far too complex to directly use in clinical decision
support tools. Future research should concern converting these Bayesian networks
combined with patient characteristics and interests into a tool for patient-tailored
advice. One interesting solution for this could be to focus on the amount of infor-
mation that is passed through the various patient characteristics in the network,
selecting the most important paths and converting this information into natural
language [Sevilla, 2021]. Combining these kinds of natural language generation
models with uncertainty estimates would be a logical next step in working toward
Bayesian networks as decision support tools.

8.3 Federated learning in Psychiatry and healthcare in gen-
eral

To investigate the suitability of the methods described in chapters 2 and 3 for
more complex (and realistic) medical research questions, in chapter 7 we studied
implementing anytime-valid confidence intervals for a psychiatry use-case where we
stratify patients into small groups, based on the hypothesis developed in chapter 5.
The confidence sequences we developed o↵er exciting new possibilities, such as se-
quentially estimating a mean, minimal or maximal treatment e↵ect (for any e↵ect
size notion, such as relative risk, risk di↵erence, odds ratio, and so forth) across
subpopulations, and sequentially estimating many confidence intervals in sepa-
rate subpopulations. Our new algorithms in itself showed very promising results:
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through combining safe, anytime-valid inference with machine learning techniques
such as cross-talk and pseudo-Bayesian averaging we achieved clinically realistic
sample sizes with corresponding precise enough, anytime-valid e↵ect estimations.

In future work, these algorithms could vastly alleviate the complexity of multi-
center clinical trials and research projects, as the anytime-valid property not only
ensures that study results are valid within one trial, but also when combining safe
confidence sequences between study centers. Implementation in such a federated
setting is straightforward: e-values that summarise the evidence for the hypotheses
tested based on all local patient data combined (stored as floating point numbers)
to construct confidence sequences can computed locally. Only these numbers have
to be shared with a central location to compute the study-level confidence se-
quences, in principle omitting any identifiable patient data leaving the local study
centers. A first “living” meta-analysis using this setup has already been performed
to investigate the e↵ect of preventive vaccination of healthcare workers to protect
them against COVID-19 infections [Ter Schure et al., 2022].

Future of the digital health twin The steps taken so far within the works in
this thesis, for enabling research with healthcare data in real-time, and in the EPI
consortium have hopefully brought us a little bit closer to a world where personal-
ized recommendations are standard, while still ensuring privacy of patients. One
major limitation in achieving this, that was also encountered during the substan-
tive work in chapters 4, 5 and 6 of this thesis, is the “data-readiness” of mental
health centers. Although at UMC Utrecht and Parnassia Groep an established
pipeline from EHR to research data was already present, data were not stored in
a homogeneous format, which caused the preprocessing to become an elaborate
process. Developments such as implementation of the FHIR (Fast Healthcare In-
teroperability Resources) framework, a standard for information exchange between
healthcare providers, could improve the threshold for data-readiness at healthcare
institutes significantly [Leroux et al., 2017]. Hopefully, the soon-to-arrive first
proofs of concept of the EPI framework and similar initiatives will entice other
clinical institutes to work towards data-readiness as well, such that we can really
start working toward personalized recommendations in clinical practice.
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Nederlandse Samenvatting

Dit proefschrift, veilige altijd valide inferentie: van theorie naar implementaties
voor wetenschappelijk onderzoek in de psychiatrie, gaat over het doorontwikkelen
van een nieuw paradigma in de statistiek, veilige altijd valide inferentie (SAVI),
en het toewerken naar een toepassing hiervan in wetenschappelijk onderzoek in
de psychiatrie. De gangbare, meest gebruikte methoden voor statistische infer-
entie (het doen van uitspraken over de gehele populatie op basis van een kleine
steekproef) zijn niet geschikt voor flexibele onderzoeksopzetten. Voorbeelden van
dit soort opzetten zijn continue analyse van onderzoeksdata en projecten waar-
bij algoritmes gedeeld worden tussen verschillende instanties. In de eerste twee
hoofdstukken van dit proefschrift wordt onderzocht hoe SAVI doorontwikkeld kan
worden voor enkele veel voorkomende onderzoeksvragen in dit soort flexibele on-
derzoeksopzetten. In de drie daaropvolgende hoofdstukken wordt onderzocht hoe
data verzameld tijdens psychiatrische zorg geschikt kan worden gemaakt voor con-
tinue analyse in meerdere ziekenhuizen, en wordt exploratief gezocht naar patronen
in deze retrospectieve data met Bayesiaanse netwerkanalyse. Tot slot worden in
het afsluitende hoofdstuk de nieuwe statistische methoden verder ontwikkeld voor
het beantwoorden van onderzoeksvragen met een vorm zoals de vragen die vol-
gden uit de Bayesiaanse netwerkanalyse, en wordt geillustreerd hoe een flexibele
onderzoeksopzet om een van deze vragen te beantwoorden er uit zou kunnen zien.

Leren in meerdere instellingen Data verzameld tijdens routinematige zorg
en/ of medisch onderzoek blijft nu meestal exclusief binnen de zorginstellingen
waar de zorg is verleend. Dit is goed voor de privacy van patiënten, maar maakt
het lastig om te leren en om patronen te ontdekken in de data, om later de zorg
te verbeteren. Vooral als het doel is te leren voor kleine groepen patiënten, om
uiteindelijk gepersonaliseerde aanbevelingen te kunnen doen, is data van grote
aantallen patiënten nodig voor algoritmes om patronen te ontdekken en beves-
tigen. Om leren van data bij verschillende zorginstellingen mogelijk te maken
terwijl ook de privacy van patiënten gewaarborgd blijft is het Enabling Person-
alized Interventions consortium (Nederlandse vertaling van de naam: faciliteren
van gepersonaliseerde behandelingen) opgericht, waar het werk verricht voor dit
proefschrift onderdeel van uitmaakt. In dit consortium wordt gewerkt aan een
kader en softwarepakket waarbinnen ten eerste patiëntdata bij zorginstellingen
op een veilige manier bereikt kan worden, ten tweede regelgevende beperkingen
opgelegd kunnen worden op basis van toestemming die zorginstellingen en indi-
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viduele patiënten hebben gegeven en ten derde algoritmes worden ontwikkeld die
gefedereerd kunnen leren. Dit houdt in dat als meerdere zorginstellingen samen
een algoritme willen trainen de data niet verzameld hoeft te worden op een cen-
traal punt. In plaats daarvan wordt het algoritme naar de veilige omgevingen in
de aparte instellingen gestuurd, waarbij de (niet-herleidbare) getrainde algoritmes
worden teruggestuurd en gecombineerd op een centraal punt. In dit proefschrift
worden methoden ontwikkeld en onderzocht die bij uitstek geschikt zijn voor dit
soort toepassingen, waarbij de data verdeeld zijn over meerdere instellingen.

Datastromen Het bovengenoemde SAVI, een centraal concept in dit proef-
schrift, is een van deze methoden. Resultaten van SAVI-analyse van verschil-
lende zorginstellingen kunnen met elkaar gecombineerd worden door simpele ver-
menigvuldiging. Daarnaast is SAVI-analyse ook geschikt voor continue analyse
van datastromen; het biedt de mogelijkheid data opnieuw te analyseren na de in-
clusie van iedere nieuwe patiënt. Na iedere nieuwe analyse kan een veilige beslissing
genomen worden over de uitkomst van het onderzoek. Dit houdt in dat de methode
een zogenoemde type-I fout garantie geeft op ieder moment: de kans dat we on-
terecht de nulhypothese van het onderzoek verwerpen (bijvoorbeeld de kans dat we
onterecht besluiten dat een nieuw middel superieur is vergeleken met een placebo)
is begrensd door een door de onderzoeker ingestelde maximaal acceptabele kans
op een fout, op welk moment we de beslissing ook nemen. Dit is iets dat met
de traditioneel toetsen waarbij bijna altijd gebruik wordt gemaakt van p-waardes
niet kan: hierbij moet van tevoren vastgesteld worden met hoeveel patiënten de
analyse verricht zal worden. Traditionele p-waarde toetsen zijn dus niet geschikt
voor continue analyse van onderzoeksdata. In hoofdstuk 2 van dit proefschrift
worden algemene SAVI toetsen voor het vergelijken van twee of meer datastromen
ontwikkeld, en wordt een specifieke implementatie met bijbehorende software voor
binaire datastromen ontwikkeld. Deze wordt ook vergeleken met de klassieke p-
waarde tegenhanger, Fishers exacte toets.

E↵ecten schatten in datastromen Naast het uitvoeren van hypothesetoet-
sen zoals “is het nieuwe middel beter dan een placebo” is het voor het nemen
van beslissingen essentieel een goede e↵ectschatting te hebben, om bijvoorbeeld
te kunnen zeggen hoeveel winst een patiënt zou kunnen verwachten bij gebruik
van het nieuwe middel. Traditionele manieren om e↵ecten te schatten, zoals
klassieke betrouwbaarheidsintervallen, hebben last van dezelfde beperkingen als
p-waardes: deze zijn alleen valide als ze gebruikt worden met een van tevoren vast-
gestelde hoeveelheid data. In hoofdstuk 3 worden de in hoofdstuk 2 ontwikkelde
SAVI toetsen uitgebreid en gebruikt als bouwsteen voor het maken van altijd
valide betrouwbaarheidsintervallen. Deze altijd valide betrouwbaarheidsintervallen
zouden bijvoorbeeld kunnen worden gebruikt in onderzoeksdashboards, waarbij
datastromen in werkelijke tijd geanalyseerd worden en de e↵ectschatting direct
door onderzoekers en clinici gevolgd kan worden. Hierbij kunnen de onderzoekers
op ieder moment beslissen dat de e↵ectschatting precies genoeg is om de studie te
kunnen stoppen en beleid aan te passen.
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Leren van vrije tekst Voordat flexibele onderzoeken met als doel inferentie
zoals hierboven beschreven kunnen worden opgezet, is het onmisbaar dat onder-
zoeksdata in het juiste format ontsloten wordt en geëxploreerd wordt voor hypothe-
sevorming. Binnen de psychiatrie wordt veel informatie opgeslagen in de vorm van
vrije tekst, wat zowel exploratief onderzoek als statistische inferentie bemoeilijkt.
Tegelijkertijd is het onmogelijk van clinici te verwachten dat zij alle gegevens in
tabulaire vorm in het elektronisch patiëntdossier registreren. Om deze redenen
spelen tekstmining en informatie extractie een steeds belangrijkere rol in de ex-
ploratieve fase van medisch onderzoek. In hoofdstuk 4 wordt onderzocht of met
deze technieken informatie over behandeluitkomsten uit routinematig geschreven
klinische teksten geëxtraheerd kan worden, om later patronen te kunnen herkennen
in de combinatie van deze uitkomsten, patiëntkarakteristieken en behandelkeuzes.

Netwerkanalyse Een methode voor het ontdekken van patronen bij uitstek
passend bij de complexiteit van psychiatrische pathologie is Bayesiaanse netwerk-
analyse. Met deze analysemethode kunnen causale of voorspellende verbanden
tussen patiëntkarakteristieken, behandelkeuzes en een of meerdere uitkomsten ont-
dekt worden. De uitkomst van de analyse kan inzichtelijk gevisualiseerd worden
in netwerkvorm. In hoofdstuk 5 van dit proefschrift wordt Bayesiaanse netwerk-
analyse gecombineerd met de tekstmining methode ontwikkeld in hoofdstuk 4 om
patronen te ontdekken en hypotheses te ontwikkelen over de uitkomsten na be-
handeling met verschillende typen antidepressiva op basis van routinematig verza-
melde klinische data in twee instituten voor mentale gezondheidszorg. Bayesi-
aanse netwerkern bieden ook de mogelijkheid voor het integreren van voorkennis:
in hoofdstuk 6 wordt voorkennis uit medische literatuur gecombineerd met ex-
pertkennis van psychiaters om een Bayesiaans netwerk voor het modelleren van
uitkomsten na behandeling met electroconvulsietherapie te verbeteren.

Leren voor specifieke groepen patiënten Het onderzoek in hoofdstuk 5 en
6 bracht meerdere kansrijke hypotheses over behandele↵ecten bij specifieke, kleine
groepen patienten voort, die verdere validatie middels prospectief onderzoek be-
hoeven om een robuuste e↵ectschatting te kunnen maken. In hoofdstuk 7 worden
de methodes ontwikkeld in hoofdstuk 2 en 3 uitgebreid voor onderzoeksvragen
van deze vorm, waarbij behandele↵ecten in verschillende datastromen prospectief
woren geanalyseerd en ook nog rekening gehouden wordt met het type patiënt:
de data wordt gestratificeerd naar het type patiënt. Om de mogelijkheid om be-
handele↵ecten te detecteren met deze onderzoeksmethode te verbeteren, wordt
het e↵ect van informatieuitwisseling tussen de patiëntgroepen op een zelflerende
manier onderzocht. Uiteindelijk wordt gëıllustreerd hoe een onderzoeksopzet om
een van de resulterende hypothesen uit hoofdstuk 5 er uit zou kunnen zien.

Makkelijker valide medisch onderzoek In dit proefschrift zijn nieuwe metho-
den ontwikkeld om medisch onderzoek op een meer flexibele en makkelijkere manier
op te zetten: met deze nieuwe methoden is het mogelijk om onderzoeksresultaten
in werkelijke tijd, al tijdens te studie te analyseren en eventueel eerder te beslissen
of langer door te gaan als meer informatie verzameld moet worden. Ook zijn deze
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methoden direct uit te breiden naar continue analyse over meerdere onderzoeksin-
stellingen. Continuering van het werk van het Enabling Personalized Interventions
consortium en soortgelijke initiatieven in de komende jaren zal hopelijk de com-
plexe data-infrastuctuur die nodig is voor dit soort flexibele studies met meerdere
deelnemende ziekenhuizen mogelijk maken, zodat daadwerkelijk toegewerkt kan
gaan worden naar gepersonaliseerde behandelingen door valide e↵ectschattingen
in specifieke groepen patiënten.
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Appendix with Supplementary
Material

Supplementary material for chapter 2

Appendix S2.A contains detailed proofs. Appendix S2.B contains a detailed de-
scription of the numerical approach to calculating e-variables for restricted H1.
Appendix S2.C contains a detailed description of Gunel-Dickey Bayes factors. Ap-
pendix S2.D contains optional stopping experiments. Appendix S2.E explains how
to adapt the block group sizes na and nb based on past data.

S2.A Proofs

The proofs below repeatedly use Theorem 1 of Grünwald et al. [2022a] and a direct
corollary (called Corollary 2 by Grünwald et al. [2022a]), which we restate here for
convenience, combined as a single statement. We use the notation adopted later
in the paper: for H0 = {P✓ : ✓ 2 ⇥0} and, for W a distribution on ⇥0, we write
PW =

R
P✓dW (✓).

Theorem (Theorem 1 of Grünwald et al. [2022a]) Let Y be a random
variable taking values in a set Y. Suppose Q is a probability distribution for Y

with density q that is strictly positive on all of Y and let H0 = {P✓ : ✓ 2 ⇥0} be
a set of distributions for Y where each P✓ has density p✓. Let W0 be the set all
distributions on ⇥0. Assume infW02W0(⇥0) D(QkPW0) < 1. Then (a) there exists
a (potentially sub-) distribution P

⇤
0 with density p

⇤
0 such that

S
⇤ :=

q(Y )

p⇤0(Y )

is an e-variable (p⇤0 is called the Reverse Information Projection (RIPr) of q onto
{pW : W 2 W0} [Li, 1999, Li and Barron, 2000, Grünwald et al., 2022a]). More-
over, (b), S⇤ satisfies

sup
S2E(⇥0)

EY⇠Q[logS] = EY⇠Q[logS
⇤] = inf

W02W0(⇥0)
D(QkPW0) = D(QkP

⇤
0 ).

(A.1)
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and is thus the Q-GRO e-variable for Y . If the minimum is achieved by some W ⇤
0 ,

i.e. D(QkP
⇤
0 ) = D(QkPW⇤

0
), then P

⇤
0 = PW⇤

0
. Moreover, (c), if there exists an

e-variable S of the form q(Y )/pW0(Y ) for some W0 2 W0 then W0 must achieve
the infimum in (A.1) and S must be essentially equal to S

⇤ in the sense that
for all P 2 H0 [ {Q}, P (S⇤ = q(Y )/pW0(Y )) = 1. Similarly (d), if there exists
a W

⇤
0 2 W0 that achieves the infimum in (A.1) then S = q(Y )/pW⇤

0
(Y ) is an

e-variable and S is again essentially equal to S
⇤.

S2.A.1 Proof of Propositions

Proof of Proposition 1 Below we state and prove a slight generalization of
Proposition 1.

Proposition 4 (generalization). Let H1 = {Q} be a singleton and let H0 =
{P✓ : ✓ 2 ⇥0} be such that for some distribution W on ⇥0, D(QkPW ) < 1. For
general ✓ 2 ⇥0 and distributions W on ⇥0, define S✓,(j) := q(Y(j))/p✓(Y(j)) and
SW,(j) = q(Y(j))/pW (Y(j)). We have:

1. Suppose there exists a distributionW on ⇥0 such that SW,(1) is an e-variable.
Then SW,(1) is the Q-GRO e-variable for Y(1). In particular, if W puts mass
1 on a particular ✓� 2 ⇥0, then SW,(1) = S✓�,(1) is the Q-GRO e-variable.

2. If⇥0 = {✓0} is simple then, with the priorW0 putting mass 1 on ✓0, SW0,(1) =
S✓0,(1) is an e-variable and hence, by the above, also the Q-GRO e-variable.

3. If, for some ✓
�
2 ⇥0, S✓�,(1) is an e-variable and we further assume that

Y(1), Y(2), . . . are i.i.d. according to all distributions inH0[H1, then S
(m)
gro(Q) =Qm

j=1 S✓�,(j); that is, the Q-GRO optimal (unconditional) e-variable for Y (m)

is the product of the individual Q-GRO optimal e-variables.

Proof. Part 1 The theorem above, part (b), implies, with Y = Y(1), that some
Q-GRO e-variable S

⇤ for Y(1) exists. Part (c) then implies that we can take S
⇤ to

be equal to SW,(1). This implies the statement.
Part 2 is immediate.
Part 3 We assume that S✓�,(1) is an e–variable. Then the i.i.d. assumption

implies that S(m)
✓� :=

Qm
j=1 S✓�,(j) =

Q
q(Y(j))/p✓�(Y(j)) is also an e-variable. But

[Grünwald et al., 2022a, Theorem 1], part (c) as stated above implies (by taking a
distribution W putting mass 1 on ✓) that for H0 for which data are i.i.d., for each

m � 1, that if a ✓ 2 ⇥0 exists such that S(m)
✓ is an e-variable, then S

(m)
✓ must be

the Q-GRO e-variable for Y (m). This proves the statement.

Proof of Proposition 2 The formulae for ✓̆a|Y (j�1) and ✓̆b|Y
(j�1) are standard

expressions for the Bayes predictive distribution based on the given beta priors;
we omit further details. As to the expression for ✓̆0|Y (j�1) in terms of  = nb/na:
Straightforward rewriting gives, for general ↵a,↵b,�a,�b:

✓̆0|Y
(j�1) =

1

1 + 
✓̆a|Y

(j�1) +


1 + 
✓̆b|Y

(j�1)
. (A.2)
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If we plug in the expressions for ✓̆a|Y
(j�1)

, ✓̆b|Y
(j�1) and we instantiate to ↵b =

↵a, and �b = �a, this becomes

✓̆0|Y
(j�1) =

1

1 + 

Ua + ↵a

na(j � 1) + ↵a + �a
+



1 + 

Ub + ↵b

(na(j � 1) + ↵a + �a)

=
1

1 + 

Ua + Ub + (1 + )↵a

na(j � 1) + ↵a + �a
=

U + (1 + )↵a

n(j � 1) + (1 + )↵a + (1 + )�a
,

which is what we had to prove.

S2.A.2 Proof of Theorem 1

We first restate Theorem 1 in its extended version that holds for k � 2 data
streams. Let ~n = (n1, . . . , nk), n =

Pk
g=1 ng,

~✓ = (✓a, . . . , ✓k) 2 ⇥k and ~y
n be

as defined in the main text (3.3). We use ‘~Y n
⇠ P✓⇤ ’ as an abbreviation for ‘

Y
n1
1 ⇠ P✓⇤

1
; . . . ;Y nk

k ⇠ P✓⇤
k
’.

Theorem .1 (extended). Let

s(~yn;~n, ~✓⇤) :=
kY

g=1

p✓⇤
g
(y

ng
g )

Qng

i=1

⇣Pk
g0=1

ng0

n p✓⇤
g0
(yi,g)

⌘ .

The random variable S[~n,~✓⇤] := s(~Y n;~n, ~✓⇤) is an e-variable, i.e. we have:

sup
✓2⇥

EV n⇠P✓

h
s(V n;~n, ~✓⇤)

i
 1.

Moreover, if {P✓ : ✓ 2 ⇥} is a convex set of distributions, then S[~n,~✓⇤] is the (~✓⇤)-

GRO e-variable: for any non-negative function s
0 on Y

n satisfying
sup✓2⇥ EV n⇠P✓ [s

0(V n)]  1, we have:

E~Y n⇠P✓⇤
[log s(~Y n;~n, ~✓⇤)] � E~Y n⇠P✓⇤

[log s0(~Y n)].

Proof of Theorem .1 The following fact plays a central role in the proof:

Fact For g 2 (1, ..., k), let ng 2 N, n :=
Pk

g=1 ng and let ug 2 R+. Suppose that
Pk

g=1 ngug  n. Then
Qk

g=1 u
ng
g  1.

This result follows from the following standard generalization of Young’s inequality
to k numbers: for any k numbers u1, . . . , uk 2 R+

0 and any k nonnegative numbers

p1, . . . , pk with
Pk

g=1 pg = 1, we have
Qk

g=1 u
pg
g 

Pk
g=1 pgug. Applying this with

pg = ng/n to ug and ng as above, we get
Qk

g=1 u
ng/n
g 

Pk
g=1(ngug)/n  1, and

the result follows by exponentiating to the power n.
Part 1 For y 2 Y, set set p�(y) :=

Pk
g=1(ng/n)p✓⇤

g
(y) and p

�(ym) =
Qm

i=1 p
�(yi).
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For all ✓ 2 ⇥ we have:

EV n⇠P✓

h
s(V n;~n, ~✓⇤)

i
=

kY

g=1

EY
ng
g ⇠P✓

"
p✓⇤

g
(Y

ng
g )

p�(Y
ng
g )

#
=

kY

g=1

 
EY⇠P✓

"
p✓⇤

g
(Y )

p�(Y )

#!ng

.

(A.3)

We also have

kX

g=1

ng

n
EY⇠P✓

"
p✓⇤

g
(Y )

p�(Y )

#
= EY⇠P✓

2

4
kX

g=1

ng

n
·

p✓⇤
g
(Y )

Pk
g0=1

ng0

n p✓⇤
g0
(Y )

3

5 = 1. (A.4)

The result now follows by combining (A.3) with (A.4) using the Fact further
above.
Part 2 By convexity of {P✓ : ✓ 2 ⇥}, there exists ✓

�
2 ⇥ such that p✓� =Pk

g=1(ng/n)p✓⇤
g
and then the numerator in (A.4) can we rewritten as p✓�(~y). The

GRO-property is now an immediate consequence of Proposition 4, Part 1.

S2.B Numerical approach to calculating e-variables for re-
stricted H1

In this subsection we describe how we propose to approximate the beta prior and
posterior on the restricted H1 with parameter space ⇥(�), as defined in (5.1). Note
that we limit ourselves to � > 0 in this detailed description; for � < 0 one can apply
an entirely equivalent approach, with an extra term in the reparameterization. We
define

⇣ =

(
� if d((✓a, ✓b)) = ✓b � ✓a,

0 if d((✓a, ✓b)) = log-odds-ratio(✓a, ✓b),

such that we have ✓a 2 (0, 1 � ⇣) and in both cases, ✓b is completely determined
by ✓a: ✓b = d

�1(�; ✓a). Hence, our density estimation problem now becomes one-
dimensional, which enables us to put a discretized prior on the restricted parameter
space.

First, we discretize the parameter space ⇥a to a grid (a vector) with precision
K,K 2 (0, 1 � ⇣) and 1/K 2 N+: ✓̄a = (K, 2K, 3K, . . . , 1� ⇣). Then, we repa-
rameterize ✓a = (1� ⇣)⇢, with ⇢ 2 (0, 1). Then, we have
⇢̄ = (K/(1� ⇣), 2K/(1� ⇣), . . . , 1) . For the discretized grid ⇢̄, we compute the
prior W = Beta(↵,�) densities and normalize them, which also gives us the dis-
cretized densities for each ✓

i
a 2 ✓̄a (with i 2 (1, 2, . . . , 1/K)):

⇡↵,�,⇣(✓
i
a) =

Beta( ✓i
a

1�⇣ ;↵,�)
P 1

K
k=1 Beta(

✓k
a

1�⇣ ;↵,�)
.

For all elements of ✓̄a, the corresponding ✓b is retrieved and the likelihood of in-
coming data points p✓a,✓b(Y

(j�1)) is calculated. We can then estimate the posterior

160



density of ✓ia 2 ✓̄a:

p(✓ia|Y
(j�1)) =

⇡↵,�,⇣(✓ia)p✓i
a,✓

i
b
(Y (j�1))

P 1
K
k=1 ⇡↵,�,⇣(✓ka)p✓k

a ,✓
k
b
(Y (j�1))

.

We can then estimate ✓̆a|Y
(j�1) = E✓a⇠W |Y (j�1) [✓a] as

P 1
K
i=1 p(✓

i
a|Y

(j�1))✓ia, and

✓̆b|Y
(j�1) = d

�1(�; ✓a|Y (j�1)).

S2.C The Gunel-Dickey Bayes Factors do not give rise to
e–variables

Sampling Fixed Bayes factor (10) for 2x2 table

Poisson none 8(n+1)(n1+1)
(n+4)(n+2)

h
na1!nb1!na0!nb0!n!
(n1+1)!n0!na!nb!

i

Joint multinomial n 6(n+1)(n1+1)
(n+3)(n+2)

h
na1!nb1!na0!nb0!n!
(n1+1)!n0!na!nb!

i

Independent multinomial na, nb

� n
n1

�
/(
� na

na1

�� nb

nb1

�
) (n+1)
(na+1)(nb+1)

Hypergeometric na, nb, n1
na1!nb1!na0!nb0!n!Q

i2{a,b,0,1}(ni+Ini=min(na,nb,n0,n1))!

Table S2.1: Overview of (objective) Bayes factors for contingency table testing
provided by Gunel and Dickey [1974] and Jamil et al. [2017].

We will not consider the hypergeometric and joint multinomial scenarios for
this paper, where the number of successes n1 is fixed, as they do not match the
block-wise data design in this paper. The Bayes factor for the Poisson sampling
scheme is not an e-variable, as the expectation under the null hypothesis with
Poisson distributions on individual cell counts exceeds 1 for rates � � 1:

Enrc⇠Poisson(�rc) [BF10(Na1, Nb1, Na0, Nb0)] =
1X

na1=0

. . .

1X

nb0=0

⇡�a1(na1) . . .⇡�b0(nb0)BF10(na1, nb1, na0, nb0) =

8

exp(�a1 + . . .+ �b0)

1X

na1=0

. . .

1X

nb0=0

�
na1
a1 . . .�

nb0
b0

(n+ 1)(n1 + 1)

(n+ 4)(n+ 2)

n!

(n1 + 1)!n0!na!nb!
,

as illustrated numerically in Figure S2.1 for increasing limits for the sums
Pmaxnrc

nrc=1 .

For the independent multinomial sampling scheme, let, without loss of gener-
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(a) The Gunel-Dickey Bayes fac-
tor for the Poisson sampling
scheme is not an e-variable:Pmaxnrc

na1=0 . . .
Pmaxnrc

nb0=0 ⇡�a1(na1) . . .⇡�b0(nb0)
BF10(na1, nb1, na0, nb0) for various
maxnrc and �rc.

(b) The Gunel-Dickey Bayes factor for
the independent multinominal sam-
pling scheme is not an e-variable:
ENa1,Nb1⇠Binomial(✓) [BF10(Na1, Nb1|na, nb)]
for various choices of ✓ and ng.

Figure S2.1: GD
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ality, na < nb. We get, with n0 = n� n1,

ENa1,Nb1⇠Binomial(✓) [BF10(Na1, Nb1|na, nb)] =
naX

na1=0

nbX

nb1=0

✓
na

na1

◆✓
nb

nb1

◆
✓
n1(1� ✓)n0

� n
n1

�
� na

na1

�� nb

nb1

� (n+ 1)

(na + 1)(nb + 1)
=

(n+ 1)

(na + 1)(nb + 1)

naX

na1=0

nbX

nb1=0

✓
n

n1

◆
✓
n1(1� ✓)n0

Numerical simulations show that, for a range of choices for n, na and ✓ this exceeds
1; see Figure S2.1.
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S2.D Type-I error guarantee under optional stopping

Type-I Error In Figure S2.2 type-I error rates of several e-variables and Fisher’s
exact test estimated through a simulation experiment are depicted. 2000 samples
of length 1000 were drawn according to a Bernoulli(0.1) distribution to represent
1000 data streams in two groups. After each complete block m 2 {1, . . . , 1000}
an e-value or p-value was calculated and the proportion of rejected experiments
up until m with each test type was recorded. As the stream lengths increase, the
type-I error rate under (incorrectly applied) optional stopping with Fisher’s exact
test increases quickly. The type-I error rate of the e-variables remains bounded.

Figure S2.2: Type-I error rates for various e-variables and Fisher’s exact test
under optional stopping estimated with 1000 simulations of two Bernoulli(0.1)
data streams of length 1000, with na = nb = 1. Significance level ↵ = 0.05 was
used (grey dashed line). For the safe tests, beta prior parameter values used were
� = ↵a = �a = ↵b = �b = 1/2 (� = 0.18 gave comparable results). For the
e-variables with restrictions on H1, we used � = 0.05 and ✓a = 0.1.

S2.E Adjusting na and nb based on past data

To see how to choose na and nb for subsequent blocks based on past data, we first
need to formalize the fact that data in di↵erent streams may arrive asynchronously.
Thus, let t = 1, 2, . . . represent global (‘calendar’) time, and introduce correspond-
ing random variables Vt and Gt: at each t, we obtain an outcome Vt in Y in group
Gt 2 {a, b}. We make no assumptions about the relative ordering of outcomes from
the two groups. At time t, we have that ta, the number of a’s that are observed
so far, and tb, the number of b’s observed so far, satisfy ta + tb = t, but subject to
this constraint we allow them coming in any order. We now introduce a function
f :
S

t�0 Y
t
⇥ {0, 1}t ! {stop-block,continue} that, at each point in time t,
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decides whether the current block should end (f(V t
, G

t) = stop-block) or not
(f(V t

, G
t) = continue). As long as the value of this function does not depend

on the actual outcomes Vt observed after the last block that was completed, all re-
quirements for having a test martingale and thus for safe optional stopping are met.
For example, suppose that on data V1, G1, V2, G2, . . . , Vt, Gt observed so-far, f has
output stop-block atm occasions, the last time at t0 = t�k for some k > 0. Then
f(t) is allowed to depend on Y

(m) and G
t, but for any fixed Y

(m) = y
(m)

, G
t = g

t,
for all yk, y0k 2 Y

k, we must have f((y(m)
, y

k), gt) = f((y(m)
, y

0k), gt).
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Supplementary material for chapter 3

Appendix section S3.A contains proofs and section S3.B contains extended simu-
lation results.

S3.A Proofs

Both proofs below use Theorem 1 of Grünwald et al. [2022a] and a direct corol-
lary (called Corollary 2 by Grünwald et al. [2022a]), which we re-state here,
for convenience, combined as a single statement. Recall that we use notation
PW :=

R
P~✓dW (~✓).

Theorem (Theorem 1 of Grünwald et al. [2022a]) Let Y be a random
variable taking values in a set Y. Suppose Q is a probability distribution for Y

with density q that is strictly positive on all of Y and let H0 = {P~✓ : ~✓ 2 ~⇥0} be a
set of distributions for Y where each P~✓ has density p~✓. Let W0 be the set of all

distributions on ~⇥0. Assume infW02W0(~⇥0)
D(QkPW0) < 1. Then (a) there exists

a (potentially sub-) distribution P
⇤
0 with density p

⇤
0 such that

S
⇤ :=

q(Y )

p⇤0(Y )

is an e-variable (p⇤0 is called the Reverse Information Projection (RIPr) of q onto
{pW : W 2 W0}). Moreover, (b), S⇤ satisfies

sup
S2E(~⇥0)

EY⇠Q[logS] = EY⇠Q[logS
⇤] = inf

W02W0(~⇥0)
D(QkPW0) = D(QkP

⇤
0 ).

(A.5)

(where E(~⇥0) is the set of all e-variables relative to null hypothesis H0) and S
⇤

is thus the Q-GRO e-variable for Y . If the minimum is achieved by some W
⇤
0 ,

i.e. D(QkP
⇤
0 ) = D(QkPW⇤

0
), then P

⇤
0 = PW⇤

0
. Moreover, (c), if there exists an

e-variable S of the form q(Y )/pW0(Y ) for some W0 2 W0 then W0 must achieve
the infimum in (A.5) and S must be essentially equal to S

⇤ in the sense that
for all P 2 H0 [ {Q}, P (S⇤ = q(Y )/pW0(Y )) = 1. Similarly (d), if there exists
a W

⇤
0 2 W0 that achieves the infimum in (A.5) then S = q(Y )/pW⇤

0
(Y ) is an

e-variable and S is again essentially equal to S
⇤.

Proof of Theorem 3.1 Part 1 The real idea behind the proof is the formula-
tion of the modified testing problem in which only a single outcome per block is
observed. This we already did in the main text. Linking the two is simply the last,
very simple step, with analogies to the proof of Part 1 of Theorem 1 in Turner
et al. [2021].

Let na, nb 2 N, n := na + nb and let u, v 2 R+. Suppose that nau+ nbv  n.
Then u

nav
nb  1, which follows immediately from applying Young’s inequality to
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u
na/n, vnb/n but can also be derived directly by writing v as function of u and

di↵erentiating log(unav
nb) to u.

Further, by independence, for (✓a, ✓b) 2 ~⇥0,

EY na
a ⇠P✓a ,Y

nb
b ⇠P✓b

[s0(Y na
a , Y

nb
b )] =

EY na
a ⇠P✓a


p✓⇤

a
(Y na

a )

p�(Y na
a |a)

�
·EY

nb
b ⇠P✓b


p✓⇤

b
(Y nb

b )

p�(Y nb
b |b)

�
=

✓
EY⇠P✓a


p✓⇤

a
(Y )

p�(Y |a)

�◆na

·

✓
EY⇠P✓b


p✓⇤

b
(Y )

p�(Y |b)

�◆nb

=

✓
EY⇠P 0

✓|a


p
0
✓⇤(Y |a)

p�(Y |a)

�◆na

·

✓
EY⇠P 0

✓|b


p
0
✓⇤(Y |b)

p�(Y |b)

�◆nb

. (A.6)

Combining the two facts stated above, (3.6) implies that the latter quantity is
bounded by 1.

Part 2 By lower-semicontinuity of the KL divergence in its second argument
(Posner’s theorem, used as in Grünwald et al. [2022a]) the infimum in (3.4) is
achieved by some prior distribution W

� so that by Theorem 1 of Grünwald et al.
[2022a] (part (b) in the formulation above), p�(· | ·) = p

0
W�(· | ·) and hence also

P
�(G, Y ) = P

0
W�(G, Y ). By convexity of H

0
0 and finiteness of the support of

P
0
~✓
(G, Y ), there must be some ~✓ such that P 0

W�(G, Y ) = P~✓(G, Y ) and hence also

p
0
W�(· | ·) = p

0
~✓
(· | ·), which shows (a). This means that we have now created an

e-variable for the original problem which can be written as p✓⇤
a,✓

⇤
b
/pW0 with pW0

a prior distribution on ~✓0 (namely, the one that puts mass 1 on ~✓). (b) is then
an immediate consequence of Theorem 1 of Grünwald et al. [2022a] (part (c) in
the formulation above). (note that we cannot draw this conclusion if H0

0 is not
convex; for then the distribution p

0
W� may not correspond to the distribution pW�

in the original problem — this correspondence is only guaranteed if p0W� coincides
with some p

0
~✓
.

Proof of Theorem 3.2 Recall that we assume that ~⇥0 is convex and compact.
We set kl0(✓a, ✓b) := D(P 0

✓⇤
a,✓

⇤
b
kP

0
✓a,✓b

) where D is the KL divergence as in (3.5),

i.e. for the modified setting in which P
0
✓a,✓b

is a distribution on a single outcome,
as discussed before Theorem 3.1. For the 2 ⇥ 2 model this KL divergence can be
written explicitly as

D(P 0
✓⇤
a,✓

⇤
b
kP

0
✓a,✓b) = EG⇠Q0EY⇠P 0

~✓⇤
|G

"
log

p
0
~✓⇤(Y |G)

p0~✓
(Y |G)

#
(A.7)

=
na

n
EY⇠P 0

✓⇤a


log

p✓⇤
a
(Y )

p✓a(Y )

�
+

nb

n
EY⇠P 0

✓⇤
b


log

p✓⇤
b
(Y )

p✓b(Y )

�

=
na

n

X

ya2{0,1}

p✓⇤
a
(ya) log

p✓⇤
a
(ya)

p✓a(ya)
+

nb

n

X

yb2{0,1}

p✓⇤
b
(yb) log

p✓⇤
b
(yb)

p✓b(yb)
.
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From (3.8) we now see that nkl0(✓a, ✓b) = kl(✓a, ✓b). We will prove the theorem
with kl replaced by kl0 and H0 by H

0
0; since the two KL’s agree up to a constant

factor of n, all results transfer to the kl mentioned in the theorem statement.
Since ~⇥0 is compact in the Euclidean topology and all distributions in H

0
0 can

be represented as 2-dimensional vectors, i.e. they have common and finite support,
we must have that H0 is compact in the weak topology so we can use the lower-
semicontinuity of KL divergence in its second argument (Posner’s theorem) as in
[Grünwald et al., 2022a] to give us that the minimum KL divergence minkl0(✓a, ✓b)
is achieved by some (✓�a, ✓

�
b ). Since KL divergence is strictly convex in its second

argument and H
0
0 is convex (this is the place where we need to use kl0 rather than

kl: H0 may not be convex!), the minimum must be achieved uniquely. Since KL
divergence kl0(✓a, ✓b) is nonnegative and 0 only if (✓a, ✓b) = (✓⇤a, ✓

⇤
b ), it follows

that (✓�a, ✓
�
b ) = (✓⇤a, ✓

⇤
b ) if minkl(✓a, ✓b) = 0. Otherwise, since we assume (✓⇤a, ✓

⇤
b )

to be in the interior of [0, 1]2, kl(✓a, ✓b) = 1 i↵ (✓a, ✓b) lies on the boundary of
[0, 1]2. Thus, (✓�a, ✓

�
b ) must lie in the interior of [0, 1]2 as well. (✓�a, ✓

�
b ) cannot lie

in the interior of ~⇥0 though: for any point (✓a, ✓b) in the interior of ~⇥0 we can
draw a line segment between this point and (✓⇤a, ✓

⇤
b ). Di↵erentiation along that

line gives that kl0(✓a, ✓b) monotonically decreases as we move towards (✓⇤a, ✓
⇤
b ), so

the minimum within the closed set ~⇥0 must lie on its boundary.
It remains to show that (3.9) is the (✓⇤a, ✓

⇤
b )-GRO e-variable relative to H0. To

see this, note that, by convexity of H0
0, from Theorem 3.1, we must have that the

GRO e-variable for this original problem is of the form

p✓⇤
a
(yna

a )p✓⇤
b
(ynb

b )

p✓+
a
(yna

a )p✓+
b
(ynb

b )

for some (✓+a , ✓
+
b ). The result then follows again by Theorem 1 of Grünwald

et al. [2022a] (part (c) in the formulation above): this shows that the distribution
W0 that puts mass 1 on (✓+a , ✓

+
b ) minimizes, among all distributions W on ~⇥0,

D(P✓⇤
a,✓

⇤
b
kPW ). Since the set of such distributions includes all distributions that

put mass 1 on some (✓a, ✓b) 2 ~⇥0, we must have that (✓+a , ✓
+
b ) = (✓�a, ✓

�
b ).
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S3.B Extended simulation results

Numerical example We here give a small numerical example to illustrate the
construction of our confidence sequences. For this example, we will look in detail
at the data used to generate the second row of Figure 3.2a, the second panel,
where we have observed 500 data blocks, with 27 “successes” (y = 1) in group

a, and 136 “successes” in group b. To estimate �l and �r, S
(m)

[na,nb,W1;~⇥0]
as in

(7.14) was calculated for that specific data stream, for a grid of possible �, each
defining one ~⇥0; here, a grid with size 100 and a precision of 0.02 on [�1, 1] was
applied. The prior W1 for the posterior mean was chosen as a Beta prior with
↵ = � = 0.18 according to Turner et al. [2021]. The area corresponding to values

of � for which S
(m)

[na,nb,W1;~⇥0]
<

1
0.05 after block m = 500 represents the confidence

interval. For example, for the lower bound, �l, the smallest value of � that did
not lead to rejection was 0.15, with a corresponding e-value of 2.23. The e-value
corresponding to � = 0.13 was 24.17, hence this risk di↵erence was excluded from
the confidence interval.

Running intersection In Figure S3.1, confidence sequence width is compared
with and without applying the running intersection.

Figure S3.1: Confidence sequence with and without running intersection, for data
generated under P✓a,✓a+� with ✓a = 0.05, for a data stream of length 100. The
significance threshold was set to 0.05. The design was balanced, with data block
sizes na = 1 and nb = 1.
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Supplementary material for chapter 4

The following contains Section 1, examples of theme and change phrases used for
filtering sentences in the NLP pipeline, of the supplementary material for Chapter
4 in this thesis. The other sections of the supplementary material can be found
online in the publication corresponding to this chapter in BMC Psychiatry [Turner
et al., 2022].

Table S4.1: Examples from the lists used for rule-based filtering of the four themes
and change phrases

Category Dutch Translation to
English

Sentiment
score

Symptom reduction Angstiger More anxious -1

Angstigheid Anxiety -1

Agressie Aggression -1

Agresie Aggression
(misspelled)

-1

Somber Sad -1

Somer Sad (misspelled) -1

Rotgevoel Bad feeling -1

Doelloosheid Aimlessness -1

Social functioning Zelfstandig Independent 1

Zelfstandige Independent
(conjugation)

1

Zelfstandigheid Independence 1

Resocialiseren Resocialize 1

Participeert Participates 1

Vriendinnen Girlfriends 1

Vriendschappen Friendships 1

Verantwoordelijkheid Responsibility 1

General well-being Welbevinden Well-being 1

Welzijn Well-being
(synonym)

1

Hoop Hope 1

Zingeving Meaning 1

Zinvol Meaningful 1

Zelfwaardering Self-esteem 1

Eigenwaarde Self-esteem
(synonym)

1

Zelfvertrouwen Self-confidence 1

Zelfvetouwen Self-confidence
(misspelled)

1

Patient experience Voelde Felt 1

Nez In their own words
(abbreviated)

1

Voelt Feels 1
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Table with examples, continued
Category Dutch Translation to

English
Sentiment
score

Uitte Expressed 1

Verwoorde Articulated 1

Constateert Noted 1

Merkt Notes 1

Mekrt Notes (misspelled) 1

Change indicator Afnam Decreased -1

Afname Decrease -1

Afgenomen Decreased
(conjugation)

-1

Toenemende Increasing 1

Toenemde Increasing
(misspelled)

1

Verbeter Improve 1

Verminder Reduce -1

Vermindern Reduce (misspelled) -1
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Supplementary material for chapter 5

Table S5.1: Overview of antidepressant prescription groups and specific antide-
pressants present in the data

Group Antidepressant
MAOI Tranylcypromine

Moclobemide

Phenelzine

nSSRI Trazodone

Duloxetine

Venlafaxine

Other Bupropion

Vortioxetine

Agomelatine

Hyperici herba

SSRI Sertraline

Citalopram

Escitalopram

Fluoxetine

Paroxetine

Fluvoxamine

TetraCA Mirtazapine

Mianserine

TriCA Nortriptyline

Amitriptyline

Clomipramine

Imipramine

Doxepine

Maprotiline

Dosulepine

Table S5.2: Overview of therapeutic dose range for selection of antidepressant
treatment trajectories

antidepressant Minimal dose Maximal dose
tranylcypromine 10 60

phenelzine 8 120

moclobemide 100 600

clomipramine 10 250

nortriptyline 20 250

amitriptyline 10 150

imipramine 10 300
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Table with dose ranges, continued
antidepressant Minimal dose Maximal dose
dosulepin 50 225

doxepin 25 300

trimipramine NA NA

venlafaxine 75 375

mirtazapine 15 45

trazodone 100 400

bupropion 150 300

duloxetine 60 120

agomelatine 25 50

vortioxetine 5 20

hyperici herba NA NA

sertraline 50 200

citalopram 10 40

fluoxetine 20 60

escitalopram 5 20

paroxetine 20 50

fluvoxamine 50 300
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Supplementary material for chapter 6

The supplementary material for Chapter 6 can be found online in the publica-
tion corresponding to this chapter in Psychiatry Research as: Yuri van der Does,
Rosanne J. Turner, Miel J.H. Bartels, Karin Hagoort, Aaron Metselaar, Floortje
E. Scheepers, Peter D. Grünwald, Metten Somers and Edwin van Dellen. Out-
come prediction of electroconvulsive therapy for depression. Psychiatry Res. 2023
Aug;326:115328. doi: 10.1016/j.psychres.2023.115328
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Supplementary material for chapter 7

Appendix section S7.A contains detailed proofs and section S7.B additional ex-
periments and figures.

S7.A Proofs

Proof. (of theorem 7.2.1). First consider the basic case with E
(m) as in (7.8). As

we show below, we have, with E ⌘ EP✓⇤ ,

E
h
logE(m)

i
= E

2

4
mX

j=1

logSj

3

5 = E

2

4
X

j=1..m

X

x2{a,b}

X

i=1..nx

log
p✓̆x,kj

|Y (j�1)(Yj,x,i)

p✓̆0,kj
|Y (j�1)(Yj,x,i)

3

5 �

E

2

4
X

j=1..m

X

x2{a,b}

X

i=1..nx

log
p✓̆x,kj

|Y (j�1)(Yj,x,i)

p✓̃0,kj
(Yj,x,i)

3

5 �

E

2

66664

X

j=1..m
x2{a,b}
i=1..nx

log
p✓⇤

x,kj
(Yj,x,i)

p✓̃0,kj
(Yj,x,i)

�

X

k=1..K
x2{a,b}

log (nxmk)

3

77775
+O(1) =

X

k=1..K

mk ·D(P✓⇤
a,k,✓

⇤
b,k

kP✓̃0,k,✓̃0,k
)) +O(logm) (A.8)

where we use notation D(P✓⇤
a,✓

⇤
b
kP✓0,✓0) as in (7.4); and ✓̃0,k is defined as

argmin✓2[0,1] D(P✓⇤
a,k,✓

⇤
b,k

kP✓,✓) which by the same calculation as the one leading

up to (7.4, is given by ✓̃0,k = (na/n)✓⇤a,k +(nb/n)✓⇤b,k, and mk denotes the number
of times that an instance of block k was observed in the first m blocks, and we
remind the reader that +O(logm) may also indicate a negative di↵erence of order
logm. (A.8) immediately implies the result, using (7.6).

The first two equalities in (A.8) are immediate. The first inequality follows
because P✓̃0,kj

,✓̃0,kj
minimizes KL divergence to P✓⇤

a,kj
,✓⇤

b,kj
among all ✓ 2 [0, 1],

within each block j. The final equality follows by independence and basic calculus.
It remains to show the second inequality. This one follows because we use a prior
W (✓a,k, ✓b,k under which ✓a and ✓b are independently beta distributed with strictly
positive densities on (0, 1). We can then use a standard Laplace approximation of
the Bayesian marginal likelihood to obtain, for each fixed k 2 {1, . . . ,K}, where
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the expectation E is over Y 0
(1), . . . , Y

0
(m0) ⇠ P✓⇤

a,k,✓
⇤
b,k

:

E

2

4� log
m0Y

j=1

Y

x2{a,b}

nxY

i=1

p✓̆x,k|Y (j�1)(Yj,x,i)

3

5 =

E

2

4� log

0

@
Z m0Y

j=1

Y

x2{a,b}

nxY

i=1

p✓x,k(Yj,x,i)

1

A dW (✓a,k, ✓b,k)

3

5

 E

2

4
m0X

j=1

� log p✓⇤
a,k,✓

⇤
b,k

(Y(j))

3

5+ log(na + nb)m
0 +O(1).

Here the equality is standard telescoping of the Bayesian marginal likelihood, and
the inequality is the Laplace approximation, i.e. the same calculation as the one
leading up to the (d/2) log n BIC approximation of Bayesian marginal likelihood
for a d-parameter exponential family; here d = 2 since we have two free parameters,
✓
⇤
a,k and ✓

⇤
b,k; see [Grünwald, 2007, Chapter 8] for proof and detailed explanation).

This shows the result for the basic case that E(m) is arrived at by multiplica-

tion, (7.8). The case for E
(m)
mix follows similarly by noting that, by construction,

E
(m)
mix � E

(m)
none/3, where E

(m)
none denotes the standard e-process with multiplication

and without cross-talk, for which we have already (just) shown the result.
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S7.B Additional experiments

(a) all di↵erent
(b) same control group
rate (c) same OR

(d) all di↵erent
(e) same control group
rate (f) same OR

Figure S7.1: Examples of 95% stratified confidence intervals ((a), (b) and (c))
and mean confidence interval widths estimated over 100 runs ((d), (e) and (f))
with di↵erent types of cross-talk, including mixing di↵erent types of cross-talk. In
(a), (b) and (c) the true risk di↵erence of the data generating distribution in each
stratum is indicated by a dashed line. For (a) and (d), the data were generated by
distributions with di↵erent control group success rates (0.1, 0.2 and 0.8) and risk
di↵erences (0.05, 0.4 and �0.6) in each stratum. For (b) and (e), strata sizes were
unbalanced: as can be seen for stratum 1, the red points, data collection stopped
after 10 batches. Control group success rates were all 0.5 and risk di↵erences were
di↵erent (�0.49, �0.25 and 0.1). For (c) and (f), strata sizes were unbalanced as
well, and now odds ratios were the same in each stratum (2), but control group
rates di↵ered again (0.2, 0.25 and 0.85).
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(a) Upper bound sequence
example (b) Average di↵erence with true minimum

Figure S7.2: Example of a confidence sequence and average di↵erence from upper
bound to true minimal e↵ect size value through 100 simulations, for di↵erent switch
priors on j

⇤. 30 observations were made in each stratum, and the real di↵erences
were 0.5, 0.4 and 0.05. For the priors on early switch times, all prior mass was
distributed between batch numbers 5 up to 10.↵ was set to 0.05.

Figure S7.3: Average interval width (upper bound for the respective methods
minus lower bound estimated with the minimum method) of confidence sequences
for the lower- (LB) and upper (UB) bounds of the minimum e↵ect and estimated
through 100 simulations. 30 observations were made in each stratum, and the
real di↵erences were 0.5, 0.4 and 0.05. With the switch method, a uniform prior
ranging from j

⇤ = 5 until 30 was applied. With the pseudo-Bayesian approach,
the learning rate ⌘ was set to 1 and 2. ↵ was set to 0.05.
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(a) Confidence sequence example

(b) Average width

Figure S7.4: Example of confidence sequences for the lower- (LB) and upper (UB)
bounds of the minimum e↵ect, and average interval width (upper bound for the
respective methods minus lower bound estimated with the minimum method). 30
observations were made in each stratum, and the real di↵erences were 0.4, 0.4 and
0.5. With the switch method, a uniform prior ranging from mswitch = 5 until 30
was applied. With the pseudo-Bayesian approach, the learning rate ⌘ was set to
1 and 2. ↵ was set to 0.05.

Figure S7.5: Simulated example of a confidence sequence for the mean e↵ect across
subpopulations. 25 observations were made in each stratum, and the real risk
di↵erences were 0.2 and 0.5. The confidence sequence for the mean di↵erence
is plotted alongside the confidence sequence for the minimum of the di↵erences,
estimated with pseudo-Bayesian averaging and a uniform switch prior. ↵ was set
to 0.05.
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