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Summary

Inspectors are indispensable for monitoring essential regulations that protect the safe
and clean transport of goods. However, finding all dangerous behavior with a limited
number of inspectors and increasing personnel shortages is challenging. That is the
reason inspectorates are looking for innovative methods to find dangerous behavior and
improve compliance. We consider a data-driven approach to arrive at smart inspection.
Smart inspection is performed when we assess compliance of vehicles in a (1) accurate,
(2) automated, (3) fair, and (4) interpretable manner.

Models that assess vehicle compliance can be unintentionally biased against certain
vehicle features. These vehicle features are divided into two classes, being static and
dynamic features. Examples of static features are the type of vehicle, the size, the insurer,
and the country of registration. A vehicle owner can change some of these features
(such as insurer and country of registration) to influence an automated model without
any actual reduction in the vehicle’s dangerous behavior. Therefore, we choose to use
dynamic features of the vehicles (such as the routes to be chosen), which say something
about the behavior of a vehicle and its operator. We use networks to encode the vehicle’s
behavior, allowing us to model a particular part of the transport system as a whole. The
main problem that the thesis aims to address is thus how network methods can leverage
this behavioral data for the smart inspection of vehicles.

We start in Chapter 1 with establishing the context of smart vehicle inspection and
the methods used to achieve it. As mentioned, we use behavioral data that we encode
with the help of networks. Network science is a young multidisciplinary field of study in
which much attention has been paid to the universal properties of networks. Many of
those properties are also present in our temporal transport networks. A task often applied
to temporal networks is link prediction, aiming at predicting new links between existing
nodes in a temporal network. A temporal network is a network where the creation time
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of edges is known. Link prediction is also a key aspect of our work; Chapters 2 to 4 relate
to this task.

Previous research has shown a relationship between a network’s structure and perfor-
mance in a related task, being missing link prediction. Our work extended this line of
research by applying it to the link prediction task in temporal networks. We are partic-
ularly interested in uncovering the relationship between network structure and model
performance in link prediction.

In Chapter 2, we, therefore, analyze the link prediction task in 26 temporal networks.
We do so using a machine-learned classification model fed with topological features. The
model independently learns which pairs of nodes likely connect (and which do not). We
mention four results obtained from experiments. First, we show that the performance
of link prediction is higher when the temporal aspect is considered. Second, we find a
relation between the overall structure of a network and the extent to which links can be
predicted. In particular, the link prediction model performs well on networks exhibiting
negative degree assortativity, i.e., networks wherein low-degree nodes primarily link
to high-degree nodes (and vice versa). Third, we find that in a network with discrete
events, we can improve link prediction performance further by adequately encoding
discrete events. Fourth, we do not find any apparent performance differences between
node-oriented and edge-oriented features except for networks from the information
domain. Further research should reveal how this finding can be explained.

In machine learning on tabular data, it is common practice to validate and test model
performance by applying the model to data that is disjoint and independent of the data
used to train the model. However, independence cannot be guaranteed with relational
data as they occur in networks. Specifically, it is a nontrivial task to estimate rather
precisely the performance of link prediction models even when using adequate splits
into train, validation, and test sets. In Chapter 3, we, therefore, compare two common
approaches from the literature: (1) the random split, and (2) the temporal split. We
compare the performances of these two approaches on the link prediction task and find
that the random split gives overly optimistic results. The temporal split does give a more
realistic indication of performances. Furthermore, our results prove robust for a wide
selection of model parameters.

In the last three chapters, we explicitly focus on smart vehicle inspection. We start with
co-driving, the activity where two trucks drive “together”, i.e., pass by the same location
and time. Investigating the co-driving behavior of trucks is important because it can
positively impact the environment. As a case in point, co-driving may reduce aerodynamic
drag and, therefore, may result in optimized fuel usage. We investigate how network
structure and vehicle characteristics relate to co-driving behavior. As such, the main topic
of Chapter 4 is the truck co-driving network. In this network, every node is a truck, and a
link exists when two trucks are systematically co-driving. Systematic co-driving is when
two trucks frequently drive together. Data for such a study were collected from 18,000,000
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truck movements in the Netherlands. We have used insights gained by applying link
prediction to this network to understand truck co-driving behavior. The model uses
features that are categorized into (1) spatiotemporal, (2) topological, (3) node-, and
(4) path-oriented features. We found that truck co-driving behavior is best encoded using
topological features and, to a lesser extent, the path-oriented and spatiotemporal features.
Our findings indicate that the dynamics of the co-driving network exhibit significant
social network effects.

We also looked at its communities to better understand the truck co-driving network.
A so-called community detection algorithm can use the structure of a network to arrive at
a good partitioning into groups of densely connected nodes. In our specific case, however,
we also have information on the truck (i.e., the network’s nodes) that we use to arrive
at a proper partitioning into communities. We investigated how node attributes can
be exploited to automatically create a good partitioning of a co-driving network into
communities.

In Chapter 5, we propose a new metric, the average maximal community assortativity,
to better understand the structure of communities in a network using node attribute
assortativity. More specifically, we propose to select solutions to the community detection
problem that maximizes the average maximal community assortativity metric. A high
assortativity for a particular feature then indicates a better community representation. In
the case of the truck co-driving network, we observe that geographical node attributes
especially characterize communities.

This thesis’s final topic relates to smart vehicle inspection and network science. It
concerns the question of how ship behavior can be utilized to enable smart inspection of
cargo ships.

In Chapter 6, we provide such an approach to smart cargo ship inspection. We use
a model that is interpretable and fair. The model cannot only use static administrative
ship properties in its prediction but, in particular, utilizes features describing the ship’s
behavior. By incorporating ship behavior, meaningful characteristics can be derived and
utilized as input for the model. It leads us to a smart risk assessment of cargo ships. Our
approach allows inspectorates to trace specifically noncompliant cargo ships. Thereby,
this chapter contributes to improved maritime safety and environmental protection.

In general, we demonstrate how network science and behavioral data can be utilized
to arrive at a smart inspection of vehicles. With this explanation and interpretation of
smart inspection, we are sure to have addressed the overall problem statement of the
thesis.




