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Conclusions

In this final chapter, we first answer the five research questions in|Section 7.1} Subse-
quently, our answer to the problem statement is formulated in [Section 7.2 Lastly, five
future research directions (in addition to|Section 6.7)) are proposed in[Section 7.3

7.1 Answers to the research questions

We reiterate the research questions formulated in Each research question is
answered separately, along with references to relevant sections in which details can be
found.

[Research question 1:] What is the relation between network structure and model

performance in link prediction?

In we considered a large set of temporal, structurally diverse, real-world
networks. We investigated the relationship between the structure of these networks and
the model performance in link prediction for this set of networks. We found several
structural network properties related to model performance in link prediction. Most
notably, a negative correlation was discovered between network degree assortativity and
link prediction performance. This negative correlation was also observed for real-world
networks that had their degree assortativity artificially altered by means of a degree
rewiring process. Our research showed that link prediction performance is generally
higher in degree disassortative networks. In degree disassortative networks, the numerous
low-degree nodes connect more frequently with hubs than with other low-degree nodes.
For these low-degree nodes, the preferential attachment feature will provide higher
scores for high-degree candidate node pairs. Hence, the supervised model can use this
information to perform better (Finding 1).

In addition, regarding the temporal structure of networks, we distinguished between
two classes of temporal networks, being temporal networks (1) containing only persistent
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relations and (2) also containing discrete events (see[Section 2.1)). We found that model
performance in link prediction improved significantly when in networks with discrete
events, all events were explicitly taken into account. We coin this method “past event
aggregation”. It essentially is a method in which all information contained in both
persistent relations and all discrete events is used (Finding 2).

Together, these two findings provide an answer to [Research question 1}

[Research question 2:|How can we obtain accurate estimates of the performance of link

prediction models by using adequate splits into the train, validation, and test set?

In we described two dominant methods from the literature used to split
network data in a train, validation, and test set for link prediction. We applied these two
methods, called: the (1) random split and (2) temporal split, to six different temporal
networks that have a considerable number of nodes and edges. We learned that the
random split method provides (too) optimistic results. Therefore, the temporal split
method should be used because we confirmed that it gives a more realistic indication of
performance.

[Research question 3:| How do network structure and vehicle attributes relate to co-

driving behavior?

In we applied the link prediction approach to the truck co-driving network in
an attempt to better understand the behavior of trucks and their drivers. Our research
on the importance of features indicates that the network structure is better explained by
co-driving behavior than by vehicle (node) characteristics. In particular, the neighborhood
features that capture relevant information about the ego networks explained the observed
co-driving behavior well.

[Research question 4:|How can node attribute information be exploited to automatically

create a good partitioning of a co-driving network into communities?

In [Chapter 5| we investigated the task of detecting communities of the truck co-driving
network. The communities were detected by a modularity maximization algorithm, which
has a resolution parameter. This parameter determines whether a more fine-grained or
coarse-grained partition into communities is preferred. We proposed a method that con-
siders node attributes to determine the best partitioning of the network into communities.
In this method, a metric that we call average maximal community assortativity quantifies
how well, on average, each community can be understood in terms of its node attributes.
This metric was maximized to find the best choice for the resolution parameter. When
applied to the truck co-driving network, results indicated that a good partitioning into
communities was obtained by considering geographical aspects of the trucks as node
attributes.
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[Research question 5:|How can ship behavior be utilized to enable smart inspection of
cargo ships?

The smart inspection entails the accurate, automated, fair, and interpretable assessment
of (in our case) cargo ships. In|Chapter 6, we proposed a machine learning model capable
of predicting cargo ship noncompliance. We make use of (fair) random forests, because
they allow humans to understand (1) what procedures were followed to make the model,
(2) the inner workings of the model, and (3) how the model arrives at its predictions. The
model’s fairness was obtained using fair pre-trained models. The model decorrelates a
ship’s flag from the noncompliance prediction to reduce present bias in historical data and
thereby prevent confirmation bias. The cargo ship network is constructed from behavioral
data, which is less sensitive to manipulation than administrative information. Features
derived from this cargo ship network served as input for the machine learning model. In
summary, the entire approach led us to demonstrate how smart inspection should take
place in the future.

7.2 Answer to the problem statement

After addressing the research questions, we now turn to the problem statement.

[Problem statement: How can network science methods leverage behavioral data for
smart inspection of vehicles?

The short answer to the problem statement is to be seen by applying the results of all
five research questions. We summarize them below.

In answering [Research question 1} we have shown that network science methods can

generate useful features for a downstream machine learning task. This is directly applicable
to the more fundamental link prediction task in networks, as seen in|Chapter 2} and also

useful in applied settings, for example, in identifying noncompliant ships (Chapter 6)).
In answering [Research question 2, we have shown that in link prediction, careful

consideration must be given to splitting instances into an appropriate train, validation,

and test set (Chapter 3)).

Moreover, in answering [Research question 3| we have explored other network science

methods to better understand vehicle data, with a special focus on the relation between
network structure, vehicle characteristics.

In answering [Research question 4}, we address the community structure (Chapters 4
and[5). The obtained results in these two chapters demonstrated that a network perspec-

tive on truck driving activities helps to uncover patterns that may ultimately be useful for
promoting co-driving and reducing traffic congestion and fuel usage.

Finally, in answering [Research question 5| we used network science tools to consider

behavior as features in a machine learning model. By application of fair pre-trained
models in [Chapter 2} we achieved the desired smart inspection of vehicles.
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7.3 Future research directions

The following are five directions (seen as addition to the four directions mentioned in

Section 6.7)) fruitful for future research.

1. Argument: Many current link prediction approaches have limitations in handling
large and dynamic networks [[101]]. Applying dimensionality reduction before link
prediction may improve scalability but could negatively impact interpretability.

Future research: One straightforward direction is to produce interpretable tech-
niques that scale well to larger networks. Many real-world networks are highly
sparse, meaning the number of positive instances (pairs of nodes that will link) is
very few compared to negative ones (pairs of nodes that do not link). Therefore,
positive instances can be considered outliers, and thus outlier detection techniques
may do well in link prediction, especially on large and dynamic networks.

2. Argument: We encountered limited availability of temporal network datasets.

Future research: To advance link prediction, a more diverse set of temporal networks
must be accessible to the public and not locked in private “silos” where they are
accessible only by some [179]. To start, in[Chapter 2] we presented a collection of
26 temporal networks.

3. Assumption: Incorporating features obtained from more sophisticated transport net-
work models into smart inspection techniques may benefit prediction performance.

Future research: Higher-order networks [[170,203]] and evolutionary hypergraphs [212]
have been proposed as more effective representations for capturing vehicle trajecto-
ries.

4. Argument: A natural progression of this work is to consider a more holistic approach
toward inspection in the transport domain. Whereas in this work, we analyzed the
cargo trucks and cargo ships separately, they are not independent in the real world.
The containerization of the transport system facilitates smooth transfers between
different modalities.

Future research: A further study could assess the risk associated with the entire
cargo journey.

5. Argument: In our work, we did not extensively consider the uncertainty in the net-
work inferred from the available raw data. However, our data is likely partially
incomplete, raising possible questions about to what extent the dataset is represen-
tative.

Future research: A greater focus on measuring errors could shed more light on the
difference between the data (i.e., what is measured) and the abstract, underlying
network representation [|150].
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General goal and general recommendation

Ultimately, our goal is to improve cleanliness and safety in the transport domain. The
proposed approach to smart vehicle inspection is just one of the actions needed to
arrive at transportation without any danger or unnecessary environmental pollution.
A combined and continuous effort is needed from many professions (policymakers,
scientists, inspectors, and of course, ultimately, the vehicle drivers themselves) to offset
all negative transportation consequences. We expect that the work in this thesis will
contribute to the ongoing shift toward the smart inspection of vehicles.






