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6
Fair automated assessment of

noncompliance in cargo ship networks

International cargo ships must follow a plethora of safety standards and international
treaties [147]. Governmental inspectorates currently assess a ship’s compliance with
the help of a rule-based process using the color (white, gray, or black) of a ship’s flag
as a dominant factor. The flag’s color is determined yearly by considering the fraction
of noncompliant ships of that flag [145]. The usage of the flag’s color can lead to
confirmation bias and unfair inspections. Rather than using static ship characteristics, we
wish to utilize information about the actions of the ship, i.e., its behavior. This brings us
to the following research question.

Research question 5: How can ship behavior be utilized to enable smart inspection of
cargo ships?

We propose an approach for smart inspection (cf. Definition 2), and aim to realize
two crucial contributions. First, we would like to reduce confirmation bias by using
a fair model. Second, we aim to extract relevant mobility patterns from a cargo ship
network (see Definition 13), allowing us to derive meaningful behavioral features for ship
classification. Our approach will improve fairness at the cost of a limited performance
loss. Thereby, it will enhance maritime safety and protection through smarter inspection
targeting. In a general sense, this work demonstrates how network science can use
behavioral data for smart inspection.

The current chapter corresponds to the following publication:
G. J. de Bruin, A. Pereira Barata, C. J. Veenman, H. J. van den Herik, and F. W. Takes.

”
Fair automated

assessment of non-compliance in cargo ship networks.” EPJ Data Science 11, 13 (2022). DOI: 10.1140/
epjds/s13688-022-00326-w
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6.1 Smart cargo ship inspection

Maritime cargo transport is essential to global trade, often being the most cost-effective
way to move goods from one place to another. It results in many ship movements
worldwide; around 80% of world merchandise is carried by sea [190]. However, we
mentioned in Chapter 1 that maritime transport has risks, such as (1) labor exploitation,
(2) culpable ship accidents, and (3) environmental pollution. These risks need to be
mitigated by shipowners. Port State Control (PSC) inspections are conducted when ships
berth in a port to ensure mutual trust between countries that all ships adhere to the same
international laws. There are two possible outcomes of an inspection; either the ship is
found fully compliant, or there are particular noncompliances. These PSC inspections
check for compliance with many regulations, including any deficiency that could lead to
one of the aforementioned maritime risks. If severe enough, such deficiencies can lead to
detention, meaning that the ship is not allowed to depart the port before the deficiencies
are rectified, or to a ban meaning that the ship is not allowed to enter specific ports any
longer. In this research, we aim to predict whether a ship will have a deficiency in port
state control and thus is potentially noncompliant, which we consider equivalent to a
ship posing a high risk.

In recent years, governments have established strict laws to mitigate the negative
consequences of maritime transport. Members of the Paris Memorandum of Understand-
ing (MoU)1 introduced a so-called New Inspection Regime (NIR) [147]. Arguably the
most significant innovation in the renewed memorandum is the introduction of a ship
risk profile. It awards a score to each ship based on a weighted sum of six factors [147].
The six factors used in the risk profile for a given ship are [56] derived from (1) the type
of a ship, (2) the age of a ship, (3) commercially issued safety certificates, (4) owning
company’s performance, (5) historical misconducts, and (6) the flag a ship is flying, or
equivalently, the country of registration. Using the score, each ship is classified as low-risk
or high-risk. Ships classified as low-risk should be inspected every three years, while
ships classified as having a high-risk profile should be inspected every six months. With
the ship risk profile, the NIR allows inspectorates to focus on noncompliant ships. It
also leads to efficient use of the inspection capacity and budget, as every unnecessary
port state control inspection costs the inspectorates on average around $1, 000 [98].
In [210], it was estimated that a noncompliant ship saves, on average, around $400, 000

on maintenance by not complying with regulations, whereas the loss of a ship can incur
costs up to $67, 000, 000. Shipowners with a low-risk profile can benefit by reducing
inspection burden, saving precious turn-around time in the port.

From the six factors used in the current ship risk profile, the flag plays a vital role [36,
166]. The flag is considered black, gray, or white based on the detention ratio of the

1The following countries are part of the Paris MoU: all European Union coastal countries, Canada, Norway,
Russia, and the United Kingdom.
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country over a three-year rolling period [145]. Fleets from countries on the blacklist were
significantly more often detained over a three-year period than fleets from countries on
the whitelist. We mention three drawbacks in considering the flag for the ship risk profile.
1. There are ethical concerns. The use of the flag can be considered disparate treat-

ment [57] because ships are intentionally treated differently based on membership of
a privileged class, being the white flag.

2. There are opportunities for ships to change flags, opening up the possibility for
noncompliant ships to “hide” under a white flag [37]. Although changing flags does not
necessarily improve compliance, the NIR would grant such a ship a lower risk profile.
In an ideal situation, merely changing an administrative property of a ship should keep
the assessment of the risk associated with that ship the same.

3. Inspectors can use their discretion (possibly leading to subjectivity) to decide how
thorough an inspection is.

Hence, ships flying a black flag could be subjected to stricter inspections, resulting in
a higher probability of finding a noncompliant issue [20, 67]. This potential greater
focus on ships flying a black flag may mean that these ships are inspected more often
and stricter, contributing to a confirmation bias in historical inspection data [37]. The
potential danger of inspectors’ bias has been recognized, and great efforts are made to
harmonize the training of inspectors, thereby making the overall inspectorate system
consistent [56]. Nevertheless, complete global harmonization has yet to be achieved [67].

An option is to start ignoring a ship’s flag altogether to reduce the confirmation
bias mentioned earlier, thus providing what in the literature [75] is known as equal
opportunity. However, correlations exist between the other characteristics of a ship and its
target; thus, the classifier will indirectly learn to use the ship’s flag, resulting in inequality
of outcomes. Considering all drawbacks of using the flag in risk prediction, we argue that
it might be better to get equal outcomes and therefore investigate how we can decorrelate
the flag with respect to the outcome of the automated prediction of noncompliance. We do
so by employing a so-called fair model [96] (see Definition 5), that can classify whether
a ship is noncompliant but prevents (to a specified extent) correlation between its output
and the ship’s flag. Such a fair model reduces the confirmation bias and improves the
overall fairness of the risk assessment.

Our contribution

Rather than using potentially unfair and biased static ship characteristics, we prefer to
consider the ships’ actual behavior for noncompliance prediction, explicitly moving away
from the six factors used in the ship risk profile. Ship behavior has been used to find
anomalous ships [141], which may indicate noncompliance.

An example of ship behavior potentially characteristic of noncompliance is a ship
sailing primarily on routes with much competition. Such routes may lead to reduced
profit margins and a greater push for owners to cut shipping costs at the expense of safety.
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While we have yet to determine the fares on specific routes, our proposed classifier will
still consider relations between noncompliance and the sailed routes.

In the current study, we derive a cargo ship network from data containing notifications
of ships calling a port. In the cargo ship network, nodes are ports, and edges are ships
that travel between ports. By considering each port’s structural function in the network,
we extract mobility patterns for each ship. These mobility patterns are provided to the
fair machine learning model, enabling automated assessment of the risk of ships based
on their behavior. Altogether, we have devised an accurate, automated, interpretable and
fair assessment of ship noncompliance based on ship behavior, providing an answer to
Research question 5. The data used in our approach is available to all members of the
European Maritime Safety Agency, allowing each of them to apply our approach.

The structure of this chapter is as follows. In Section 6.2, we provide related work on
the ship risk profile and ship risk classification. Then, we explain the cargo shipping data
used in this work in Section 6.3. Subsequently, we describe the research methodology in
Section 6.4 We present the results of our proposed classifier in Section 6.5. A discussion
of these results is provided in Section 6.6. Finally, conclusions are provided in Section 6.7.

6.2 Related work on ship risk profile

It is widely recognized that introducing the NIR, and thereby the ship risk profile has
been beneficial to reducing the number of noncompliant ships [67, 166, 201, 202].
Nevertheless, some weaknesses have been identified [47, 48, 77, 176, 204–206]. We
mention two of them, together with possible solutions that were provided. We then
continue with discussing related work on the cargo ship network.

The first weakness in the existing ship risk profile, which assesses risks based on a
weighted sum of six characteristic ship factors, is that the weights are manually deter-
mined [61]. In doing so, the model ignores any interactions between the factors. Here we
remark that more complex models may consider more correlations, thereby improving
performance [61, 207]. To this end, machine learning classifiers have been introduced
that can automatically learn the weights and capture correlations between the factors.
We provide two examples.

• A pipeline with a support vector machine and k-nearest neighbors have been used
to find high-risk ships [61]. The support vector machine takes more complex (and
non-linear) interactions into account and generalizes well, while k-nearest neighbors
make the overall approach noise tolerant.

• A balanced random forest classifier has been used to predict ship detentions because
only a tiny fraction of ships are detained [206].

The second weakness of the ship risk profile is that relatively static factors are used in
risk assessment, meaning that the factors rarely change for a given ship. Indeed, many
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datasets have been exploited that better reflect the current condition of a ship and hence
will likely improve prediction. We mention four different datasets that have been used.

• Web scraping have been used to gather information from inspection reports [205].
• Company inspections have been used to enhance the ship risk profile [99].
• More historical information, such as times of changing flags and casualties in the last

five years, have been proposed to add in the ship risk model [206].
• Information between different regimes should be more coherent, such that deficiencies

and detentions in other regions can be used as well [99, 207].

The impact of the literature on our work is as follows. We read in the literature that
it was strongly recommended to use additional data to come to a better prediction. We
used port call data modeled as a cargo ship network. We mention the following four
works on the cargo ship network, that have inspired us.

First, in 2010, the initial unveiling of a cargo ship network on a global scale was
documented by Kaluza et al. [94]. According to their findings, the network had a smaller
diameter (measuring 8) than expected for a randomly constructed network of equivalent
size. Additionally, they discovered that the average distance separating any two ports
across the globe was just 2.5.

Second, other researchers have found a diameter of only 7 and an average distance of
3.3 [113].

Third, the robustness of the cargo ship network has been studied by analyzing the
transponder [151]. Different ship types were studied (oil tanker, container, dry bulk),
and properties of these ship types have been reported for each sub-network derived from
those ships. No measure of the distances in the network was reported, but a density (of
∼0.02) similar to the first published cargo ship network was found.

Fourth, Van Veen (2020) analyzed the cargo ship network as derived from data of
port calls [192]. Although the data was extracted only from journeys either departing or
arriving at one of the Paris Memorandum of Understanding members, a diameter of 7
was found and an average distance of 2.49, similar to the reported values of other works.

In Section 6.3, we compare the properties of these networks to those of our cargo ship
network. Ultimately, we predict noncompliance using a classifier with mobility patterns
extracted from the cargo ship network (see Section 6.5). Our contribution is thus an
approach that addresses the two weaknesses observed in the ship risk profile currently
used by inspectorates: (1) manually adjusted weights and (2) relatively static factors.

6.3 Cargo shipping data

The chapter aims to classify ships’ noncompliance using mobility data. The data used
originates from two sources: (1) port calls (Subsection 6.3.1) and (2) inspections (Subsec-
tion 6.3.2). After collection, the port calls and inspections are merged (Subsection 6.3.3).
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6.3.1 Port calls

The first data source, the port calls, contains notifications of cargo ships calling a port.
The data contains only calls to a port participating in the Paris MoU and is accompanied
by the following six pieces of information: (1) the International Maritime Organization
(IMO) number — a unique identifier used in the maritime sector; (2) the port it calls
to; (3) the date of arrival; (4) the duration that the ship is berthed; (5) the flag of the
ship when it called; and (6) the ship risk profile (low, medium, high risk) computed
when berthing. From this port call data, we reconstruct journeys that took place. A ship’s
journey goes from a departure port to an arrival port and has an associated travel time.

6.3.2 Inspections

The second data source, the inspections, provides information about ships with a de-
ficiency. Also, we know whether such a deficiency has led to detention. Ships without
deficiencies are assumed to be compliant because every ship should be inspected at
least every three years at one of the ports participating in the Paris Memorandum of
Understanding [56]. The inspection results are used as ground truth for our classifier.
In Figure 6.1, we show the fraction of noncompliant ships that visit all countries. We
observe that this fraction is very different across countries in Europe.

6.3.3 Merging port calls and inspections

Ships in these two datasets are linked using the IMO number. We select years occurring in
data from both sources (2014–2018), resulting in over 3,000,000 calls from 28,416 cargo
ships to a port in one of the thirty countries. Most of them, 97.3% (27,647 ships), did not
change their flag during the years under consideration. Of these ships, the total number
of ships with a white, gray, or black flag is 26,300, 672, and 675, respectively. Because
only a tiny proportion of ships are flying a black or gray flag, we take them together
and refer to the group as non-white flags. As mentioned before, ships can easily and
quickly change their flag to either a so-called “Flag Of Convenience” (FOC) or a more
trustworthy one with a better reputation [131]. In the data, 2.7% (1,347) of all ships
changed their flag in 2014–2018. The distribution of flags over all countries is shown
in Figure 6.2. We observe that most ships are registered in countries often identified as
FOC, such as Panama and Liberia. Although difficult to observe, most ships are registered
to Panama (2,904), Marshall islands (2,153), and Liberia (2,119), which are all known
as typical FOC countries. In Figure 6.3, the fraction of noncompliant ships for each flag
is shown. We observe that some black or gray flags are associated to a large fraction of
noncompliant ships. The other way around, some of the white flag states have many
noncompliant ships as well, such as the United States of America. Figures used in this
section, can be downloaded at higher quality from our online repository [27].
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Figure 6.1: Fraction of ships being noncompliant per country. (Countries indicated in gray were
not visited by a ship in the data.)
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Figure 6.2: Number of ships registered to each country. (If multiple registrations for a single ship
were observed, we use the most recent registration.)
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Figure 6.3: Fraction of ships for each flag state being noncompliant. (States without any ship
registered to it, are indicated in gray.)

6.4 Chapter research methodology

We aim to create a machine learning classifier that performs a fair assessment of the risk
for each ship. To this end, two feature types are input to the classifier; network features
and temporal features.

In Subsection 6.4.1, we start by explaining the construction of the cargo ship network.
We explain our approach to feature engineering, dealing with both the network and
temporal features, in Subsection 6.4.2. Then, we discuss the classifier in machine learning
in Subsection 6.4.3. We elucidate the fair model and explain the performance measures
in Subsection 6.4.4. Finally, the fairness measures are explained in Subsection 6.4.5.

6.4.1 Cargo ship network

To obtain the structural importance of each port, we construct a cargo ship network. It
is later used to characterize the behavior of ships. The edges of the directed weighted
network are obtained by considering the journeys of all ships, linking a port to another
port if at least one ship made a journey visiting those two ports immediately after each
other. Edges are weighted according to how many journeys exist between the two ports.
Hence, each node of the network is a port.

Below, we explain the structural properties of the cargo ship network in terms of their
density, diameter, average distance, and clustering coefficient (for a definition of these
elementary network measures, see Section 1.2). They help us understand whether our
cargo ship network is, in fact, similar to earlier constructed networks of the same type.
For each port, we obtain the following twelve structural importance measures:
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• (1) in-degree; (2) out-degree; (3) degree;
• (4) in-strength; (5) out-strength; (6) strength;
• (7) closeness centrality and (8) weighted closeness centrality [60];
• (9) betweenness centrality and (10) weighted betweenness centrality [24, 59];
• (11) eigenvector centrality and (12) weighted eigenvector centrality [23].

These measures are used in Subsection 6.4.2 to engineer features that are provided
to the machine learning classifier. We will now explain each of them.
• Degree of a node capture the number of routes (i.e., the number of edges connected

to the node).
• Strength of a node capture the number of journeys connected to a port (i.e., the total

weight of the edges connected to the node).
• Closeness centrality is equal to the reciprocal of the average shortest path distance

from a node to all other nodes [60]. A more central node is closer to all other nodes
and hence has a higher closeness centrality.

• Betweenness centrality is equal to the number of shortest paths between every pair
of nodes that pass through to the node under consideration [59]. A node with high
betweenness centrality is associated with playing an essential role in the network;
disruption of this node will affect many shortest paths.

• Eigenvector centrality is determined using the eigendecomposition of the adjacency
matrix [23]. High eigenvector values mean that the node is connected to many nodes
with a high eigenvector centrality value.

With the latter three centrality measures, the aim is to capture a diverse set of measures
for the structural role of a port in the cargo ship network.

The train set (used to learn the classifier) and the test set (used to estimate the
classifier’s performance) should be independent. To prevent the data used to construct
the network is also used in testing, we work with separate hold-out data to construct
the network. Hence, we assign every ship i ∈ I to one of the two disjoint sets (here,
I denotes the set containing all ships). A 10% sample of all ships I is then used for
network construction (Inetwork), where the remaining ships (Iclassification) are used in the
classification part (later divided into train and test set by the cross-validation procedure,
see Subsection 6.5.1).

6.4.2 Feature engineering

In Iclassification, there are two different types of features that describe how ships behave:
network features (see Subsection 6.4.2A) and temporal features (see Subsection 6.4.2B).

6.4.2A Network features

The network features aim to capture what type of ports a given ship visits. We obtain the
network features in four steps.
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Step 1. Determination of structural importance of each port. We characterize each
ship’s journey by the structural importance of the cargo ship network of both the
departure and arrival ports. Only if the port is observed in the cargo ship network,
the 12 structural importance measures (see Subsection 6.4.1) are determined. For
each measure, we combine the value obtained from the departure port and the value
obtained from the arrival port using the four arithmetic operations separately (sum,
multiplication, absolute difference, and division). After this step, we have 12 · 4 = 48

values characterizing each journey.
Step 2. Binning. To capture the distribution of the values obtained for each journey, we

make a histogram of all measures by splitting each of the 48 values obtained in the
previous step into 10 equal-width bins. The edges of all these bins are learned from
the journeys of Inetwork to prevent information from leaking. After this step, we have
48 · 10 = 480 values for each journey.

Step 3. Aggregation. The model is ultimately provided with information about the
individual ships’ instances. Hence, we need to aggregate the information of each
journey to a fixed set of values per ship. The 480 values, obtained from Step 2, can then
be aggregated for each ship by summation of all journeys. After that, we normalize
these values by dividing them by the total number of journeys. We use the total number
of journeys as a separate feature and add it to the list. Normalization allows us to
compare the distributions regardless of the number of journeys of a ship. In this way,
we obtain 480 + 1 = 481 features.

Step 4. Encode the missingness. In Step 1, we explained that the structural importance
measures are only defined if the port was observed in the cargo ship network. The
information that a port is missing in the network is informative for the classifier. Hence,
we will encode this missingness, a common approach discussed in more detail in
[138, 156]. We do so with two different features. The first feature equals the number
of journeys where only one port was unobserved. The second feature equals the
number of journeys where both ports were unobserved. In the end, we thus have
481 + 2 = 483 network features.

6.4.2B Temporal features

The temporal features are computed from the duration of a ship’s journeys and port berths.
Anomalous short or long ship berths or journeys may be indicative of noncompliance. For
example, short berths may lead to rushing through safety procedures, while significantly
longer berths may indicate problems with the port authorities. We first make a histogram
of each ship’s observed journey and port berth duration values to preserve the estimated
distribution of the berth durations and travel timing during aggregation. The histogram
is made by splitting each ship’s berth and journey durations into 10 equal-width bins. The
boundaries of the bins are learned from (1) the port calls and (2) the journeys occurring
in Inetwork to prevent information from leaking. In this way, 2 · 10 = 20 temporal features
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are obtained. We sum all the values obtained for each ship of (1) the histogram of the
berth duration and (2) the histogram of the journey duration and divide them by the
total number of berths and journeys, respectively.

We have 483 network features and 20 temporal features, resulting in a total of
503 features describing each ship, represented by a vector xi for some ship i.

6.4.3 Fair random forest classifier

We employ a machine learning model to perform the automated assessment of noncom-
pliance. The goal of the model is to learn for each ship i ∈ Iclassification from the feature
vector xi ∈ X and target scalar yi ∈ Y a function f : X 7→ Z where zi ∈ Z is a score
between 0 and 1. The positive instances, i.e., yi = 1, indicate a noncompliant ship, and
the negative instances a compliant ship. We may recall from Section 1.1 that in search of
a particular type of fairness, we aim to reduce the classifier’s dependency on sensitive
features si ∈ S, where si = 0 marks a ship with a white flag (non-sensitive) and si = 1

otherwise.
We employ a fair random forest classifier [157], which is a modified random forest

classifier. In brief, a random forest classifier works as follows. A bootstrapped training data
sample is taken for every tree in the forest. Then, a decision tree is grown by recursively
doing three steps:
1. Select a sample from all features available.
2. Optimize a criterion (commonly the information gain) calculated on each sampled

feature.
3. Split the node into two child nodes based on the optimization outcome.
For more details of the working of a random forest classifier, we refer the reader to [76].

Like other tree learning classifiers, random forest classifiers have some beneficial prop-
erties. We mention two of them. The first property is that their robust performance has
been confirmed in different domains, meaning that a minimum of tuning is needed [76].
The second property is that the criterion considered does not have to be differentiable, in
contrast to many other classifiers, allowing to introduce the SCAFF criterion (see later
on). Both properties together allow us to use a specifically designed criterion, called
Splitting Criterion Area under the curve for Fairness (SCAFF) [157]. The criterion ensures
that different labels are separated and the sensitive class remains mixed. We first give the
definition and then explain the formulas.

SCAFF(Z, Y, S,Θ) = (1−Θ) · AUCY(Z, Y )−Θ · AUCS(Z, S),

with AUCY a value in the closed interval [0, 1]:

AUCY(Z, Y ) =

∑y+

i=1

∑y−
j=1 σ (Zi, Zj)

y+ · y−
with σ(Zi, Zj) =


1, if Zi > Zj

1
2 , if Zi = Zj

0, otherwise

,
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where y+ and y− mark the number of positive and negative instances. An AUCY value
of 0.5 suggests random classification while AUCY = 1 indicates a perfect classifier. The
AUCS considers the sensitive feature as the positive class. It is defined as follows:

AUCS(Z, S) = max

(
1−

∑s+
i=1

∑s−
j=1 σ (Zi, Zj)

s+ · s−
,

∑s+
i=1

∑s−
j=1 σ (Zi, Zj)

s+ · s−

)
,

with σ (Zi, Zj) defined exactly the same as for AUCY. The measure is closely related to
strong demographic parity [93]. For AUCS = 0.5, corresponding to a strong demographic
parity of 0, the split in the node is made regardless of the values of the sensitive features,
meaning equality of outcome. A value of AUCS = 1, corresponding to a strong demo-
graphic parity of 1, is the worst score possible since, in that case, the classifier can predict
the sensitive feature perfectly. The orthogonality parameter, Θ ∈ [0, 1], allows to balance
the performance-fairness trade-off [96].

At a value of Θ = 0, the fair random forest classifier optimizes solely for performance
and does not consider any fairness. Hence, it corresponds, in that case, to the ordinary
random forest classifier. At a value of Θ = 1, the classifier optimizes fairness and neglects
any performance. We refer the reader for more details on the fair random forest classifier
to [157].

6.4.4 Performance measures

The classifier’s performance can be determined by threshold-dependent and threshold-
free metrics. Scores equal to or above the threshold t ∈ [0, 1] are classified as positive
(ŷi = 1), and values under the threshold are predicted as negative (ŷi = 0). Threshold-
free metrics have the advantage that they do not require this explicit cut-off and instead
consider the ranking imposed by the scores of the classifier. The three threshold-dependent
performance metrics are (1) precision, (2) recall, and (3) the harmonic mean of those
two, the F1 score. The threshold-free performance metric used in this work is the AUCY

(see the previous section).

6.4.5 Fairness measures

Similar to the performance measures, fairness with respect to the sensitive group can
also be quantified by two metrics: threshold-dependent and threshold-free metrics.

First, we report on the threshold-dependent metrics by (1) the precision and (2) the
recall for the following two groups: (a) ships with a white flag and (b) ships with a
non-white flag. A significant difference between these two groups indicates an unfair
outcome of the model, which we aim to avoid.

Moreover, we report also on the threshold-dependent metrics by (3) demographic
parity and (4) equalized odds [75]. These latter two measures consider the difference
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in performance measures between the two groups, i.e., ships with a white flag and a
non-white flag.

The demographic parity measure, denoted as ϵparity, sets an accepted maximum on
the absolute difference between the positive prediction rates of the two groups. It
is mathematically represented as

∣∣∣P (Ŷ = 1|S = 1
)
− P

(
Ŷ = 1|S = 0

)∣∣∣ ≤ ϵparity. Lower
values of ϵparity signify more similar outcomes to the sensitive and non-sensitive groups,
indicating fairer predictions.

The equalized odds metric, denoted as ϵodds, imposes a maximum accepted difference
on the equality of opportunity in a supervised learning setting. It is expressed as∣∣P (Ŷ = 1|S = 1, Y = 0

)
− P (Ŷ = 1|S = 0, Y = 0)

∣∣ ≤ ϵodds,∣∣P (Ŷ = 1|S = 1, Y = 1
)
− P (Ŷ = 1|S = 0, Y = 1)

∣∣ ≤ ϵodds.

Reduced values for ϵodds suggest greater equality of opportunity for the sensitive and
non-sensitive groups, thus more fair predictions.

Finally, we have also reported on the threshold-free fairness measures (denoted by
AUCS), for which we refer to Subsection 6.4.3.

6.5 Results

The section starts with our experimental setup in Subsection 6.5.1. Then, we continue
analyzing the cargo ship network in Subsection 6.5.2. In Subsection 6.5.3, we evaluate
the baseline ship risk profile performance. Subsequently, we report on the performance
of the non-fair random forest classifier in Subsection 6.5.4 and the fair random forest
classifier (announced in Subsection 6.4.3 as our preferred choice) in Subsection 6.5.5.
In Subsection 6.5.6, we report on the effects of the orthogonality parameter. Finally, in
Subsection 6.5.7, we describe the effects of the threshold quantile in combination with
the orthogonality parameter.

6.5.1 Experimental setup

In our experimental setup, we use five-fold nested cross-validation with stratified sam-
pling [39]. The inner folds select the best parameter set for that specific outer fold. The
considered parameters are all combinations of the selected values for the depth of each
tree ({1, 2, . . . , 10}) and the number of bins (10 or 2) used in discretization for continuous
variables. Hence, there are 10 ·2 = 20 candidate sets of parameters in each outer fold. The
mean and standard deviation of the classifier’s performance is evaluated on the five outer
folds using the selected parameter set. We report the outcome of this cross-validation for
11 different values of the orthogonality parameter, Θ ∈ {0, 0.1, 0.2, . . . , 1}.

The code used in this research is publicly available [27]. It uses several open-source
Python packages. Specifically, scikit-learn [149], SciPy [193], and Pandas [117] are used
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for feature engineering and for measuring the performance of the baseline ship risk
profile and the proposed classifier. The fair random forest is open source as well [152],
making extensive use of the CVXpy package for optimizing SCAFF [2]. For analyzing the
cargo ship network, we used the NetworkX package [72]. The C++ library teexGraph was
used to determine the diameter of the network [185]. The packages used for visualization
and all other dependencies and supportive software versions can be found at [27].

6.5.2 Cargo ship network

A quite “overwhelming” visualization of the cargo ship network obtained is shown in
Figure 6.4. Still, we only show ports in Europe because we are interested in predicting
the risk for ships that arrive in Europe. From the figure, we can learn the following four
properties.
1. A GC connects virtually all ports.
2. Only a few ports have high strength, as indicated by the yellow color, of which

(1) Puttgarden (Germany), (2) Rotterdam (Netherlands), and (3) Algeciras (Spain)
have the highest strength.

3. Two different types of ports can be distinguished: (1) ports that are well-connected
(e.g., ports in Germany, Netherlands, and Belgium), and (2) ports that are more in the
network’s periphery (e.g., Iceland and the Azores).

4. Some ports are connected by thick lines, indicating an edge with a high weight.
The nodes connected by these edges are likely to have a high weighted betweenness
centrality because the failure of such nodes would cause other shortest paths to run
through edges with less weight.

In Table 6.1, we provide numeric information on sizes, relations, and distances. In the
first column, we show our work’s nine common properties of cargo ship networks. In the
second column through the sixth column, we provide values for the properties of our
network and four similar cargo networks observed in literature [94, 113, 151, 192]. We
compare these properties to understand whether our 10% sample used to compute port
features is representative. From Table 6.1, we see that although very different numbers of
nodes and edges are reported in these works, the measures such as density, diameter, and
clustering coefficient are similar. Hence, we may conclude that the constructed cargo ship
network can extract mobility patterns for our ship compliance classifier in a sensible way.

6.5.3 Performance of the baseline ship risk profile

The confusion matrices for the baseline ship risk profile are shown separately for the white
and non-white flags in Figure 6.5. Together with Table 6.2, where we show the calculated
performance and fairness measures, they provide information on the performance of the
baseline ship risk profile. We remark that low or medium risk ships are predicted as
compliant.
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Figure 6.4: The considered cargo ship network. (Nodes are colored by their strength. Thicker edges
mark busy routes. The figure is generated using OpenStreetMap data.)

Table 6.1: Summary statistics of considered cargo ship networks.

Property This work [192] [151] [113] [94]

Directed Yes Yes No No No
Number of nodes 1, 459 728 1, 488 439 951

Number of nodes in GC 1, 445 726 − − 935

Number of routes 28, 653 18, 142 17, 135 2, 331 36, 328

Number of routes in GC 28, 638 18, 140 − − −
Density in GC 0.027 0.03 0.015 0.019 0.08

Diameter in GC 6 7 − 7 8

Average distance in GC 2.63 2.49 2.99 3.290 2.5

Clustering coefficient in GC 0.48 0.58 0.55 0.396 0.49
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Figure 6.5: Confusion matrices (shown for both the white and non-white flagged ships). (Baseline
model is the ship risk profile currently in use. C and NC mark Compliant and NonCompliant ships,
respectively. The percentages [and color coding] are stratified based on the ground truth.)

Table 6.2: Performance (precision, recall, and F1, and AUCY) and fairness (demographic parity and
equalized odds, and AUCS) measures for the different models.

Measure Baseline Random forest Fair random forest

precision (non-white) 97.1% 89.8% 89.0%

precision (white) 95.2% 87.7% 86.1%

recall (non-white) 42.3% 75.5% 82.5%

recall (white) 5.2% 88.6% 86.6%

F1 (non-white) 58.9% 82.0% 85.6%

F1 (white) 9.9% 88.2% 86.4%

ϵparity 0.317 0.099 0.023

ϵodds 0.371 0.132 0.040

AUCY 0.543± 0.006 0.814± 0.004 0.776± 0.008

AUCS 0.672± 0.010 0.627± 0.014 0.538± 0.011
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Below, we make four observations from Figure 6.5 and Table 6.2.

First, we note that virtually no ship flying a non-white flag gets a low-risk profile (see
left upper corner), indicating that the baseline model uses the flag to a large extent.

Second, most ships (90%) are classified as medium risk (see baseline predicted
medium). Only a small fraction, (261 + 4774)/(261 + 770 + 4774 + 17158) = 22%, is
compliant.

Third, a smaller fraction, (17 + 49)/(17 + 49 + 564 + 978) = 4%, is compliant from
the ships with a high-risk profile. It results in high precision for the baseline model.
However, the recall is relatively low as many ships with a medium risk profile are also
noncompliant.

Fourth, unexpectedly, ships with a white flag with a low or medium risk profile are
more noncompliant than ships with a non-white flag. It also results in a low value of the
AUCY value of only 0.543± 0.006 (see Table 6.2). Hence, we may conclude that using the
data from 2014–2018, we cannot predict compliance with the baseline ship risk profile.
It follows that the model is quite unfair. In particular, we observe a significant difference
in the F1 metric for the white and non-white group, resulting in high values for ϵparity and
ϵodds (see Table 6.2). There is a strong correlation between the sensitive feature, i.e., the
ship flag, and the scores of the model with AUCS = 0.672± 0.010 (see Table 6.2).

6.5.4 Performance of the random forest classifier

The confusion matrices of the random forest classifier are also shown in Figure 6.5. In
Table 6.2 we report the performance and fairness metrics (column 3). Below, we make
five observations. First, we observe that more ships are predicted correctly compared
to the baseline model. Second, the recall is higher, meaning many actual positives are
predicted. The table also shows decreased precision, indicating that many compliant ships
are predicted as noncompliant. Third, the harmonic mean of the recall and precision,
the F1 measure, is higher than in the baseline model, indicating that the random forest
classifier outperforms the baseline model. Fourth, the AUCY measure, shows a high value
of 0.814±0.004, supporting also that the random forest classifier outperforms the baseline
model. It implies that we accurately can assess the ship noncompliance in an automated
fashion with a random forest classifier using behavioral data. Fifth, the confusion matrices
(Figure 6.5) show that ships with a white flag are predicted to be noncompliant more
often than ships with a non-white flag. The difference in frequency results in a higher
recall for ships with a white flag.

Finally, we remark that the prediction by the random forest classifier is much more
fair compared to the baseline model. In conclusion we remark that the random forest
classifier does not use the flag as a feature, meaning that using only behavioral data thus
makes the model more fair.
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6.5.5 Performance of the fair random forest classifier

The confusion matrices of the fair random forest classifier are also shown in Figure 6.5.
In Table 6.2 we report the performance and fairness metrics (column 4). Below we
list our three observations. First, from the confusion matrices in Figure 6.5 and the
performance and fairness metrics in Table 6.2, we observe that the fair random forest
classifier has comparable true positive and true negative rates amongst ships flying a
white and non-white flag, with only a small cost in predictive performance. Second, the
F1 performance measure drops only for the ships flying a white flag, so the difference
between the two groups becomes minimal. Third, the demographic parity and equalized
odds measures decrease when using a fair random forest classifier, suggesting that the
classifier improved fairness.

6.5.6 The effect of the orthogonality parameter

Before drawing any conclusion, we show the effect of the orthogonality parameter (Θ) in
more detail (see Figure 6.6). Below we list our six observations. First, the top left figure
(Figure 6.6A) shows that the AUCY measure is only weakly influenced by a broad range
of values for the orthogonality parameter, meaning that overall, we can reliably ensure
equality of outcome while maintaining acceptable performance. Second, an orthogonality
value of 0.7 appears to give the best trade-off between performance and fairness in our
work, with a performance of AUCY = 0.776± 0.008 and fairness of AUCS = 0.538± 0.011.
Third, the performance can be further improved (although slightly, to AUCY = 0.814),
but only at decreased equality of outcome and vice versa.

Then we will closely investigate Figure 6.6B, where the two fairness measures decrease
monotonically at increasing orthogonality values. Fourth, we make one observation that
the extreme value of Θ = 1, they are zero, but at this value, the predictive performance
is also deficient, as can be observed in Figure 6.6A.

Subsequently, in Figure 6.6C and Figure 6.6D, we make two observations. Fifth, we
observe that the precision and recall for ships flying a white and non-white flag have
only minor differences for larger values of the orthogonality. The precision of the ships
flying a non-white flag increases slightly at higher values of the orthogonality at the cost
of precision for vessels with a white flag. Sixth, the threshold was set to t = 0.34 so that
P (Z ≥ t) equals P (Y = 1). This threshold is also used to calculate the confusion matrix
shown in Figure 6.5.

In conclusion, we remark that the threshold t is essential, as it determines how many
ships are noncompliant. Higher threshold values result in fewer ships that are predicted
as noncompliant. Therefore, we define the threshold quantile Qt so that P (z ≥ t) equals
the threshold quantile.
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Figure 6.6: Performance and fairness of proposed ship selection classifier: (A) The performance
of the fair random forest classifier for different values of the orthogonality. (B) The fairness
performance is measured in demographic parity and equalized odds for different values of Θ.
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separated for ships flying a white and non-white flag.
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6.5.7 The effect of the orthogonality and threshold quantile together

Finally, in Figure 6.7, we show the effect of the orthogonality and the threshold quantile
on the selected threshold-dependent fairness measures. Below we list our three observa-
tions. First, we observe that high values of the orthogonality yield a fair prediction for all
values of the threshold, even when the threshold quantile is set to a high value, such that
most ships are predicted to be compliant. Second, for lower values of the orthogonality,
we observe that the model’s fairness is worst when the threshold quantile is near 0.5.
This result is expected (see below). Third, at other values of the threshold quantile, the
performance for both groups is low, leading to a slight difference between the groups.
Even at these “bad” choices for the orthogonality and threshold quantile, the values of
the demographic parity measure and the equalized odds measure are still lower than
observed for the baseline ship risk profile.

In conclusion, from these results, we may state that the fair random forest classifier
effectively reduces bias towards a ship’s flag for wide ranges of the used threshold and
orthogonality. It answers Research question 5.

6.6 Discussion on limitations

This section discusses two limitations of our proposed classifier.

First, the ground truth might be biased toward the flag and the inspector’s back-
ground [67]. The problem is that different inspectorates assess compliance differently
for similar ships. The difference in assessment leads to inequality between ports and
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so-called port-shopping. Port-shopping means that a noncompliant ship decides to go to
another port solely because the inspection regime favors noncompliant vessels. In this
way, the ship yields a lower risk profile. Port-shopping seriously influences our model
since the ground truth data is unjustly positive for such noncompliant ships. The mission
of the Paris MoU is to avoid this kind of competition between ports [147]. Hence, as
a remedy, the inspection country could be added as a sensitive feature in future work,
reducing the correlation between the inspectorate and the inspection outcome.

Second, we consider Goodhart’s law, commonly formulated as: “When a measure
becomes a target, it ceases to be a good measure” [181]. It applies to any ship risk model
because ships are incentivized to get a low-risk profile. In the baseline ship risk model, a
better risk profile could be achieved by changing the administrative property of the ship.
In our fair random forest classifier endowed with orthogonality and threshold quantile
setting, ships would need to change their behavior to get a better score, which is more
complicated than merely changing administrative properties.

6.7 Chapter conclusions

The present research answers Research question 5: “How can ship behavior be utilized to
enable smart inspection of cargo ships?” We devised an accurate, automated, fair, and
interpretable assessment of ship risk, enabling smart inspection of cargo ships. This study
has led to two conclusions.

Conclusion 1: We can offset the confirmation bias in historical inspection data using
a fair random forest classifier. Experimental results indicated that the disparate impact
and equalized odds measures improve significantly the assessment. This is regardless of
chosen parameters, meaning that the constructed classifier works well.

Conclusion 2: The performance of our approach provided with behavioral data is
AUCY = 0.776 ± 0.008, which improves on the AUCY = 0.543 ± 0.006 of the ship risk
profile currently in use.

All in all, our final conclusion is that our work will support global efforts to minimize
risks associated with maritime transport by conducting more targeted inspections. More
generally, we have shown how ubiquitous mobility information can perform inspections
to be better and more fair than so far. Finally, we believe that the devised approach may
apply to inspection applications broader than port state control.

Chapter outlook

Below we provide four directions of future research.
First, a natural continuation of this work is to (with the help of domain experts)

determine (1) what behavior is often associated with high risk, and subsequently (2)
how we can reduce riskful behavior.
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Second, a direction for future work is to consider higher-order effects in the cargo ship
network [170]. Building a higher-order network allows for a more accurate representation
of the underlying complex system, which may enable more accurate network analysis
results. It has been shown that relations up to the fifth order may be relevant in cargo
shipping networks [170].

Third, we may investigate to what extent the temporal aspect of the network can
be exploited to obtain a better, more accurate centrality measure that captures the true,
time-aware structural importance of the ports [172].

Fourth, we may investigate to what extent the research under the third direction will
result in an even better-performing classifier for the task at hand.






