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5
Understanding behavioral patterns in

truck co-driving networks

This chapter consists of two distinct research steps. The first step explores methods for
detecting communities within truck co-driving networks. The second step investigates
methods for understanding the relations of these communities with assortativity (cf.
Definition 8). These steps allow us to better understand the behavioral patterns in truck
co-driving networks. Understanding how to stimulate co-driving in turn may help to
reduce traffic congestion and optimize fuel usage as a result of reduced aerodynamic
drag.

The driving force behind edges in the truck co-driving network is analyzed in terms
of assortativity. Moreover, we aim to understand the community structure of the truck co-
driving network. We propose a novel metric, the average maximal community assortativity
metric, to arrive at an understanding of the network community structure through
assortativity.

The current chapter builds on the insights gained in the previous chapter, where we
focused on assessing the evolution of co-driving networks. In this chapter, we address
Research question 4, which reads as follows.

Research question 4: How can node attribute information be exploited to automatically
create a good partitioning of a co-driving network into communities?

The current chapter corresponds to the following publication:
G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.

”
Understanding behavioral patterns

in truck co-driving networks.” In: Proceedings of the 7th International Conference on Complex Networks
and Their Applications. Studies in Computational Intelligence 813. Springer, 2018, pages 223–235.
DOI: 10.1007/978-3-030-05414-4 18

http://dx.doi.org/10.1007/978-3-030-05414-4_18
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5.1 Truck co-driving network

In this chapter, we use network approaches to investigate what attributes lead to a group
of truck drivers showing co-driving behavior. To do so, we use (1) network community
detection [58] as well as (2) various metrics related to assortativity (also known as
mixing patterns, see [126]).

We analyze a unique dataset gathered over one year, detailing the presence of at least
two million trucks in the Netherlands (see Subsection 5.3.1 for a description of the data).
We investigate the spatiotemporal data as a so-called co-driving network, wherein the
nodes represent trucks (cf. Chapter 4). Trucks that are co-driving are observed at the same
location within a very short time window. Those pairs of co-driving trucks that occur
a certain number of times (e.g., more than once) are defined as systematic co-driving
trucks (see Definition 12). In the co-driving network, the edges represent this systematic
co-driving behavior. We will explain the construction of this network in Section 5.3.

The results of this work contribute to topics related to understanding human behavior,
autonomous driving, and environmental sustainability. Using network metrics, we aim
to derive what attributes may influence the decision of truck drivers to drive together
systematically. The findings can be helpful for research on innovative forms of transporta-
tion, such as autonomous driving. We mention two possible benefits: (1) co-driving trucks
can save up to 15% on fuel due to reduced aerodynamic drag [188] and (2) co-driving
trucks reduce traffic congestion. It highlights the potential environmental implications of
understanding co-driving behavior.

The co-driving network turned out to have at least three properties that are often
encountered in real-world networks. First, the network has a significant Giant Component
(GC, see item 4 in Subsection 1.2.4), which contains 37,858 nodes (trucks) and the
majority of the co-driving links of the network. Second, the average shortest path length
(cf. item 6 in Subsection 1.2.4) in the network is around nine edges, which, given a
large number of nodes, is relatively tiny and hints at a small-world-like structure [119].
Third, our co-driving network is scale-free (cf. item 7 in Subsection 1.2.4), i.e., the degree
distribution follows a power law [10]. We also investigate to what extent the network
has a highly modular structure (cf. Subsection 1.2.3), meaning that a clear partitioning
into communities exists.

As we will note in Subsection 5.3.1, we have access to additional node attributes (see
Subsection 1.2.1). It allows us to study assortativity (Definition 8), which (1) enables
insights into what attributes contribute to the network structure and (2) more importantly,
explains co-driving behavior. Subsequently, we will use the node attributes to comprehend
the communities better. With this knowledge, we aim to understand how local groups of
co-driving trucks emerge and contribute to the global network structure. Furthermore,
the proposed approach for understanding community detection results using assortativity
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is broadly applicable in other networks, providing a methodological contribution to the
field.

The remainder of this chapter is organized as follows. After discussing related work
in Section 5.2, Section 5.3 explains how the network was constructed from the raw data.
Section 5.4 is concerned with the proposed approach and techniques to understand the
network structure. Then, Section 5.5 provides details on the results obtained. Conclusions
and suggestions for future work are provided in Section 5.6.

5.2 Related work on understanding behavioral patterns

from networks

We start with an important contribution by Barrat and Cattuto [14], in which face-to-face
contacts were recorded for twenty-second intervals using measurement infrastructure
at several social settings. One of the results was that aggregated network topology and
temporal behavioral properties are strongly related.

Second, Barrat and Cattuto showed that community detection could make a sensible
partitioning of the network that was explainable by node attributes. Our study employs a
similar approach, where the network topology and community structure are explained by
the properties of the individual nodes and their assortative linking patterns.

Third, in a more recent study, Kassarnig et al. [95] handed over a thousand phones to
students who agreed to have their communication and spatiotemporal activities traced.
The work showed that network metrics (such as academic performance of peers, centrality,
and the fraction of low and high-performing peers) are more informative indicators of
university performance than node attributes indicating an individual’s characteristics
such as personality, class attendance, and the Facebook activity level. It underpins the
value of network metrics compared to classical data aggregates.

Fourth, research by da Cunha and Gonçalves [43] on the Brazilian Federal Police
criminal intelligence network used network science techniques to uncover behavioral
patterns amongst criminals. Similar to our data, their network also featured a significant
Giant Component (GC) and a degree distribution that follows a power law. Their observed
low density and high average shortest path length were explained as “no trust among
thieves”. Additionally, Cunha and Gonçalves showed that their GC had a highly modular
structure, which was explained by the necessity of (1) being efficient in running criminal
activities within the group while (2) at the same time also being obscure to the outside
world.

Throughout this chapter, we will employ community detection and node attributes in a
way comparable to those in the works mentioned above, aiming to extract behavioral
insights. To the best of our knowledge, the work of this chapter is the first to investigate
the phenomenon of truck co-driving using network science methods and techniques.
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5.3 Network construction

This section explains the network construction. We start with the characteristics of the
data in Subsection 5.3.1. In Subsection 5.3.2, we describe how we selected systematic
co-driving events. We continue with the co-driving network and its node attributes
in Subsection 5.3.3. Subsection 5.3.4 reports two validation metrics to confirm that
we selected the right value of a parameter. Finally, Subsection 5.3.5 details a regional
co-driving network and its additional node attributes.

5.3.1 Truck observation data

The data is obtained from an ANPR system1. The Dutch Infrastructure and Water Manage-
ment Ministry maintains the system. The data contains over 16,000,000 observations of
trucks passing at a measurement system. These systems are situated at evenly distributed
locations in the Netherlands. For each observation, the following data was available:

• license plate (serving as a unique identifier);
• location ℓ (either one of seventeen highway locations);
• lane h, indicating which of the (at most two) lanes the truck was in;
• speed v (in kmh−1);
• timestamp t at a 10ms resolution; and
• country (using the ISO-2 country code).

We note that a slightly different dataset was used compared to Chapter 4. In this
chapter, we retained observations of all locations and used only data available when
performing the calculations in 2018.

We briefly mention two insights from the truck observation data. First, the frequency
distribution of how often each distinct truck (identified by its license plate) is measured is
given in Figure 5.1a. The horizontal axis denotes the number of measurements per truck
and the vertical axis indicates the corresponding probability. The distribution is highly
skewed to the lower values, meaning that most trucks are only measured a few times.
There appears to be a truncated power law present. Second, the interval distribution
between two successive measurements of the same truck at the same location is shown in
Figure 5.1b. It demonstrates how most trucks that return have a diurnal pattern, visible
from the peaks at multiples of 24 h. Similarly, a weekly pattern is present. This figure
indicates that most individual trucks have regular driving patterns.

5.3.2 Selection of systematic co-driving events

In the co-driving network, nodes are trucks, and edges represent systematically co-driving
trucks Definition 12. We follow the same selection procedure as used in Subsection 4.4.3.

1See https://international.fhwa.dot.gov/pubs/pl07028 for details on this system.

https://international.fhwa.dot.gov/pubs/pl07028
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We employ the following three criteria to determine which truck pairs are systematically
co-driving together.

1. Trucks a and b should be at the same place, i.e., their location is identical, so ℓa = ℓb

(a co-occurrence).
2. Moreover, the co-driving trucks should be so in a time window of at most ∆tmax, so
|ta − tb| ≤ ∆tmax.

3. Finally, systematically co-driving trucks are those co-driving trucks (a, b) ∈ E occurring
at least Θ > 0 times.

Thus, to derive the co-driving network, we must set parameters ∆tmax and Θ.

We derive the right parameter setting for ∆tmax in a data-driven manner below. In
Figure 5.2, network characteristics are shown for increasing values of ∆tmax. Definitions
of these metrics, all common in the field of network science, can be found in [10]. Recall
that a high value for ∆tmax will increase the probability that a pair of co-occurring trucks
is added by chance. Therefore we choose to keep the value relatively low, namely at
∆tmax = 8 s. At this value, the density of the resulting network is lowest, while the GC’s
size compared to the full network (in terms of both nodes and edges) has become stable.
Other network metrics, such as the GC’s diameter and average shortest path length, also
stabilize around this value, as seen in Figure 5.2d.

We expect the probability that two trucks randomly co-drive twice is negligible.
Therefore, we identify non-random and, thus, systematic co-driving by setting Θ = 2.

5.3.3 Co-driving network and node attributes

The co-driving network is an undirected weighted network G = (V,E,w), where V is the
set of all trucks involved in a co-driving activity at least once. For a truck pair (a, b) ∈ E,
the weight wa,b indicates the number of times the two trucks drove together. It should
be greater than or equal to a certain threshold: wa,b ≥ Θ. We furthermore consider four
node attributes: (1) country, directly derived from the license plate; (2) ṽ, the median
truck speed; (3) nℓ, the number of different locations where the truck was observed; and
(4) ℓmax, the location where the truck was most frequently observed.

5.3.4 Two validation metrics

We validate our choice of ∆tmax = 8 s by assessing whether two metrics from the raw truck
measurement data differ when applied on two non-systematically (wa,b < 2) co-driving
truck pairs and two systematically (wa,b ≥ 2) co-driving truck pairs.

The first validation metric is ∆v: the speed difference |va − vb| between two co-
occurring trucks within ∆tmax. We are inclined to assume that trucks that drive system-
atically together for longer distances would have a lower value of ∆v as their speed
needs to be aligned. In Figure 5.3a, we observe that this is indeed the case. Here, the
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Figure 5.1: Summary statistics of the cargo truck data. (Note the logarithmic axes.)
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Figure 5.2: Statistics of the co-driving cargo truck network (for increasing ∆tmax).
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Figure 5.3: Validation metrics for establishing systematic co-driving.

result is most evident for smaller values for ∆tmax, up to 8 s. It hints that we selected the
systematic co-driving events in a correct way.

The second validation metric is ha = hb, which means whether the considered pair
of trucks are driving in the same lane. For a truck pair (a, b) driving in the same lane it
holds that ha = hb. In the case of systematic co-driving behavior, it is more likely that
two trucks are in the same lane since they do not have to overtake each other to drive
together. Figure 5.3b shows that, indeed, the fraction of trucks driving on a different lane
(ha ̸= hb) is more than two times higher for non-systematic co-driving than for systematic
co-driving trucks. Thus, also this validation metric hints that we correctly selected the
systematic co-driving events.

The two validation checks (see Figure 5.3) convince us that the derived co-driving
network captures actual systematic co-driving behavior.

5.3.5 Regional co-driving network

Although trucks from various countries are observed in our data, we have additional
information on Dutch trucks obtained from the Netherlands Vehicle Authority (RDW)
(Dutch: RijksDienst voor het Wegverkeer). We use the additional information to construct
a major contribution of our research, being a Dutch regional co-driving network which
consists of trucks for which (1) the country was equal to the Netherlands (NL) (59% of the
nodes) and (2) all systematic co-driving links between these trucks, having the following
additional node attributes: (1) city where the truck is registered; (2) empty mass mempty

of the truck; (3) maximum mass mmax of the truck; (4) capacity of the truck; (5) company
that owns the truck; (6) registration date (regdate); and (7–10) zip{1,2,3,4} the zip code
where the vehicle is registered with a higher number marking higher geographic precision.
The regional co-driving network, together with the mentioned additional node attributes,
are used in our research in (1) reducing traffic congestion and (2) optimizing fuel usage.
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5.4 Chapter research methodology

Here we describe the techniques used to understand systematic co-driving behavior
from a network perspective. We will start by outlining how assortativity can explain the
driving forces in edge formation in Subsection 5.4.1, followed by the approach to detect
communities within the co-driving network in Subsection 5.4.2.

5.4.1 Understanding co-driving behavior by assortativity

We will use assortativity to investigate what type of common node attributes explain the
formation of links in the co-driving network. Assortativity is a measure of the preference
of nodes in a network to connect with other nodes that are alike in some way [129],
as explained in Subsection 1.2.1. The assortativity metric ra can be computed for each
network’s nominal and numerical node attribute a using the definitions given in [127]. It
should be noted that degree assortativity is the assortativity computed for the (numerical
node attribute) degree, see Definition 8.

An assortativity value ra closer to 1 indicates that nodes have more links to nodes
with equal node attribute a. A value closer to −1 indicates disassortativity, meaning
that nodes with different values for a node attribute a are more likely to be connected.
An assortativity of 0 for an node attribute means no preferential attachment of edges
between nodes based on the value of a node attribute a.

5.4.2 Understanding co-driving behavior by community structure

To better understand the co-driving network, we investigate the community structure,
which can provide insights into the different groups of truck drivers. We use the well-
known Louvain algorithm [19] to detect communities. It takes as input the structure
of a weighted network and outputs an assignment of each node to a community. It
furthermore has a resolution parameter γ that predicts whether a more fine-grained or
coarse-grained partitioning into communities should be found [105].

The Louvain algorithm uses heuristics to optimize the so-called modularity value Q,
indicating the quality of the partitioning of the network into communities. A modularity
value close to 1 indicates that there are more edges within communities and fewer edges
between communities. When adjusting the resolution parameter mentioned above, the
value of modularity and the number of discovered communities C change. At different
resolutions, γ, similar values of Q can be measured, each with a different number of
communities C. This so-called modularity landscape must be explored to obtain the
partitioning of the network into communities (and corresponding γ) that best explain
the formation of groups in the underlying system [66].

We will propose to use the available node attribute information to explore these
solutions automatically. Subsequently, we determine the assortativity for each node
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attribute and average that per community. After that, we take the partitioning of the node
attribute with the highest assortativity for each community. We take the average over all
communities, obtaining the proposed metric of average maximal community assortativity
R = 1

C

∑
c maxa r

G(c)
a .

In this equation, C is the number of communities, c is one of the communities (defined
as the subset of nodes in this community), a is a node attribute, G(c) is the subgraph
induced on the nodes in the community c and r

G(c)
a is the assortativity a in subgraph G(c).

Based on the value of R for different network partitions into communities as a result of
varying the resolution parameter γ, we select the partition into communities for which
R is highest because that partition allows for the best explanation of the communities
observed.

5.5 Analysis of co-driving behavior

In Subsection 5.5.1, we start by providing statistics of the co-driving network. The results
of applying the two approaches to understanding the formation of links outlined in
Section 5.4 are discussed in Subsection 5.5.2 and Subsection 5.5.3.

5.5.1 Network statistics

Network metrics, of which definitions can be found in Section 1.2, were computed using
NetworkX [72], whereas distance metrics were computed using teexGraph [185]. The
python-louvain package was used for community detection [7].

In Table 5.1, we list (1) basic network statistics for the full network and (2) the
regional co-driving network of measured Dutch trucks. We note that the majority of
activity is captured in the GC. The degree distribution for both networks (all trucks vs
Dutch trucks only) is given in Figure 5.4, showing a power-law distribution, suggesting
that the co-driving network is scale-free. It means that a few truck drivers drive with many
other trucks, whereas the majority only do so with a relatively small number of others
trucks. The weight distribution in Figure 5.4 shows that some co-driving trucks frequently
drive together. The diameter of the GC (which is affected by distant outliers) is relatively
high, with a value of 31 and 28 for the full and regional network, respectively. In contrast,
the average shortest path length is higher than 6, which is common in many real-world
networks. However, with a value of 9, the average shortest path length is still substantially
lower than average shortest path lengths encountered in random networks with similar
sizes [10]. The power-law exponent of the degree distribution is 3.6. Together, the three
metrics (diameter, average shortest path length, and power-law exponent) indicate that
although the network has a very skewed degree distribution, nodes are not as close to
each other as in other real-world networks.
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Table 5.1: Statistics of the full and regional co-driving cargo truck networks (and their GC).

Metric Full network Regional network

Number of nodes 65, 290 35, 706

Number of nodes (GC) 37, 858 22, 511

Number of edges 68, 958 36, 885

Number of edges (GC) 51, 730 30, 851

Density 3.2× 10−5 5.8× 10−5

Density (GC) 7.2× 10−5 1.2× 10−4

Diameter (GC) 31 28

Average shortest path length (GC) 9 9

Clustering coefficient 0.06 0.07

Power law exponent 3.58 3.61
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Figure 5.4: Degree (left) and weight (right) distribution of the (full and regional) co-driving cargo
truck network.
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5.5.2 Assortativity

The values reported in Table 5.2 were obtained by using the metric of assortativity, which
was discussed in Subsection 5.4.1. The results indicate that actively co-driving trucks tend
to be connected to other active co-driving trucks, as evidenced by the positive value for
degree assortativity. The geographical information available about the trucks was found
to be the most effective in explaining systematic co-driving behavior. Specifically, the
zip code node attribute in the regional network showed substantially high assortativity
metrics, and the country attribute in the full network had a value of 0.56. These findings
suggest that truck drivers from the same city or country are more likely to engage in
systematic co-driving.

5.5.3 Average maximal community assortativity

The results of applying community detection to the GC of the entire network are shown
in Figure 5.5. The number of communities and the modularity value are shown for
increasing resolutions. A maximum value of Q = 0.86 is found for resolution γ = 1.
This high value is the second evidence that our co-driving network is highly modular.
We observe how there are several solutions with a similar modularity value but a very
different number of communities.

To better understand these findings, we look at the average maximal community
assortativity R (see Subsection 5.4.2) shown in the bottom right of Figure 5.5. Although
at γ = 1 the highest modularity is found, we see that for γ = 2 (as opposed to lower
values of γ), the best community partitioning is obtained in terms of explainability using
assortativity. For this value of the resolution, we find that 52 of the total 120 communities
are best described using the country attribute. In contrast, the remaining attributes ṽ, nℓ,
and ℓmax explain 30, 29 and 9 communities respectively.
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Table 5.2: Calculated assortativities of the full and regional truck co-driving network.

Node attribute Type Full network Regional network

degree numeric 0.12 0.12

country 17 categories 0.56 −
ṽ numeric 0.55 0.34

nℓ numeric 0.45 0.40

ℓmax 17 categories 0.25 0.21

city 1,319 categories − 0.33

mempty numeric − 0.30

mmax numeric − 0.35

capacity numeric − 0.32

company numeric − 0.29

regdate numeric − 0.13

zip4 1,975 categories − 0.32

zip3 718 categories − 0.33

zip2 90 categories − 0.35

zip1 9 categories − 0.41
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Figure 5.5: Properties of the communities (for various values of the resolution parameter). (Top
left: Number of Communities; Top right: Modularity value Q; Bottom left: Average community size;
Bottom right: Average maximal community assortativity R. Note the various logarithmic axes.)
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5.6 Chapter conclusion

This chapter provides a detailed report on the extraction of truck measurement data
for revealing its real-world properties and characteristics. Technically, we focus on a
Giant Component, scale-free degree distribution, positive degree assortativity, and a
highly modular community structure. The newly developed average maximal community
assortativity metric is used to optimize the node attribute information to obtain a good
partitioning into communities. Thereby we address Research question 4: “How can node
attribute information be exploited to automatically create a good partitioning of a co-
driving network into communities?” Our answer is that in the truck co-driving network
as designed by us (see Section 5.3), we were able to establish that the highly modular
community structure can be explained using different attributes’ assortativity in each
community, dominated by geographical features.

Chapter outlook

Additional investigation into the relationship between the observed network characteris-
tics and the domain is on our list of further research. Timestamps will be incorporated to
investigate the co-driving network’s dynamics, identifying which truck drivers initiate
co-driving behavior and the conditions under which the behavior diffuses to other nodes.

Understanding the community structure of the truck co-driving network can lead to
interventions to educate drivers on best practices. Moreover, truck drivers can save fuel
and reduce traffic congestion by reduced aerodynamic drag when co-driving.




