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4
Understanding dynamics of truck

co-driving networks

In this chapter, we move from the investigation of a generic network science problem
towards the transportation domain by investigating the behavior of trucks and their
drivers using a link prediction approach. Social links may exist between trucks, e.g.,
because their drivers work for the same company. We call the process where two trucks
follow the same route at the same time co-driving (Definition 12). It means that the trucks
are potentially socially linked.

Understanding truck co-driving behavior is important because co-driving can have a
positive environmental impact. We aim to increase our understanding and will investigate
the so-called co-driving network, extracted from a spatiotemporal dataset encompassing
millions of truck measurements passing eighteen different highway locations in the
Netherlands. It leads us to Research question 3, which reads as follows.

Research question 3: How do network structure and vehicle attributes relate to co-
driving behavior?

We explore a link prediction approach to understand the (social) processes underlying the
co-driving behavior. By investigating the importance of different types of features (e.g.,
vehicle attributes) provided to the link prediction algorithm, we learn step by step the
relation between network structure and co-driving behavior.

The current chapter corresponds to the following publication:
G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.

”
Understanding dynamics of truck

co-driving networks.” In: Proceedings of the 8th International Conference on Complex Networks and
Their Applications. Studies in Computational Intelligence 882. Springer, 2020, pages 140–151. DOI:
10.1007/978-3-030-36683-4 12

http://dx.doi.org/10.1007/978-3-030-36683-4_12
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4.1 Co-driving network

In the literature, many published studies concerning social network analysis use spa-
tiotemporal data. This often allows enriching the analysis with meaningful insights into
social processes. Much of the research performed so far used either GPS [44, 142],
WiFi [171] or calls from mobile phones [196] to study social processes. In this study, we
will analyze 19 million truck movements.

The goal is to study social phenomena among truck drivers to understand why truck
drivers are engaged in so-called co-driving behavior with other drivers. In simple terms,
co-driving is the activity where two trucks drive together, i.e., are frequently at the same
place simultaneously. Here we assume a direct and natural relation between a truck and
its driver, meaning that a truck driver only drives one truck and the same driver always
drives the truck. Some strict selection criteria ensure that only intentional (or similarly,
systematic) co-driving activity is investigated (see also Definition 12). The criteria are
explained in Subsection 4.4.3.

Co-driving behavior is known to have a potentially positive impact on the environ-
ment through optimizing logistics and consequently reducing fuel use [188]. Hence,
an improved understanding of co-driving behavior may stimulate co-driving behavior.
Moreover, innovative forms of transportation, such as autonomous driving, may have
significant implications for this behavior.

We construct a so-called co-driving network from the data at our disposal. The nodes
of the network are trucks. A link is made when the two trucks frequently show intentional
co-driving behavior. Other related work on similar data will focus on communities and
static properties of the co-driving network, see Chapter 5 and [30].

This chapter aims to learn the relation between the structure of the co-driving network
and vehicle characteristics. To this end, we use a link prediction approach [96]. More
precisely, we develop a machine learning classifier that predicts whether two nodes that
are so far unconnected, do connect. We then use a future snapshot of the network to
check whether the pair of nodes did connect. Subsequently, we investigate the feature
importance of each type that occurs in the link prediction classifier. The measure of
importance allows us to understand what is assessed as important by the classifier, and
thus what aspects are contributing to co-driving behavior. The features used can be
categorized into four different types of features.

1. Neighborhood features relate to the local embedding in the co-driving network.
2. Node features relate to static meta-information of trucks.
3. Path features describe distance-related properties of truck pairs based on the global

structure of the network.
4. Spatiotemporal features consider locations and periods.

The overall structure of this chapter coincides with the research methodology (see
Section 1.7). We start with the introduction of the co-driving network in Section 4.1. In
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Section 4.2, relevant work is provided on analyzing dynamics in social networks, including
spatiotemporal data. Section 4.3 describes the spatiotemporal truck data. Section 4.4
reports how a co-driving network is constructed from the data. In this section, we also
discuss the characteristics of the obtained network. Section 4.5 provides our research
methodology for the experiments at hand, i.e., a formal description of the link prediction
approach. It also explains how the different features are constructed from both the data
and the obtained network. Section 4.6 outlines the experimental setup, demonstrates the
performance of the link prediction approach, and assesses the importance of the features.
Finally, in Section 4.7 we arrive at the conclusions and suggestions for future work.

4.2 Relevant related work on dynamics in networks

From the substantial body of related work on spatiotemporal data, we have selected
three approaches frequently used to study dynamics in networks at the level of individual
nodes. These three different approaches have in common that they all try to understand
the underlying social network by studying node attributes available in the data.

First, Sekara et al. use sensors to measure proximity of students [175]. The authors
show that when high-resolution data is available (both in time and location), groups of
interacting nodes can be observed instantaneously. Hence, making sense of individual
node attributes using network measures can be performed directly. For example, the
authors show that the students may explore new locations in groups during the weekend,
while the groups tend to be at the exact location.

Secondly, Kossinets and Watts analyze e-mail data gathered from students and em-
ployees at a university [100]. Unlike our truck data, e-mail data does not contain spatial
information. In contrast and as an addition, this work collects and analyzes different
node attributes such as professional status, gender, and age.

Finally, Wang et al. analyze the mobility patterns by tracking the mobility and inter-
actions of millions of mobile phone users [196]. A social network is constructed from
phone calls, where users are connected when they communicate. Three contributions
from this literature are mentioned below.
1. The authors have established that spatial trajectories of two users strongly correlate

when they are close in the social network.
2. Mobility features have a high predictive power concerning which nodes will connect;

the prediction power is comparable to the power of network proximity features.
3. Link prediction performance can be improved by exploiting network proximity and

mobility features.
Here, we remark that we have used a similar link prediction approach in our work. In
addition, we have adapted findings from other related works [100, 175] by (1) dis-
tinguishing between weekends and weekdays and (2) using both network and static
attributes.
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4.3 Truck mobility data

Data collection of truck mobility data occurred at eighteen different locations throughout
the Netherlands between 2016 and 2018. Every truck passing these locations is registered
using an ANPR system. The data is obtained by the same systems as used in Chapter 5.
At some locations, the registration systems faced an unexpected downtime. Only regis-
trations from six out of eighteen systems have been considered to ensure a sufficiently
valid range of data. These systems are located near the port of Rotterdam. Furthermore,
registrations with low-quality data have been removed, such as (1) invalid characters in
license plates and (2) non-existing countries.

We remark that the aforementioned quality selections have reduced the total number
of registrations from 18,678,420 to 9,202,764. The monthly variation in truck regis-
trations is provided in Figure 4.1, where we show for each of the 25 months (from
January 2016 to February 2018) how many trucks are registered. We remark that the
number of registrations after applying the quality selections is more stable over time. In
Figure 4.2 the histogram of the number of registrations per truck is shown (note that
both axes have logarithmic scales). For example, we see that about 1 million trucks are
registered only once. More importantly, we see that the distribution of the number of
registrations per truck remains similar after data selection.

4.4 The co-driving network

In Subsection 4.4.1, we start with three relevant concepts and two criteria to arrive
at a procedure to obtain intentional truck co-driving events. Then we describe how
the co-driving network is constructed from these events in Subsection 4.4.3. Subsec-
tion 4.4.4 continues with statistics of the acquired network to compare these to other
social networks.
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Figure 4.1: Monthly variations in truck registra-
tions.
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Figure 4.2: Histogram of number of registra-
tions per truck.
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4.4.1 Procedure to obtain intentional co-driving events

We will now provide the procedure to obtain intentional co-driving events (see Defini-
tion 12) with the help of three relevant concepts: (1) dataset of all registrations, (2) a
co-driving event, and (3) an intentional co-driving event.

Concept 1. Our dataset of all registrations (as mentioned in Section 4.3) is denoted by D.
We use Du to refer to all registrations xi in dataset D from truck u with license plate
lpi = u. More formally, Du = {xi ∈ D : lpi = u}.

Concept 2. A co-driving event (u, v, ti) happens when two registrations xi ∈ Du and
xj ∈ Dv from trucks u and v exist with the same location loci = locj at time ti

provided that they have at most ∆t = tj − ti (with tj < ti) seconds between them (see
Subsection 4.5.2).

Concept 3. A co-driving event may occur randomly or intentionally. The following two
criteria ensure that only intentional co-driving events are studied.
Criterion 1: Sufficient small time interval. The two registrations xi ∈ Du and xj ∈
Dv from trucks u and v should exist with at most ∆t ≤ ∆tmax seconds apart. (Seconds
will be further in this thesis be abbreviated by s.) In Subsection 4.4.2, we will briefly
discuss why we set the ∆tmax parameter to 8 s. It ensures that trucks should be
sufficiently close to each other when intentionally co-driving by setting a maximal
time interval between two co-driving trucks.

Criterion 2: At least two separate co-drive events. To prevent a random co-driving
event is marked as an intentional co-driving event, we require at least two separate
co-driving events between trucks u and v. Moreover, these two separate events should
occur with at least two hours difference, i.e., two co-driving events exist, (u, v, ti)
and (u, v, tj), for which holds that |ti − tj | ≥ 2 h. With the latter requirement, we
ensure that the two co-driving events originate from different truck journeys (we
assume that in 2 h, trucks are either outside the Netherlands or driving on the next
journey).

4.4.2 Determining maximal time interval between co-driving trucks

In Criterion 1 above, we introduced the ∆tmax parameter, determining the maximal
time interval between two co-driving trucks. We mentioned that ∆tmax = 8 s is deemed
appropriate. We will now explain why.

There is a trade-off. High values will select a large share of random co-driving
events, while low values will omit intentional co-driving behavior. We present three
considerations when determining the value of ∆tmax.

Consideration 1. Figure 4.3 shows the distribution of the time gap between two co-
driving events. On the horizontal axis, we see the time gaps in whole seconds; the
vertical axis denotes the relative frequency of that time gap (altogether the frequencies
add up to 1). We note that distinct behavior is shown for random (yellow) and
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intentional (blue) co-driving events. Intentionally co-driving trucks drive closer together
than randomly co-driving trucks. We further note that the time gap in intentional co-
driving trucks peaks at around ∆t = 2 s and is close to the ∆t = 1.3 s, which is
considered a minimum safe driving gap between two trucks [116]. After ∆t = 8 s the
relative frequency of intentional co-driving trucks becomes similar to that of randomly
co-driving trucks. This may indicate that only random co-driving events are selected as
intentional co-driving from this value onward.

Consideration 2. Figure 4.4 shows the distribution of the number of trucks driving
between two trucks involved in intentional co-driving for various values (∆tmax =

4, 8, 16 and 32 s). The horizontal axis denotes the number of trucks, and the vertical
axis the cumulative relative frequency of that number of trucks driving between the
co-driving pair. For values between ∆t = 4 and 8 s, we observe that virtually all trucks
drive with at most one truck between them. Higher values result in a non-negligible
probability that more than two trucks are driving between the two co-driving trucks. It
is unlikely that trucks are intentionally co-driving when more than two trucks drive
between these trucks because it is harder to coordinate routing. This is the case for
values of ∆tmax = 16 s.

Consideration 3. We rationalize that intentionally following a truck is only possible when
a maximum of a couple hundred meters between the two trucks exists. Provided that
trucks in our data drive typically at a speed of around 20m s−1, reasonable values for
∆tmax should be at most 20 s to 30 s.

The considerations above have led us to properly select intentional co-driving behavior
for further analysis in this chapter.

4.4.3 Network construction

After applying the two criteria to select intentional co-driving events, the temporal
network G = (V,E) is constructed. In this network, the nodes are the trucks u, v ∈ V that
frequently show intentional co-driving behavior (have at least one edge). The links of
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Figure 4.3: Frequency distribution of ∆t for
both intentional and random co-driving.
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this network consist of the obtained co-driving events (u, v, ti) ∈ E between those trucks.
We note that multiple links (u, v, ti) exist between two nodes u and v with different ti
due to Criterion 2 (see Subsection 4.4.1) to select only intentional co-driving. We refer to
the number of links between u and v as wu,v, with wu,v ≥ 2 as a result of the two criteria
discussed above. When no links exist between u and v, the weight wu,v equals 0.

4.4.4 Network statistics

In Table 4.1, we summarize nine statistical properties calculated from our obtained
network. All these statistics are explained in Section 1.2. The degree distribution of each
node is shown in Figure 4.5a. We show the node strength distribution in Figure 4.5b. The
vertical axis denotes the frequency of the (a) number of neighbors (degree) and (b) node
strength of all nodes in the truck co-driving network. The node strength of a node is equal
to the sum of the weights of the nodes connected to that node.

Our network is remarkably similar to other (social) networks. We find the following
common properties [10, 12, 197] (see Section 1.2).

• A Giant Component is present that spans most nodes and edges (cf. item 4 in Subsec-
tion 1.2.4).

• Sparseness of edges, with only 0.2‰ of possible pairs of nodes being connected (cf.
item 5 in Subsection 1.2.4).

• Power-law behavior in both the degree and weight distribution as seen in Figures 4.5a
and 4.5b (cf. item 7 in Subsection 1.2.4).

• A relatively low average path length (cf. item 6 in Subsection 1.2.4).

Because our network is remarkably similar to other networks, we may conclude that the
network construction is successful. In Sections 4.5 and 4.6, we will search for complex
relationships between truck drivers that can be understood by investigating the obtained
truck co-driving network.

Table 4.1: Nine statistical properties of the co-driving cargo truck network.

Property Value

Number of nodes 25, 553

Number of links 73, 059

Number of connected node pairs 27, 986

Fraction nodes in Giant Component 62%

Fraction links in Giant Component 79%

Density 2.2× 10−4

Power law exponent γ 3.3

Average shortest path length 7.8

Diameter 24
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(b) Strength distribution.

Figure 4.5: (a) Degree and (b) strength distribution of co-driving cargo truck network. (Note the
logarithmic axes.)

4.5 Chapter research methodology

This section presents the methodology used in this chapter for the analysis of the dynam-
ics of the co-driving network. We start with a description of the proposed link prediction
approach in Subsection 4.5.1. The features are provided in Subsection 4.5.3. In Subsec-
tion 4.5.4 we discuss the setup of the classifier. Finally, we provide the measures taken to
reduce the observed class imbalance in Subsection 4.5.4.

4.5.1 Link prediction

We start by describing link prediction (see also Definition 10). We tailor similar notations
used in the Chapters 2 and 3 to the problem at hand.

The link prediction problem is as follows. Given a network observed at a time interval
[ta, tb] (with ta < tb), the link prediction classifier needs to predict newly formed links
in the network at an evolved time interval [tb, tc] (with tb < tc). In doing so, the
classifier can use present information to predict future links. The input of this classifier
is a feature matrix X, which is based on a network G[ta,tb] = (V[ta,tb], E[ta,tb]) with
E[ta,tb] = {(u, v, ti) ∈ E : ta ≤ ti ≤ tb} and V[ta,tb] the nodes taking part in these edges.
The feature vector is calculated for each candidate node pair that is not linked (yet) in
G[ta,tb]: X[ta,tb] =

(
V[ta,tb] × V[ta,tb]

)
\E[ta,tb]. To ensure that all features are well-defined,

we consider only pairs of nodes where both nodes are in the GC of G[ta,tb]. The target of
the classifier, y, denotes for a node pair whether a link is present in the evolved network:

yu,v =

0 if (u, v, ti) /∈ E

1 if (u, v, ti) ∈ E
for some tb < ti < tc
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We note that only the link formation is to be predicted; we do not aim to predict
the weight of the link. Accordingly, the prediction can be seen as a supervised binary
classification.

4.5.2 Features

Below, we explain the composition of the feature vector used for each candidate truck
pair (a, b). In Table 4.2, we present all 52 features used by the link prediction classifier. The
various truck properties will be explained in Subsection 4.5.2A and the spatiotemporal
information in Subsection 4.5.2B. All features used can be categorized into four types.
We describe each of them in more detail below.
• Neighborhood features. These consider relevant operations related to the ego-network

(see Section 1.2) properties of the nodes of the candidate pair. The neighborhood of a
node is defined by N(a) = {v ∈ V : (a, v, ti) ∈ E for some ti}. The strength of a node
is the summed weight of every link connected to a node, sa =

∑
u∈V wa,u.

• Node features. These are constructed from information available about the trucks, see
Subsection 4.5.2A.

• Path features. These relate to the macro-scale properties of the network (Subsec-
tion 1.2.4). We consider only the shortest path length in this chapter.

• Spatiotemporal features. These relate to the spatial and temporal behavior of the
trucks, see Subsection 4.5.2B.

4.5.2A Node features

The ANPR system determines the license plate and country (countryu) of each truck u

passing by the system. We use Du to denote all registrations xi available of truck u (as
explained in Subsection 4.4.1). The registration systems are also equipped with sensors
to measure the length (lengthi), mass (massi), and the number of vehicle axes (axesi) of
each truck. These measurements may slightly differ between registrations. Therefore, we
calculate the averages shown in Table 4.3 for each truck in the network.

The driving hours and weekend driver features are calculated because they are known
to vary between trucks operating in different industrial sectors. The actual driving hour ti
(h) is subtracted by 12 h and the absolute value is taken, such that it is a measure whether
a truck u drives at day (resulting in low values for driving hoursu, or night resulting in
high values for driving hoursu).

4.5.2B Spatiotemporal features

The spatial-temporal features aim to capture the truck pair’s spatial and temporal behavior
under consideration. We do so by counting the number of registrations in different
periods. We consider periods of one week, one month, and one year. These periods are
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Table 4.2: The features (of truck pair a and b) of the link prediction classifier and their importance.
(The importance of each feature is calculated using the Gini importance, see Subsection 4.5.3.)

Index Feature Type
Feature

importance

X1 truck country (a) = truck country (b) node 0.005

X2 truck axes (a) + truck axes (b) node 0.006

X3 |truck axes (a)− truck axes (b)| node 0.008

X4 truck length (a) + truck length (b) node 0.017

X5 |truck length (a)− truck length (b)| node 0.040

X6 truck mass (a) + truck mass (b) node 0.016

X7 |truck mass (a)− truck mass (b)| node 0.030

X8 driving hours (a) + driving hours (b) node 0.016

X9 |driving hours (a)− driving hours (b)| node 0.030

X10 weekend driver (a) + weekend driver (b) node 0.014

X11 |weekend driver (a)− weekend driver (b)| node 0.019

X12–X19 last week ℓ (a+ b) for ℓ = 1, ..., 8
spatio-

temporal
0− 0.027

X20–X27 last monthℓ (a+ b) for ℓ = 1, ..., 8
spatio-

temporal
0− 0.057

X28–X45 last year ℓ (a+ b) for ℓ = 1, ..., 8
spatio-

temporal
0.010− 0.060

X46 |N (a)|+ |N (b)| neighborhood 0.117

X47

∣∣∣ |N (a)| − |N (b)|
∣∣∣ neighborhood 0.013

X48 |N (a) ∪N (b)| neighborhood 0.093

X49 |N (a) ∩N (b)| neighborhood 0.021

X50 sa + sb neighborhood 0.056

X51 |sa − sb| neighborhood 0.017

X52 shortest path length in G path 0.111

Table 4.3: Overview of available truck information.

Property Description Type

truck countryu country of registration string
truck axesu Median

xi∈Du

axesi number of axes Z

truck lengthu Median
xi∈Du

lengthi length R

truck massu Median
xi∈Du

massi mass R

driving hoursu Mean
xi∈Du

|ti(h) − 12h| usual driving hours [0, 12]

weekend driveru Mean
xi∈Du

0 if ti = weekday

1 if ti = weekend

fraction driving
in weekend

[0, 1]
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chosen to cover a broad window of possible relevant periods. As an example, for feature
last dayℓ (a+ b) registrations are counted for trucks a and b at location ℓ at the last day
before the considered time.

4.5.3 Classifier

A random forest classifier is used to do link prediction. We choose this classifier because
random forests are known to generalize well on unseen data. Our task is to determine
the importance of each feature [42, 76].

We now discuss the setup of the classifier. The random forest classifier we used
contains 128 decision trees. Larger values usually bring no significant performance
gain [140]. Each decision tree is trained on a randomly drawn selection of variables.
The number of randomly drawn features equals the square root of the total number of
variables, a typical value used in classification [162].

Random sampling with replacement from the data increases randomness for each
decision tree. The splitting criteria of the nodes are determined by considering the Gini
impurity reduction as discussed in [76]. The random forest classifier allows obtaining the
feature importance by determining the Gini impurity reduction for splitting nodes with a
certain feature [76]. We recall that the feature importance is essential, as it enables us to
understand the network dynamics by predicting new truck co-driving behavior.

Subsequently, we use the out-of-bag sample of each tree to estimate the performance
of the random forest [76, 162]. We then assess the optimal value for the depth of the
decision trees in the random forest. The classifier’s performance is calculated on the test
set, which is a 10% random sample of the data only used for this purpose.

4.5.4 Class imbalance

It is well-known that real-world network link prediction classifiers come with a large class
imbalance [196], caused by sparseness of edges (see Subsection 4.4.4). The performance
of the random forest classifier may drop if there is a large class imbalance. To overcome
this limitation, we use the following two measures.

1. We adjusted the weights of the positive instances so that the total weight of the positive
and negative samples are equal.

2. We consider only truck pairs where both trucks are involved in co-driving events in
the last two months before time τ . It will reduce the number of considered truck pairs.
The class imbalance is also reduced because many truck pairs registered recently have
a higher probability of co-driving.
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4.6 Experimental setup and results

The setup of the experimental parameters are briefly discussed in Subsection 4.6.1. The
results of the link prediction classifier are discussed in Subsection 4.6.2.

4.6.1 Experimental parameter setup

We set the value of τ such that half of the edges are formed. We experimentally found that
with this value of τ , the class imbalance is reduced while ensuring that at least a thousand
truck pairs are present that will link. The class imbalance is 1 : 61, 000, meaning there
is one positive instance for every 61,000 negative instances. Taking the two measures
noted in Subsection 4.5.4 reduces the class imbalance to 1 : 15, 000, which improves link
prediction performance. Nevertheless, even with this parameter setup, it is still a highly
imbalanced set of instances.

Furthermore, we found an optimal maximum depth of three for the decision trees in
the random forest using out-of-bag sampling (see Subsection 4.5.3).

For reproducibility purposes, we mention that the random forest is used as imple-
mented in Python sci-kit learn 0.21.2 [149].

4.6.2 Results

We report the trade-off between true and false positives to assess the classifier’s accuracy.
The relation between these two values is shown in Figure 4.6 using the well-known
Receiver Operating Characteristic (ROC) curve [140]. The AUC is 0.84, meaning the
classifier can accurately predict whether links will appear. The performance is sufficiently
high, and therefore, we continue with the analysis of the feature importance observed.

In Table 4.2, the feature importance is presented. The features are shown for each of
the four types (neighborhood, node, path, and spatiotemporal features) in Figure 4.7.

We observe that the neighborhood feature (X46) scores highest with a feature impor-
tance of 0.117, closely followed by the single path feature (X52) with an importance of
0.111. The two neighborhood features with the highest scores are X46 and X48, with an
importance of 0.117 and 0.093, respectively. These features provide the sum of the node
pairs’ degrees and the union of their neighborhoods, respectively. Both the spatiotemporal
and node features score lower, with a maximum feature importance of only 0.060 and
0.040, respectively.

Since the features based on network metrics (neighborhood and path) have higher
feature importance, we may conclude from our experiments that the network view (i.e.,
the structure of the data in the network) on the data is helpful.
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Figure 4.6: The ROC curve of the random forest
link prediction classifier.
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Figure 4.7: The Gini feature importance of the
various feature sets. (NB, P, and ST are the
neighborhood, path, and spatiotemporal fea-
tures, respectively.)

4.7 Chapter conclusions and outlook

In this chapter, we addressed Research question 3: “How do network structure and vehicle
attributes relate to co-driving behavior?” We compared four sets of features in a link
prediction model applied to the co-driving network. By comparing the importance of the
different types of features, we observe different abilities in predicting new links. From our
experiments, we may conclude that features based on network measures, particularly the
neighborhood feature and path feature to a lesser extent, can explicate the dynamics of the
studied co-driving network. This means that the network perspective we have adopted in
analyzing the spatiotemporal dataset of truck co-driving in the Netherlands has seriously
contributed to our comprehension of co-driving behavior. Our second conclusion is that
the link prediction approach is a viable method for analyzing spatiotemporal datasets
that contain social behavior. Our answer to Research question 3 reads: “The network
structure, and especially the ego-network structure of the nodes, relate strongly to co-
driving behavior. The same is the case for spatiotemporal information about the truck
itineraries. Vehicle attributes show a smaller relation to co-driving behavior.”

Chapter outlook

An exciting angle for future work is to use a similar approach to predict which nodes will
turn inactive, i.e., will not form any new links. It will result in a substantially smaller set
of candidate nodes for the link prediction algorithm. Finally, future work could focus on
interpreting and applying the knowledge gained to actually stimulate co-driving behavior,
which may in turn facilitate reductions in the fuel use of trucks.




