
Network analysis methods for smart inspection in the
transport domain
Bruin, G.J. de

Citation
Bruin, G. J. de. (2023, November 16). Network analysis methods for smart
inspection in the transport domain. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3656981

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3656981

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3656981

3
Performance of split strategies in link

prediction

In Chapter 2, we have explored supervised machine learning towards the link prediction
task. To train, validate (Definition 3) and test (Definition 4) supervised machine learning
models, we need disjoint and independent splits of data. However, nodes in a real-world
network are inherently related to each other. Therefore, separating candidate links into
these disjoint sets is impossible. This challenge leads to Research question 2, which reads
as follows.

Research question 2: How can we obtain accurate estimates of the performance of link
prediction models by using adequate splits into the train, validation, and test set?

In this chapter, we will evaluate two approaches to split data in link prediction: the
random split and the temporal split. We will compare their performances on six large
network datasets.

The current chapter corresponds to the following publication:
G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.

”
Experimental evaluation of train

and test split strategies in link prediction.” In: Proceedings of the 9th International Conference on
Complex Networks and Their Applications. Studies in Computational Intelligence 994. Springer, 2021,
pages 79–91. DOI: 10.1007/978-3-030-65351-4 7

http://dx.doi.org/10.1007/978-3-030-65351-4_7

50 3.1. Machine learning methods on networks

3.1 Machine learning methods on networks

Machine learning has emerged as a powerful instrument for analyzing all kinds of
datasets. Here, we focus on supervised learning, which is well established when using
non-relational (i.e., tabular) data. However, supervised machine learning on network
data is challenging because obtaining an independent train, validation, and test set is
nontrivial [74]. A common type of machine learning in networks is link prediction, where
the goal is to predict whether a link will be formed in some future state of an evolving
network (see Section 1.4 and Definition 10). In recent years, there has been an increasing
interest in link prediction; hence, several review papers on this topic exist, e.g., [4, 101,
114].

A crucial first step in machine learning in networks is engineering the features. Here
we assume that the network topology data can be converted into features with potentially
helpful information for a predictive model. Established approaches for feature engineering
in link prediction are based on (1) similarity, (2) probabilistic and maximum likelihood,
and (3) dimensionality reduction [101]. Following our approach in Chapter 2, we will
focus on the similarity-based approach. In this approach, pairs of nodes (candidates for
links to be formed in the future) are assigned scores according to their similarity. We
will exclusively use topological features to assess similarity, so we can apply the feature
engineering to networks where no additional information is available about the nodes.
The similarity-based approach provides at least three benefits. First, similarity-based
features provide more accurate results compared to embedding techniques [63]. Second,
the similarity-based approach provides easily explainable features compared to other
techniques [114]. Third, most features are obtained at relatively low computational costs
for the more extensive networks used in this study [114].

The similarity-based approach brings us to the main problem addressed in this chapter.
For proper validation and testing in any machine learning task, instances belonging to
the train set (on which the model will be trained) should be disjoint and independent of
features belonging to the validation and test set. Since many dependencies usually exist
between nodes in a network, it is a challenging task to achieve. We should seriously take
into consideration that obtaining a dependent validation and test set possibly results in
too-optimistic performance measurements (or, equivalently, overestimating the so-called
generalization performance of the model [76]). According to Ghasemian et al., it still
needs to be determined how common machine learning steps, such as cross-validation
and model selection methods, extend from non-relational to network data [62].

Assessment of the performance in supervised machine learning is essential for at least
two reasons. The first reason is the selection of an appropriate model. It is possible to
construct completely different models for a particular task, ranging from entirely different
classifiers to identical models with other (hyper)parameters. Of course, we prefer to
select a model with the best generalization performance on a dataset independent of the

Chapter 3. Performance of split strategies in link prediction 51

train set. Here we aim at an independent validation set so that we can assess the extent
to which overfitting takes place (Definition 11). The second reason for assessing model
performance is to estimate the prediction error on new, unseen data. The performance
should be assessed (1) by using the test data that is not used in any part of training
the model, or (2) in choosing the right hyper-parameters or selecting a model [76].
Our research evaluates the differences in collecting independent datasets to examine
a classifier’s generalizability score. In our procedure, we perform a split only once, so
two datasets are obtained (for instance, train and test data). Here we remark that our
research methodology can easily be extended to obtain an independent third set (for
instance, for validation purposes).

This work contributes to making an in-depth comparison of two approaches to splitting
network data into two disjoint sets. Here, we aim to contribute to a better evaluation of
performance estimation in link prediction and will answer Research question 2.

The remainder of this chapter is structured as follows. Related work is discussed
in Section 3.2. Our research methodology (a formal description of the link prediction
problem) is presented in Section 3.3. Relevant properties of the six temporal networks
are presented in Section 3.4. Section 3.5 features information about the experimental
setup. Then, Section 3.6 is concerned with the precise description of the experimental
setup, the results, and a discussion of these results. Conclusions and future work are
provided in Section 3.7.

3.2 Related work on validation of link prediction models

Only a relatively small body of literature is directly concerned with splitting a network
dataset into disjoint and independent sets to evaluate the performance for machine
learning purposes. We start our exploration with literature on performance estimation in
general before we focus on prediction tasks in networks.

One of the causes of too-optimistic performance estimation is what is often de-
scribed as “test set re-use” [167]. A well-known example is the p-hacking problem [91].
In short, p-hacking is the application of many different models to the same data in
search of a statistically significant result with a sufficiently high p-value. This misuse
can increase the probability that applied research findings are false. More specifically to
data-driven research, too-optimistic performance estimations are suspected in Kaggle
competitions [167]. In these online competitions, participants get the same dataset and
compete for the best classifier performance on some predictive tasks without access to
the test data. However, Kaggle allows users to repeatedly probe test data to obtain a
continuously better performance of a submitted model. It is argued that this would lead
to too-optimistic results [53]. However, the optimistic results were experimentally only
observed to a limited extent [167].

52 3.3. Chapter research methodology

Returning to machine learning on networks, Ghasemian et al. [62] investigated under-
and overfitting networks. They examined (1) the performance of missing link prediction
and (2) the so-called link description task as a diagnostic to evaluate the general tendency
of such algorithms to under- and overfit. Hence, it is remarked that the authors defined the
link prediction task differently since they do not necessarily include temporal information
about the edges (see also Section 1.4). Hence, they removed a fraction of edges from
a network and employed a machine learner to find the removed links from all pairs
of nodes that are not connected anymore. The link description problem is different, as
explained below. A network is sampled, but now the machine learner’s task is finding
the remaining edges of the sampled network from all pairs of nodes. The previously
mentioned authors explain that (1) no algorithm can excel at both the link prediction
and link description task and (2) that these tasks force an algorithmic trade-off, like
the bias-variance trade-off in non-relational data [76]. In our work, we want to bring
the notion of overfitting from non-relational data to relational data. While Ghasemian
et al. focus on overfitting caused by the bias-variance trade-off [62], we investigate
the too-optimistic estimation of generalization performance caused by test set reuse in
networks.

3.3 Chapter research methodology

This section will start with a formal description of the link prediction problem in Subsec-
tion 3.3.1. In Subsection 3.3.2, we explain how we split the data into disjoint and separate
sets for the link prediction classifier. Subsection 3.3.3 continues with the description of
two types of features. In Subsection 3.3.4 we provide information about the classifier.
Finally, in Subsection 3.3.5, we explain the performance metrics used.

3.3.1 Link prediction

The link prediction task is similarly defined as in Chapter 2. The temporal, potentially
undirected, network (see Definition 9) G = (V,E) consists of a set of nodes V and edges
(u, v, ti) ∈ E connecting nodes u, v ∈ V with time ti ≥ ta. Time t′ indicates the time of
the first edge occurring in G. Parallel edges with different timestamps can exist.

Since the network is temporal, we can construct snapshots of network G for a given
time interval. We denote such a snapshot with G[ta,tb] = (V[ta,tb], E[ta,tb]) with E[ta,tb]

being a set consisting only of edges occurring between ta and tb (with ta < tb) and V[ta,tb]

the nodes taking part in these edges. Now assume that we make two such snapshots,
G[ta,tb] and G[tb,tc] from two time intervals [ta, tb] and [tb, tc] with ta < tb < tc. The
evolution of a temporal network is shown in Figure 3.1a.

The task for the supervised binary link prediction classifier (explained in Subsec-
tion 3.3.4) is to predict from G[ta,tb] whether a pair of nodes will connect in G[tb,tc].

Chapter 3. Performance of split strategies in link prediction 53

Hence, the input for the classifier is all pairs of nodes X[ta,tb] =
(
V[ta,tb] × V[ta,tb]

)
\E[ta,tb]

(see also Figure 3.1b). The network G[ta,tb] needs to be sufficiently “mature” so that the
underlying static topology is well captured [112]. Hence we call the period of time [ta, tb]

the maturing interval. Subsequently, we call the time period [tb, tc] the probing interval.
For every pair of nodes xi ∈ X[ta,tb], we probe whether the couple is present in the
probing interval (indicated by yi = 1) or not (denoted yi = 0). The entire procedure is
summarized in Figure 3.1. In Figure 3.1b, the instances considered in the classifier are
shown. Positive instances (yi = 1) are shown in solid green lines, while negatives (yi = 0)
are shown in red dashed lines.

3.3.2 Splitting strategies

After describing the general procedure of link prediction, we need a strategy to separate
the pairs of nodes into different disjoint and independent sets for the classifier. Below,
we will explain two dominant methods to split the data [3, 112]. Applying a temporal
split is more complicated than the random split due to the various parameters involved.
However, a temporal split prevents, to a greater extent, the reuse of the node and edge
set information from the test set in training.

3.3.2A Random split

In the random split, the train and test sets are obtained by randomly splitting instances
from a single probing phase. The validation set was omitted in our research (see Sec-
tion 3.1). The random split method is, e.g., used in [112]. The entire procedure consists
of three steps (see also Figure 3.2a).
1. We obtain all pairs of nodes disconnected during the maturing phase, X[ta,tb].
2. We determine for each of these pairs of nodes whether they connect (the value of yi)

in the probing phase E[tb,tc], as shown in Equation 3.1.

yi =

1 if xi ∈ E[tb,tc]

0 if xi ̸∈ E[tb,tc]

for xi ∈ X[ta,tb] 3.1

3. The pairs of nodes X[ta,tb] are separated into two disjoint sets X train
[ta,tb]

and X test
[ta,tb]

such
that X train

[ta,tb]
∪X test

[ta,tb]
= X[ta,tb] and X train

[ta,tb]
∩X test

[ta,tb]
= ∅.

3.3.2B Temporal split

In the temporal split two consecutive probing phases obtain a train and a test set from
two different time intervals. The temporal split method is for example used in [3]. As the
name states, it takes the temporal aspect into account. More specifically, in the temporal
split method two disjoint datasets are obtained by applying the probing phase on two

54 3.3. Chapter research methodology

a b

Figure 3.1: Procedure to obtain instances for the binary link prediction.

time

maturing phase probing phase

tb tctrain + test instances

1

consider non-edges

2

check links formed3
split in train and test at random

ta

(a) Random split.

time

ta

maturing phase (train) probing phase (train)

tb train instances

1

consider non-edges

2

check links formed

3

consider non-edges not used in training

train interval

test interval

maturing phase (test) probing phase (test)

tdtest instances

4

check links formed

tc

(b) Temporal split.

Figure 3.2: Two different strategies exist to obtain disjoint and independent sets.

Chapter 3. Performance of split strategies in link prediction 55

consecutive snapshots called the training interval [tb, tc] and test interval [tc, td]. The four
steps of this process are shown schematically in Figure 3.2b.

The train set is constructed in the first two steps as follows.
1. We consider every node pair that is not connected in the maturing phase of the train

interval X[ta,tb].
2. For each node pair, we determine whether it will connect in the probing phase of the

train interval, like Equation 3.1.
The test set is constructed similarly to the train set in Step 3 and 4.

3. We consider every node pair that is not connected in the maturing phase of the test
interval X[ta,tc] and not used in the probing phase of the train interval.

4. We determine whether each pair of nodes connects in the probing phase of the test
interval, as shown in Equation 3.2.

yi =

1 if xi ∈ E[tc,td]

0 if xi ̸∈ E[tc,td]

for xi ∈ X[ta,tc] and with tc < td 3.2

3.3.3 Features

As input for a classifier, we need a feature representation for every pair of nodes xi ∈ X.
As discussed in Section 3.1, we use the well-established similarity-based approach, where
the feature for each pair of nodes xi = (u, v) consists of a particular score for each
feature Sfeature(u, v). These scores are based solely on topological properties intrinsic to
the network and not on contextual information [112, 125]. Hence, the features do not
need any node information. Nodes with similar scores and thus a high similarity are more
likely to connect. The score is either neighbor-based (similarity in local properties of the
two nodes) or path-based (quasi-local or based on global properties of the two nodes) [40,
101]. We use the so-called High-Performance Link Prediction (HPLP) feature set defined
in [112], as these are known to obtain good performance while limiting the number of
features. The features can be separated into two types of features; the neighbor-based
(Subsection 3.3.3A) and path-based (Subsection 3.3.3B) features. The features differ
from those used in Chapter 2, where we used features that could be temporally extended
to take past interactions into account (see Section 2.1).

In directed networks, we differentiate between (1) the neighbors connecting to
node u, indicated by Nin(u), and (2) the neighbors to which node u connects, Nout(u).
Likewise, we differentiate also between the in-degree and out-degree of node u, |Ein(u)|
and |Eout(u)|, respectively.

3.3.3A Neighbor-based features

Neighbor-based features take only the direct neighbors of the two nodes under considera-
tion into account. Below we provide definitions of three concepts useful in subsequent
feature definitions.

56 3.3. Chapter research methodology

• Number of Neighbors (NN) is determined differently for directed and undirected
networks. For directed networks, we use (1) the number of neighbors connecting to
nodes u and v and (2) the number of nodes connected by u and v. Hence, we get four
features: SNN-in-u(u, v) = |Nin(u)|; SNN-in-v(u, v) = |Nin(v)|; SNN-out-u(u, v) = |Nout(u)|;
and SNN-out-v(u, v) = |Nout(v)|. For the undirected case, the same score for pairs of
nodes (u, v) and (v, u) is desired, and there is no difference between the number
of nodes connecting from or to node u. Hence, we report both the maximum and
minimum for a given pair of nodes, i.e., SNN-min(u, v) = min (|N(u)|, |N(v)|) and
SNN-max(u, v) = max (|N(u)|, |N(v)|).

• Degree (D) is defined similarly, except that the number of edges is considered. For di-
rected networks, we obtain again four features, viz. SD-in-u(u, v) = |Ein(u)|; SD-in-v(u, v) =

|Ein(v)|; SD-out-u(u, v) = |Eout(u)|; and SD-out-v(u, v) = |Eout(v)|. For undirected net-
works, we obtain the maximum and minimum degree of nodes u and v; SD-min(u, v) =

min (|E(u)|, |E(v)|); and SD-max(u, v) = max (|E(u)|, |E(v)|).
• The Common Neighbors (CN) for a given pair of nodes is calculated by SCN(u, v) =

|N(u) ∩N(v)|. For directed networks, the score is calculated by considering the nodes
that are connected from nodes u and v, i.e., SCN(u, v) = |Nout(u) ∩Nout(v)|.

3.3.3B Path-based features

Path-based features take into account the paths between the two nodes under considera-
tion. Since many paths exist, these features are computationally more expensive than
neighbor-based ones. Below we provide the features with their definitions.

• Shortest Paths (SP), SSP(u, v), indicates the number of shortest paths that run between
nodes u and v.

• PropFlow (PF), SPF(u, v), corresponds to the probability that a restricted random walk
starting from node u and ends at node v within ℓ steps [112]. We use the commonly
applied value of ℓ = 5 [112]. We collapse the network with multiple edges (occurring
at different timestamps) to a weighted network where the weight equals the number
of parallel edges between two nodes. Higher weights result in a higher transition
probability for the random walk. This method is known for potentially obtaining scores
for pairs of nodes (u, v) that are different from those obtained for the pair (v, u). This
observation even holds for pairs in the undirected case [209]. Hence, we use the mean
of the scores obtained for the pairs of nodes (u, v) and (v, u) in the undirected case.

3.3.4 Tree-based gradient boost classifier

We used a tree-based gradient boost learner for our classifier, as these are known to
perform well in classification tasks [76]. The Python implementation of XGBoost was
used [41]. This classifier has various hyper-parameters. While extensive hyper-parameter

Chapter 3. Performance of split strategies in link prediction 57

tuning is beyond the scope of this chapter, we cross-validate two important hyper-
parameters, viz. maximum depth of tree and class weights.

3.3.5 Performance metric: Average Precision

Link prediction is associated with extreme class imbalance, lower bounded by the number
of nodes in the network [112]. Ideally, performance metrics used to evaluate the classifier
should be robust against this class imbalance. The commonly encountered AUC lacks
this robustness [111, 209] and is therefore not used. We are particularly interested in
correctly predicting positives without losing precision, i.e., keeping the number of false
positives low, and without losing recall, i.e., making sure we find all true positives. The
Average Precision (AP) metric equals the weighted mean of precisions achieved at each
threshold in the precision-recall curve. It is well-suited for our case.

3.4 Properties of the six temporal networks

Since our research aims to split the network into different snapshots based on time,
temporal networks are needed. In this work, we use six different temporal networks
that are (1) spanning a broad range of different domains, (2) publicly available, and (3)
sufficiently large. The properties of these networks are shown in Table 3.1. We mention
for each network whether it is directed, the number of nodes, the number of edges, the
density, the mean distance (d̄), and the diameter (Ø). The density, mean distance, and
diameter were calculated on the underlying static network, i.e., the network without
parallel edges. Below, we briefly discuss the six datasets used in this work. Except for the
Condmat network, all datasets were obtained from KONECT [104].
1. The Ask Ubuntu network is an online contact network [143]. The snapshot of the

network that we used was obtained in 2017. Ask Ubuntu is a community-driven
question-and-answer site dedicated towards Ubuntu; it is derived from StackExchange,

Table 3.1: Summary statistics of the six temporal networks. (Edges and nodes in the GC are
indicated between brackets. The mean distance between nodes is given in column d̄, and column Ø
indicates the diameter of the networks.)

dataset directed nodes (GC) edges (GC) density d̄ Ø

1 Ask Ubuntu ✓ 159, 316 (96%) 964, 437 (100%) 4.0× 10−5 3.9 13

2 Condmat ✗ 17, 218 (88%) 88, 090 (100%) 3.7× 10−4 6.3 19

3 Digg ✓ 30, 398 (98%) 87, 627 (100%) 1.9× 10−4 4.7 12

4 Enron ✓ 87, 273 (97%) 1, 149, 072 (100%) 7.9× 10−5 4.9 14

5 Slashdot ✓ 51, 083 (100%) 140, 778 (100%) 9.0× 10−5 4.5 17

6 Stack Overflow ✓ 2, 601, 977 (99%) 63, 497, 050 (100%) 8.7× 10−6 3.9 11

58 3.5. Experimental setup

a network of question-and-answer websites on topics in diverse fields. The nodes are
the users, and a direct edge is created when a user replies to another user’s message.
These interactions can consist of an answer to another user’s question, comments
on another user’s answer, and comments on another user’s comments. Each edge is
annotated with the time of interaction.

2. The scientific co-authorship dataset Condmat entails condensed matter physics col-
laborations from 1995 to 20001. The undirected temporal network is made by adding
an edge between all authors of a publication [111]. For each edge, the date of the
publication connecting these authors is used. We observe that the number of authors
per paper increases over time. It may cause varying performance in link prediction for
different temporal snapshots. We deemed this outside the current research scope.

3. The Digg network is a communication network and contains the reply network of the
social news website Digg from November 2009 [79]. Each node in the network is a
person, and each edge connects the user replying to the reply receiver. Each reply is
annotated with the time of that interaction.

4. The Enron dataset is a communication network and contains over a million emails
sent between employees of Enron between 1999 and 2003 [97]. A directed edge from
the sender to the recipient is added for each email.

5. The Slashdot website is a English tech news website that allows users to place a
comment on each page, and shows where users can start a threaded discussion [65,
159]. The period during which the data was crawled covered August 2005 to August
2006 [85]. The communication network is constructed from these threads where users
are nodes, and replies are edges, annotated with the answer time.

6. Like Ask Ubuntu, the Stack Overflow network is collected from StackExchange and
can be considered an online contact network [143]. Nodes are users; directed edges
represent interactions annotated with the exchange time.

3.5 Experimental setup

In Section 3.3 we explained the research methodology of our experiment. However, a
few parameters need to be addressed explicitly to run the link prediction task (cf. Sub-
section 3.3.1) used in the experiment. We discuss them in the sections below. First, we
discuss the selection of node pairs using their distance in Subsection 3.5.1. Second, in
Subsection 3.5.2, we discuss the choice of the time intervals for the maturing and probe
phases for both the random and temporal split (Subsection 3.3.2). Third, we continue in
Subsection 3.5.3 by discussing the number of pairs of nodes used for training and testing.
Fourth, the performance is improved by optimizing the class weight and the value of the
maximum tree depth in Subsection 3.5.4. The class weight and the maximum tree depth

1The data was obtained from https://github.com/rlichtenwalter/LPmade

https://github.com/rlichtenwalter/LPmade

Chapter 3. Performance of split strategies in link prediction 59

are called hyper-parameters. Fifth, we explain in Subsection 3.5.5 how multiple snapshots
from a network are constructed for robustness checks.

3.5.1 Distance selection

The task of link prediction is computationally intensive for larger networks because there
are

∣∣(V[ta,tb] × V[ta,tb]

)
\ E[ta,tb]

∣∣ instances. A way to reduce the number of instances and
to reduce class imbalance, is to only consider pairs of nodes at a limited distance of each
other in the network [111]. For our distance selection, we consider only pairs of nodes at
a distance of two in our network.

3.5.2 Time intervals

The choice of the time intervals used for the maturing and probing phase in both the
random and temporal split can affect the obtained results. To allow fair comparisons
between the random and temporal split, the probing phase of the test interval should
contain a number of edges similar to the probing phase of the training interval, i.e.,∣∣E[ta,tb]

∣∣ ≈ ∣∣E[tc,td]

∣∣. Moreover, we need values that are consistent for the various net-
works. Timestamps of tb, tc, and td were set so that the proportion of edges in the
maturing and probing phase are approximately similar to the settings in [112].

For the Condmat network, this results in a ratio
∣∣E[ta,tb]

∣∣ : ∣∣E[tb,tc]

∣∣ approximately
equal to 5 : 1. The number of edges are then

∣∣E[ta,tb]

∣∣ ≈ 50000 and
∣∣E[tb,tc]

∣∣ ≈ ∣∣E[tc,td]

∣∣ ≈
10000.

3.5.3 Training and testing

In the case of random splitting, the instances X[ta,tb] should be split into two disjoint and
independent sets, as explained in Subsection 3.3.2A. A 75% of the instances are used for
training and the remainder for testing, i.e.,

∣∣∣X train
[ta,tb]

∣∣∣ = 3
∣∣∣X test

[ta,tb]

∣∣∣.
3.5.4 Improved performance

Below, we report the choices made regarding two hyper-parameters used in the XGBoost
algorithm to improve performance. First, we adjusted the class weights of the positive
instances to equal the total weight of the positive and negative samples. In a five-fold
cross-validation setting applied to the training data, we determined for each network
separately whether the adjusted class weights improve performance on the train set.
Second, we determined the optimal maximum tree depth using the same five-fold cross-
validation.

60 3.6. Results of the two different splitting strategies

3.5.5 Robustness checks

The experimental setup of the robustness checks is as follows. We repeat the full procedure
of selecting time intervals (see Subsection 3.5.2) on the Ask Ubuntu network ten times.
Ten non-overlapping snapshots are obtained by shifting intervals such that each next
interval starts (ta) at the end of the previous interval (tc for random split, td for temporal
split). The robustness is then checked by comparing the Average Precision performance
of the random split with that of the temporal split.

3.6 Results of the two different splitting strategies

The Average Precision (AP) (see Subsection 3.3.5) score of the classifiers for the six
networks with the random split and temporal split method is shown in Table 3.2. This
metric shows significant performance differences between the random and temporal
split. The performance of the temporal split is for all networks lower than the random
split. It may indicate that the random split provides an overly optimistic indication of
the performance value. Furthermore, the difference between the random and temporal
splits varies widely between the networks, indicating that the extent to which the test set
is reused varies by network. Notably, the AP of the Ask Ubuntu network drops by 80%,
demonstrating that the test set reuse can be extensive.

Robustness checks

We checked the robustness of the findings by following the procedure (ten times
performing the full procedure, as outlined in Subsection 3.5.5). We find an AP of
0.025± 0.009 (mean±standard deviation) when using the random split, while an AP of
only 0.0061± 0.0016 is found for the temporal split. The different AP curves are shown
in Figure 3.3. From our results, we may conclude that the random split precision-recall
curves dominate their temporal counterparts in all snapshots.

Chapter 3. Performance of split strategies in link prediction 61

Table 3.2: Link prediction performances for different split strategies (applied on the six temporal
networks using the AP metric).

dataset random split temporal split

1 AskUbuntu 0.023 0.0046

2 Condmat 0.012 0.0048

3 Digg 0.0043 0.0014

4 Enron 0.016 0.012

5 Slashdot 0.0076 0.0021

6 Stack Overflow 0.0029 0.0013

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is
io
n

2

0 2

Figure 3.3: Precision-recall curves of the AskUbuntu network for robustness checks. (Performed on
ten different snapshots.)

62 3.7. Chapter conclusion and outlook

3.7 Chapter conclusion and outlook

In the present chapter, we analyzed two different ways of splitting data viz. into disjoint
and independent sets in network data for training, validation, and testing of link pre-
diction models. The results indicate that the random split consistently obtains higher
performance estimates than the temporal split.

So, we are able to answer Research question 2: “How can we obtain accurate estimates
of the performance of link prediction models by using adequate splits into train, validation,
and test sets?”. The answer is: “We obtain accurate estimates of the link prediction
performance by using the temporal split, because the alternative, the random split, shows
signs of overfitting.” Based on our experiments we may conclude that the temporal split
method provides more accurate estimates of the link prediction model performance.

Chapter outlook

While the procedure of the temporal split prevents using the same temporal information of
a given node, it still allows the same node to be used in multiple sets. Future work should
devise more rigorous strategies to ensure to a further extent that the train, validation, and
test set are disjoint and independent. Further research should be conducted to establish
the relation between the extent of overfitting and the (domain of the) network.

