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2
Supervised link prediction in large-scale

temporal networks

Missing link prediction is a well-studied technique for inferring the missing edges between
two nodes in a static representation of a network. In temporal networks, such as modern-
day social networks, the temporal information associated with each link can be used to
predict future links between thus far unconnected nodes, thereby enabling temporal link
prediction (Definition 10). In the continuation of the thesis, this is referred to as link
prediction. In this chapter, we address Research question 1, which reads as follows.

Research question 1: What is the relation between network structure and model
performance in link prediction?

The chapter presents a systematic investigation of link prediction, making use of 26 tempo-
ral, structurally diverse, real-world networks ranging from thousands to millions of nodes
and links. We analyze for each network the relationship between (1) the typology and
(2) the obtained link prediction performance. Meanwhile, we employ well-established
topological features.

The current chapter corresponds to the following publication:
G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.
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2.1 Link prediction

Link prediction is a frequently employed method within the broader field of social network
analysis [10]. Many critical real-world applications exist in a variety of domains. Two
examples are the prediction of (1) missing links between pages of Wikipedia and (2) users
that are friends on an online social network [101]. As mentioned in Section 1.4, link
prediction is often defined as predicting missing links based on the currently observable
links in a network [114]. Many real-world networks have temporal information on
when the edges were created [50]. Such temporal networks are also called dynamic or
evolving networks (see also Definition 9). They open up the possibility of doing link
prediction (contrasting with the aforementioned missing link prediction). The availability
of temporal information means that we can infer future edges between two nodes as
opposed to only predicting missing links [110]. For instance, in friendship networks, link
prediction may (1) facilitate friend recommendations and (2) predict who will form new
friendships in the future.

Existing work on link prediction is typically performed on one or a handful of spe-
cific networks, making it challenging to examine the generalizability of the approaches
used [115]. This chapter provides the first large-scale empirical study of link prediction
on 26 different large-scale and structurally diverse temporal networks originating from
various domains. In doing so, we provide a systematic investigation of how temporal
information is best used in link prediction.

We illustrate how the performance of social networks will likely be higher. Because
they have a higher density than other networks, nodes have more common neighbors.
Thus a given instance may provide more information to the link prediction model. By
using this example, we demonstrate that it is essential to understand the relationship
between the network’s structural characteristics and the performance of link prediction
features.

A common approach in link prediction is to learn a classifier that utilizes multiple
features to classify which links are missing or, in case of temporal link prediction, will
appear in the future. Features are typically computed for every pair of nodes that is
not (yet) connected, based on the topology of the network [101]. These topological
features essentially calculate a similarity score for a node pair, where a higher similarity
signals a higher likelihood that this pair of nodes should be connected. Commonly used
topological features in machine learning include Common Neighbors (CN), Adamic-Adar
(AA), Jaccard Coefficient (JC), and Preferential Attachment (PA) (Subsection 2.4.1A).
These features clearly relate to the structural position of the nodes in the network.
Previous work has suggested a straightforward approach to taking the temporal evolution
into account in topological features [35, 189]. We describe the process of obtaining the
set of temporal topological features in Subsection 2.4.1B. The benefit of using such a set
of features is that they are well-established and interpretable. Moreover, recent work has
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shown that in a supervised classifier, the topological features perform as well as other
features that are less interpretable and more complex [63]. A further comparison with
other features is provided in Section 2.2.

As we have seen, previous studies ignore that two types of temporal networks can be
distinguished (see also Section 1.3): networks with persistent relationships and networks
with discrete events [133]. The example of friendship networks, as mentioned earlier,
contains edges marking persistent relationships that occur at most once for related
persons. In the case of discrete event networks, an edge marks a discrete event (e.g.,
a communication) at an associated timestamp, representing a message sent from one
person to another. In contrast to networks with persistent relationships, multiple edges
can occur between two persons in discrete event networks. So far, previous studies have
ignored that each link is not of the same type. In our approach, we address this literature
gap by what we coin past event aggregation. This allows us to take both types of temporal
links into account, where all information of two-faceted past interactions (i.e., persistent
and discrete) are incorporated into the temporal topological features.

Finally, the temporal topological features implicitly assume so-called edge-centered
temporal behavior. This suggests that phenomena at the level of links determine the
evolution of the network. Here, we may challenge the usual assumption that the temporal
aspect is merely caused by the activity of nodes, being the decision-making entities in the
network. At this point, we remark that the nodes are operating somewhat independently
of the structure of the remainder of the network [78]. To investigate whether the
assumption on the temporal aspect holds, we compare (1) temporal topological features
with (2a) features consisting of static topological features and/or (2b) features capturing
temporal node activity. By testing this distinction on the 26 different temporal networks,
we are able to better understand whether the temporal aspect is best captured by
considering edge-centered or node-centered temporal information.

Below we sum up the four contributions of this chapter.

1. To the best of our knowledge, we are one of the first to present a large-scale empirical
study of link prediction on various networks. In total, we examine the performance of a
link prediction model on 26 structurally diverse networks, varying in size from a few
hundred to over a million nodes and edges.

2. We analyze possible relations between structural network properties and the observed
performance in link prediction. We find that networks with degree disassortativity (see
Subsection 1.2.1), signaling frequent connections between nodes with different degrees,
show better performance in link prediction.

3. We show that the performance of link prediction can significantly be improved by
taking multiple past interactions between two nodes into account.

4. To understand the relation between node-centered and edge-centered temporal behavior,
the information networks used in this study stand out, as they appear to have more
node-centered temporal behavior.
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The remainder of this chapter is structured as follows. In Section 2.2, we further
elaborate on related work. Section 2.3 provides the preliminaries of this chapter, leading
up to a formal definition of link prediction. We continue with the research methodology
in Section 2.4. It will be followed by describing the temporal networks in Section 2.5.
In Section 2.6, we report on the four experiments and their results. In Section 2.7, the
conclusion is presented, together with an outlook.

2.2 Related work on link prediction

Although much literature is available on link prediction, we found that attention to
temporal networks and how to apply link prediction to them is relatively limited. Some
reviews have been published. They are pointing out the various approaches toward link
prediction [49, 50]. Consequently, we will start with an exploration of four types of
approaches presented therein.

First, probabilistic models require (1) additional node or edge attributes to obtain
satisfactory performance (which hinders a generic approach to all networks) or (2) tech-
niques that do not scale to larger networks [101] (rendering them unusable for the larger
networks used in the study).

Second, approaches such as matrix factorization, spectral clustering [168], and deep
learning approaches, such as DeepWalk [158] and Node2Vec [70], all try to find a lower-
dimensional representation of the temporal network and use the obtained representation
as a basis for link prediction. Apart from hindering the generic approach desired in
this work, the need for interpretability of lower-dimensional representations usually
is a significant problem in domains where the model needs to be interpreted by law,
such as in medicine or businesses dealing with personal information [84]. For example,
in Chapter 4, we will examine the driving patterns of trucks in a so-called truck co-
driving network, where trucks are connected when they frequently drive together. When
an inspectorate uses gathered network information to predict which trucks should be
inspected for possible misconduct, truck drivers may legally have the right to know why
they were selected. Since we aim to provide approaches toward link prediction that
apply to any scientific domain, we disregard approaches that learn a lower-dimensional
representation.

Third, in the time series forecasting approach, the temporal network is divided
into multiple snapshots [71, 134, 135, 161, 177]. For each of these snapshots, static
topological features are learned. The topological features of a future network snapshot are
learned using forecasting, thereby enabling link prediction. This approach does scale well
to larger networks and is interpretable. However, it is unclear into how many snapshots
the temporal network should be divided and whether the number of snapshots should
remain constant across all networks used, again, hindering a truly generic approach.
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Fourth, we focus on temporal topological features [34, 189]. Recent work has sug-
gested that using topological features in supervised learning may outperform more
complex features learned from a lower-dimensional representation of the temporal net-
work [63]. Section 2.4 provides further details on this concept. The topological features
are provided to a supervised link prediction classifier. Many different machine learning al-
gorithms are known to work well in link prediction. Commonly used classifier algorithms
include logistic regression [133, 161], support vector machines [3, 135], k-nearest neigh-
bors [3, 34, 35], and random forests [32–35, 63, 135]. We report performances using
the logistic regression classifier. This classifier provides the four following benefits, (1) it
allows an intuitive explanation of how each instance is classified [17], (2) the classifier is
relatively simple and hence interpretable [123], (3) the classifier scales well to larger
networks, and (4) good results are achieved without parameter optimization [133].

To sum up, in contrast to earlier works on link prediction, which has been applied on
only a handful of networks [18, 34, 35, 71, 124, 133–135, 161, 168, 177, 178, 189], we
apply link prediction on a structurally diverse set of 26 large-scale, real-world networks.
We aim to do so using a generic, scalable, and interpretable approach.

2.3 Preliminaries

This section describes the notation used in this chapter in Subsection 2.3.1. In Subsec-
tion 2.3.2, we explain the various network properties and measures used in this chapter.
Finally, in Subsection 2.3.3, we formally describe the link prediction task.

2.3.1 Notation

In this chapter, we use the following notation for the link prediction task (see Defini-
tion 10).

An undirected, temporal network G[ta,tb](V,E) consists of a set of nodes V and
edges (or, equivalently, links) E = {(u, v, ti) | u, v ∈ V ∧ ta ≤ ti ≤ tb} that occur between
timestamps ta and tb.

Networks with discrete events, where multiple events can occur between two nodes,
can be seen as a multigraph, where multi-edges exist: links between the same two nodes
but with different timestamps [69]. In this work, the removal of edges is not considered
since this information is unavailable for most temporal networks.

A static representation of the underlying network is needed to compare static and
temporal features (Section 2.4). The static, simple graph is obtained from the temporal
network by collapsing multi-edges into a single edge. The graph’s number of nodes (also
called the size) is n = |V |, and the number of edges is m = |E|. For convenience in later
definitions, N(u) is the set of all neighbors of node u ∈ V . The size of the set, i.e., |N(u)|,
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is the number of neighbors of node u, which is in a simple graph equal to the degree of
node u. In case of a multigraph, |E(u)| is the degree of node u.

2.3.2 Real-world network properties and their measures

Several properties exist that characterize the macro-scale of a network [10]. These prop-
erties guide us in exploring how the structure relates to the link prediction performance.
In this work, we use at least the following five properties: (1) the number of nodes and
edges (not explained below), (2) average clustering coefficient, (3) degree assortativity,
(4) density, and (5) diameter. Each property is derived from the underlying static graph.
• Average clustering coefficient: The average clustering coefficient (see also Subsec-

tion 1.2.2) is given by C = n−1
∑

u∈V 2Lu/
(
|N(u)| ·

(
|N(u)| − 1

))
, when |N(u)|−1 >

1. Lu represents the number of edges between the neighbors of node u. Highly clustered
networks are often observed in the real world and particularly in social networks.

• Degree assortativity: It is often observed that nodes do not connect to random other
nodes but instead connect to similar ones (see also Subsection 1.2.1). For instance,
degree assortativity is observed in social networks, meaning that nodes often connect
to other nodes with a similar degree. We can measure the degree assortativity of a
network by calculating the Pearson correlation coefficient, ρ, between the degree of
nodes at both ends of all edges [126] (see also Definition 8). In case low-degree nodes
more frequently connect with high-degree nodes, the obtained value is negative.

• Density: The density of a network indicates what fraction of the pairs of nodes are
connected. For networks of the same size, higher density means that the average
degree of nodes is higher, which has implications for the overall structural information
available to the link prediction classifier. For a network with m edges and n nodes, the
density is equal to 2m/n(n− 1).

• Diameter: The diameter is the largest distance observed between any pair of nodes
(see also Section 1.2). The distance is measured in terms of the number of nodes in
the path between the pair of nodes. This property, together with density, captures how
well-connected a network is.

2.3.3 The goal of a supervised link prediction model

The goal of a supervised link prediction model is to predict for unconnected pairs of
nodes in the temporal network G[tq=0,tq=s] whether they will connect in an evolved
interval [tq=s, tq=1] where q marks the q-th percentile of observed timestamps in the
network and 0 < s < 1. Hence, timestamps tq=0 and tq=1 mark the time associated with
the first and last edge in the network, respectively. Moreover, timestamp tq=s marks
the time used to split the network into two intervals. The examples provided to the
supervised link prediction model are pairs of nodes that are not connected in [tq=0, tq=s].
For each example (u, v) in the dataset, a feature vector x(u,v) and binary label y(u,v) is
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provided to the supervised link prediction model. The label for each pair of nodes (u, v)
is y(u,v) = 1 when it will connect in [tq=s, tq=1] and y(u,v) = 0 otherwise. Because
parameter s determines the number of considered nodes, it affects the class imbalance
encountered in the supervised link prediction; values close to 1 result in a larger number
of node pairs to consider while limiting the number of positives.

The features used in the supervised link prediction model are only allowed to use the
information of network G[tq=0,tq=s], preventing any leakage from nodes that will connect
in the evolved time interval [tq=s, tq=1]. Note that the temporal information contained in
the network is used for two purposes; (1) it allows to split the network into two temporal
intervals, and (2) it is used in feature engineering to model temporal evolution.

2.4 Chapter research methodology

This section explains the research methodology used in this chapter. It can be seen as an
addition to the general research methodology described in Section 1.7. We emphasize
described features used in supervised link prediction. We start by explaining the different
sets of features in Subsection 2.4.1. We then present a novel research method, i.e.,
an intuitive approach to incorporate information on past interactions in the case of
discrete event networks. Additionally, in Subsection 2.4.2, we discuss the supervised link
prediction model.

2.4.1 Features

We explain three types of features in this section. First, the static topological features are
provided in Subsection 2.4.1A. Second, the temporal topological features are given in
Subsection 2.4.1B. Finally, the node activity features are specified in Subsection 2.4.1C.

2.4.1A Static topological features

We use four common static topological features, forming the feature vector for each
candidate pair of nodes (u, v). These features are computed on the static graph underlying
the temporal network, as defined in Subsection 2.3.1. Below we define each of them.
• Adamic-Adar (AA): The AA feature considers all common neighbors, favoring nodes

with low degrees [1].

AAstatic(u, v) =
∑

z∈N(u)∩N(v)

1/ log
∣∣N(z)

∣∣ with
∣∣N(z)

∣∣ > 1 2.1

• Common Neighbors (CN): The CN feature equals the number of common neighbors
of two nodes.

CN static(u, v) = |N(u) ∩N(v)| 2.2
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• Jaccard Coefficient (JC): The JC feature is similar to the CN feature but normalizes
for the number of unique neighbors of the two nodes.

JC static(u, v) = |N(u) ∩N(v)|/|N(u) ∪N(v)| with |N(u) ∪N(v)| > 0 2.3

• Preferential Attachment (PA): The PA feature considers that nodes with a high
degree are more likely to make new links than nodes with a lower degree (see also
Section 1.3).

PAstatic(u, v) = |N(u)| · |N(v)| 2.4

2.4.1B Temporal topological features

The temporal topological features are extended versions of the static topological features
presented above in Subsection 2.4.1A. The construction of these features then requires
three steps, namely:
Step I. Temporal weighting
Step II. Past event aggregation
Step III. Weighted topological features
The resulting feature vector for a given pair of nodes, after applying the three steps,
consists of all possible combinations of three different temporal weighting functions
(exponential, linear, square root), eight different past event aggregations (see below
under step II), and four different weighted topological features (AA, CN , JC , PA). Thus,
for discrete event networks, the feature vector is of length 3 · 8 · 4 = 96, and for networks
with persistent relationships, it is of length 3 · 4 = 12.

Step I: Temporal weighting
The topological features need weighted edges (see Step III), while the networks used in
this study have edges with an associated timestamp. In the temporal weighting step, we
obtain these weights with the help of a methodology described by Tylenda et al. [189].
The temporal weighting functions are provided in Equations 2.5 to 2.7. In these functions,
a numeric timestamp ti is converted to a weight w. Note that tmin and tmax denote the
earliest and latest observed timestamp over all edges of the considered network.

In Figure 2.1, the behavior of the different weighting functions is shown when applied
to the DBLP network [109]. It is further described in Section 2.5. The exponential
weighting function (Equation 2.6) assigns a higher weight to more recent edges than the
linear (Equation 2.5) and square root (Equation 2.7) functions. In contrast, the square
root function assigns higher weights to older edges than the linear and exponential
functions. When the weights of older edges become close to zero, these edges are
discarded by the weighted topological features. To prevent the edges from far in the past
are discarded completely, we bound the output of each weighting function between a
positive value ℓ and 1.0 (ℓ stands for lower bound), with 0 ≥ ℓ < 1.
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Figure 2.1: Mapping of three weighting functions for the DBLP network.

wlinear = ℓ+ (1− ℓ)
ti − tmin

tmax − tmin
2.5

wexponential = ℓ+ (1− ℓ) · exp (3 · (ti − tmin)/(tmax − tmin))− 1

e3 − 1
2.6

wsquare root = ℓ+ (1− ℓ) ·
√
(ti − tmin)/(tmax − tmin) 2.7

Step II: Past event aggregation
In the case of networks with discrete events, each multi-edge has an associated weight
after the previous temporal weighting step. To allow the weighted topological features
to be computed, we need to obtain a single weight for each node pair, capturing the
past activity of these nodes. For this purpose, we propose to obtain the weight by using
eight different aggregation functions. All eight functions use as input a set containing
all weights of past events. The following functions are used: (1) the zeroth, (2) first,
(3) second, (4) third, (5) fourth quantile, and the (6) sum, (7) mean, and (8) variance
of all past weights. Utilizing these as summary statistics, we capture the different types
of linkage in networks that occur in the real world. For example, it may matter whether
interaction occurred often, far away in the past, or recently. The aggregation functions
aim to capture different temporal behaviors. Quantile functions bin the set of weights,
a common feature-engineering step. Taking the mean, sum, and variance of the set of
weights allows the model to capture more complex trends. An example of these complex
trends is the so-called bursty behavior, which is often observed in real-world data [9].
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Step III: Weighted topological features
In Equations 2.8 to 2.11, the Weighted Temporal Features (WTF ) are presented, which
are taken from Bütün et al. [35]. In these equations, WTF(u, v) denotes the weight
obtained for a given pair of nodes (u, v) after edges have been temporally weighted and,
in case of networks with discrete events, events have been aggregated.

AAtemporal(u, v) =
∑

z∈N(v)∩N(y)

WTF(u, z) +WTF(v, z)

log

(
1 +

∑
x∈N(z)

WTF(z, x)

) 2.8

CN temporal(u, v) =
∑

z∈N(u)∩N(v)

WTF(u, z) +WTF(v, z) 2.9

JC temporal(u, v) =
∑

z∈N(u)∩N(v)

WTF(u, z) +WTF(v, z)∑
x∈N(u)

WTF(u, x) +
∑

y∈N(v)

WTF(v, y)
2.10

PAtemporal(u, v) =
∑

u∈N(x)

WTF(u, x) ·
∑

v∈N(y)

WTF(v, y) 2.11

2.4.1C Node activity features

The goal of the node activity features is to capture node-centered temporal activity. To
this end, we create the node activity features in the following three steps: (1) temporal
weighting, (2) aggregation of node activity, and (3) combining node activity. These
steps are explained below. The feature vector for a given pair of nodes consists of all
combinations of three different temporal weighting functions, seven aggregation functions
applied to the node activity, and four combinations of the node activity. It results in a
feature vector of length 3 · 7 · 4 = 84.
Step 1. Temporal weighting. The temporal weighing method is the same as used in fea-

ture engineering of the temporal weighted topological features (see Subsection 2.4.1B
and Figure 2.1).

Step 2. Aggregation of node activity. The weights from all edges adjacent to the node
under investigation are collected for each node. We obtain a fixed feature vector for
each node by aggregating using the following seven functions: (1) the zeroth, (2) first,
(3) second, (4) third, (5) fourth quantile, and (6) sum and (7) mean of the node
activity vector (here the variance of all node weights is suppressed because some nodes
have only one edge, rendering the variance undefined). Similar to the engineering of
the temporal topological features, these aggregations capture different kinds of activity
that a node may exhibit. Nodes show bursty activity patterns in some networks [78].

Step 3. Combining node activity. To take the activity obtained in the previous two steps
of both nodes under consideration into account, we use four different combination func-
tions. These four functions are (1) absolute difference, (2) minimum, (3) maximum,
and (4) sum. By doing this, we obtain the node activity feature vector.
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2.4.2 Supervised link prediction

The features discussed in Subsection 2.4.1 serve as input for a supervised machine
learning model that predicts whether a pair of currently disconnected nodes will connect
in the future (see Subsection 2.3.3). Here we use the logistic regression classifier. It was
chosen because of its simplicity, overall good performance on this type of task, and its
explainability (see Section 2.2). We did not consider optimizing parameters because it is
outside the scope of the current work.

In theory, a number quadratic in the number of nodes (i.e., the node pairs) could be
selected as input for the classifier, with positive instances being node pairs that connect
in the future. This would result in a significant class imbalance. To address the imbalance
and, at the same time, limit the computation time needed to train the model, we reduce
the number of node pairs given as input to the classifier by the following two steps.

Step 1. Pairs of nodes are only selected if they are exactly the same distance apart [111].
In our study, which involves large networks, the selection is limited to include only
pairs of nodes with a distance of two.

Step 2. Pairs of nodes are sampled by replacement such that 10,000 will connect (positive
instances) and 10,000 will not connect (negative instances). By following this sampling
procedure, we obtain a balanced set of examples that do not require further post-
processing and can be used directly by the classifier. In practice, the train set for the
logistic regression classifier is obtained using stratified sampling, taking 75% of all
examples. The remaining instances are used as a test set. Because we do not optimize
any parameters of the logistic regression classifier, no validation set is used.

Analogously to previous work [50], we measure the classifier’s performance on the test
set utilizing the Area Under the ROC Curve (AUC). The AUC only considers the ranking
of each score obtained for each pair of nodes provided to the logistic regression classifier.
It makes the measured performance robust to cases where the applied threshold on
the scores is chosen poorly. An AUC of 0.5 signals random behavior, i.e., no classifier
performance. A perfect performance is obtained when the AUC equals 1, which is highly
unlikely in practical settings.

2.5 Data and the statistics used

Our experiments are performed on a structurally diverse and large collection of 26 tem-
poral networks. The networks can be categorized into three domains: social, information,
and technological. The distinction of networks in these three domains is taken from
other network repositories [104, 107]. In Table 2.1, some common structural properties
of these datasets are presented (see Subsection 2.3.2 for properties and measures). It
is apparent from Figure 2.2, showing the relation between the number of nodes and
edges for each of the 26 datasets, that the selected networks span a broad range in size.
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Table 2.1: Summary statistics of the 26 temporal networks (sorted by number of nodes). (The
following abbreviations and symbols are used in the heading of the columns; D.a.: Degree assorta-
tivity, A.c.c: Average clustering coefficient, ø: Diameter. In the column “Domain”, Technological is
abbreviated to Tech. and Information to Inf. The column label provides an abbreviated name of the
specific dataset. The full names are in the references. For * and **, see Subsection 2.6.4.)

Label Domain Edge type Nodes (n) Edges (m) Density D.a. A.c.c. ø Ref.

emails Social persistent 167 82, 927 2 ·10−1 0.15 0.59 5 [118]
** UC Inf. persistent 899 33, 720 2 ·10−2 0.10 0.07 6 [139]

EU Social persistent 986 332, 334 3 ·10−2 0.05 0.41 7 [211]
Dem Social persistent 1, 891 39, 264 2 ·10−3 −0.15 0.21 8 [200]
bitA Social event 3, 683 22, 650 2 ·10−3 −0.15 0.17 10 [103]
bitOT Social event 5, 573 32, 029 1 ·10−3 −0.15 0.16 14 [103]
chess Inf. event 6, 050 21, 163 1 ·10−3 0.36 0.05 13 [104]
HepTh Inf. persistent 6, 798 290, 597 9 ·10−3 0.08 0.77 11 [106]
HepPh Inf. persistent 16, 959 2, 322, 259 8 ·10−3 0.17 0.61 8 [106]

* Condm Social persistent 17, 218 88, 090 4 ·10−4 0.29 0.64 19 [112]
SX-MO Social persistent 24, 818 506, 550 6 ·10−4 −0.05 0.31 9 [143]
D-rep Social event 30, 398 87, 627 2 ·10−4 0.02 0.01 12 [46]
Rbody Tech. persistent 35, 010 265, 491 2 ·10−4 0.03 0.18 11 [102]
Rtit Tech. persistent 53, 018 510, 787 1 ·10−4 −0.01 0.18 17 [102]
FB-w Social event 55, 387 335, 708 2 ·10−4 −0.02 0.12 16 [194]
FB-l Social event 55, 387 335, 708 2 ·10−4 0.22 0.12 16 [194]
Enron Social persistent 87, 273 1, 148, 072 8 ·10−5 0.22 0.12 14 [97]
loans Inf. event 89, 269 3, 394, 979 8 ·10−4 −0.04 0.00 8 [163]
trust Social event 114, 467 717, 667 9 ·10−5 −0.07 0.13 14 [165]
Wiki Social persistent 116, 836 2, 917, 785 3 ·10−4 −0.06 0.36 10 [25]
D-v Inf. event 139, 409 3, 018, 197 3 ·10−4 −0.21 0.14 4 [79]
SX-AU Social persistent 159, 316 964, 437 4 ·10−5 −0.10 0.11 13 [143]
SX-SU Social persistent 194, 085 1, 443, 339 4 ·10−5 −0.08 0.12 12 [143]
D-f Social event 279, 374 1, 729, 983 4 ·10−5 −0.05 0.09 18 [79]
AMin Social persistent 855, 165 23, 787, 273 9 ·10−6 0.16 0.61 22 [215]
DBLP Social persistent 1, 824, 701 29, 487, 744 5 ·10−6 0.15 0.63 23 [109]



Chapter 2. Supervised link prediction in large-scale temporal networks 35

105 106 107

Number of nodes

103

104

105

106

Nu
m

be
r o

f e
dg

es
Domain

Social
Information
Technological

Figure 2.2: Number of nodes and edges of the 26 temporal networks. (The horizontal and vertical
axes have logarithmic scaling.)

Also, for each network, it is indicated whether the edges mark persistent relationships
or discrete events. In the latter case, the network has a multigraph structure, which
requires preprocessing as discussed in Subsection 2.4.1B. We observe seventeen networks
showing degree disassortative behavior, meaning high-degree nodes tend to connect to
low-degree nodes more frequently. The other nine networks show the opposite behavior.
We do not observe any significant relation between the domain of a network and its
degree assortativity or any other global property of the network.

A total of 21 networks were obtained from the KOblenz NEtwork CollecTion (KONECT)
repository [104]. Four networks (EU, Rbody, Rtit, and trust, see Table 2.1) were obtained
from the Stanford Network Analysis Project (SNAP) repository [107]. The Arnetminer
(Aminer) network was obtained directly from http://www.cn.aminer.org/data. The last
column in Table 2.1 references the work where each network is introduced for the first
time. Any directed network is converted into an undirected network by ignoring the
directionality. In originally signed networks, we use only positive edges.

2.6 Experiments

In Subsection 2.6.1, we start with the experimental setup. Then, the structure follows
the four experiments described in four separate subsections. In the first experiment
(Subsection 2.6.2), we examine the performance of link prediction on 26 networks. The
second experiment (Subsection 2.6.3) continues with analyzing the relation between
structural network properties and the performance in link prediction. In the third experiment
(Subsection 2.6.4), we show the results of past event aggregation to the link prediction in
networks with discrete events. We finish with the fourth experiment (Subsection 2.6.5)
with a comparison between node-centered and edge-centered temporal behavior.

http://www.cn.aminer.org/data
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2.6.1 Experimental setup

The research methodology to obtain examples and labels that serve as input for the
classifier has been briefly explained in Subsection 2.4.2. We need to determine the value s

for each network. Around two-thirds of the edges are commonly used for extraction of
features [3, 34, 35, 112], and hence we choose s = 2/3.

The first step in the creation of temporal topological and node activity features is
to assign temporal weight to each edge. In Subsection 2.4.1B, Step I, parameter ℓ is
introduced to prevent discarding old edges in the temporal weighting method. Based on
earlier work [189], we set ℓ = 0.2, giving minimal weight to links far away in the past
while still sufficiently discounting these older links.

In the four experiments, we use four sets of features. These feature sets, which are
indicated by capital Roman numerals, are as follows. They are defined in Subsection 2.4.1.
I Static topological (as defined in Subsection 2.4.1A)
II-A Temporal topological (as defined in Subsection 2.4.1B)
II-B Temporal topological without past event aggregation (like Subsection 2.4.1B but

skipping Step II and using only the last occurring event)
III Static topological + node activity (Subsection 2.4.1B + Subsection 2.4.1C)
Standardizing features by subtracting the mean and scaling the variance to unit is
standard practice. The logistic regression classifier provided in the Python scikit-learn
package [149] is used. Although the goal of this work is not to extensively compare
machine learning classifiers, in Subsection 2.6.2 results on the performance in terms
of AUC obtained using two other commonly used classifiers, random forests [149] and
eXtreme Gradient Boosting (XGBoost) [41] are presented. For almost all datasets, similar
relative performance is observed.

The code used in this research is publicly available [28]. It uses the Python language
and the packages NetworkX [72] for network analysis, scikit-learn [149] for the machine
learning pipeline, and the Scipy ecosystem [193] for some of the feature engineering and
statistical tests. The C++ library teexGraph [185] was used to determine the diameter of
each network. The package versions and all dependencies can be found in the repository.

2.6.2 Experiment 1: Improvement of prediction performance with
temporal information

We examine whether temporal information improves the overall link prediction perfor-
mance. Baseline performance is obtained by ignoring temporal information, using static
topological features (Feature set I). In contrast, temporal topological features (Feature
set II-A) are used to obtain link prediction performance utilizing temporal information.

The results of this comparison are presented in Figure 2.3 and Table 2.2. (Feature sets
II-B and III are used in later experiments.) They indicate that using temporal information
improves the prediction performance of new links, i.e., performance reported in column
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Table 2.2: Link prediction performance of the 26 temporal networks. (The following sets of
features are used: I: Static topological features; II-A: Temporal topological features with past event
aggregation; II-B: Temporal topological features without past event aggregation; and III: Static
topological + node activity features.)

Label Domain Edge type Nodes (n) AUC
I II-A II-B III

emails Social multi 167 0.864 0.921 0.852 0.902

** UC Information multi 899 0.731 0.893 0.744 0.873

EU Social multi 986 0.839 0.873 0.811 0.849

Dem Social multi 1, 891 0.920 0.944 0.919 0.938

bitA Social simple 3, 683 0.868 0.945 0.945 0.940

bitOT Social simple 5, 573 0.821 0.947 0.947 0.939

chess Information simple 6, 050 0.665 0.735 0.735 0.736

HepTh Information multi 6, 798 0.757 0.835 0.776 0.819

HepPh Information multi 16, 959 0.828 0.879 0.834 0.868

* Condm Social multi 17, 218 0.688 0.760 0.706 0.728

SX-MO Social multi 24, 818 0.859 0.944 0.909 0.933

D-rep Social simple 30, 398 0.837 0.866 0.866 0.865

Rbody Technological multi 35, 010 0.880 0.905 0.854 0.890

Rtit Technological multi 53, 018 0.903 0.931 0.906 0.925

FB-w Social simple 55, 387 0.762 0.809 0.809 0.788

FB-l Social simple 55, 387 0.762 0.803 0.803 0.775

Enron Social multi 87, 273 0.847 0.912 0.873 0.909

loans Information simple 89, 269 0.786 0.947 0.947 0.946

trust Social simple 114, 467 0.889 0.936 0.936 0.937

Wiki Social multi 116, 836 0.864 0.936 0.896 0.939

D-v Information simple 139, 409 0.933 0.941 0.941 0.939

SX-AU Social multi 159, 316 0.937 0.970 0.959 0.970

SX-SU Social multi 194, 085 0.921 0.965 0.946 0.961

D-f Social simple 279, 374 0.891 0.926 0.926 0.924

AMin Social multi 855, 165 0.725 0.849 0.804 0.816

DBLP Social multi 1, 824, 701 0.704 0.826 0.743 0.786
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Figure 2.3: Link prediction performance of the 26 temporal networks. (The black line and gray
band indicates the best linear regression fit and its 95% confidence interval, respectively.)

“II-A” is always higher than that in “I”. So, every network performs better when temporal
topological features are used. The average improvement in performance is 0.07± 0.04

(mean ± standard deviation).
For some networks, performance improves considerably when temporal information

is used in the prediction. For example, the loans network has a mediocre baseline perfor-
mance of 0.79, but a high performance of 0.95 is observed when temporal information is
employed. From the results of this experiment we may conclude that the performance
improvement can be related to the network’s structure. Next, the relation between the
structural properties of networks and the performance in link prediction is explored.

Choice of classifier

The logistic regression classifier was used for interpretability (see Definition 6), as further
discussed in Section 2.2. In Table 2.3, we provide, for each of the datasets as introduced
in Table 2.1, the performance in terms of AUC obtained using two other commonly used
classifier algorithms, being the random forest [149] and XGBoost [41] algorithms, with
default parameters. For almost all datasets, similar relative performance is observed. We
continue the other experiments (Subsections 2.6.3 to 2.6.5) using the logistic regression
classifier.
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Table 2.3: Link prediction performance with past event aggregation
(Feature set II-A, see experimental setup in Section 2.6).

Label Logistic Regression Random Forest XGBoost

emails 0.921 0.951 0.955

** UC 0.893 0.942 0.946

EU 0.873 0.953 0.942

Dem 0.944 0.984 0.981

bitA 0.945 0.974 0.974

bitOT 0.947 0.973 0.967

chess 0.735 0.833 0.830

HepTh 0.835 0.867 0.856

HepPh 0.879 0.816 0.798

* Condm 0.760 0.875 0.870

SX-MO 0.944 0.959 0.959

D-rep 0.866 0.973 0.976

Rbody 0.905 0.944 0.938

trust 0.936 0.971 0.969

Rtit 0.931 0.948 0.946

FB-w 0.809 0.769 0.772

FB-l 0.803 0.769 0.772

Enron 0.912 0.973 0.970

loans 0.947 0.941 0.943

WikiC 0.936 0.979 0.981

D-v 0.941 0.908 0.910

SX-AU 0.970 0.990 0.990

SX-SU 0.965 0.981 0.982

D-f 0.926 0.977 0.977

AMin 0.849 0.872 0.865

DBLP 0.826 0.919 0.923

mean 0.892 0.925 0.923
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2.6.3 Experiment 2: Structural network properties and link predic-
tion performance

In the second experiment, we examine and discuss which structural properties are as-
sociated with high link prediction performance. We do so by exploration of the Pearson
correlation coefficient, ρ, with the link prediction performance obtained.

In Figure 2.4, the Pearson correlations between the performance in link prediction and
the structural network properties discussed in Section 2.5 are presented. Most properties
show a modest correlation with the link prediction performance. However, a significant
negative correlation is found between the degree assortativity of a network and the
prediction performance of new links using static topological features (p = 3 · 10−6)
and temporal topological features (p = 5 · 10−7). It means that strong disassortative
behavior in networks, where nodes of low degree are more likely to connect with nodes
of high degree, show better performance in link prediction. The relation between degree
assortativity and the link prediction performance is shown in more detail in Figure 2.5.

We observe a negative correlation between degree assortativity and link prediction
performance. It can be explained as follows. In real-world networks, low-degree nodes
typically vastly outnumber the high-degree nodes. However, nodes far exceeding the
average degree, so-called hubs, are also relatively often observed in real-world net-
works [10]. In degree disassortative networks, the numerous low-degree nodes connect
more frequently with hubs than other low-degree nodes. For these low-degree nodes, the
preferential attachment feature will provide higher scores for candidate nodes having a
high degree. Therefore, the supervised model can use this information to perform better.

From Figure 2.5, we also learn that the temporal topological features have an even
stronger correlation (ρ = −0.82) than the static topological features (ρ = −0.78). A
possible explanation is that the temporal features can determine which nodes will grow
to active hubs, linking to many low-degree nodes. This information would be lost in a
static network representation. From the results of the experiment as shown in Figure 2.5,
we may conclude that the temporal topological features likely capture relevant temporal
behavior.

Degree-preserving rewiring

By performing assortative and disassortative degree-preserving rewiring, we further
substantiate that disassortative networks indeed show higher link prediction performance.
Utilizing simulation, we modified many network datasets from Table 2.1 using assortative
and disassortative degree-preserving rewiring, following an approach similar to the one
proposed in [191]. In particular, we aim to retain the local clustering properties by not
selecting two edges at random, but rather selecting two edges that are close to each
other, ensuring that there are not too many triangles and, in addition to that, clustering
is destructed, as this is a determining feature in link prediction.
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Figure 2.4: Correlations between network properties and performance (in a classifier learned only
with static [Feature set I] and with temporal topological features [Feature set II-A]).

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Degree assortativity

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce
 (A

UC
)

Feature set
Static topological
Temporal weighted topological

Figure 2.5: Degree assortativity and link prediction performance (in a classifier learned only with
static topological features [Feature set I] and temporal weighted topological features [Feature
set II-A]). (The lines indicate the relation between the network’s degree assortativity and the
classifier’s performance, the band indicates the 95% confidence interval between the two.)
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The research methodology, which we repeat several times (explained below), consists
of five steps.
1. An edge (u, v) is randomly selected.
2. We randomly select a node x from the neighborhood of u.
3. We sample a node y connected to x but not to u or v. At this time, pairs of nodes (u, v)

and (x, y) are connected while the link (v, y) is absent.
4. We determine from the pairs of nodes (u, v), (v, y), and (x, y) which node pair has a

maximum difference in degree.
5. We rewire the edges such that this pair with a maximum difference in degree becomes

connected, see below.
(a) Node pair (v, y) has the maximum difference in degree, and there is no gain in

assortativity by rewiring any edges,
(b) Node pair (u, v) has the maximum difference in degree, and by moving all edges

(recall, there can be multiple links between two nodes) between (u, v) to (v, y), the
assortativity is increased.

(c) Node pair (x, y) has the maximum difference in degree, and by moving all edges
between (x, y) to (v, y), the assortativity is increased.

In case we want to perform disassortative degree-preserving rewiring, we consider in
Steps 4 and 5 the node pair with the smallest difference in degree. The five steps are
repeated 0.2 ·m times, with increments of 0.2 ·m, until m.

The resulting degree assortativity values of the rewired networks can be found in
Table 2.4. We observe that degree disassortative rewiring (compared to assortative
rewiring) is associated with a more significant change in the degree assortativity.

We list the percentual increase in performance for both disassortativity and assorta-
tivity rewired datasets in Table 2.5. In both cases, we observe higher performance for
disassortativity rewired networks, which confirms that dissassortative networks show
higher link prediction performance.
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Table 2.4: Degree assortativity of networks after rewiring (from degree disassortative rewiring [up
to −100%] to degree assortative rewiring [up to 100%]).

Label −100% −80% −60% −40% −20% 0% 20% 40% 60% 80% 100%

emails 0.01 0.01 0.07 0.09 −0.00 0.15 0.14 0.18 0.16 0.09 0.19

** UC −0.05 −0.03 −0.02 0.01 0.06 0.10 0.14 0.17 0.18 0.21 0.23

EU 0.23 0.16 0.36 0.34 0.15 0.05 0.12 0.11 0.10 −0.18 −0.11

Dem −0.21 −0.21 −0.16 −0.14 −0.14 −0.15 −0.06 −0.00 0.06 0.09 0.13

bitA −0.25 −0.24 −0.22 −0.19 −0.17 −0.15 −0.10 −0.04 0.01 0.10 0.22

bitOT −0.23 −0.22 −0.20 −0.17 −0.16 −0.15 −0.11 −0.07 −0.02 0.04 0.14

chess −0.17 −0.14 −0.05 0.04 0.18 0.36 0.52 0.62 0.69 0.74 0.78

HepTh −0.18 −0.13 −0.08 −0.03 0.03 0.08 0.18 0.31 0.46 0.57 0.61

HepPh −0.11 −0.07 −0.02 0.04 0.10 0.17 0.26 0.35 0.43 0.48 0.52

* Condm −0.04 0.00 0.05 0.11 0.20 0.29 0.42 0.53 0.59 0.62 0.63

SX-MO −0.24 −0.21 −0.17 −0.13 −0.09 −0.05 0.02 0.09 0.16 0.22 0.29

D-rep −0.19 −0.16 −0.12 −0.08 −0.04 0.02 0.13 0.29 0.46 0.56 0.64

Rbody −0.11 −0.09 −0.06 −0.03 0.00 0.03 0.07 0.10 0.12 0.13 0.15

Rtit −0.11 −0.09 −0.07 −0.05 −0.04 −0.02 0.04 0.09 0.14 0.14 0.13

FB-w −0.12 −0.09 −0.06 −0.00 0.08 0.22 0.43 0.61 0.71 0.77 0.81

FB-l −0.12 −0.09 −0.06 −0.00 0.08 0.22 0.43 0.61 0.71 0.77 0.81

Enron −0.14 −0.11 −0.09 −0.07 −0.05 −0.04 0.01 0.03 0.06 0.08 0.09

loans −0.20 −0.17 −0.14 −0.12 −0.09 −0.07 −0.02 0.06 0.22 0.47 0.61

trust −0.26 −0.23 −0.19 −0.14 −0.09 −0.01 0.13 0.33 0.52 0.64 0.70

Wiki −0.08 −0.08 −0.07 −0.06 −0.06 −0.06 −0.04 −0.03 −0.02 −0.01 0.00

D-v −0.27 −0.26 −0.24 −0.23 −0.21 −0.21 −0.20 −0.16 −0.06 0.13 0.31

SX-AU −0.25 −0.22 −0.20 −0.17 −0.13 −0.10 −0.06 −0.01 0.03 0.08 0.13

SX-SU −0.16 −0.15 −0.13 −0.11 −0.10 −0.08 −0.05 −0.03 −0.00 0.03 0.07

D-f −0.13 −0.12 −0.10 −0.09 −0.07 −0.05 0.02 0.18 0.47 0.64 0.71

AMin 0.01 0.03 0.05 0.07 0.11 0.16 0.21 0.24 0.28 0.30 0.33

DBLP 0.01 0.03 0.05 0.07 0.11 0.15 0.21 0.26 0.30 0.33 0.36
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Table 2.5: Link prediction performance after rewiring.

Label −100% −80% −60% −40% −20% 20% 40% 60% 80% 100%

emails −0.074 −0.107 −0.106 −0.096 −0.103 −0.131 −0.126 −0.136 −0.138 0.024

** UC −0.311 −0.266 −0.270 −0.356 −0.297 −0.312 −0.388 −0.373 −0.303 −0.083

EU −0.061 −0.119 −0.088 −0.084 −0.074 −0.070 −0.106 −0.067 −0.107 −0.109

Dem −0.152 −0.162 −0.134 −0.171 −0.105 −0.130 −0.124 −0.123 −0.169 −0.021

bitA −0.259 −0.243 −0.267 −0.280 −0.245 −0.309 −0.373 −0.413 −0.390 −0.052

bitOT −0.252 −0.263 −0.264 −0.308 −0.325 −0.376 −0.395 −0.353 −0.371 −0.014

chess −0.317 −0.349 −0.368 −0.377 −0.410 −0.406 −0.403 −0.281 −0.382 0.036

HepTh −0.142 −0.189 −0.202 −0.234 −0.276 −0.248 −0.249 −0.220 −0.177 −0.020

HepPh −0.162 −0.193 −0.208 −0.213 −0.226 −0.234 −0.201 −0.177 −0.137 −0.034

* Condm −0.243 −0.252 −0.269 −0.294 −0.344 −0.273 −0.263 −0.252 −0.243 −0.095

SX-MO −0.161 −0.167 −0.179 −0.187 −0.178 −0.205 −0.212 −0.194 −0.200 −0.015

D-rep −0.416 −0.445 −0.506 −0.586 −0.332 −0.233 −0.202 −0.187 −0.167 −0.006

Rbody −0.162 −0.169 −0.187 −0.178 −0.182 −0.219 −0.220 −0.243 −0.248 0.015

Rtit −0.136 −0.124 −0.132 −0.144 −0.132 −0.156 −0.191 −0.198 −0.188 0.031

FB-w −0.240 −0.250 −0.239 −0.239 −0.242 −0.251 −0.273 −0.291 −0.326 0.084

FB-l −0.246 −0.253 −0.257 −0.244 −0.232 −0.236 −0.266 −0.291 −0.325 0.096

Enron −0.165 −0.171 −0.177 −0.191 −0.188 −0.211 −0.214 −0.228 −0.200 0.004

loans −0.347 −0.413 −0.459 −0.333 −0.300 −0.230 −0.215 −0.229 −0.265 −0.024

trust −0.198 −0.215 −0.216 −0.253 −0.246 −0.300 −0.301 −0.264 −0.205 0.012

Wiki −0.003 −0.211 −0.218 −0.243 −0.296 −0.446 −0.407 −0.378 −0.336 −0.029

D-v 0.097 −0.011 −0.019 −0.044 −0.073 −0.077 −0.047 −0.047 −0.043 0.017

SX-AU −0.276 −0.281 −0.279 −0.280 −0.287 −0.408 −0.440 −0.445 −0.468 −0.005

SX-SU −0.244 −0.265 −0.272 −0.309 −0.302 −0.389 −0.397 −0.408 −0.392 −0.002

D-f −0.170 −0.202 −0.227 −0.263 −0.292 −0.325 −0.295 −0.278 −0.213 0.012

AMin −0.278 −0.292 −0.292 −0.310 −0.320 −0.385 −0.337 −0.375 −0.372 −0.095

DBLP −0.335 −0.331 −0.330 −0.358 −0.361 −0.431 −0.357 −0.443 −0.427 −0.046

mean −0.202 −0.229 −0.237 −0.253 −0.245 −0.269 −0.269 −0.265 −0.261 −0.012
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2.6.4 Experiment 3: Enhancement of performance with past event
aggregation

In this subsection we address Experiment 3. Two sets of features are used to examine how
networks with different types of temporal information can be exploited in link prediction
to improve link prediction performance. Feature set (II-A) is constructed with past event
aggregation, allowing the use of the information contained in all discrete events. Feature
set (II-B) considers only the last occurring edge between two nodes, ignoring past events.

The performance obtained with these two sets of features is reported in Table 2.2.
The two sets of features yield the same results for networks with persistent edges because
the networks do not contain past events. In Figure 2.6, we show the difference between
the two performances of the networks with discrete events in more detail.

From the results of the experiment, we may conclude that networks with discrete
events perform better when aggregating past events. The result is broadly interesting for
link prediction research, as the derived feature modification steps can be inserted into
any topological network feature aiming to capture the similarity of nodes in an attempt
to predict their future connectivity. Interestingly, we observe significant differences in the
performance improvement of past event aggregation for each discrete event network.

On the one hand, we observe networks with only minor improvement when past
events are aggregated. For example, the Condense matter scientific collaboration network
(Condm, indicated with * in Tables 2.1 to 2.3) shows only a minor improvement of 0.706
to 0.760 AUC. A possible explanation is that temporal information of discrete events has
limited use since it takes time to develop a successful collaboration.

On the other hand, the UC Irvine message network (indicated with ** in Tables 2.1
to 2.3) shows an improvement in AUC from 0.744 to 0.893. The improvement might be
caused by the more variable nature of messages, which take only a short time to establish.
In that case, the feature set with past event aggregation might provide higher scores to
pairs of actively messaging nodes.

2.6.5 Experiment 4: Comparison of node- and edge-centered link
prediction

Earlier, in Subsection 2.6.2 we examined whether temporal topological features improve
link prediction performance. These features assume edge-centered temporal behavior.
Now, in Experiment 4, we compare the performance of edge-centered features with features
that assume node-centered temporal behavior. The link prediction of edge-centered features
is done with Feature set II-A, and node-centered features are contained in Feature set III.

The results of both feature sets are presented in Table 2.2 and more detailed in
Figure 2.7. We observe a strong correlation (ρ = 0.92, p = 0.009) between obtained
performances using both feature sets. It suggests that most networks’ temporal aspects
can be modeled using either node-centered or edge-centered temporal features.
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Figure 2.6: Link prediction performance with (Feature set II-A, y-axis) and without (Feature set II-B,
x-axis) past event aggregation.
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Figure 2.7: Link prediction performance of node-centered features (Feature set III, x-axis) and
edge-centered features (Feature set II, y-axis). (The dotted line indicates equal performance. The
solid black line indicates the best fit using linear regression. All networks are shown.)
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A new indicator for further research is that for the four information networks, the
performance of the node-centered features is higher than edge-centered features. This
finding hints that in information networks, temporal behavior may be node-centered.
Given this study’s low number of information networks, further research should be
conducted on a more extensive set of information networks to verify this finding.

We analyze the link performance only on pairs of nodes at a distance of two; different
findings may be observed using more global features of node similarity are used. Notwith-
standing this limitation, based on the current results, we may conclude that both node-
and edge-centered features in supervised link predictions can achieve high performance.

2.7 Chapter conclusions and outlook

This chapter addressed Research question 1: “Wat is the relation between network struc-
ture and model performance in link prediction?” We performed a large-scale empirical
study of link prediction using various structurally diverse networks. Moreover, we aimed
to demonstrate the benefit of past event aggregation, allowing us to take the rich interac-
tion history of nodes into account in predicting their future linking activity. This study
resulted in four findings, that substantiate the relation between network structure and
model performance in link prediction.
• Supervised link prediction performance is consistently higher when temporal informa-

tion is considered (Subsection 2.6.2).
• The performance in link prediction appears related to the global structure of the

network (Subsection 2.6.3). Most notably, degree disassortative networks perform
better than degree assortative networks.

• We proposed an approach to deal with event-based links by aggregating information
from multiple past interactions (Subsection 2.6.4). It increases the performance of link
prediction. The derived feature modification steps can be inserted into any topological
feature, potentially improving the performance of any supervised link prediction.

• We showed that in four information networks, features capturing node activity and
static topological features outperform features that consider edge-centered temporal
information, suggesting that the temporal mechanisms in these networks may reside
with the nodes (Subsection 2.6.5).

Chapter outlook

The next step of this work may be to analyze networks originating from different domains.
It appears that publicly available networks from other domains, such as biological, eco-
nomic, and transportation networks, typically do not contain temporal information [63].
However, it would be interesting to investigate whether the findings presented in this
chapter also hold for these types of networks.




