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1
Introduction

Transportation supports our modern global economy like never before. Millions of vehi-
cles, such as ships, planes, trains, and trucks, allow for truly worldwide trade [180], for
most humans increasing welfare to levels previously thought to be unreachable [169].
However, the global transportation system also has its challenges; several dangers may
come with the modern way of transporting goods and people, such as (1) environmental
pollution, (2) culpable accidents, and (3) labor exploitation [88]. Reducing the severe
risks involved is of utmost importance. Policy makers have recognized the need to limit
transportation risks; therefore, national laws and international treaties have been devel-
oped to make transportation as safe and clean as possible [55]. The mere existence of
laws and treaties does not immediately eliminate all of these dangers because vehicle
operators may choose not to comply with legislation. Therefore, government inspectors
periodically check vehicles to ensure compliance. Examples of noncompliant dangerous
behavior include lack of safety training and disregarding rest periods (dangerous to
humans) or lack of waste treatment (dangerous to, e.g., the environment and wildlife).
Inspectorates have the job of ensuring compliance in the transport domain.

In the Netherlands, it is the responsibility of the Human Environment and Transport
Inspectorate, in Dutch “Inspectie Leefomgeving en Transport (ILT)”, to inspect vehicles
and their operators. The inspectorate monitors 160 different policy issues and takes
enforcement action when necessary [90]. Examples of issues are (1) the quality of fuel
used in vehicles, (2) working conditions for transport personnel, and (3) illegal dumping
of waste. Well-functioning inspectorates make a country a healthier, happier, cleaner,
more prosperous, and safer place to live [136].

The remaining part of this introductory chapter is structured as follows. We start by
exploring smart vehicle inspection in Section 1.1. At the end of this section, we introduce
our contribution in the form of automated techniques that help ensure smart vehicle
inspection. In Section 1.2, we introduce networks, a powerful model for achieving this
task. Section 1.3 dives into one specific representation of a network where temporal
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information is available, i.e., the temporal network. After that, in Section 1.4, we in-
vestigate the prediction of new network links as an approach to better understand the
network’s dynamics. Subsequently, in Section 1.5, we focus on the characteristics of the
data used throughout the thesis, being transport networks. In Section 1.6, we provide
the problem statement and research questions. The research methodology is presented in
Section 1.7. Finally, an overview of the thesis is provided together with our contributions
in Section 1.8.

1.1 Smart vehicle inspection

A major challenge for inspectorates is achieving maximum compliance towards legis-
lation with finite inspection capacity [136]. For example, the cargo shipping industry
is responsible for around 80% of global trade movements [190]. Historically, shipping
inspectorates selected a random sample from all ships entering a port, such that all ships
have an equal probability of being inspected. As a result, an inspectorate with a limited
number of inspectors would only sporadically encounter noncompliant behavior at a ship,
assuming that noncompliance is rare. Hence, ship owners might think there is no need to
comply with legislation because noncompliant behavior is unlikely to be noticed. It can
result in neglecting safety procedures and, therewith, more dangerous behavior.

Many inspectorates are limited in the number of inspectors they can employ. In the
Netherlands, the Netherlands Shipping Inspectorate (NSI, part of ILT) can only inspect
twelve ships per week [87, 146], while over 500 merchant ships arrive weekly in the port
of Rotterdam alone [160]. Therefore, many inspectorates (including Netherlands Ship-
ping Inspectorate (NSI)) are looking for innovative methods to maximize compliance and
thereby minimize riskful behavior. One way of doing so is by improving the assessment
procedure of vehicles for inspection so that more time can be spent on noncompliant
vehicles. Traditionally, rule-based systems are considered to this end. The rules in these
systems are based on expert knowledge. In this work, we consider the use of historical
data to obtain better assessments of vehicles. Inspectorates performing data-driven as-
sessment for inspections, as defined in Definition 1, are more likely to find noncompliant
vehicles and are thus more effective in detecting dangerous behavior [45, 86, 137]. In
this thesis, the terms “inspectorate” and “inspections” will be used solely in the context of
the inspection of vehicles and their operators.

Definition 1. Data-driven assessment for inspection is the process that uses (his-
torical) data to determine what entities are likely associated with noncompliant
behavior and thus need an inspection.

Taking the assessment procedure of vehicles for inspection one step further means that
we not only make data-driven assessments (which may still involve human decisions) but
require the assessment to be done in a so-called smart way, as detailed in Definition 2.
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Definition 2. Smart inspection is performed when a data-driven approach is taken
to assess vehicles likely associated with noncompliant behavior in an accurate,
automated, fair, and interpretable way.

Doing smart inspection ensures that vehicle owners are motivated to comply with leg-
islation because they know that noncompliance will likely result in inspections and
subsequent fines or legal consequences.

We briefly explain what we consider an (1) accurate, (2) automated, (3) fair, and
(4) interpretable assessment in this paragraph and describe the last three aspects in more
detail in the following subsections. While an accurate assessment is a logical consequence
of an adequately performing machine learning model, the other three aspects deserve
further elaboration.
• An accurate assessment is an assessment that closely matches the true outcome.
• An automated assessment is performed without human intervention and can automati-

cally adjust to new data.
• A fair assessment does not discriminate towards sensitive characteristics.
• In an interpretable assessment, the entire approach, including how it arrives at an

assessment, is clear to humans.

Automated assessment

Ideally, vehicle assessment for inspection should be performed in an automated manner,
considering many vehicles in a limited time, with little time-consuming human interven-
tion. This moves away from the classically considered rule-based approach, in which
solely human intelligence is used. In the current work, we consider machine learning
methods for the assessment process. Machine learning is the process of learning (or
equivalently, training) a model from examples of data represented by characteristic
features [17, 76, 137]. The learned model can then make predictions about new (unseen)
data. Features refer to characteristic properties of the examples provided to the machine
learning algorithm. Engineering these features is an essential step in machine learning
and can significantly affect the performance of a model. In the case of transport vehicles,
features include vehicle characteristics, such as country of registration or maximal trans-
port capacity. A machine learning model should be validated (Definition 3) and tested
(Definition 4) to make sure to assess its performance.

Definition 3. Model validation is the process of evaluating the performance and re-
liability of (possibly multiple) models on unseen data to select the best-performing
model [76].

Definition 4. Model testing is the final process of evaluating the performance of a
model on unseen data after the model is fully trained [76].

Model validation and testing are done by dividing the examples into disjoint sets of data,
usually the (1) train, (2) validation, and (3) test set [76]. A machine learning algorithm
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then uses (1) the train set to learn the model, (2) the validation set to perform model
validation, and (3) the test set to do model testing.

The power of machine learning models lies in their ability to easily identify trends and
patterns in the data that are too complex for humans to find. Moreover, and especially
useful in our setting, machine learning models can handle more vehicles than humans.
The assessment of vehicles for inspection is thus ideally performed by a machine learning
model.

Fair assessment

Assessment of vehicles should be performed in a fair manner (called fair assessment)
to prevent discriminatory use of sensitive features. In our setting, sensitive features
are properties of vehicles that the model should not consider as features for the model
because of, e.g., legal restrictions or ethical considerations. An example specific to the
transport domain is the registration country of a vehicle. There are at least two reasons
why it is undesirable to use the registration country.

First, some countries are subject to more rigorous inspections than others. Therefore,
historical data can be biased toward certain registration countries. This bias can occur
when the inspection process is not standardized across all countries, leading to unequal
levels of scrutiny. Second, vehicle operators themselves can initiate changes in the country
of registration, thereby influencing the assessment outcome [131].

Now that we have established that one or more sensitive features can be present in
the data, we mention two ways to limit the use such of sensitive information and thus
arrive at a more fair model for the assessment of vehicles.

The first way is to disregard any sensitive information altogether. A clear advantage is
that the sensitive information itself cannot be used to make a prediction. A significant
drawback is that the sensitive information may correlate with non-sensitive information,
resulting in the indirect use of sensitive information [13]. The second way is to use
models that can produce fair assessments by special treatment of sensitive information,
further detailed in Definition 5 below.

Definition 5. A fair model produces assessments that do not discriminate towards
characteristics of the example that are deemed sensitive.

Fair models minimize the negative outcome for sensitive groups by so-called decorrelation
of assessments with sensitive information [75, 96, 157, 214]. Decorrelation is the reduc-
tion of correlation between sensitive information and the predicted outcome of a model.
Moreover, recently developed methods allow users to tune the fairness-performance
trade-off by controlling the level of decorrelation with the sensitive information. As such,
these models can prevent sensitive information from being used in the assessment from
being exploited, ensuring similar outcomes for the sensitive and non-sensitive groups.
They urge careful consideration of the balance between performance on the one hand



Chapter 1. Introduction 5

and the restricted use of sensitive information on the other hand. In Chapter 6, we use a
fair model and describe how fairness can be quantified.

The country of registration is not the only feature that may be deemed sensitive. In
general, vehicle operators can manipulate static administrative information to arrive at a
more favorable risk assessment. Examples of static administrative information include
insurance company, vehicle’s type, size, and construction year. In contrast, behavioral
information, which is dynamic in nature, is more resilient to this type of manipulation.
A good example of behavioral information used in our work is spatiotemporal infor-
mation about the itineraries of vehicles. Expectedly, behavioral information, and not
administrative information, is more indicative of riskful behavior.

Multiple ways to take behavioral information of a vehicle over time exist, such as
time series analysis [73] and reinforcement learning [184]. Our work explores the use
of networks (see Definition 7). Multidisciplinary studies repeatedly show that network-
driven approaches can often reveal otherwise hidden complex patterns and properties
that signal meaningful phenomena in the real world [6, 10, 21, 129, 183]. In this work,
networks enable us to explicitly model vehicle relations, considering interactions between
these vehicles as part of the national or global transportation system [164, 208]. In
Section 1.2, we further explore and define the necessary network concepts and properties
relevant to the transport domain.

Interpretable assessment

A challenge of most commonly used machine learning models is that their predictions
are difficult to understand. It can be hard for humans to comprehend how multiple
factors affect the inner workings of machine learning methods. As a result, people may
perceive limited transparency [121]. Governmental organizations that motivate how
they make their decisions and what data underpins these decisions (called interpretable
assessment) are more trusted by society [198]. Hence, interpretable machine learning
models (Definition 6) should be preferred in the inspection domain [122].

Definition 6. An interpretable model is a model that allows humans to understand
(1) what procedures were followed to make the model, (2) the inner workings of
the model, and (3) how the model arrives at its predictions [8, 120, 123].

Our contribution towards smart vehicle inspection

While clearly within reach, full implementation of smart inspection has yet to be achieved.
In the case of the ILT, a desire to become more data-driven has been expressed; however,
this needs to be sufficiently translated into inspection practice. This thesis examines how
data on vehicle behavior can be leveraged to better understand contemporary problems
in the transport domain, focusing on the smart inspection of vehicles (Definition 2). In
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particular, we model vehicle behavior by making use of networks. In addition to address-
ing several fundamental problems related to the analysis of networks, we use networks
modeling vehicle behavior in machine learning approaches for the accurate, automated,
and fair assessment of vehicles. By doing so, we (1) provide a novel approach toward the
assessment of vehicles for smart inspection and (2) obtain a better understanding of the
dynamics of the global transportation system. Ultimately, our findings will contribute to a
safer and healthier environment [136].

1.2 Networks

We deem networks to be a suitable data model to capture complex patterns in the behavior
of vehicles, with the ability also to capture temporal aspects (as further discussed in
Section 1.3). We start by defining networks and related concepts and subsequently
discuss seven commonly observed properties of networks useful for understanding the
data modeled by these networks. These properties are leveraged in the data-driven
approach taken in this thesis toward the accurate, automated, fair, and interpretable
assessment of vehicles, i.e., smart inspection.

The field of research that, in a general sense, concerns itself with methods for discov-
ering knowledge from real-world systems modeled as networks is referred to as network
science [10]. We define a network in Definition 7.

Definition 7. A network is a set of entities called nodes combined with a set of
edges (or, equivalently, links) that connect pairs of nodes.

Nodes connected by an edge are said to be adjacent and are also called neighbors. For the
remainder of the introduction, we assume that the edges in the network are undirected
and unweighted. Some concepts slightly change when considering directed edges; this
will be explained in the relevant chapters where needed. A node’s degree is its number of
neighbors. Nodes with a large degree are also called hubs and are often deemed to have
a central role in the network. Two nodes are connected when there exists a path between
these nodes; a path is a sequence of edges linking a series of nodes.

A component is a subset of nodes and edges for which it holds that (1) there is a path
between all pairs of nodes in the component and (2) it is not part of any larger component.
A network can consist of multiple components. With respect to the components, we
introduce three new concepts. First, we frequently analyze the largest component of a
network, commonly referred to as the Giant Component (GC). Second, in a component,
the shortest path is a path which uses a minimum number of edges to connect a pair
of nodes. The length of the shortest path (called distance) equals the number of nodes
involved minus one. Thus, two adjacent nodes have a distance of one (2−1) to each other.
Third, the diameter is the maximum distance between any pair of nodes in a component.
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Social networks

A typical type of network often investigated is the social network, which is studied
in many different disciplines, such as psychology, sociology, and mathematics. A node
marks a person in these networks, while an edge indicates (for example) acquaintance.
A figurative sketch of a so-called ego network of person D is given in Figure 1.1. An
ego network consists of the individual node, its immediate neighbors and the edges
connecting those neighbors. Node D has a degree of six and is part of three triangles
(1: nodes A, B, D, 2: nodes B, C, D, and 3: D, E, G). A triangle is formed when three
nodes are fully connected, i.e., have three edges between them. Like in many real-world
networks, the ego network shown in Figure 1.1 contains extra contextual node attributes.
In the figure, gender or profession (both indicated by the outfit) are examples of node
attributes. The type of acquaintance (work, sport, or housemate) is considered an edge
attribute. We can identify many types of networks in the real world, including information
networks [108, 139], the aforementioned social networks [51, 119, 173, 174], technical
networks [148], and transport networks [16, 94]. In the latter type of network, nodes
are vehicles. We will explain this type of network in detail in Section 1.5.

In Subsections 1.2.1 to 1.2.4, we discuss seven common concepts to get a comprehen-
sive understanding of networks. These concepts will prove relevant in the remainder of
the thesis. Although we explain these concepts using examples from social networks, the
discussed measures can be applied to any network.

1.2.1 Assortativity

The first concept is assortativity, defined in Definition 8.

Definition 8. Assortativity refers to the inclination of nodes to link with other
nodes that share similar (or dissimilar) characteristics [127].

The numeric value of assortativity is equal to the correlation coefficient (i.e., the Pear-
son coefficient) of the characteristics of linked nodes. Positive values for this measure
indicate that neighboring nodes share a similar characteristic [10]. A value of zero indi-
cates that there is no assortativity. Negative values indicate that nodes share dissimilar
characteristics.

In social networks, the degree assortativity is usually observed. A positive value indi-
cates that most people are acquainted with people with a similar number of friends [130].
It is well-known that celebrities often befriend other celebrities (i.e., the hubs in social
networks). More specifically, marriages often occur between famous people, much more
often than we would expect based on chance alone [10]. Generally, this strong degree
assortativity is present in many more types of networks. We show a small example of
assortativity in Figure 1.2; the two nodes with the highest degree (indicated in black)
link to other nodes with a relatively large degree. In turn, the nodes with the smallest
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Figure 1.1: An example of an ego network (here
part of a social network).

Figure 1.2: Community structure of a social
network.

degree mainly connect to nodes with low degrees. Social networks generally also show
assortativity in terms of age and race [22].

In contrast, in degree disassortative networks, nodes with a high degree are more likely
linked to nodes with a lower degree. An example of a degree disassortative network is
the topology of the internet [132], where hubs (servers, also called autonomous systems)
frequently link to low-degree nodes (individual machines). The degree disassortative
nature of such a network has consequences for how resilient the internet is towards
failures. A breakdown of a limited number of hubs can prove disruptive to the overall
connectivity of the network. Exactly this happened in recent times; major outages of
the internet occurred in November 2020 [68], July 2021 [199], and June 2022 [182],
because some hubs failed.

In Chapter 2, the measure of degree assortativity is used to characterize the structure
of networks. Moreover, assortativity is used in Chapter 5 to understand truck behavior.

1.2.2 Clustering

The second concept commonly observed in real-world networks is clustering. Particularly
in social networks, people tend to organize themselves in tightly knitted groups, so-called
cliques [80, 197]. The clustering coefficient quantifies the extent to which clustering is
present.

In particular, the node clustering coefficient quantifies the fraction of triangles that exist
compared to how many triangles could exist between a node’s neighbors. For example,
in Figure 1.1, we observe that node D is part of three triangles. When all neighbors of
node D are connected, there are 6 · 5/2 = 15 triangles, meaning that the local clustering
coefficient of node D is 3/15 = 0.2.

In Chapters 2, 5 and 6, the clustering coefficient is used to characterize the structure
of networks.



Chapter 1. Introduction 9

1.2.3 Community structure

The third concept is that numerous networks possess a clear community structure. Com-
munities are groups of nodes that are densely linked amongst each other but sparsely
linked with other communities [64]. While defined above purely based on network
structure, it is repeatedly observed that communities correspond to nodes sharing some
property in real-world settings. In the social network depicted in Figure 1.2, each com-
munity is indicated by a colored area and a pictogram indicating the correspondence
with the social groupings by household, interest, neighborhood, or profession.

Many methods for community detection exist [58, 76, 106]. In community detection,
the goal is to optimally split the network into communities. When contextual information
is known, it may be utilized to find the right communities. However, often we wish to find
communities in an automated way by only using the network topology. A way to achieve
this is by optimization of the so-called modularity measure [19, 186], which is typically
computed as the difference between the actual number of edges within a community and
the expected number of edges within the communities assuming the connections between
the nodes were randomly created [25]. Suppose the optimization process obtains a
high modularity value. In that case, nodes within the discovered communities are more
connected to each other than they are to nodes in other communities. Hence, a strong
community structure is likely present. Likewise, when a low modularity value is obtained,
this often indicates that the network does not have a strong community structure [128].

In Chapter 5, assortativity (as discussed in Subsection 1.2.1) is used to understand
the community structure of a network.

1.2.4 Giant Component, sparseness, small-world, and scale-free
properties

We continue with four more common concepts frequently observed in real-world networks.
These concepts (numbered 4, 5, 6, and 7) relate to the macro-scale of a network, meaning
they can only be observed when considering the overall structure of a network.
4. Large Giant Component. Real-world networks often exhibit a Giant Component (GC)

spanning the vast majority of all nodes. Throughout this work, we frequently use the
GC to ensure all nodes are connected.

5. Sparseness. Real-world networks are typically sparse, meaning that from all the pairs
of nodes that could be linked, relatively few links exist [10]. The sparseness of links in
networks has implications for predicting new links, which we will discuss further in
Section 1.4.

6. Small-world. Small-world networks are networks where nodes can typically reach
each other using a shortest path of small length [119, 197]. The average path length
or average distance of a component is equal to the average length of a shortest path
(i.e., the distance) between all pairs of nodes [10]. We characterize networks using
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the average shortest path length in the GC in Chapters 4 and 5. The GC in small-world
networks tend to have relatively low average distances, even if the overall component
is large in terms of the number of nodes and edges [6]. The significance of small-world
networks is that they can provide efficient communication between distant nodes while
maintaining local connectivity and resilience to node failures.

7. Scale-freeness. Many real-world networks are believed to be scale-free, which means
many nodes have a relatively low degree, and few nodes have a very high degree. The
degrees of nodes in a scale-free network thus lack a characteristic scale, making the
degree distribution “scale-free” [195]. Therefore, the notion of scale-free networks
is closely related to the presence of hubs. There is some controversy [82, 92] as to
whether scale-free networks occur frequently [11, 12, 15, 195] or not [26]. Part of this
discussion can be traced back to how closely the degree distribution resembles a power
law distribution, lognormal distribution, or other types of skewed distributions [26].
Some scholars consider real-world networks universally scale-free, regardless of the
domain of the network and the identity of the nodes [12]. The scale-free structure of
many networks also has implications for predicting new links, which we will discuss
further in Section 1.4.

1.3 Temporal networks

So far, we have assumed that networks are static, meaning we assume that all edges
exist at some point in time. Real-world networks usually evolve and are therefore better
modeled by a temporal network, which we defined in Definition 9.

Definition 9. A temporal network is a network in which the edges are associated
with a timestamp or time interval [38, 83].

The edges of a temporal network are consequently defined by (1) the source, (2) the
target, and (3) an edge attribute containing temporal information on edge formation.
In this work, we consider only temporal networks of which the edges are formed at a
specific point in time, thus where the third edge attribute in Definition 9 is a timestamp.
We do not consider any edge removal. Temporal networks allow for a more in-depth
study of the growth mechanisms of a network [5, 52]. For example, a growth process
known as preferential attachment can lead to the emergence of aforementioned scale-free
networks. Preferential attachment is the process where new edges are preferentially linked
with nodes that are hubs (i.e., have a high degree) at the time of edge formation [12].
The process will result in a feedback loop in which hubs increase their large degree even
further, causing an increasingly skewed degree distribution. Generally, we differentiate
between two types of temporal networks [81], viz. networks with (1) persistent relations
and (2) discrete events.

First, we have temporal networks modeling persistent relations between the nodes. An
example of such relations can be found in acquaintance networks, where an edge connects
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two people if they are acquainted with each other in some way (such as friendship,
kinship, or a professional relation) [119]. At most, one edge exists between two nodes in
the network, and those edges are assumed to be present indefinitely, i.e., they appear but
do not disappear.

Second, we can consider temporal networks modeling discrete events [133]. Multiple
edges between a pair of nodes can exist, each with its associated timestamp. A communi-
cation network is an example of a temporal network containing discrete events. Like social
networks, the nodes are people, but now the edges consist of communication events,
such as calls or messages. Two persons can communicate often; thus, each edge has a
distinct timestamp, and many edges may exist between the same two nodes.

1.4 Link prediction

An important task in network science is link prediction. It has numerous applications in
real-world scenarios, such as spam mail detection in communication networks or friend
recommendations in online social networks. The link prediction task is defined differently
for varying purposes. In the broadest definition, the task is to predict which links exist
between two nodes in a network. These links may be unobserved or even missing. In this
definition, link prediction [114] can be employed on static networks (meaning no time
information is present). Therefore, we call this task missing link prediction. However, in
this work, we are interested in the temporal aspect of this task. Hence, we define link
prediction in Definition 10.

Definition 10. Link prediction is the task of predicting which links will appear in
the future [10, 62].

Link prediction, as defined above, requires the use of temporal networks because links
that appear later in time need to be known to train the model. Therefore, it is sometimes
also called temporal link prediction.

Commonly, the link prediction task is formulated as a machine learning problem. The
examples provided to the model consist of all pairs of nodes that are not adjacent in a
current network snapshot, being the network consisting of all edges up to a certain point
in time. The machine learning model aims to predict whether each currently unconnected
pair of nodes is linked in a future network snapshot. Multiple types of features can be
utilized to perform this task [54].

An example type is the similarity-based feature type, which considers how similar
the surrounding network structure of two nodes is. Two typical similarity-based features
are (1) the number of unique neighbors and (2) the number of common neighbors of
both nodes. To explain the workings of these features, let us consider the well-known
Zachary karate club social network [144, 213], depicted in Figure 1.3. It is a network of
different karate club members, with links marking social interactions outside the club.
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Figure 1.3: The well-known Zachary karate club social network.

Members 16 and 23 have a high similarity, as they both have a degree of two, and all
their neighbors are shared. A clear advantage of the machine learning approach towards
link prediction is that (1) multiple types of features (provided as input to the model)
can be conveniently combined to arrive at a well-performing model [63] and (2) the
approach is interpretable when simple topological network features are used [54].

In the remainder of this section, we mention two challenges of link prediction. These
challenges will be addressed in Chapters 2 and 3.

The first challenge is that most works in the literature do not consider temporal
information associated with the network’s edges. Thereby, they ignore the evolution
of the network observed so far. Using time-aware measures can improve prediction,
but it ignores an essential dichotomous aspect of many temporal networks, namely
that two types of temporal networks exist. The two types were discussed earlier in
Section 1.3: (1) networks where edges are persistent relations and (2) networks where
edges mark discrete events. We recall that temporal networks with discrete events may
contain multiple edges between nodes, each having its own timestamp. This type of
temporal network allows the evolution of edges between a pair of nodes to be exploited
in the link prediction task.

In Chapter 2, we will show that we can improve link prediction performance when
accounting for these discrete events.

The second challenge is that the validation (Definition 3) and the testing (Definition 4)
of link prediction models are two nontrivial tasks often overlooked in existing work. It
is only after applying proper model validation and testing that we may have sufficient
confidence in applying a model in the real world. In particular, validation and testing
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can identify overfitting, see Definition 11, which causes a too-optimistic performance
estimation and, therefore, in machine learning, the well-known warning is that overfitting
will reduce the validity of a study.

Definition 11. Overfitting happens when a model matches the training data too
closely, and the model is not working well on new, unseen data [167].

Obtaining a hold-out validation and using a general test set is impossible for network
data because network data is, by definition, “related”. Returning to the Zachary karate
club social network in Figure 1.3, it is generally agreed that the nodes can be divided into
two communities, which is indicated by the color of the node. A rigorous approach would
be to sample the green nodes for model learning and the red ones for model validation
when applying missing link prediction on the network. However, the ego networks of
some nodes, in particular, node 9 and 10, are severely altered when such a sampling
step is performed. These alterations could happen at a large scale in real-world networks,
making the resulting link prediction model unusable. It is even more problematic for
measures based on distance that use more global information beyond a node’s direct
neighborhood.

In Chapter 3, we explore two different splitting strategies in an attempt to discover
how to perform adequate model validation on a collection of real-world temporal net-
works.

1.5 Transport networks

As explained in Section 1.1, our research examines how we can leverage transport
networks to better understand vehicle behavior. We distinguish two different types of
network data used throughout this work, being (1) co-driving trucks (Definition 12) in
Chapters 4 and 5 and (2) cargo ship networks (Definition 13) in Chapter 6. Both datasets
have national or even international coverage and systematically record nearly all vehicles
for a specific period and location. Big datasets like these allow for a complete overview
of all transport of that specific type. In both cases, the study of the temporal network
aspects allows us to understand the behavior of the trucks (and ships) in relation to all
other trucks (and ships). Below, we briefly describe (1) these two transport networks and
(2) what we seek to understand from them.

Truck co-driving networks

The Ministry of I&W gathers movements of trucks by Automatic Number-Plate Recognition
(ANPR) systems; see Figure 1.4. The systems monitor any vehicle that passes, although
some data may be missing, for example, because of misread license plates or avoidance of
the cameras. Subsequently, it registers details such as license plate, country of registration,
hazardous substances, length, weight, speed, and of course, the time of registration. By
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Figure 1.4: The Weigh-In-Motion system.

exploring the data, we aim to learn and better understand what factors influence the
trucks to do co-driving, an activity which we define in Definition 12 (and detail further in
Chapter 4).

Definition 12. Co-driving is the process where two trucks are observed at the same
location within a very short time window. Systematic co-driving occurs when two
trucks drive together frequently (e.g., more than once).

To investigate the process of truck co-driving, we consider the so-called truck co-driving
network. We construct a temporal network from all systematic co-driving events by
considering every truck as a node, linking two trucks when they show systematic co-
driving behavior. Each temporal edge is thus characterized by the two trucks it links and
the time period of the systematic co-driving event. The location of the co-driving activity
that occurred is included as a spatial edge attribute. This spatiotemporal network is a
particular extension of the temporal network, as both time and spatial information are
available.

The truck co-driving networks have our interest for two reasons. First, we are inter-
ested in the properties of the co-driving network and the comparison with networks from
other domains (e.g., social networks). Second, we want to know what communities of
trucks are present in the network and what factors contribute to the formation of these
communities. Chapters 4 and 5 provide a complete account of our research using the
co-driving trucks dataset.

Ultimately, we mention two societal advantages of understanding truck co-driving
behavior. First, understanding truck co-driving behavior can help reduce traffic conges-
tion [187]. Moreover, co-driving and therewith platooning trucks can optimize fuel usage
because of the aerodynamic drag reduction.
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Cargo ship network

The second set of data comprises all port calls of sea-going cargo ships in Europe, including
the times of entrance into and departure from the port. These are collected from each
port’s administrative systems. All inspectorates have access to the same dataset in Europe,
and the data can thus be used for smart ship inspection. We capture the behavior of the
ships in relation to other ships by considering this dataset as a network. Deriving features
from this network allows us to incorporate more information in a machine learning model
than we would otherwise capture from the static data. The construction of a so-called
cargo ship network (Definition 13) allows for extracting meaningful information for a
machine learning model identifying noncompliant behavior of ships.

Definition 13. The cargo ship network is a temporal network of all movements of
cargo ships between ports [94]. The departure and arrival ports and the time of
departure characterize edges.

This network is spatiotemporal as well. The edges have a temporal attribute indicating
when the movement occurred. Unlike the truck co-driving network, each node is associ-
ated with a location. Relevant to our setting is that the inspectorate keeps records of all
ships where noncompliances have been found, which can be used as node attributes and
ultimate labels in a machine learning model. The entire study of the cargo ship network
is presented in Chapter 6.

1.6 Problem statement and research questions

This section will describe our problem statement and research questions. As explained
at the beginning of this introduction, smart inspections (Definition 2) are essential to
ensuring a healthy and clean environment. In our work, we consider four aspects (see
Section 1.1) of smart inspection and aim to handle them. It lead us to the following
problem statement.

Problem statement: How can network science methods leverage behavioral data for
smart inspection of vehicles?

We subdivide the problem statement into five research questions. The first two questions
address fundamental network science challenges, and the last three address more applied
questions in the transportation domain. Below we describe the background and rationale
behind this subdivision, i.e., our research strategy.

It has previously been observed that not all networks perform similarly in the missing link
prediction task (e.g., [63]). In addition, literature so far has not extensively dealt with
the relation between network structure and performance in the (temporal) link prediction
task (Definition 10). These two observations leads us to Research question 1.
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Research question 1: What is the relation between network structure and model
performance in link prediction?

Let us now turn to the validation of link prediction models. A common approach to
model validation (Definition 3) and testing (Definition 4) on tabular data is to use
a hold-out set, i.e., a separate test set to evaluate the model’s performance. Such a
hold-out set is impossible to obtain for network data because all data are inherently
related (see Section 1.4). If the hold-out criterion is not met, it can result in overfitting
(Definition 11). We therefore formulate Research question 2 as follows.

Research question 2: How can we obtain accurate estimates of the performance of link
prediction models by using adequate splits into train, validation and test sets?

Having posed our research questions addressing fundamental network science challenges,
we now consider the research questions addressing smart vehicle inspection.

Our exploration of smart vehicle inspection starts by considering the case of the
co-driving of trucks. We want to learn what factors contribute to truck co-driving, for
reasons explained in Section 1.5. We do so by exploration of the co-driving network,
arriving at Research question 3.

Research question 3: How do network structure and vehicle attributes relate to co-
driving behavior?

We continue with the analysis of the truck co-driving network. For the inspectorate,
it is interesting to understand (1) which groups of truck operators show frequent co-
driving behavior and (2) what brings the truck operators in these groups together. When
inspectorates want to change the behavior of truck operators, they can target specific
communities via targeted communication. The question is which community detection
model (and what parameter setting) yields the best partitioning into communities to do
so. We explore the use of node attribute information to find such an optimal partitioning
in Research question 4.

Research question 4: How can node attribute information be exploited to automatically
create a good partitioning of a co-driving network into communities?

Finally, we proceed to the smart cargo ship inspection. We use information from the cargo
ship network to improve the fair assessment of cargo ships for inspections, allowing us to
answer Research question 5.

Research question 5: How can ship behavior be utilized to enable smart inspection of
cargo ships?

Answering these five research questions allows us to deepen our understanding of
machine learning methods on network data. The other way around, it improves our
understanding of the effects of information on connectivity and relatedness of individual
entities, i.e., the network aspect, on machine learning tasks. In turn, this knowledge can
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improve the understanding of the behavior of different vehicles. Ultimately, it may enable
smart inspection of vehicles, thereby maximizing the impact of new regulations for a
sustainable planet.

1.7 Research methodology

We answer the five research questions by the following research methodology, consisting
of six phases:
1. We establish the context of the question at hand.
2. We collect relevant literature.
3. We establish preliminaries and set up experiments.
4. We determine what data is available and what properties does this data possesses.
5. We report and discuss the findings of the experiments.
6. We provide a conclusion and suggest future work.

Answering the five research questions allows us to formulate an answer to the problem
statement in Chapter 7.

1.8 Thesis overview and contributions

Below, we first provide an overview of the thesis and then indicate which research
questions are answered within each chapter and what methodology was used.

We can differentiate three topics that our research covers: (1) machine learning,
(2) network science, and (3) smart vehicle inspection. Each chapter relates to at least two
topics. In Figure 1.5, we present a diagram we coin as a “ranked classification diagram”.
It is a Venn diagram with each chapter assigned to one of the three topics above. The
ranking aspect comes from the following; a chapter is more closely related to a topic
when put nearer the corresponding circle.
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Figure 1.5: The relation between this thesis’s three topics and chapters (indicated by a “ranked
classification diagram”).
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Contributions

• In Chapter 2, we address Research question 1. It starts with the topics of machine
learning and network science. A large corpus of publicly available temporal networks is
gathered. Link prediction is applied to all of them, and the link prediction performance
and properties of the temporal networks are systematically investigated. The content
of this chapter is based on the work described in:

G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.
”
Supervised

temporal link prediction in large-scale real-world networks.” Social Network Analysis
and Mining 11, 80 (2021). DOI: 10.1007/s13278-021-00787-3.

• Chapter 3 is devoted to Research question 2. Topics covered in this chapter are again
machine learning and network science. The topic of smart vehicle inspection is not
directly covered, but the evaluation of link prediction strategies is important when
used in smart vehicle inspection. We also use a corpus of publicly available temporal
networks gathered in this work. Different strategies for link prediction are assessed
and evaluated. The content of this chapter is based on the work described in:

G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.
”
Experimental

evaluation of train and test split strategies in link prediction.” In: Proceedings
of the 9th International Conference on Complex Networks and Their Applications.
Studies in Computational Intelligence 994. Springer, 2021, pages 79–91. DOI:
10.1007/978-3-030-65351-4 7.

• Chapter 4 is answering Research question 3, thereby covering the topics of network
science, machine learning, and smart vehicle inspection. The chapter considers the
construction of the truck co-driving network. We analyze the properties of the network
and apply link prediction to the network to understand the (social) processes underlying
the co-driving behavior. The content of this chapter is based on the work described in:

G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.
”
Understanding

dynamics of truck co-driving networks.” In: Proceedings of the 8th International
Conference on Complex Networks and Their Applications. Studies in Computational
Intelligence 882. Springer, 2020, pages 140–151. DOI: 10.1007/978-3-030-36683-
4 12.

• Chapter 5 addresses Research question 4. It covers the topics of network science and
smart vehicle inspection. A new approach to community detection using assortativity
is proposed and applied to the truck co-driving network. The content of this chapter is
based on the work described in:

G. J. de Bruin, C. J. Veenman, H. J. van den Herik, and F. W. Takes.
”
Understand-

ing behavioral patterns in truck co-driving networks.” In: Proceedings of the 7th
International Conference on Complex Networks and Their Applications. Studies in
Computational Intelligence 813. Springer, 2018, pages 223–235. DOI: 10.1007/978-
3-030-05414-4 18.

http://dx.doi.org/10.1007/s13278-021-00787-3
http://dx.doi.org/10.1007/978-3-030-65351-4_7
http://dx.doi.org/10.1007/978-3-030-36683-4_12
http://dx.doi.org/10.1007/978-3-030-36683-4_12
http://dx.doi.org/10.1007/978-3-030-05414-4_18
http://dx.doi.org/10.1007/978-3-030-05414-4_18
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• Chapter 6 provides an answer to Research question 5. It brings together all the topics:
network science, machine learning, and smart vehicle inspection. We provide an
approach to smart cargo ships inspection. A comprehensive analysis is made of the
fairness and performance of the model. The content of this chapter is based on the
work described in:

G. J. de Bruin, A. Pereira Barata, C. J. Veenman, H. J. van den Herik, and F. W. Takes.

”
Fair automated assessment of non-compliance in cargo ship networks.” EPJ Data
Science 11, 13 (2022). DOI: 10.1140/epjds/s13688-022-00326-w.

Chapter 7 concludes the thesis with answers to the research questions and the problem
statement. Possible future research directions are provided as well.

Cooperation

It deserves to be noted that the work by Antonio Pereira Barata was part of the same
project as this thesis and thus is also concerned with machine learning and smart vehicle
inspection [153, 157]. His work focused on methods for assessing the impact of missing
data in the truck registration data (see Section 1.5), as well as machine learning methods
for tabular data, whereas this thesis focuses on methods for better understanding network
data in relation to smart vehicle inspection.

http://dx.doi.org/10.1140/epjds/s13688-022-00326-w





