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ABSTRACT: Oxidative stress is the consequence of an abnormal increase of
reactive oxygen species (ROS). ROS are generated mainly during the metabolism
in both normal and pathological conditions as well as from exposure to
xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery
involved in redox processes and, on the other hand, reduce the effectiveness of the
antioxidant activity. Such dysregulation may lead to oxidative damage when
combined with oxidative stress overpassing the cell capacity to detoxify ROS. In
this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-
related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to
measure the antioxidant response of HepG2 cells to a large series of drug and drug-
like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response
and distributed among different modeling groups to establish structure−activity relationship (SAR) models. A selection of models
was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate
the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic
cellular readout, model combination, chemical space selection, and results interpretation.

■ INTRODUCTION
In silico models can be used as a cheap and fast tool to
estimate toxicity in the early stages of drug discovery and can
be applied to any compound based on the chemical structure,
whether the molecule has been already synthesized or not.1−3

In general, in silico toxicology methods can be classified as
statistical-based or knowledge-based approaches.1,4,5 Knowl-
edge-based models rely on previously acquired knowledge of a
toxicological phenomenon, for instance, by flagging structural
alerts in molecules that were previously identified to be toxic
by experts, while statistical-based models identify relationships
between descriptors of molecules and their phenotypical
endpoint. The resulting statistical model is then able to
correlate and find associations between biological properties
and structure, but investigating a causative link typically
requires further research.
Herein, the authors present a complete modeling exercise

from the experimental testing of a bioactive compound library
to the application of machine learning models on new
compounds and their further selection for a prospective
experiment and analysis. As a toxicological target for this
investigation, oxidative stress was chosen as a central event for
many adverse outcome pathways (AOP) due to its relationship
with different toxicity mechanisms and diseases such as
Parkinson’s,6 cancer, chronic fatigue,7 and drug-induced liver
injury (DILI). The Spectrum Collection compound library

(Microsource Discovery Systems) was selected as the training
dataset because of its wide representation of bioactive
compounds, providing an extensive chemical space coverage
of the drug-like compounds.
Under normal physiological conditions, reactive oxygen

species (ROS) are generated from internal metabolism and
external exposure at levels that the cell detoxification
machinery can handle.8−10 When there is an imbalance of
ROS, tyrosine kinases dissociate from the nuclear factor
erythroid 2-related factor (NRF2). This activates a response
against oxidative stress by expressing antioxidant enzymes
related to antioxidant species synthesis, such as glutathione
(reduced nicotinamide adenine dinucleotide phosphate
(NADPH)), quinone oxidoreductase, and heme oxygenase-
1.9 When dysregulation occurs and the antioxidant system is
not able to keep redox homeostasis, cells suffer oxidative
damage through lipid peroxidation and protein and DNA
oxidation. Uncontrolled oxidative damage can lead to cell
death by apoptotic signaling or to activation of the
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inflammasome assembly.11,12 Time-sustained excess of ROS is
related to cancer, chronic diseases, and toxicity.13,14 In the
mitochondria, ROS are generated in higher quantities, and
hence the ROS scavenging systems show higher expression.14

Xenobiotics can produce a disruption in ROS homeostasis in
different ways: metabolic processes can generate ROS directly,
but they can also disrupt physiological processes involved in
redox reactions, like the mitochondrial electron transportation
chain, or affect the expression of genes involved in ROS
detoxification. The metabolism of xenobiotics takes place
mostly in the liver, making it a hotspot for oxidative stress
study. In the present study, the experimental characterization
of the potential ROS disruption of xenobiotics was carried out
using a HepG2 reporter cell line15 containing the genomic
modified sulfiredoxin-green fluorescent protein (Srxn1-GFP)
fusion protein exposed to 30 nM bardoxolone methyl (methyl-
2-cyano 3,12-dioxooleano-1,9-dien-28-oate) (CDDO-Me) as
the NRF2 pathway activator, enabling a dynamic range for up-
and downregulation for compounds tested with respect to the
CDDO-Me baseline activation.16 This HepG2 SRXN1-GFP
reporter cell line’s response to DILI-related compounds had
previously been shown to strongly correlate to primary human
hepatocytes (PHH) not only in terms of directionality of gene
expression but also the relationships between these genes
reflecting pathway regulation.17−19

Predicting if a compound produces oxidative stress is
challenging. Although some substructures are known to be
prone to form ROS metabolites, like quinoid-containing
compounds,20 these alerts only account for ROS generation
from xenobiotics. Thus, such substructure filters would neglect
other mechanisms related to, for instance, the inhibition of
proteins involved in the antioxidant cell machinery. There are
many sources of oxidative stress, and the underlying
mechanisms are not totally characterized, preventing from
the definition of a comprehensive definition of structural alerts.
We hypothesize that statistical models trained using large
datasets have the potential to overcome these limitations of
rule-based systems. Other works have also reported high
predictive performance, though both quantity and quality of
the data are key factors.21 Thanks to the advances in both data
quality, quantity, and machine learning techniques, statistical-
based models have regained interest.22−24 However, modeling
oxidative stress as a single endpoint using cheminformatics
approaches has not been addressed so far, probably due to the
different nature of its underlying mechanisms and the complex
and not well-understood translation to diseases.
In this work, we explore the ability of in silico statistical

models to predict oxidative stress, analyzing models created by
different research groups working on the EU-ToxRisk
project.25

Three-dimensional (3D) molecular descriptors were not
considered in this study as (i) they previously showed limited
improvement or deterioration of the model performance with
endpoints related to hepatotoxicity, (ii) the molecular
structures considered herein had limited dependence on 3D
shape, (iii) the hit and negative compounds had similar
distributions of sp3-hybridized carbon atoms, (iv) 3D
descriptors are sensitive to conformation, and the assay used
in this study could not determine the bioactive conformation
of molecules, and (v) the use of conformer ensembles is not
rigorous enough in determining the true association between
the observed signal and the underlying biology.26,27

Selected models were used to prospectively predict oxidative
stress for a collection of new compounds to further assess the
predictive performance of the models generated in this
exercise. A significant effort was made to prospectively select
representative compounds that would reflect a “real-world” test
set. For this, a set of 160 compounds was designed and
obtained from the Enamine HTS collection of 1,815,615
compounds with the aim to verify model predictions through
experimental validation.
Predictions for 20,000 compounds were computed, and 160

compounds were selected for experimental testing based on
the maximum combined prediction confidence and based on
similarity (high and low) to our modeling dataset and chemical
space clustering. This scheme was chosen to obtain insights
both into model performance and the importance of
compound similarity to our training series and chemical
space. This work not only resulted in a valuable set of oxidative
stress predictive models but also served as an example of a
comprehensive cheminformatics analysis and modeling ex-
ercise from experimental design and testing to prospective
validation.

■ METHODS
Cell Culture and Reagents. Previously, a bacterial

artificial chromosome (BAC) containing the mouse sulfiredox-
in (Srxn1) gene under the control of the endogenous promotor
was cloned with green fluorescent protein (GFP) to create an
Srxn1-GFP fusion protein.17 The Srxn1-GFP BAC was
transfected and stably integrated into an ATCC (clone
HB8065) human hepatoma HepG2 cell line. The HepG2
Srxn1-GFP line responds to oxidative stress-inducing com-
pounds, thus functioning as an oxidative stress reporter cell
line. In this work, HepG2 Srxn1-GFP cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), high glucose
supplemented with 10% (v/v) fetal bovine serum (FBS), 25
U/mL penicillin, and 25 μg/mL streptomycin. The cells were
used between passages 5 and 20. For live cell imaging, the cells
were seeded in Greiner black μ-clear 96 wells plates at 20,000
cells per well. Compounds of the Spectrum Library acquired at
a concentration of 10 mM were diluted in dimethyl sulfoxide
(DMSO) at a concentration of 10 μM, allowing to keep the
DMSO concentration to a maximum of 0.1%.
Exposure and Microscopy. The HepG2 Srxn1-GFP BAC

reporter cell line was exposed to 30 nM CDDO-Me as the
NRF2 activating entity, leaving a dynamic range for up- and
downregulation by the Spectrum Library compounds with
respect to the CDDO-Me baseline activation. 10 μM Spectrum
Library compounds were added in three replicate plates, which
were incubated for 24 h. Such concentration was chosen as it
corresponds to that used for 94% of the compounds (150/
158) tested in PHH in TG-GATEs�a library designed to
include compounds involved in liver toxicity and covering
several stress mechanisms, including oxidative stress.28 Addi-
tionally, a 24 h exposure window was chosen as it corresponds
to the time at which maximum response is observed in this
reporter.29,30 After 24 h, the plates were fixed with form-
aldehyde and stained with the nuclear dye Hoechst 33258.
GFP intensity levels were imaged with a Nikon TiE2000
confocal laser scanning microscope (lasers: 408 and 488 and
20× magnification).
Quantitative Image Analysis. Individual cells were

identified using the nuclear Hoechst staining, and attached
cytoplasmic GFP intensity levels were analyzed with Cell
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Profiler version 2.1.131 and were subsequently processed as
previously reported.17 Images in which either less than 100
cells were present or with a GFP intensity signal greater than
three times the median absolute deviation of their respective
plate were not considered. GFP intensity values were
converted to a modified Z-score such that modified Z-score
= ((x − X̃))/(k × MAD), with X̃ the median, MAD the
median absolute deviation, and k = 1.4826. Subsequently, the
median of the modified Z-score of experimental repeats was
used as the dependent variable for modeling. A median-
modified Z-score value of over 1.96 was defined as active in
this dataset.
Modeling. Spectrum Library: Training and Test Sets. The

Spectrum Collection compound library (Microsource Discov-
ery Systems) consists of 2230 compounds and includes
compounds that reached clinical trials in the U.S. (U.S. Drug
Collection), drugs marketed in Europe and/or Asia that were
not introduced to the U.S. (International Drug Collection),
and natural products and derivatives of plant, animal, and
microbial sources (Natural Product Collection) and com-
pounds that despite having shown biological activity in peer-
reviewed publications were never developed as treatments for
human diseases (Discover Collection). Ionized chemical
structures were neutralized, and counterions were removed.
Inorganics, organometallics, and mixtures were discarded. Data
from the curation procedure was gathered in a dataset of 2191
compounds, including 316 positive and 1875 negative
compounds, and were used for modeling median-modified Z-
scores, hereafter referred to as activities. A training set (1520
compounds, 218 actives) and a test set (671 compounds, 98
actives) were derived. The splitting strategy involved the
clustering of structures using the affinity propagation method
(as implemented in Pipeline Pilot) using functional circular
fingerprints with radius 2 (FCFP_4), with proportionate
stratified random sampling (70 and 30% for training and test
sets, respectively). Subsequently, the training set was
distributed to all partners with the bioactivity measures,
while the test set was distributed blindly.
The splitting method proved to be robust, and chemical

structure distribution was consistent with the observed
bioactivity. To validate this, the bioactivity of the measured
nearest neighbors from the test set was compared using
functional circular fingerprints with radius 3 and 2048 bits
(FCFP_6) to that of compounds in the training set (Table 1).

In 80.65% of the cases, the biological activity was the same
(nearest neighbors of active compounds were active and vice
versa), only 10.99% of active compounds of the training set
had inactive nearest neighbors in the test set, and only 8.36%
of inactive compounds of the training set had active nearest
neighbors in the test set.
Machine Learning Models. Each partner organization

developed its own set of statistical machine learning

structure−activity relationship (SAR) models. Though varying
methodologies were employed to develop such models, all of
them were fitted on the same training subset of the Spectrum
Library (Figure S1).
Five classifiers were built using the eTOXlab32 under a

conformal prediction (CP) framework33 to determine each
model’s applicability domain. A random forest34 (RF) and a
support vector machine (SVM) model were built based on
RDKit Morgan fingerprints35,36 (UPF 1 and 2 in Table 3,
respectively). Additionally, a partial least-squares regression
(PLSR) model was developed using Adriana-Code descriptors
(UPF 3) and two RF models using Padel37 and VolSurf38

molecular descriptors, respectively (UPF 4 and 5).
Four RF models were developed under the Mondrian

conformal prediction (MCP) framework,33 using the non-
conformist Python package. Well-calibrated p-values were
obtained for the assignment to the active or inactive classes
and to determine the applicability domains of the two models.
The models were evaluated at significance levels of 0.25 and
0.30. Two models were developed using signature finger-
prints39 (Swetox 1 and 2, respectively), and two others were
based on RDKit physicochemical molecular descriptors
(Swetox 3 and 4, respectively).
A balanced random forest (BRF)40 model (MN 8), as

implemented in the KNIME Analytics Platform,41 was derived
from Dragon (v. 7.0.8, Kode SRL, 2017) molecular descriptors.
This type of model alters the class distribution so that classes
are represented equally in each tree. Descriptors were pruned
by constant and semi-constant values and, should pairs of
descriptors have an absolute correlation higher than 90%, only
one descriptor was retained.
Three classifiers were derived from Pipeline Pilot

FCFP_6.35,42 One was a naive Bayes (NB) model, and the
two others consisted of k-nearest neighbors (kNN) classifiers
developed using either one single or three nearest neighbors
(UL 5, 12, and 13, respectively).
Four classifiers were derived from the combination of

Pipeline Pilot FCFP_6 fingerprints and physicochemical
descriptors. These consisted of a PLSR, an RF, an SVM, and
a logistic regression (LR) model (UL 7, 8, 9, and 4,
respectively).
Two deep neural networks (DNN) were trained (UL 3 and

1, respectively) using either only RDKit Morgan fingerprints
with radius 3 or combined with RDKit physicochemical
descriptors (PhysChem).
Three classifiers were derived from bioactivity spectra (BS)

derived from previously published NB and DNN classifiers.43

Although the predicted bioactivities of one target might not
scale as that of another target, similar patterns of activities are
associated with similar endpoints. Such BS have demonstrated
increased performance in predicting complex endpoints, along
with cellular responses and clinical outcomes.44 The first
model was an NB model derived solely from BS (UL 6), while
the two others consisted of RF models trained on BS
combined with Pipeline Pilot FCFP_6 fingerprints and
physicochemical descriptors (UL 10 and 11, respectively).
Two models were developed with SARpy.45 SARpy extracts

rules after having fragmented input molecular structures and
searches for relationships between the generated fragments and
the observed activity. SARpy was used to search for fragments
specific to the active and inactive classes (MN 5) or specific to
the inactives only (MN 6).

Table 1. Confusion Matrix of Experimental Activities of the
Test Set Compounds Compared to Their Nearest
Neighbors Present in the Training Set

activity of nearest neighbor
in the training set

active inactive

activity in the test set active 51 167
inactive 127 1175
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One model was trained on randomized input descriptors and
used as a baseline random estimator (UL 14).
Four classifiers were obtained by subdividing the original

training set into a training subset (1215 compounds, 80% of
the initial dataset) and a validation subset (305 compounds,
20% of the initial dataset). The splitting was performed by k-
means clustering considering the mean Tanimoto similarity of
each compound with respect to other compounds in the
dataset and to their activity in order to guarantee a uniform
structural and activity distribution between the two datasets.
Subsequently, to adjust for the unbalanced distribution of
classes, the training subset was under-sampled by deleting the
most represented class (i.e., inactive compounds) until both
classes were equal in number. The same k-means clustering
method used for splitting the original training set was used for
this under-sampling in order to keep a fraction of chemicals
representative of the full set of negative compounds. In the
end, a final balanced training subset of 348 compounds was
obtained. Classification models were derived from this final
balanced training subset, the first of which was derived from
CORrealtions And Logic (CORAL) software46 (MN 2).
CORAL derives optimal descriptors from SMILES, i.e.,
attributes that check the presence of particular characters or
combinations of them. Other models consisted of an RF model
and a decision tree (DT),47 derived from Dragon descriptors
(MN 7 and 3, respectively). The last model was a gradient-
boosted tree (GBT) based on ensemble modeling and a
boosting strategy48 (MN 4). These RF, DT, and GBT models
were developed using the KNIME Analytics Platform.
Finally, four ensemble models were trained. The first

consisted of a majority vote strategy ensemble model (MN
1) and was derived from models MN 2, 3, 4, 5, 6, and 7. In
particular, a compound was classified as positive or negative if
at least five out of six models had concordant predicted labels;
otherwise, the compound was flagged as suspicious. The
second ensemble model (UL 2) was derived from all of the 30
aforementioned models, including the MN 1 ensemble model,
and consisted of a majority vote strategy ensemble model
based on predicted labels. The third and fourth ensemble
models relied on the average and median of the predicted
probabilities from all of the 31 aforementioned models,
including the MN 1 and UL 2 models (Ensemble mean and
Ensemble median, respectively).
Selection of Compounds for Prospective Validation.

The Enamine HTS collection (downloaded in August 2017),
containing 1,815,615 diverse screening compounds, was
selected for virtual screening. The collection encompasses
versatile chemotypes developed within a couple of decades of
chemical research at Enamine and its partner academic
organizations. These compounds frequently have singular
structures and unique properties, making them an ideal diverse
screening set. The activity of the compounds was predicted by
SARs models selected based on their performance on the
holdout test set. Since the in vitro validation of predicted
activities of 1,815,615 compounds was not feasible, a
subselection of the Enamine HTS collection based on
subregions of a reference chemical space was devised.
Reference Chemical Space. A reference chemical space was

created with the aim to select representative compounds from
the Enamine HTS Collection to use for prospective validation
of the developed models on chemical structures closely related
to those of industrial and real-life interest. More specifically,
the reference chemical space was defined by gathering

chemicals from three different datasets: COSMOS,49 as it is
representative of substances of toxicological concern, Drug-
Bank,50 representative of approved drugs and nutraceuticals,
and the annex VI of the classification, labeling, and packaging
(CLP) regulation of the European Chemicals Agency (ECHA)
on chemical substances representative of industrial chemicals
(Table 5). Compounds from the three datasets were
standardized, and functional Morgan circular fingerprints
with radius 2 folded to 1024 bits were computed using
RDKit.36,51 Principal components (PC) analysis with two
components was applied to the descriptor matrix centered and
scaled to unit variance beforehand. The PCA scores were then
clustered using k-means with 6 clusters, 100 seeds, and the k-
means++ algorithm for centroid initialization.52 The obtained
two-dimensional (2D) chemical space defined by the PC
alongside the obtained clusters (Figure 2) was used to guide
the selection of compounds whose activity was to be validated
in vitro.
Classification of Enamine Compounds. The compounds of

the Enamine dataset were characterized by their similarity with
respect to the training set and location in the reference
chemical space using functional Morgan circular fingerprints
with radius 2 folded to 1024 bits. First, Enamine compounds
were classified based on Tanimoto similarity (Tc) as similar
(Tc ≥ 0.7) and dissimilar (Tc ≤ 0.3) from the modeling
dataset. Subsequently, each similarity group was projected and
classified into the corresponding clusters of the reference set
(Table 2). The 482,306 compounds classified as dissimilar
were randomly subsampled to 20,000.

Compound Selection. The bioactivities of the 23,801
Enamine compounds previously selected based on subregions
of the reference chemical space were predicted using the
models described above. To narrow down the selection of
compounds, the concordance in terms of predicted labels
among models was evaluated alongside inclusion in their
applicability domains. Four categories of compounds were
scrutinized based on their similarity group and predicted
activity. Similarities were evaluated with Tanimoto coefficients
(Tc) derived from functional Morgan circular fingerprints with
radius 2 folded to 1024 bits. Compounds predicted as active
and similar to the modeling set were included if at least 70% of
models were concordant and if they were included in the
applicability domains of at least 70% of models. For
compounds predicted as active and dissimilar to the modeling
set, this threshold was increased to 80%. This threshold was
further tuned for compounds predicted as inactive and was set
to 90% for those similar to the training set and to 100% for
those dissimilar to the training set. The higher threshold
picked for consensual prediction of inactive compounds results

Table 2. Cluster Population for the Considered
Selectionsa2

cluster

0 1 2 3 4 5

purple red green cyan indigo yellow

similar compounds 172 2290 23 372 943 1
dissimilar compounds 4460 2574 200 805 11,961 0
aFor dissimilar selection (Tanimoto similarity ≤0.3), the number of
compounds was randomly subsampled to 20,000. The cluster
numbers and colors correspond to that in Figure 2.
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from the higher occurrence of inactives in the training set.
Subsequently, compounds were assigned to their similarity
classes (similar or dissimilar), predicted activity classes (active
or inactive), and PCA clusters of the chemical space (clusters
0−5), resulting in 24 different compound groups. Compound
groups populated with less than 25 members were considered
for purchase and in vitro validation. Complementarily, groups
populated with more than 25 compounds were clustered into 5
subclusters using k-means. From each subcluster, 5 compounds
were taken summing up to at most 25 compounds to be tested
per cluster, similarity, and predicted activity groups.

■ RESULTS
Experimental data was distributed among four different
modeling groups, partners of the EU-ToxRisk Consortium.
Each partner built different prediction models using their own
methodologies. The models’ predictive performance was
evaluated using a common test set blinded before initiating
the modeling work. The predictive quality and orthogonality of
predictions were the parameters chosen to select models, while
models that were either not predictive or whose predictions
were very similar to other models were discarded. Only two-

dimensional (2D) molecular descriptors were considered, as
there were no significant differences between positive and
negative hit compounds (Figures S2 and S3).
Modeling Results. Model performances on the holdout

test set are summarized in Table 3 (complete overview in
Table S1). Generally, models show a tendency to produce false
negatives (FN) and, therefore, to have low sensitivity, as
expected, given the dataset imbalance. Taking Matthews
correlation coefficient53 (MCC) as a performance index,
models demonstrated to be predictive with an average MCC
of 0.23. The additional random predictor included as a baseline
with an MCC of 0.05 shows the enriched predictive power of
the models. Subsampling strategies were used in some of the
models achieving a more balanced difference between
sensitivity and specificity at the expense of a reduced
applicability domain coverage. Interestingly, the consensus
model MN 1 achieved a remarkable performance with an
MCC of 0.44, yet with a drop in the coverage of its
applicability domain (52%).
Error Analysis. Identifying the reasons why some of the

predictions with a higher agreement are erroneous is essential
to understand the limitations of the models. The sum of

Table 3. Model Performance on the Holdout Test Set Ranked by MCCa

model name algorithm descriptors SN SP ACC BACC AD MCC

perfect - - 1.00 1.00 1.00 1.00 1.00 1.00
MN 1 consensus various 0.65 0.87 0.84 0.76 0.52 0.44
Swetox 4 CP/RF RDKit 0.71 0.72 0.72 0.72 0.79 0.31
UL 10 RF PP FP, BS, PhysChem 0.51 0.84 0.79 0.68 1.00 0.30
ensemble mean - 0.47 0.86 0.80 0.66 1.00 0.29
ensemble median - 0.45 0.87 0.81 0.66 1.00 0.29
Swetox 2 CP/RF signatures 0.65 0.74 0.72 0.70 0.76 0.29
UL 8 RF PP FP, PhysChem 0.51 0.83 0.78 0.67 1.00 0.28
UPF 1 CP/RF RDKit FP 0.63 0.72 0.71 0.68 0.68 0.26
Swetox 3 CP/RF RDKit PhysChem 0.67 0.70 0.70 0.69 0.91 0.26
UL 5 NB PP FP 0.68 0.68 0.68 0.68 1.00 0.26
UPF 2 CP/SVM RDkit FP 0.71 0.61 0.66 0.66 0.67 0.26
MN 8 BRF Dragon 0.44 0.85 0.79 0.65 1.00 0.25
UL 6 NB BS 0.42 0.86 0.79 0.64 1.00 0.25
UPF 3 CP/PLSR Adriana 0.70 0.66 0.66 0.68 0.71 0.25
UL 3 DNN RDKit FP 0.27 0.93 0.84 0.60 1.00 0.24
UPF 4 CP/RF PaDEL 0.67 0.67 0.67 0.67 0.75 0.24
UL 11 RF PP FP, BS, PhysChem 0.71 0.62 0.63 0.67 1.00 0.24
MN 4 GBT Dragon 0.60 0.71 0.69 0.66 1.00 0.23
UL 13 kNN (3NNs) PP FP 0.19 0.96 0.85 0.58 1.00 0.22
MN 7 RF Dragon 0.54 0.74 0.71 0.64 1.00 0.22
UL 12 kNN (1NN) PP FP 0.31 0.89 0.81 0.60 1.00 0.21
UPF 5 CP/RF VolSurf 0.57 0.72 0.70 0.65 0.74 0.21
Swetox 1 CP/RF signatures 0.58 0.70 0.68 0.64 0.89 0.21
MN 5 SARpy SAs (actives, inactive) 0.47 0.77 0.73 0.62 0.99 0.20
MN 6 SARpy SAs (inactives) 0.61 0.64 0.64 0.63 1.00 0.18
UL 2 majority vote various 0.34 0.85 0.77 0.60 1.00 0.17
UL 1 DNN RDKit FP, PhysChem 0.61 0.62 0.62 0.62 1.00 0.17
MN 2 CORAL SMILES-based 0.71 0.52 0.55 0.62 0.92 0.16
UL 7 PLSR PP FP, PhysChem 0.19 0.92 0.82 0.56 1.00 0.14
UL 9 SVM PP FP, PhysChem 0.03 1.00 0.86 0.52 1.00 0.13
MN 3 DT Dragon 0.57 0.61 0.60 0.59 1.00 0.13
UL 4 LR PP, FP, PhysChem 0.36 0.77 0.71 0.57 1.00 0.11
UL 14 random randomized 0.55 0.52 0.52 0.54 1.00 0.05

aThe performance of a perfect model is given for comparison. The best values for sensitivity (SN), specificity (SP), accuracy (ACC), balanced
accuracy (BACC), and Matthews correlation coefficient (MCC) are highlighted in bold. AD stands for the coverage of the applicability domain, PP
FP for Pipeline Pilot FCFP_6 fingerprint, and NN for nearest neighbor.
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erroneous model predictions per compound in the holdout test
set was investigated (Figure 1). Compounds associated with

more mispredictions were distributed proportionally according
to the number of compounds in their vicinity in the chemical
space (based on Tanimoto similarity of functional circular
fingerprints with radius 2; FCFP_4). This phenomenon rejects
the possibility of specific chemical properties being the cause of
such errors and can be attributed both to the diverse nature of
the Spectrum dataset and to the variety of mechanisms
involved in oxidative stress, which can be triggered by a wide
diversity of chemicals themselves.
Some of the compounds presented a high consensus in

incorrect predictions and were further analyzed. For each of
them, the five most similar compounds, in terms of the
Tanimoto coefficient based on 2048 bits FCFP_4, from the
training dataset, were extracted (Table 4; detailed information
in Table S2). These compounds were considered as being the
most associated with incorrect predictions, and their analysis
led to the identification of the following sources of errors.
Activities Close to Neutral. The binary labels the models

were fitted to were derived from Z-scored GFP intensity
values. Though the threshold used was quite conservative
when it comes to activity, the strength of the effect of
compounds on the oxidative pathway may differ substantially.
Thus, Z-scores of similar compounds in a chemical series can
oscillate around the activity threshold. For example,
chlorquinaldol was predicted as active by 26 models, while
the experimental result is inactive (Z-score of −0.19). The five
most similar compounds (iodoquinol, chloroxine, clioquinol,

Figure 1. Distribution of the number of erroneous predictions made
by models reported in Table 3 in the PCA space of the Spectrum
holdout test set.

Table 4. Consensually Mispredicted Compoundsa

aCompounds of the blinded holdout test set associated with highly consensual mispredictions (prederror) are denoted as references. Their closest
homologues in the training set are depicted alongside their Tanimoto similarity (Tc) and median-modified Z-score (Zscore).
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broxyquinoline, and cloxyquin) have a very similar scaffold
with distinct substituents. The experimental activities for these
compounds show Z-score values close to the activity threshold,
except for broxyquinoline’s, which is 4.40.
No Representative Compound in the Training Set. Due to

the chemical diversity of the Spectrum Library, compounds in
the test set might not be represented in the training set. If so,
important features of a particular compound series for their
activity might not be considered by the algorithms, resulting in
incorrect labels. For example, isoxsuprine’s most similar
compound, metaraminol, is dissimilar with a Tanimoto
similarity of 0.55.
Mechanism Not Captured. Another source of errors is the

difficulty for the algorithms to identify the underlying
mechanisms from the given descriptors. For example,
deoxysappanone B 7,3′-dimethyl ether and deoxysappanone
B 7,4′-dimethyl ether, though having 0.91 Tanimoto similarity,
show an activity cliff with Z-scores of 0.68 and 21.38,
respectively, hence being respectively inactive and active.
The subtle structural difference corresponding to alternated
hydroxy and methoxy groups makes most models predict it as
active.
Model Selection. Of the 33 models developed, only the

best-performing models in terms of MCC and balanced
accuracy were selected. Additionally, any model with either
sensitivity or specificity lower than 0.50 was disregarded. For
the models developed by IRFMN, this resulted in models MN
1 and MN 4 being selected. Models 1 and 3 developed by
Swetox were selected for the larger coverage of their
applicability domains (0.89 and 0.91, respectively) compared
with models Swetox 2 and Swetox 4 (0.76 and 0.79,
respectively), though compromising for lower MCC (0.64,
0.69, 0.76 and 0.79, respectively). Of the models developed by
UL, models 1, 5, 8, and 11 were selected, preferring model UL
11 over UL 10 for its more balanced sensitivity and specificity
(0.71 and 0.62 against 0.51 and 0.79, respectively). Finally,
models 1, 3, and 4 developed by UPF and the mean ensemble
model were selected. A consensus majority vote model was
devised based on the 11 selected models.
Prospective Validation. Estimating the true quality of a

model is a challenging task. Results obtained using a test set
too similar to the training series can give an overly optimistic
estimation of model performance. Conversely, if too different
from the training series, that is, containing compounds out of
the chemical space of interest, a test set can produce
pessimistic estimations. In this work, a realistic validation
exercise was devised by carefully extracting a validation set
from the “chemical space of interest.” The similarity to the
training series and the quality of the predictions were also
included as selection criteria. Additionally, the validation of
models’ predictions was conducted prospectively to avoid any
involuntary bias.
The reference chemical space of interest was obtained by

integrating source datasets of different natures: DrugBank
accounted for the druggable chemical space and COSMOS and
ECHA’s annex IV for the toxicity-associated chemical space
(Table 5). The chemical space was then clustered into six
regions.
The Enamine HTS database was selected for the prospective

selection due to its chemical diversity. The database, once
standardized, contained 1,815,615 compounds. These com-
pounds were projected into the reference chemical space and
then classified according to the six clusters they fell into

(Figure 2) and according to their similarity to the training
series (Figure 3). Such a selection ensured the obtention of
valuable information on the influence of both similarity and
chemical space localization on the models’ performance.
The 11 selected models, along with the consensus model,

were then used to predict oxidative stress for the highest
probabilities of being active and inactive, resulting in a list of
23,801 molecules. From them, 20,194 remained after some
were rejected through errors occurring either during stand-
ardization or during the computation of molecular descriptors.
Subsequently, at most 25 compounds per cluster, similarity,
and predicted activity groups were selected. Table 6
summarizes the distribution of compounds selected within
clusters of the chemical space. The final list of compounds
selected for the prospective validation is available in the
Supporting Information.
Prospective Results. The 160 selected compounds were

then validated in vitro, and the measured activation of the
oxidative stress pathway was compared to the models’
predictions (Table 7). A small decrease in average perform-
ance, with an MCC of 0.20 and accuracy of 0.61, was observed
when compared to that of the holdout test set (0.23 and 0.72,
respectively). This originated from the filtering out of models
with unbalanced sensitivity and specificity, introducing a false
positive bias in the models, hence translating in lower general
performance when compared to the performance of the
prospective validation set. Nevertheless, the models were able
to identify 15 oxidative stress-inducing compounds out of the
19 measured. This result highlights the capacity of the models
to identify positive compounds from a library of samples
despite a small positive-to-negative ratio (herein 1:7.42) due to
the complexity of the endpoint scrutinized, whose inner
mechanisms are not fully captured. Yet, models with very high
sensitivity are preferred, regardless of specificity, as they have a
low risk of missing potentially hazardous compounds.
Interestingly, the consensus model was the second-best in
terms of sensitivity (0.79) but penultimate in terms of
specificity (0.53), resulting in a low MCC of 0.21 and
disappointing performance.
Performance by Cluster. Interestingly, the performance of

models was not evenly distributed along the chemical space
(Table 8; complete overview in Table S3). This was reflected
by clusters 2 and 5, consisting of only negative compounds,
where specificities of 1.00 were observed for all models but one
(MN 4) in the case of cluster 2. Though the prospective
validation set contained mostly inactive compounds, with only
19 actives out of the 160 tested, the best performances in terms
of MCC were obtained within clusters 0 and 3 (0.32 and 0.27,
respectively). Nevertheless, for the latter, models had both
unequal predictive power as demonstrated by the increased
standard deviation of the MCC and a decreased average
sensitivity (0.1 and 0.30, respectively) when compared to
clusters 0, 1, and 4. Clusters 1 and 4 had higher average

Table 5. Datasets Used for Building a Representative
Chemical Space

source
no. unique
molecules origin

COSMOS 42,935 substances present in cosmetic products
DrugBank 7225 approved small molecule drugs,

nutraceuticals, and experimental drugs
ECHA CLP
annexe VI

2384 substances classified as hazardous by ECHA
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balanced accuracies than cluster 3 (0.64, 0.68, and 0.61,
respectively) due to their higher average sensitivities (0.82 and
0.85 against 0.30, respectively) but had the lowest average
MCC (0.21 and 0.20, respectively), explained by the lower
average specificities (0.46 and 0.50, respectively).
Log P and Performance. The n-octanol/water partition

coefficient (Log P), together with the dose, had previously
been reported to distinguish compounds associated with DILI
from others.54,55 A balanced Log P favors drug solubility in the
serum and facilitates cell uptake through membrane diffusion.
To assess the bias of the models toward high Log P values, the
performance of the models was also assessed by separating the
compounds in four intervals of Crippen’s atom-based
approximation of Log P:56 Log P ≤ 0, 0 < Log P ≤ 2.5, 2.5
< Log P ≤ 5, and Log P ≥ 5 (Table 9; complete overview in

Table S4). Log P was computed for the prospective dataset
using RDKit. Compounds with a Log P below 2.5 were mostly
negative (60 out of 63), with three exceptions, probably due to
facilitated transport processes. This result highlights the
predictive power of the sole Log P descriptor for negative

Figure 2. Reference clustered chemical space (A) with projections of the Spectrum Library (B) and Enamine HTS collection (C). Clusters and
centers are represented in color, and projected datasets are represented in black. Clusters 0−5 are represented in purple, red, green, cyan, indigo,
and yellow, respectively.

Figure 3. Schematic representation of the prospective candidate selection. First, Enamine compounds were classified by Tanimoto similarity (Tc)
with respect to the Spectrum training set into two groups; similarity equal to or greater than 0.7 as the similar group, and similarity equal to or
lower than 0.3. Compounds were further projected in the reference chemical space and classified upon the cluster they fell into. Finally, compounds
with the top probabilities of being active and inactive in each subgroup were considered for experimental validation.

Table 6. Distribution of Compounds within Similarity
Clusters Selected for Prospective Validation

cluster

0 1 2 3 4 5 total

similars predicted as active - 25 - - 24 - 49
similars predicted as inactive 2 15 5 12 13 - 47
dissimilars predicted as active 7 9 - 2 14 - 32
dissimilars predicted as inactive 12 3 1 5 10 1 32

Table 7. Performance of Models on the Prospective
Validation Seta

model name SN SP ACC BACC AD MCC

UPF 1 0.63 0.78 0.65 0.70 1.00 0.27
MN 1 0.74 0.58 0.72 0.66 0.71 0.22
UL 5 0.55 0.79 0.58 0.67 1.00 0.22
UPF 4 0.56 0.80 0.58 0.68 1.00 0.22
UL 11 0.54 0.79 0.57 0.66 1.00 0.21
consensus 0.79 0.53 0.56 0.66 0.97 0.21
MN 4 0.52 0.79 0.56 0.66 1.00 0.20
Swetox 3 0.51 0.79 0.54 0.65 0.99 0.20
Swetox 1 0.57 0.72 0.59 0.65 0.94 0.19
UPF 3 0.55 0.74 0.57 0.64 1.00 0.18
UL 8 0.53 0.74 0.56 0.63 1.00 0.17
UL 1 0.86 0.32 0.79 0.59 1.00 0.15

aModels are sorted by MCC. The best values for sensitivity (SN),
specificity (SP), accuracy (ACC), balanced accuracy (BACC), and
Matthews correlation coefficient (MCC) are highlighted in bold. AD
stands for coverage of the applicability domain.
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compounds. On the other hand, most of the compounds with a
Log P in the range of 2.5−5 can reach the cell cytoplasm due
to favorable physicochemical properties, though other
phenomena such as metabolism might be at play. Most
positive oxidative stress inducers (15 out of 19) were found in
this group. The models were able to correctly identify 12 of the
15 active and 22 of the 68 inactive compounds. These results
highlight the limitation of the models to capture the underlying
mechanisms leading to oxidative stress.

■ DISCUSSION
From the initial stages of building a model to its deployment
for real-life applications, many factors have to be studied to
ensure the model’s validity. This analysis is of the utmost
importance when the objective function is rather abstract, for
example, when all possible biological adverse outcomes the
studied chemicals could trigger are not fully known or when
the underlying biological mechanisms are only partially
understood. Oxidative stress is a good example as it is a
complex phenomenon that results from the interplay of
multifaceted pathways whose mechanisms are yet to be
completely unraveled.57 Thus, the nonlinear relationships
between molecular features and the biological response a
model would need to identify are amplified due to these
intricacies.
Another critical factor when developing a machine learning

model resides in the data used to fit the algorithm. The
Spectrum Library was selected herein due to its high molecular
diversity, hence covering a large chemical space. However, this
large diversity comes with its drawbacks. For example, the
compounds might not be evenly distributed among different
biological mechanisms, hence biasing the algorithms toward
the most representative mechanisms, especially if the molecular
descriptions are not complex enough.58 In this case, the
underlying machine learning algorithms will fail to find
complex patterns differentiating between mechanisms but
will rely on simpler associations, resulting in lower perform-

ance on the less represented mechanisms and will have lower
generalization capacity.
In this work, we have addressed the modeling of oxidative

stress from the early stage of model creation up to its
application in a prospective experimental validation of the
selected compounds. Modeling was approached by letting the
different academic partners use their own modeling method-
ologies�descriptors and algorithms�on the same training set.
The development of classifiers was favored over regression
models as the latter would not have worked as well,
considering the diversity of the chemicals in the training set
and the inherent difficulty of developing predictive regression
models. The variability in modeling and subsampling
techniques favored also the variability of predictions and
applicability domains. In turn, this variability of predictions
translated into a panel of models with heterogeneous
performance. In general, models showed higher specificity
than sensitivity, especially those models in which balancing
approaches were not adopted. From the disparate trends in
model performances, one could wonder which models to
prioritize for the prediction of oxidative stress in a real-life
scenario. Models with high specificity and low sensitivity would
certainly predict most of the compounds correctly since most
drug- and lead-like compounds are not expected to show
oxidative stress activity. However, such models would be
noninformative due to their inability to identify active
compounds. On the other hand, models with more
equilibrated sensitivities and specificities would have a higher
false positive rate and thus be biased toward active predictions.
Additionally, most models with balanced sensitivities and
specificities herein were built from a subsampled dataset,
limiting the chemical space covered. Nevertheless, identifying
compounds associated with the harmful property of oxidative
stress is mandatory for a model to be selected. Therefore, the
MCC was adopted as the selection criterion favoring models
with balanced sensitivities and specificities over models with
excellent specificity despite low sensitivity. As a result, only
models with MCC higher than 0.20 were considered.

Table 8. Average Performance of the Models on the Prospective Validation Set per Clustera

cluster no. actives/no. inactives SN SP ACC BACC MCC

0 2.82 ± 0.40:17.82 ± 0.60 0.61 ± 0.11 0.77 ± 0.09 0.75 ± 0.07 0.69 ± 0.04 0.32 ± 0.11
1 7.73 ± 0.90:42.73 ± 2.45 0.82 ± 0.13 0.46 ± 0.11 0.51 ± 0.08 0.64 ± 0.04 0.21 ± 0.05
2 0.00 ± 0.00:6.00 ± 0.00 0.00 ± 0.00 0.98 ± 0.05 0.98 ± 0.05 NA 0.00 ± 0.00
3 3.00 ± 0.00:15.73 ± 0.65 0.30 ± 0.18 0.93 ± 0.05 0.82 ± 0.04 0.61 ± 0.08 0.27 ± 0.21
4 4.91 ± 0.30:54.09 ± 3.27 0.85 ± 0.28 0.50 ± 0.16 0.53 ± 0.13 0.68 ± 0.08 0.20 ± 0.08
5 0.00 ± 0.00:1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 NA 0.00 ± 0.00

aModels are sorted by MCC per cluster. Values are reported as mean ± standard deviation across models for the compounds of the denoted
cluster. No. actives, No. inactives, SN, SP, ACC, BACC, and MCC stand for the number of active and inactive compounds falling within each
model’s applicability domain, sensitivity, specificity, accuracy, balanced accuracy, and Matthews correlation coefficient, respectively. NA stands for
values that could not be determined due to the models’ lack of sensitivity.

Table 9. Average Performance of the Models on the Prospective Validation Set per Log P Intervala

interval no. actives/no. inactives SN SP ACC BACC MCC

Log P ≤ 0 2.00 ± 0.00:10.82 ± 0.60 0.05 ± 0.15 0.98 ± 0.05 0.84 ± 0.02 0.51 ± 0.05 0.02 ± 0.08
0 < Log P ≤ 2.5 1.00 ± 0.00:48.73 ± 0.47 0.00 ± 0.00 0.99 ± 0.02 0.97 ± 0.02 0.49 ± 0.01 −0.01 ± 0.01
2.5 < Log P ≤ 5 14.55 ± 1.21:65.45 ± 4.46 0.84 ± 0.17 0.33 ± 0.18 0.42 ± 0.12 0.58 ± 0.03 0.15 ± 0.05
5 < Log P 0.91 ± 0.30:12.36 ± 1.80 0.82 ± 0.40 0.12 ± 0.22 0.18 ± 0.20 0.52 ± 0.09 0.03 ± 0.10

aModels are sorted by MCC per Log P interval. Values are reported as mean ± standard deviation across models for the compounds of the denoted
Log P interval. No. actives, No. inactives, SN, SP, ACC, BACC, and MCC stand for the number of active and inactive compounds falling within
each model’s applicability domain, sensitivity, specificity, accuracy, balanced accuracy, and Matthews correlation coefficient, respectively.
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To validate the models’ predictions, a prospective
experimental validation was devised. The Enamine HTS
collection was selected for its diversity and synthetic
accessibility. The collection contained 1.8 million compounds,
of which 160 were selected based on model predictions for
experimental validation. Due to practical considerations, the
main challenge was to make the selection from such a large
number of compounds. Several strategies were proposed, one
of them consisting of each academic partner individually
providing a list of compounds to be tested based on their own
filtering criteria. Although such an approach is appealing to
analyze differences among models and their resulting
selections, it was commonly decided that the average ensemble
of predictions would be used as its performance on the holdout
test set was one of the highest. Furthermore, to limit the
number of chemicals to test, a selection procedure was
adopted, factoring in the chemical space and the similarity with
respect to the training set on top of the predicted activities.
Consequently, the prospective validation not only evaluated
the models through metrics of performance but also provided
insights into the importance of the aforementioned aspects.
Once the prospective dataset was filtered, projected onto the
clustered reference chemical space, and labeled by similarity
with respect to the training set, the compounds for which our
models were more confident were selected. Filters on the
concordance of predictions and on the applicability domains
were tuned, due to the different distributions of compounds
per cluster and per similarity and activity subclasses. This
tuning allowed for the selection of compounds having the
maximum agreement among models yet populating the
similarity and activity clusters best while fitting the allocated
budget.
Experimental results highlighted the consistency of model

performances between the holdout test set and the prospective
validation set, as exemplified by the value of 0.06 for both the
average and the standard deviation of absolute differences of
MCC. However, because of the prioritization of models with
balanced sensitivities and specificities, the results showed an
increase in false positives, with a reduction in the average and
standard deviation of absolute differences between sensitivities
of the holdout test and prospective validation sets of 0.04 and
0.13, respectively. This bias was reflected in lower average
accuracies of 0.70 and 0.61 for the holdout test and prospective
validation sets, respectively. However, on average, models
successfully predicted 15 active compounds out of 19, evincing
the usefulness of models to prioritize compounds for further
analysis. Additionally, the experimental design provided
insights into how models face complex endpoints in terms of
chemical space, Log P, and similarity with respect to the
training series. Models generalized the relationship between
low Log P (Log P < 2.5) and compounds’ inactivity but failed
to identify the few active compounds (3) present in this
interval. On the other hand, models were unable to clearly
differentiate active and inactive compounds when Log P was
higher, leading to a high number of false positives.
Interestingly, performance was better for dissimilar selections,
stressing model generalizability.
Another important outcome of this study is that ensemble

methods returned better performance than single models
before model selection: the consensus model derived from the
11 selected models showed suboptimal performance. The
integration of multiple modeling strategies and the application
of a weight-of-evidence approach is particularly suited when

the individual models have been developed using different
techniques, have ADs differently defined, and show different
behaviors based on the structural and activity profile of
predicted chemicals.59−61 In this regard, the integrated method
can compensate for and correct for the limitations of individual
techniques, can cover greater chemical space, and increases
confidence in the final toxicological prediction.
As a result, we recommend the use of consensus models

derived from weak learners, as exemplified by model MN 1’s
consistency in ranking in the top-performing models in all
Log P intervals and almost all clusters of the reference chemical
space.
In silico models developed herein can be used to provide

information regarding the toxicity of chemicals and help to
prioritize certain chemicals for further testing and give an
indication to better plan targeted follow-up in vitro experi-
ments. Overall, indications given by in silico methods were
confirmed by the subsequent in vitro testing, confirming the
suitability of these models as effecting top-tier methods within
integrated testing strategies (ITS). Additionally, these models
could be used in the active learning-based creation of a
predictive modeling compound set for oxidative stress
predictions.
The real-life applicability of the models has been one of the

main focuses during the development and validation of this
work. In particular, great attention has been put into the
selection of chemicals for prospective validation. Indeed, the
reference database was a combination of heterogeneous
sources of chemicals (i.e., COSMOS, DrugBank, and
ECHA6) with the explicit aim to validate the predictivity of
models on a broad range of substances (e.g., drugs, cosmetics,
nutraceuticals, toxic industrial chemicals) that can be released
in the environment and can activate the oxidative stress
pathway and hence cause toxicity.

■ CONCLUSIONS
In this work, an NRF2 activity reporter was used to measure
oxidative stress pathway activation in HepG2 cells. A large
series of 2230 drug and drug-like compounds were classified as
positive or negative depending on the cellular response and
distributed among different modeling groups for building SAR
classifier models. A selection of models was used to
prospectively predict oxidative stress induced by a set of
diverse compounds, which were then tested in vitro for
validation. The setup presented here validated the models’
performance across the similarity and lipophilicity landscape.
Additionally, failure modes of individual models were
investigated and characterized based on training series. This
work exemplifies the challenges of explaining machine learning
model-based decisions in the context of AOP activation.
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Bob van de Water − Leiden Academic Centre for Drug
Research, Leiden University, 2333 AL Leiden, The
Netherlands; orcid.org/0000-0002-5839-2380

Manuel Pastor − Research Programme on Biomedical
Informatics (GRIB), Department of Medicine and Life
Sciences, Hospital del Mar Medical Research Institute,
Universitat Pompeu Fabra, 08002 Barcelona, Spain;
orcid.org/0000-0001-8850-1341

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.3c00220

Author Contributions
∇O.J.M.B. and J.C.G.-T. contributed equally to this paper.
O.J.M.B. writing�original draft, writing�review and editing,
and visualization; J.C.G.-T. conceptualization, methodology,
writing�original draft, and visualization; E.B.L. conceptualiza-
tion and methodology; S.W. methodology and validation; S.H.
methodology and validation; C.C.L. methodology; D.G.

conceptualization and methodology; A.R. conceptualization
and supervision; U.N. conceptualization, methodology, and
supervision; B.v.d.W. conceptualization and supervision; M.P.
conceptualization and supervision; G.J.P.v.W. conceptualiza-
tion, methodology, and supervision.
Funding
This project received funding from the EU-ToxRisk and RISK-
HUNT3R projects, which received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreement Nos. 681002 and 964537, respectively, and
was part of the Innovative Medicines Initiative 2 Joint
Undertaking under grant agreement No. 777365 (eTRAN-
SAFE) receiving support from the European Union’s Horizon
2020 research and innovation program and EFPIA. Additional
funding was received from the VHP4Safety project, a research
project funded by the Netherlands Research Council (NWO)
“Netherlands Research Agenda: Research on Routes by
Consortia” (NWA-ORC 1292.19.272). The authors declare
that this work reflects only the author’s view and that the
Innovative Medicines Initiative 2 Joint Undertaking and NWO
are not responsible for any use that may be made of the
information it contains.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Dr. Ian Copple (University of Liverpool)
for kindly providing CDDO-Me; Marina Gorostiola González
and Dr. Sohvi Luukkonen for their critical inputs about data
management and during data analysis; Dr. Luukkonen for also
helping with the formatting; Dr. Giulia Callegaro for her
essential help on the characteristics of the cell line and assay;
and Roelof van der Kleij for providing access and maintaining
part of the IT infrastructure used for this work.

■ ABBREVIATIONS
AOP, adverse outcome pathway; BAC, bacterial artificial
chromosome; BRF, balanced random forest; BS, bioactivity
spectra; CDDO-Me, bardoxolone methyl (methyl-2-cyano
3,12-dioxooleano-1,9-dien-28-oate); CLP, classification, label-
ing, and packaging regulation; CP, conformal prediction; DILI,
drug-induced liver injury; DNN, deep neural networks; DT,
decision tree; ECHA, European Chemicals Agency; FCFP_4,
functional connectivity fingerprints with radius 2; FCFP_6,
functional connectivity fingerprints with radius 3; FN, false
negative; GBT, gradient-boosted tree; GFP, green fluorescent
protein; ITS, integrated testing strategies; kNN, k-nearest
neighbors; LR, logistic regression; MCC, Matthews correlation
coefficient; MCP, Mondrian conformal prediction; NB, naive
Bayes; NRF2, nuclear factor erythroid 2-related factor 2; PC,
principal component; PHH, primary human hepatocytes;
PhysChem, physicochemical descriptors; PLSR, partial least-
squares regression; SAR, structure−activity relationships; RF,
random forest; ROS, reactive oxygen species; Srxn1,
sulfiredoxin; Srxn1-GFP, GFP-tagged NRF2-regulated sulfir-
edoxin reporter; SVM, support vector machine; Tc, Tanimoto
coefficient/similarity

■ REFERENCES
(1) Chalasani, N.; et al. Features and outcomes of 899 patients with
drug-induced liver injury: The DILIN prospective study. Gastro-
enterology 2015, 148, 1340−1352.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00220
J. Chem. Inf. Model. 2023, 63, 5433−5445

5443

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00220/suppl_file/ci3c00220_si_003.txt
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gerard+J.+P.+van+Westen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0717-1817
mailto:gerard@lacdr.leidenuniv.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olivier+J.+M.+Be%CC%81quignon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7554-9220
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose+C.+Go%CC%81mez-Tamayo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eelke+B.+Lenselink"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5459-2978
https://orcid.org/0000-0001-5459-2978
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+Wink"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+Hiemstra"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chi+Chung+Lam"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Domenico+Gadaleta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3154-5930
https://orcid.org/0000-0002-3154-5930
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alessandra+Roncaglioni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ulf+Norinder"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bob+van+de+Water"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5839-2380
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Manuel+Pastor"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8850-1341
https://orcid.org/0000-0001-8850-1341
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00220?ref=pdf
https://doi.org/10.1053/j.gastro.2015.03.006
https://doi.org/10.1053/j.gastro.2015.03.006
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(2) Liu, J.; Mansouri, K.; Judson, R. S.; Martin, M. T.; Hong, H.;
Chen, M.; Xu, X.; Thomas, R. S.; Shah, I. Predicting hepatotoxicity
using ToxCast in vitro bioactivity and chemical structure. Chem. Res.
Toxicol. 2015, 28, 738−751.
(3) Béquignon, O. J. M.; Pawar, G.; van de Water, B.; Cronin, M. T.;
van Westen, G. J. Systems Medicine; Elsevier, 2021; pp 308−329.
(4) Marchant, C. A.; Fisk, L.; Note, R. R.; Patel, M. L.; Suárez, D. An
expert system approach to the assessment of hepatotoxic potential.
Chem. Biodiversity 2009, 2107−2114.
(5) Pizzo, F.; Lombardo, A.; Manganaro, A.; Benfenati, E. A New
Structure-Activity Relationship (SAR) Model for predicting drug-
induced liver injury, based on statistical and expert-based structural
alerts. Front. Pharmacol. 2016, 7, No. 442.
(6) Bal-Price, A.; Crofton, K.; Sachana, M.; et al. Putative adverse
outcome pathways relevant to neurotoxicity. Crit. Rev. Toxicol. 2015,
45, 83−91.
(7) Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte,
D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P.
Oxidative stress, aging, and diseases. Clin. Interventions Aging 2018,
13, 757.
(8) Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.;
Telser, J. Free radicals and antioxidants in normal physiological
functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44.
(9) Marcinek, D. J. Mitochondrial oxidative stress in skeletal muscle
and cardiac aging. Free Radical Biol. Med. 2015, 86, S14.
(10) Ma, Q. Transcriptional responses to oxidative stress:
Pathological and toxicological implications. Pharmacol. Ther. 2010,
125, 376.
(11) Saitoh, M.; Nishitoh, H.; Fujii, M.; et al. Mammalian
thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase
(ASK) 1. EMBO J. 1998, 17, 2596−2606.
(12) Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J.
Thioredoxin-interacting protein links oxidative stress to inflamma-
some activation. Nat. Immunol. 2010, 11, 136−140.
(13) Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants,
and aging. Cell 2005, 120, 483.
(14) Kensler, T. W.; Wakabayashi, N.; Biswal, S. Cell survival
responses to environmental stresses via the Keap1-Nrf2-ARE pathway.
Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89.
(15) Westerink, W. M. A.; Schoonen, W. G. Cytochrome P450
enzyme levels in HepG2 cells and cryopreserved primary human
hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro
2007, 21, 1581−1591.
(16) Beinke, C.; Scherthan, H.; Port, M.; Popp, T.; Hermann, C.;
Eder, S. Triterpenoid CDDO-Me induces ROS generation and up-
regulates cellular levels of antioxidative enzymes without induction of
DSBs in human peripheral blood mononuclear cells. Radiat. Environ.
Biophys. 2020, 59, 461−472.
(17) Wink, S.; Hiemstra, S.; Herpers, B.; van de Water, B. High-
content imaging-based BAC-GFP toxicity pathway reporters to assess
chemical adversity liabilities. Arch. Toxicol. 2017, 91, 1367−1383.
(18) Wink, S.; Hiemstra, S.; Huppelschoten, S.; Danen, E.;
Niemeijer, M.; Hendriks, G.; Vrieling, H.; Herpers, B.; van de
Water, B. Quantitative High Content Imaging of Cellular Adaptive
Stress Response Pathways in Toxicity for Chemical Safety Assess-
ment. Chem. Res. Toxicol. 2014, 27, 338−355.
(19) Wijaya, L. S.; Gabor, A.; Pot, I. E.; van de Have, L.; Saez-
Rodriguez, J.; Stevens, J. L.; Dévédec, S. E. L.; Callegaro, G.; van de
Water, B. A Network-Based Transcriptomic Landscape of HepG2 Cells to
Uncover Causal Gene Cytotoxicity Interactions Underlying Drug-Induced
Liver Injury; bioRxiv, 2023.
(20) Claesson, A.; Minidis, A. Systematic Approach to Organizing
Structural Alerts for Reactive Metabolite Formation from Potential
Drugs. Chem. Res. Toxicol. 2018, 31, 389−411.
(21) Sun, H.; Xia, M.; Austin, C. P.; Huang, R. Paradigm shift in
toxicity testing and modeling. AAPS J. 2012, 14, 473−480.
(22) Gleeson, M. P.; Modi, S.; Bender, A.; Marchese Robinson, L.;
Kirchmair, R.; Promkatkaew, J.; Hannongbua, M.; Glen, R. C. The

Challenges Involved in Modeling Toxicity Data In Silico: A Review.
Curr. Pharm. Des. 2012, 18, 1266−1291.
(23) Maltarollo, V. G.; Gertrudes, J. C.; Oliveira, P. R.; Honorio, K.
M. Applying machine learning techniques for ADME-Tox prediction:
A review. Expert Opin. Drug Metab. Toxicol. 2015, 11, 259−271.
(24) Idakwo, G.; Luttrell, J.; Chen, M.; Hong, H.; Zhou, Z.; Gong,
P.; Zhang, C. A review on machine learning methods for in silico
toxicity prediction. J. Environ. Sci. Health, Part C: Environ. Carcinog.
Ecotoxicol. Rev. 2018, 36, 169−191.
(25) Moné, M. J.; Pallocca, G.; Escher, S. E.; Exner, T.; Herzler, M.;
Bennekou, S. H.; Kamp, H.; Kroese, E. D.; Leist, M.; Steger-
Hartmann, T.; van de Water, B. Setting the stage for next-generation
risk assessment with non-animal approaches: the EU-ToxRisk project
experience. Arch. Toxicol. 2020, 3581−3592.
(26) Bahia, M. S.; Kaspi, O.; Touitou, M.; Binayev, I.; Dhail, S.;
Spiegel, J.; Khazanov, N.; Yosipof, A.; Senderowitz, H. A comparison
between 2D and 3D descriptors in QSAR modeling based on bio-
active conformations. Mol. Inf. 2023, 42, No. 2200186.
(27) Orosz, A.; Héberger, K.; Rácz, A. Comparison of Descriptor-
and Fingerprint Sets in Machine Learning Models for ADME-Tox
Targets. Front. Chem. 2022, 10, No. 852893.
(28) Igarashi, Y.; Nakatsu, N.; Yamashita, T.; Ono, A.; Ohno, Y.;
Urushidani, T.; Yamada, H. Open TG-GATEs: a large-scale
toxicogenomics database. Nucleic Acids Res. 2015, 43, D921−D927.
(29) ter Braak, B.; Klip, J. E.; Wink, S.; Hiemstra, S.; Cooper, S. L.;
Middleton, A.; White, A.; van de Water, B. Mapping the dynamics of
Nrf2 antioxidant and NFκB inflammatory responses by soft
electrophilic chemicals in human liver cells defines the transition
from adaptive to adverse responses. Toxicol. In Vitro 2022, 84,
No. 105419.
(30) Wink, S.; Hiemstra, S. W.; Huppelschoten, S.; Klip, J. E.; van de
Water, B. Dynamic imaging of adaptive stress response pathway
activation for prediction of drug induced liver injury. Arch. Toxicol.
2018, 92, 1797−1814.
(31) Kamentsky, L.; Jones, T. R.; Fraser, A.; Bray, M. A.; Logan, D.
J.; Madden, K. L.; Ljosa, V.; Rueden, C.; Eliceiri, K. W.; Carpenter, A.
E. Improved structure, function and compatibility for cellprofiler:
Modular high-throughput image analysis software. Bioinformatics
2011, 27, 1179−1180.
(32) Carrió, P.; López, O.; Sanz, F.; Pastor, M. ETOXlab, an open
source modeling framework for implementing predictive models in
production environments. J. Cheminf. 2015, 7, No. 8.
(33) Balasubramanian, V. N.; Ho, S.-S.; Vovk, V. Conformal
Prediction for Reliable Machine Learning; Elsevier, 2014.
(34) Breiman, L. Bagging predictions. Mach. Learn. 1996, 24, 123−
140.
(35) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(36) RDKit: Open-source cheminformatics. http://www.rdkit.org.
(37) Yap, C. W. PaDEL-descriptor: An open source software to
calculate molecular descriptors and fingerprints. J. Comput. Chem.
2011, 1466−1474.
(38) Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the
pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci.
2000, 11 Suppl 2, S29−S39.
(39) Faulon, J. L.; Collins, M. J.; Carr, R. D. The signature molecular
descriptor. 4. Canonizing molecules using extended valence
sequences. J. Chem. Inf. Comput. Sci. 2004, 44, 427−436.
(40) Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn
Imbalanced Data; Department of Statistics, UC Berkley, 2004.
(41) Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, T.;
Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The
Konstanz Information Miner. ACM SIGKDD Explor. Newsl. 2009,
26−31.
(42) BioVia. Pipeline Pilot, version 2016; Dassault Systems, 2016.
(43) Lenselink, E. B.; Ten Dijke, N.; Bongers, B.; Papadatos, G.; van
Vlijmen, H. W. T.; Kowalczyk, W.; IJzerman, A. P.; van Westen, G. J.
Beyond the hype: deep neural networks outperform established

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00220
J. Chem. Inf. Model. 2023, 63, 5433−5445

5444

https://doi.org/10.1021/tx500501h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/tx500501h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cbdv.200900133
https://doi.org/10.1002/cbdv.200900133
https://doi.org/10.3389/fphar.2016.00442
https://doi.org/10.3389/fphar.2016.00442
https://doi.org/10.3389/fphar.2016.00442
https://doi.org/10.3389/fphar.2016.00442
https://doi.org/10.3109/10408444.2014.981331
https://doi.org/10.3109/10408444.2014.981331
https://doi.org/10.2147/CIA.S158513
https://doi.org/10.1016/j.biocel.2006.07.001
https://doi.org/10.1016/j.biocel.2006.07.001
https://doi.org/10.1016/j.freeradbiomed.2015.07.062
https://doi.org/10.1016/j.freeradbiomed.2015.07.062
https://doi.org/10.1016/j.pharmthera.2009.11.004
https://doi.org/10.1016/j.pharmthera.2009.11.004
https://doi.org/10.1093/emboj/17.9.2596
https://doi.org/10.1093/emboj/17.9.2596
https://doi.org/10.1093/emboj/17.9.2596
https://doi.org/10.1038/ni.1831
https://doi.org/10.1038/ni.1831
https://doi.org/10.1016/j.cell.2005.02.001
https://doi.org/10.1016/j.cell.2005.02.001
https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
https://doi.org/10.1016/j.tiv.2007.05.014
https://doi.org/10.1016/j.tiv.2007.05.014
https://doi.org/10.1016/j.tiv.2007.05.014
https://doi.org/10.1007/s00411-020-00847-w
https://doi.org/10.1007/s00411-020-00847-w
https://doi.org/10.1007/s00411-020-00847-w
https://doi.org/10.1007/s00204-016-1781-0
https://doi.org/10.1007/s00204-016-1781-0
https://doi.org/10.1007/s00204-016-1781-0
https://doi.org/10.1021/tx4004038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/tx4004038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/tx4004038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.8b00046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.8b00046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.8b00046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1208/s12248-012-9358-1
https://doi.org/10.1208/s12248-012-9358-1
https://doi.org/10.2174/138161212799436359
https://doi.org/10.2174/138161212799436359
https://doi.org/10.1517/17425255.2015.980814
https://doi.org/10.1517/17425255.2015.980814
https://doi.org/10.1080/10590501.2018.1537118
https://doi.org/10.1080/10590501.2018.1537118
https://doi.org/10.1007/s00204-020-02866-4
https://doi.org/10.1007/s00204-020-02866-4
https://doi.org/10.1007/s00204-020-02866-4
https://doi.org/10.1002/minf.202200186
https://doi.org/10.1002/minf.202200186
https://doi.org/10.1002/minf.202200186
https://doi.org/10.3389/fchem.2022.852893
https://doi.org/10.3389/fchem.2022.852893
https://doi.org/10.3389/fchem.2022.852893
https://doi.org/10.1093/nar/gku955
https://doi.org/10.1093/nar/gku955
https://doi.org/10.1016/j.tiv.2022.105419
https://doi.org/10.1016/j.tiv.2022.105419
https://doi.org/10.1016/j.tiv.2022.105419
https://doi.org/10.1016/j.tiv.2022.105419
https://doi.org/10.1007/s00204-018-2178-z
https://doi.org/10.1007/s00204-018-2178-z
https://doi.org/10.1093/bioinformatics/btr095
https://doi.org/10.1093/bioinformatics/btr095
https://doi.org/10.1186/s13321-015-0058-6
https://doi.org/10.1186/s13321-015-0058-6
https://doi.org/10.1186/s13321-015-0058-6
https://doi.org/10.1007/BF00058655
https://doi.org/10.1021/ci100050t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://www.rdkit.org
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1016/S0928-0987(00)00162-7
https://doi.org/10.1016/S0928-0987(00)00162-7
https://doi.org/10.1021/ci0341823?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci0341823?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci0341823?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1186/s13321-017-0232-0
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


methods using a ChEMBL bioactivity benchmark set. J. Cheminf.
2017, 9, No. 45.
(44) Bertoni, M.; Duran-Frigola, M.; Badia-i Mompel, P.; Pauls, E.;
Orozco-Ruiz, M.; Guitart-Pla, O.; Alcalde, V.; Diaz, V. M.; Berenguer-
Llergo, A.; Brun-Heath, I.; Villegas, N.; de Herreros, A. G.; Aloy, P.
Bioactivity descriptors for uncharacterized chemical compounds. Nat.
Commun. 2021, 12, No. 3932.
(45) Ferrari, T.; Cattaneo, D.; Gini, G.; Golbamaki Bakhtyari, N.;
Manganaro, A.; Benfenati, E. Automatic knowledge extraction from
chemical structures: The case of mutagenicity prediction. SAR QSAR
Environ. Res. 2013, 24, 365−383.
(46) Toropova, A. P.; Toropov, A. A.; Benfenati, E.; Leszczynska, D.;
Leszczynski, J. QSAR modeling of measured binding affinity for
fullerene-based HIV-1 PR inhibitors by CORAL. J. Math. Chem. 2010,
48, 959−987.
(47) Quinlan, J. R. Induction of decision trees. Mach. Learn. 1986, 1,
81−106.
(48) Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. Syst.
Sci. 1997, 55, 119−139.
(49) Schwab, C.; Yang, C.; Rathman, J.; Mostrag-Szlichtyng, A.;
Tarkhov, A.; Liu, J.; Madden, J.; Bassan, A.; Fioravanzo, E.; Cronin,
M. Supporting data-mining, read-across and chemical space analysis
for toxicity data gap filling using the COSMOS database. Toxicol. Lett.
2017, 280, S285.
(50) Wishart, D. S.; et al. DrugBank 5.0: A major update to the
DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074−
D1082.
(51) Bento, A. P.; Hersey, A.; Félix, E.; Landrum, G.; Gaulton, A.;
Atkinson, F.; Bellis, L. J.; De Veij, M.; Leach, A. R. An open source
chemical structure curation pipeline using RDKit. J. Cheminf. 2020,
12, No. 51.
(52) Arthur, D.; Vassilvitskii, S. In K-Means++: The Advantages of
Careful Seeding, Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2007; pp 1027−1035.
(53) Matthews, B. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta,
Protein Struct. 1975, 405, 442−451.
(54) Chen, M.; Borlak, J.; Tong, W. High lipophilicity and high daily
dose of oral medications are associated with significant risk for drug-
induced liver injury. Hepatology 2013, 58, 388−396.
(55) Lavado, G. J.; Gadaleta, D.; Toma, C.; Golbamaki, A.; Toropov,
A. A.; Toropova, A. P.; Marzo, M.; Baderna, D.; Arning, J.; Benfenati,
E. Zebrafish AC50 modelling: (Q)SAR models to predict
developmental toxicity in zebrafish embryo. Ecotoxicol. Environ. Saf.
2020, 202, No. 110936.
(56) Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical
Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999,
39, 868−873.
(57) Villanueva-Paz, M.; Morán, L.; López-Alcántara, N.; Freixo, C.;
Andrade, R. J.; Lucena, M. I.; Cubero, F. J. Oxidative stress in drug-
induced liver injury (Dili): From mechanisms to biomarkers for use in
clinical practice. Antioxidants 2021, 10, 1−35.
(58) Banerjee, P.; Dehnbostel, F. O.; Preissner, R. Prediction Is a
Balancing Act: Importance of Sampling Methods to Balance
Sensitivity and Specificity of Predictive Models Based on Imbalanced
Chemical Data Sets. Front. Chem. 2018, 6, No. 362.
(59) He, S.; Ye, T.; Wang, R.; Zhang, C.; Zhang, X.; Sun, G.; Sun, X.
An In Silico Model for Predicting Drug-Induced Hepatotoxicity. Int. J.
Mol. Sci. 2019, 20, No. 1897.
(60) Mora, J. R.; Marrero-Ponce, Y.; García-Jacas, C. R.; Suarez
Causado, A. Ensemble Models Based on QuBiLS-MAS Features and
Shallow Learning for the Prediction of Drug-Induced Liver Toxicity:
Improving Deep Learning and Traditional Approaches. Chem. Res.
Toxicol. 2020, 33, 1855−1873.
(61) Lee, J.; Yu, M.-S.; Na, D. DILI-Stk: An Ensemble Model for the
Prediction of Drug-induced Liver Injury of Drug Candidates. Curr.
Bioinf. 2022, 17, 296−303.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00220
J. Chem. Inf. Model. 2023, 63, 5433−5445

5445

 Recommended by ACS

Tacrine First-Phase Biotransformation and Associated
Hepatotoxicity: A Possible Way to Avoid Quinone Methide
Formation
Martin Novak, Ondrej Soukup, et al.
AUGUST 25, 2023
ACS CHEMICAL BIOLOGY READ 

Predicting the Mitochondrial Toxicity of Small Molecules:
Insights from Mechanistic Assays and Cell Painting Data
Marina Garcia de Lomana, Floriane Montanari, et al.
JULY 06, 2023
CHEMICAL RESEARCH IN TOXICOLOGY READ 

Evidence for the Metabolic Activation of Deferasirox In Vitro
and In Vivo
Mengdie Su, Jiang Zheng, et al.
JULY 12, 2023
CHEMICAL RESEARCH IN TOXICOLOGY READ 

Mechanistic Study of Xanthotoxin-Mediated Inactivation of
CYP1A2 and Related Drug–Drug Interaction with Tacrine
Guangyun Ran, Jiang Zheng, et al.
MARCH 09, 2023
CHEMICAL RESEARCH IN TOXICOLOGY READ 

Get More Suggestions >

https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1038/s41467-021-24150-4
https://doi.org/10.1080/1062936X.2013.773376
https://doi.org/10.1080/1062936X.2013.773376
https://doi.org/10.1007/s10910-010-9719-x
https://doi.org/10.1007/s10910-010-9719-x
https://doi.org/10.1007/BF00116251
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1016/j.toxlet.2017.07.799
https://doi.org/10.1016/j.toxlet.2017.07.799
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1186/s13321-020-00456-1
https://doi.org/10.1186/s13321-020-00456-1
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1002/hep.26208
https://doi.org/10.1002/hep.26208
https://doi.org/10.1002/hep.26208
https://doi.org/10.1016/j.ecoenv.2020.110936
https://doi.org/10.1016/j.ecoenv.2020.110936
https://doi.org/10.1021/ci990307l?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci990307l?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/antiox10030390
https://doi.org/10.3390/antiox10030390
https://doi.org/10.3390/antiox10030390
https://doi.org/10.3389/fchem.2018.00362
https://doi.org/10.3389/fchem.2018.00362
https://doi.org/10.3389/fchem.2018.00362
https://doi.org/10.3389/fchem.2018.00362
https://doi.org/10.3390/ijms20081897
https://doi.org/10.1021/acs.chemrestox.0c00030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.0c00030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.0c00030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.2174/1574893617666211228113939
https://doi.org/10.2174/1574893617666211228113939
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acschembio.3c00219?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00086?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00416?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
http://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00360?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1696636414&referrer_DOI=10.1021%2Facs.jcim.3c00220
https://preferences.acs.org/ai_alert?follow=1

