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Abstract

In this work we consider a generalization of graph flows. A graph flow is, in its simplest
formulation, a labeling of the directed edges with real numbers subject to various constraints. A
common constraint is conservation in a vertex, meaning that the sum of the labels on the incoming
edges of this vertex equals the sum of those on the outgoing edges. One easy fact is that if a
flow is conserving in all but one vertex, then it is also conserving in the remaining one. In our
generalization we do not label the edges with real numbers, but with elements from an arbitrary
group, where this fact becomes false in general. As we will show, graphs with the property that
conservation of a flow in all but one vertex implies conservation in all vertices are precisely the
planar graphs.

1 Introduction

A graph (or network) is a pair (V,E) where V is a finite set of vertices and the set of edges E is a subset
of
(
V
2

)
, the set of all size 2 subsets of V . In this article we consider groups which are not required to

be abelian and therefore write our group operation multiplicatively. With Γ a group and G = (V,E)
a graph, we call a map f : V 2 → Γ a Γ-flow in G if for all u, v ∈ V we have f(u, v) = f(v, u)−1, and
f(u, v) = 1 if {u, v} 6∈ E. This definition agrees with the classical definition of a network flow when
Γ = R.

Non-abelian graph flows were first considered by M.J. DeVos in his PhD thesis [1] and later by A.J.
Goodall et al. [2] and B. Litjens [3]. They consider graphs embedded on surfaces and ask whether flows
exists which are nowhere trivial, i.e. f(u, v) 6= 1 if and only if {u, v} ∈ E. Although our main result
involves planar embeddings of graphs, we instead ask to which extent Kirchhoff’s law of conservation
holds.

Let G = (V,E) be a graph, Γ a group and f a Γ-flow in G. An orientation on G is a family ρ =
(ρv)v∈V , where ρv is a transitive permutation on the set of neighbours of v. We define the excess of f to
be the map e = eρ,f that sends v ∈ V to the conjugacy class of f(ρ0

v(u), v) ·f(ρ1
v(u), v) · · · f(ρ−1

v (u), v)
for any choice of neighbour u of v. Since the excess is defined up to conjugacy, it does not depend on
the choice of u. We say f is conserving in v if e(v) = 1. In the classical case, we have the following
lemma.

Lemma 1.1. Let Γ be an abelian group, let (V,E) be a graph with a Γ-flow f and orientation ρ and
let w ∈ V . If f is conserving in all vertices of V \ {w}, then f is conserving in w.

Proof. Since Γ is abelian all conjugacy classes consist of a single element and we may interpret e to
be a map V → Γ. Moreover, the orientation is irrelevant in computing e. We have

ef (w) =
∏
v∈V

ef (v) =
∏

(u,v)∈V 2

f(u, v) =
∏

{u,v}∈E

f(u, v)f(v, u) = 1.
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We will show that Lemma 1.1 can fail for non-abelian Γ. Given an orientation ρ on G we say f
leaks if it is conserving in all but precisely one vertex. An embedding of G on some compact orientable
surface induces an orientation ρ on G. We say an orientation is planar if it is induced by some planar
embedding of G. We say f is tractable if for all v ∈ V the group generated by {f(u, v) | u ∈ V } is
abelian. We say G is leak-proof if no tractable flow in G leaks.

Theorem 1.2. Let G be a graph. The following are equivalent:
(i) G is leak-proof;
(ii) for all flows f in G there exists an orientation on G such that f does not leak;

(iii) there exists an orientation on G such that no flow in G leaks;
(iv) G is planar.

We say a flow f in G has a binary leak at distinct vertices u, v ∈ V if it is conserving in all vertices
of V \{u, v} while e(u) 6= e(v)−1. Here u and v can be thought of as a source and sink of the flow. We
call G binary leak-proof if no tractable binary leaking flows exist in G. Analogously to Lemma 1.1 one
can show that a flow cannot have a binary leak when the group is abelian. We call a graph G = (V,E)
extra-planar if for all pairs of distinct u, v ∈ V the graph (V,E ∪ {u, v}) is planar. We prove the
following analogue to Theorem 1.2 in Section 5.

Theorem 1.3. A graph is binary leak-proof if and only if it is extra-planar.

Instead of studying leak-proof graphs, one could also study leak-proof groups, where we call a
group Γ leak-proof if for all graphs G = (V,E) no tractable flows f : V 2 → Γ in G leak. Theorem 1.2
shows that the decision problem ‘Is this graph leak-proof?’ can be decided in time O(|V |), as Hopcroft
and Tarjan gave an algorithm to test graph planarity in [4] of this complexity. For leak-proof groups,
we prove the following in Section 6.

Theorem 1.4. The decision problem ‘Is this finite group leak-proof?’ is decidable.

The present work, in particular Theorem 1.3, was inspired by a problem the author encountered
in his Master’s thesis [5] on graded rings. Here a flow with a binary leak gives rise to an example
(Example 2.17 of [5]) of an efficient ring grading with a non-abelian group that cannot be replaced by
an abelian group.

2 Definitions and properties of (non-)planar graphs

We briefly go through some basic definitions. Let G = (V,E) be a graph. We call a graph (W,F ) a
subgraph of G if W ⊆ V and F ⊆ E. For W ⊆ V we call (W, {{u, v} ∈ E |u, v ∈ W}) the subgraph
of G induced by W . A path from u ∈ V to v ∈ V in G is a finite sequence of vertices (x0, . . . , xn)
for some n ∈ Z≥0 such that x0 = u, xn = v and {xi, xi+1} ∈ E for all 0 ≤ i < n. We call this path
non-trivial if n > 0 and closed if x0 = xn. We write N(v) = NG(v) ⊆ V for the set of neighbours of
v. An edge {u, v} ∈ E is called a bridge if all paths in G from u to v contain the edge {u, v}. A forest
is a graph in which every edge is a bridge.

Definition 2.1. For A,B ∈ R2 write AB for the line {tA+ (1− t)B | t ∈ (0, 1)}. Let G = (V,E) be a
graph. A planar embedding of G is an injective map ε : V → R2 such that for all {a, b}, {c, d} ∈ E we
have ε(a)ε(b) ∩ ε(c)ε(d) = ∅ when {a, b} 6= {c, d}, and ε(a)ε(b) ∩ ε[V ] = ∅. We call G planar if it has
a planar embedding. For a planar embedding we define the induced orientation to be the clockwise
permutation of the neighbours at each vertex.

The above definition of a planar embedding has been simplified for our purposes, which is justified
by Fáry’s Theorem [6].
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Definition 2.2. Let G = (V,E) be a graph with orientation ρ. A boundary walk of G with respect
to this orientation is a non-trivial closed path (x0, x1, . . . , xn) in G such that for all i, j ∈ Z/nZ we
have xi+2 = ρxi+1(xi) and if (xi, xi+1) = (xj , xj+1), then i = j.

Lemma 2.3. Let ε be a planar embedding of a graph G = (V,E) and let p = (u1, u2, . . . , un) be a
boundary walk. If (ui, ui+1) = (uj+1, uj) for some i, j ∈ Z/nZ, then {ui, uj} is a bridge.

Proof. To show that e = {ui, uj} is a bridge, it suffices to show that ui and uj are disconnected in
the graph G′ = (V,E′) with E′ = E \ {e}. Note that a, b ∈ V are connected in G′ if and only if ε(a)
and ε(b) are connected in the topological space X = ε[V ] ∪

⋃
{x,y}∈E′ ε(x)ε(y). Hence it suffices by

the Jordan curve theorem to show that there exists a loop C in R2 \X separating ui and uj , as any
path from ui to uj must intersect this loop.

ui

uj

ui+2

ui+3

uj−1

uj−2

uj−3

Figure 1: Boundary walk

We informally construct this loop as follows (see Figure 1). Place yourself at the midway point
between ui and uj . Walk along the path p in G in the direction of uj and while doing so draw a
continuous curve C on your left hand side, being careful not to let C intersect itself or the graph.
That this is possible follows from the definition of a boundary walk. Stop once you have reached your
starting point for the first time again, and note that this time you are facing ui by the assumption
that (ui, ui+1) = (uj+1, uj). Thus on your right hand side is the start of your curve C, and connect

the endpoints, crossing ε(ui)ε(uj) once. Then C satisfies the requirements, so e is a bridge.

Definition 2.4. Let G = (V,E) be a graph. We call a subgraph H = (W,F ) of G a spanning forest
if it is a forest and W = V . For a spanning forest H = (W,F ) of G we define GH = (C,D) to be
the contraction of H in G, where C is the set of connected components of H and D = {{X,Y } ∈(
C
2

)
| (∃u ∈ X, v ∈ Y ) {u, v} ∈ E}. A graph M is a minor of G if it can be embedded in some

contraction of G.

Write K5 for the complete graph on 5 vertices and K3,3 for the complete bipartite graph on 3 and
3 vertices.

Theorem 2.5 (Kuratowski, Theorem 4.4.6 in [7]). A graph G is planar if and only if G does not
have K5 or K3,3 as a minor.

3 Non-planar graphs

First we show that non-planar graphs are not leak-proof, which is (i) ⇒ (iv) in Theorem 1.2. Recall
that for tractable flows, the excess, and hence the concept of a leak, does not depend on the choice of
orientation.

Lemma 3.1. A graph is leak-proof if and only if all its subgraphs are leak-proof.
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Proof. Since each graph is its own subgraph, the implication (⇐) is trivial. Let G = (V,E) be a graph
with a subgraph H = (W,F ) and assume that there exists some group Γ with a leaking tractable
Γ-flow g : W 2 → Γ of H. Then we consider f : V 2 → Γ by taking f(u, v) = g(u, v) when {u, v} ∈ F
and f(u, v) = 1 otherwise. Then f is a leaking tractable flow in G, proving (⇒).

Proposition 3.2. A graph is leak-proof if and only if all its minors are leak-proof.

Proof. Let G = (V,E) be a graph. By Lemma 3.1 it suffices to show that if a contraction of a spanning
tree H in G admits a leaking tractable flow, then so does G. By induction, contracting a single edge
at a time, we may even assume H = (V, {e}) for some edge e = {a, b}. Then GH ∼= (W,F ) with
W = (V \ e) ∪ {e} under the natural isomorphism e 7→ e and w 7→ {w} for w ∈ V \ e. Assume
(W,F ) admits a leaking tractable flow f : W 2 → Γ for some group Γ. Note that it is possible but not
necessary that ef (a) 6= 1 or ef (b) 6= 1. Let X = NG(a) \ e and Y = NG(b) \ (e∪X). We define a flow
g : V 2 → Γ such that for u, v ∈W it is given by

g(u, v) = f(u, v) u, v 6∈ e,
g(a, u)−1 = g(u, a) = f(u, e) u ∈ X,
g(v, b)−1 = g(b, v) = f(e, v) v ∈ Y,

g(b, a)−1 = g(a, b) =
∏

u∈X\{b}

f(u, a),

and g(u, v) = 1 otherwise. Note that g agrees with f outside of e and that the flow values on the
edges pointing towards e have been divided among a and b. Thus g is tractable and eg(u) = ef (u) for
u 6∈ e. By definition of g(a, b) we have that eg(a) = 1 and eg(b) = ef (e). Hence g is a leaking flow in
G.

It now suffices by Theorem 2.5 to show that K5 and K3,3 admit a leaking tractable flow.

Definition 3.3. Let C2 be the cyclic group with two elements. Let n ∈ Z>0 and consider the groups
N = Cn+1

2 = 〈z, x1, . . . , xn〉 and G = Cn2 = 〈xn+1, . . . , x2n〉. Define an action ϕ : G → Aut(N)
defined on the generators as

xn+i 7→
(
xj 7→ xjz

δij , z 7→ z
)

for all 1 ≤ i, j ≤ n,

where δij = 1 if i = j and δij = 0 otherwise. Then define the group ESn = N oϕ G, the semidirect
product [8, p. 170] of N and G.

Equivalently, we can give ESn as a presentation on the generators z, x1, . . . , x2n, subject to the
relations (1) that all generators have trivial square, (2) that z commutes with every generator, and (3)
that xi and xj commute unless |i− j| = n, in which case xixj = zxjxi. However, from this alternative
definition of ESn we may not immediately deduce that none of the generators are trivial. Although
we will not use the fact, the ESn are all extraspecial 2-groups.

Example 3.4. Consider the utility graphK3,3 = (V,E) with V = {1, 2, 3, 4, 5, 6} and E = {{u, v} |u ∈
{1, 2, 3}, v ∈ {4, 5, 6}}. We define a flow f : V 2 → ES2 which we specify by an ES2-valued (symmetric)
matrix where the omitted entries are trivial:

f =


x1 x2 x1x2

x4 x3 x4x3

x1x4 x2x3 x1x4x2x3

x1 x4 x1x4

x2 x3 x2x3

x1x2 x4x3 x1x4x2x3

 .
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For the first 5 columns it is easy to see that multiplying the first two non-trivial entries yields the third.
Thus for the first five vertices v we have 〈f(u, v) |u ∈ V 〉 ∼= C2

2 , which is abelian, and ef (v) = 1. For
v = 6 we observe that (x1x2)(x4x3)(x1x4x2x3) = z and thus 〈f(u, 6) |u ∈ V 〉 = 〈x1x2, x4x3, z〉 ∼= C3

2

is abelian, and ef (6) = z 6= 1. Hence f is a tractable flow that leaks at 6 and K3,3 is not leak-proof.

Example 3.5. Consider the complete graph K5 = (V,E) with V = {1, 2, 3, 4, 5}. Now we consider
f : V 2 → ES3 given by

f =


x1 x2 x3 x1x2x3

x1 x6 x5 x1x6x5

x2 x6 x4 x2x6x4

x3 x5 x4 x3x5x4

x1x2x3 x1x6x5 x2x6x4 x3x5x4

 .

For each of the first four columns one notes that its first three non-trivial elements commute pair-wise,
while multiplying them yields the fourth. Thus for the first four vertices v the group 〈f(u, v) |u ∈
V 〉 ∼= C3

2 is abelian and ef (v) = 1. For the last column, note that each pair (a, b) of entries is of
the form a = xixjxk and b = xixj+3xk+3 with i, j, k, j + 3, k + 3 ∈ Z/6Z distinct. Hence ab =
x2
i (xjxk)(xj+3xk+3) = x2

i (xj+3xk+3)(xjxk) = ba, so each pair commutes. Finally, one computes
ef (5) = (x1x2x3)(x1x6x5)(x2x6x4)(x3x5x4) = z 6= 1. Thus f is a tractable leaking flow and thus K5

is not leak-proof.

Both examples were found by starting with the free group F with symbols V 2 and dividing out the
relations N E F required to make the obvious map f : V 2 → F/N a tractable flow that is conserving
in #V − 1 vertices. Adding the restriction that the generators have order 2 gives us the groups ES2

and ES3.

4 Planar graphs

Now we will prove that all planar graphs admit an orientation such that no flow leaks, which is (iv)
⇒ (iii) of Theorem 1.2. Unsurprisingly, this will be the induced orientation. Recall that the excess is
only defined up to conjugacy. For clarity we will write ≡ for equality up to conjugacy.

Theorem 4.1. Let G = (V,E) be a graph with planar embedding ε and let f : V 2 → Γ be a flow in
G. Let u ∈ V and assume e(v) ≡ 1 with respect to the orientaion induced by ε for all v ∈ V \ {u}.
Then e(u) ≡ 1.

Proof. Firstly, if G is the singleton graph, then e(u) ≡ 1 is the empty product, so we are done. We
now apply induction and thus assume that the statement holds for all strict subgraphs (W,F ) of G
with planar embedding ε|W .

Secondly, we consider the case where G is not connected. Here we may apply the induction
hypothesis to the induced subgraph of G with as vertex set the connected component of u to conclude
that e(u) ≡ 1.

Thirdly, we consider the case where G is a forest. Then G has at least two vertices of degree
1, of which one, say v, is not u. Let {v, w} ∈ E be the unique edge incident to v, and note that
f(w, v) ≡ e(v) ≡ 1. Hence f is a flow in the subgraph H of G obtained by removing {v, w}. Note
that ε is a planar embedding of H with the same round flow in each vertex, hence by the induction
hypothesis we have e(u) ≡ 1.

Lastly we consider the case where G is connected and not a forest. Then G has an edge {v, w} ∈ E
that is not a bridge. Then by Lemma 2.3 the boundary walk p = (x0, . . . , xn) with x0 = v and x1 = w
satisfies (w, v) 6= (xi, xi+1) for all i ∈ Z/nZ. Let b : V 2 → {0, 1} be the map such that for all s, t ∈ V
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we have b(s, t) = 1 if and only if there exists some i ∈ Z/nZ such that (s, t) = (xi, xi+1). Now consider
γ = f(v, w) and g : V 2 → Γ given by

(s, t) 7→ γb(t,s) · f(s, t) · γ−b(s,t).

Firstly note that g is a flow in G: For all s, t ∈ V we have

g(s, t)−1 = γb(s,t) · f(s, t)−1 · γ−b(t,s) = g(t, s)

since f is a flow, and if {s, t} 6∈ E we have g(s, t) = f(s, t) = 1 as b(s, t) = b(t, s) = 0. Secondly,
we have that g(v, w) = γ0 · γ · γ−1 = 1 by choice of {v, w}, so g is even a flow in the subgraph H
of G obtained by removing {v, w}. We now show that ef = eg. Then by the induction hypothesis
applied to H it follows that ef (u) ≡ 1. Note that for all s, t ∈ V we have by definition of b that
b(t, s) = b(s, ρ(t)), where ρ is the induced orientation at s. Using this, we now simply verify for
{s, t} ∈ E and n = #NG(s) that

eg(s) ≡
n−1∏
k=0

g(ρk(t), s) ≡
n−1∏
k=0

γb(s,ρ
k(t)) · f(ρk(t), s) · γ−b(ρ

k(t),s)

≡ γb(s,t)
(
n−1∏
k=0

f(ρk(t), s)γ−b(ρ
k(t),s)γb(s,ρ

k+1(t))

)
γ−b(s,ρ

n(t))

≡ γb(s,t)
(
n−1∏
k=0

f(ρk(t), s)

)
γ−b(s,t) ≡

n−1∏
k=0

f(ρk(t), s) ≡ ef (s),

as was to be shown. We conclude that the statement holds for all planar graphs by induction.

An earlier proof of Theorem 4.1 was due to H.W. Lenstra. In his version he does not remove edges
in the inductive step but contracts them in the sense of Definition 2.4. This proof turned out to be
more difficult to formalize.

Proof of Theorem 1.2. (iii)⇒ (ii) Immediate from reordering quantifiers. (ii)⇒ (i) Tractable flows do
not depend on the choice of orientation. (i)⇒ (iv) A non-planar graph has either K5 or K3,3 as minor
by Theorem 2.5. Both K5 and K3,3 are not leak-proof by Example 3.5 respectively Example 3.4, so
by Proposition 3.2 neither are the non-planar graphs. (iv) ⇒ (iii) Let G = (V,E) be a planar graph
and fix an orientation induced by a planar embedding. Then we are done by Theorem 4.1.

5 Extra-planar graphs

In this section we will prove Theorem 1.3, classifying the binary leak-proof graphs. To do this we first
prove a ‘Kuratowski’s Theorem’ for extra-planar graphs. Write K−5 and K−3,3 for the graphs obtained
from K5 respectively K3,3 by removing a single edge, which by symmetry we do not have to specify.

Theorem 5.1. A graph G is extra-planar if and only if G does not have K−5 or K−3,3 as a minor.

Proof. (⇒) This follows directly from Kuratowski’s Theorem: If K−5 or K−3,3 is a minor of G, then we
may add a single edge to G such that K5 respectively K3,3 becomes a minor of this new graph, which
is then non-planar.

(⇐) We proceed by contraposition, so assume that G is not extra-planar. Let u, v ∈ V be such that
G+ = (V,E ∪{{u, v}}) is non-planar and let H+ = (V, F ) be a spanning forest of G+ such that K5 or
K3,3 embeds into G+

H . Consider the spanning forest H = (V, F \{{u, v}}) of G. Then H has the same
connected components as H+ with the exception that if H+ has a connected component containing
both u and v, it might have been split into two. Let Tu and Tv be the connected components of u
respectively v in H.
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Tu

Tv R1

R2

R3

L2

L3

Figure 2: Case K3,3

TvTu

P1

P2 P3

P4

Figure 3: Case K5

Case K3,3: First consider the case where K3,3 embeds into G+
H+ , meaning there is a subset

C = {L1, L2, L3, R1, R2, R3} of size 6 of the set of connected components of H+ such that S+ =
(C, {{Li, Rj} | i, j ∈ {1, 2, 3}}) is a subgraph of G+

H+ . If all elements of C are also connected compo-
nents of H, then GH has the graph S+ minus possibly a single edge induced by {u, v} as subgraph,
hence G has K−3,3 as a minor. Otherwise, for some X ∈ C we have X = Tu t Tv and without loss
of generality X = L1. Then the subgraph S of GH induced by {Tu, Tv, L2, L3, R1, R2, R3} is as in
Figure 2, where the dashed lines indicate edges which are possibly present. Merging Tu and Tv in S
yields S+ ∼= K3,3, hence for each i ∈ {1, 2, 3} the edge {Tu, Ri} or {Tv, Ri} is present. Thus Tu or
Tv has degree at least 2, which without loss of generality is Tv. It follows that K−3,3 embeds into the

subgraph of GH induced by {Tv, L2, L3, R1, R2, R3}, so K−3,3 is a minor of G.

Case K5: Now consider the case K5 embeds into G+
H+ , meaning there is a subset C = {P1, . . . , P5}

of the set of connected components of H+ such that the subgraph of G+
H+ induced by C is isomorphic

to K5. As before, the only interesting case is where P5 = Tu t Tv. Then the subgraph S of GH
induced by {Tu, Tv, P1, P2, P3, P4} is as in Figure 3. Since merging Tu and Tv in S yields K5, for each
i ∈ {1, . . . , 4} the edge {Tu, Pi} or {Tv, Pi} is present. If both Tu and Tv have degree 2, then without
loss of generality S contains the edges {Tu, P3}, {Tu, P4}, {Tv, P1} and {Tv, P2}. Now note that S
contains a K−3,3 which partitions its vertices as {{Tu, P1, P2}, {Tv, P3, P4}}. Hence G contains K−3,3 as
a minor. Otherwise, without loss of generality Tu has degree at least 3 in S and the subgraph of GH
induced by {Tu, P1, . . . , P4} is either K5 or K−5 . Hence G has K−5 as a minor.

As G has K−3,3 or K−5 as a minor, the claim follows.

We are now able to prove Theorem 1.3.

Proof of Theorem 1.3. (⇐) Let G = (V,E) be an extra-planar graph and let f : V 2 → Γ be a tractable
flow in G such that there are distinct u, v ∈ V with ef (w) = 1 for all w ∈ V \{u, v}. Consider the graph
H = (V,E∪{{u, v}}), fix a planar embedding of H and interpret f as a flow in H. Now let g : V 2 → Γ
be the map such that g(s, t) = f(s, t) if {s, t} 6= {u, v} and g(u, v) = g(v, u)−1 = f(u, v)ef (v)−1, where
ef (v) is computed by starting from the vertex right after u in the ordering of NH(v). Then g is a (not
necessarily tractable) flow in H such that eg(w) = 1 for w ∈ V \ {u}. From g(v, u) = ef (v)f(v, u)
it follows that eg(u) differs from ef (u) by a factor ef (v) when starting the multiplication at v. By
Theorem 4.1 we have 1 ≡ eg(u) ≡ ef (u)ef (v) and thus ef (u)ef (v) = 1. Hence G is binary leak-proof.

(⇒) If G is not extra-planar, then it has K−5 or K−3,3 as minor by Theorem 5.1. It is straightforward
to generalize Proposition 3.2 to show that a graph is binary leak-proof if and only if all its minors are
too. It therefore suffices to show that K−5 and K−3,3 have a binary leaking flow. Simply take the flow

f as defined in Example 3.4 which leaks at vertex 6 of K3,3 and consider K−3,3 as the K3,3 with the

edge {3, 6} removed. Then the flow f− in K−3,3 which equals f except for f−(3, 6) = f−(6, 3) = 1 has

a binary leak at 3 and 6. Using Example 3.5 for K−5 can be done analogously.
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6 Leak-proof groups

In this section we prove Theorem 1.4 and give some computational results. We recall some definitions
from group theory. For a family A = (Ai)i∈I of abelian groups the direct sum [8, p. 308] is the group⊕

i∈I
Ai =

{
(xi)i∈I ∈

∏
i∈I

Ai

∣∣∣xi 6= 1 for only finitely many i
}

with coordinate-wise multiplication. For a group homomorphism ϕ : G → H the image of ϕ is the
subgroup im(ϕ) = {ϕ(g) | g ∈ G} of H.

Definition 6.1. Let Γ be a (not necessarily finite) group. Write V (Γ) for the set of maximal abelian
subgroups of Γ. We define the group

F (Γ) =
{

(fu,v)(u,v) ∈
⊕

(u,v)∈V (Γ)2

(u ∩ v)
∣∣∣ (∀u, v) fu,v = f−1

v,u, (∀ v) fv,v = 1
}

and the homomorphism

eΓ : F (Γ)→
⊕

v∈V (Γ)

v, (fu,v)(u,v) 7→
( ∏
u∈V (Γ)

fu,v

)
v∈V (Γ)

.

One can think of V (Γ) as the vertex set of a complete graph, F (Γ) the set of tractable flows in
this graph, and eΓ(f) to be the excess for such flow f ∈ F (Γ). However, V (Γ) need not be finite. For
example Γ = GL2(R) has a maximal abelian subgroup {( a b0 a ) | a, b ∈ R, a 6= 0} with infinitely many
conjugates.

Lemma 6.2. Let Γ be a group. For u ∈ V (Γ) and γ ∈ u let [γ]u ∈
⊕

v∈V (Γ) v be the vector consisting of

all-ones except for a γ at coordinate u. We write Γ• = (
⊕

v∈V (Γ) v)/ im(e). Then the map d : Γ→ Γ•

given by γ 7→ [γ]v for any choice of v containing γ, does not depend on the choice of v.

Proof. Let γ ∈ Γ and suppose u, v ∈ V (Γ) are such that γ ∈ u and γ ∈ v. Then γ ∈ u ∩ v, and
f = (fs,t)(s,t)∈V (Γ)2 , with fu,v = f−1

v,u = γ and fs,t = 1 for {s, t} 6= {u, v}, is an element of F (Γ). We
have e(f) = [γ]v · [γ]−1

u , so [γ]u is equivalent to [γ]v in the quotient Γ•.

An example one can consider is where Γ is abelian. Then V (Γ) = {Γ} and Γ• = Γ and d is the
identity. Note that d is (in general) not a group homomorphism.

Proposition 6.3. A group Γ is leak-proof if and only if d(γ) = 1 implies γ = 1.

Proof. Suppose Γ is leak-proof and d(γ) = 1 for some γ ∈ Γ. Then there is some u ∈ V (Γ) and
f ∈ F (Γ) such that [γ]u = e(f). Note that E = {{u, v} ∈ V (Γ) | fu,v 6= 1} and V = {u | {u, v} ∈ E}
are finite. Now f is a Γ-flow in (V,E) which is preserving in all vertices except possibly u. Since Γ is
leak-proof, f is also preserving in u and 1 = e(f) = [γ]u, so γ = 1.

Conversely, suppose f is a tractable Γ-flow in some graph (V,E). Pick some map c : V → Γ(V )
such that for all v ∈ V we have 〈f(u, v) | u ∈ V 〉 ⊆ c(v). Then f induces a tractable Γ-flow f ′ in
the complete graph with vertex set {c(v) | v ∈ V } where f ′(s, t) =

∏
u:c(u)=s

∏
v:c(v)=t f(u, v) ∈ s ∩ t.

Hence f ′ ∈ F (Γ). Moreover, if f leaks, then so does f ′. Assume f ′ is preserving in all vertices except
potentially v ∈ V . Then e(f ′) = [γ]v for some γ ∈ v and d(γ) = 1. If d(γ) = 1 implies γ = 1, we
obtain that f ′ and hence f does not leak, so Γ is leak-proof.

Similarly, one can consider binary leak-proof groups. With a proof analogous to that of Proposi-
tion 6.3 one obtains that Γ is binary leak proof if and only if d is injective.
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Proof of Theorem 1.4. Simply note that for finite Γ the corresponding group Γ• is finite abelian and
can thus be computed explicitly. In particular, we can decide for each γ ∈ Γ whether d(γ) = 1. The
theorem thus follows from Proposition 6.3.

From Lemma 1.1 it follows that abelian groups are leak-proof, but they are hardly the only ones.
By computer search we found the two extraspecial groups of order 32 to be the only smallest leaking
groups, one of which we encountered in Example 3.4. The smallest leaking groups of order greater
than 32 occur at order 64. That there are groups of order 64 that leak was to be expected, because
a group leaks when it has a leaking subgroup. The smallest leaking symmetric group is the S6 and
the smallest leaking alternating group is the A7. That for sufficiently large n the group Sn leaks is
to be expected by Cayley’s theorem, but interestingly no strict subgroup of S6 leaks. It would be
interesting to have a classification of leak-proof groups or to know whether there is some equivalent,
better understood property of groups which is equivalent to being leak-proof like planarity is to graphs.
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