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Abstract 

Research on theoretical prediction methods for the mixture toxicity of 
engineered nanoparticles (ENPs) faces significant challenges. The 
application of in silico methods based on machine learning is 
emerging as an effective strategy to address the toxicity prediction of 
chemical mixtures. Herein, we combined toxicity data generated in 
our lab with experimental data reported in the literature to predict 
the combined toxicity of seven metallic ENPs for Escherichia coli at 
different mixing ratios (22 binary combinations). We thereafter 
applied two machine learning (ML) techniques, support vector 
machine (SVM) and neural network (NN), and compared the 
differences in the ability to predict the combined toxicity by means of 
the ML-based methods and two component-based mixture models: 
independent action and concentration addition. Among 72 developed 
quantitative structure-activity relationship (QSAR) models by the ML 
methods, two SVM-QSAR models and two NN-QSAR models showed 
good performance. Moreover, an NN-based QSAR model combined 
with two molecular descriptors, namely enthalpy of formation of a 
gaseous cation and metal oxide standard molar enthalpy of formation, 
showed the best predictive power for the internal dataset (R2test = 
0.911, adjusted R2test = 0.733, RMSEtest = 0.091, and MAEtest = 0.067) 
and for the combination of internal and external datasets (R2test = 
0.908, adjusted R2test = 0.871, RMSEtest = 0.255, and MAEtest = 0.181). 
In addition, the developed QSAR models performed better than the 
component-based models. The estimation of the applicability domain 
of the selected QSAR models showed that all the binary mixtures in 
training and test sets were in the applicability domain. This study 
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approach could provide a methodological and theoretical basis for the 
ecological risk assessment of mixtures of ENPs. 

 

Graphical abstract 

Keywords: Nanotoxicity; Advanced nanomaterials; Support vector 
machine; Neural network; Mixture toxicity. 
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6.1 Introduction 

The unique physicochemical features of nanostructured materials 
make them particularly appealing for specific applications 
(Wyrzykowska et al., 2022). Developments go with a fast pace, with 
first-generation nanomaterials (NMs) already embedded in a variety 
of products and advanced NMs such as nanocomposites continuously 
generated (Jayaramulu et al., 2022). With the continuous 
development and application of NMs, different types of engineered 
nanoparticles (ENPs) will now be co-discharged into the environment. 
Municipal wastewater treatment facilities and sewage systems are 
becoming crucial intermediary routes for the release of the mixtures 
of ENPs into the environment (Georgantzopoulou et al., 2020; 
Simelane and Dlamini, 2019; Singh and Kumar, 2020). It is expected 
that industrial and municipal wastewater are a major source of 
mixtures of ENPs of different compositions. As a consequence, a wide 
range of structurally and chemically diverse ENPs will unavoidably be 
released into the environmental compartments (Hong et al., 2021), 
raising worries about potential ENPs-induced human and ecological 
impacts (Avellan et al., 2021). This requires to explore the scientific 
challenge of assessing mixture toxicity of multiple ENPs (Zhang et al., 
2022a). 

Fortunately experimental data on the mixture toxicity of ENPs is 
expanding quite recently, while progress on methods for evaluating 
and predicting the mixture toxicity of ENPs is lagging (Zhang et al., 
2022a). Enabling ENPs' mixture predictions, classical 
component-based mixture models have been used (Lopes et al., 2016; 
Martín-de-Lucía et al., 2019). However, these mixture models such as 
concentration addition (CA), independent action (IA), and a 
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combination of the two models rely on the assessment of the 
concentration-response relationship of the single components and on 
the identification of the toxic mode of action of the single components 
(F. Zhang et al., 2021b). In silico predictive toxicology appears to be a 
promising alternative to the mixture modeling. Among the novel 
approach methodologies based on in silico predictions, quantitative 
structure-activity relationships (QSAR) modeling proves to be a 
useful tool for the prediction of the biological activity or property of a 
compound by providing a mathematical correlation with its structural 
features (Tropsha, 2010). Recently, QSAR methods are being applied 
in methodological studies for the quantitative prediction of the 
toxicity of mixtures of ENPs (Kar et al., 2022; Mikolajczyk et al., 2016; 
Na et al., 2023; Zhang et al., 2022b). Meanwhile, machine learning 
(ML) methods, which seek to construct an explicit or implicit model 
based on current data (known as training data) to make predictions 
or decisions on complicated issues (M. Wang et al., 2021), have 
already stepped into the spotlight for in silico prediction of toxicology. 
ML methods to date have shown unprecedented predictive power in 
predicting the toxicity of ENPs (Balraadjsing et al., 2022; Ji et al., 
2022; Jia et al., 2021; Trinh et al., 2022). Thus, ML-powered QSAR 
modeling approaches could be a strong tool to deal with the problem 
of predicting the toxicity of mixtures of ENPs, and would perform 
better and more cost-effective than the classical mixture models. 
However, there is still a scarcity of QSAR models based on ML 
approaches for predicting the mixture toxicity of multiple ENPs. 

The present study aimed at rebuilding existing QSAR for use with 
NMs (nano-QSAR) by incorporating ML methods to describe the 
toxicity of a mixture of ENPs and comparing the performance with 
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the mixture models. This enables the understanding of the link 
between the physicochemical properties describing the components 
in the mixture and the cytotoxicity of 22 binary mixtures of metal 
oxide nanoparticles (MOX NPs) against Escherichia coli, a commonly 
used bacterium species in toxicity screening. Toxicity data for 12 
binary mixtures with two different mixing ratios from our laboratory 
were used as an internal dataset. Toxicity data for 10 binary mixtures 
with another mixing ratio from the literature were used as an external 
dataset. The selected ML methods, namely support vector machine 
(SVM) (Ban et al., 2022; Liu et al., 2013) and neural network (NN) 
(Yang et al., 2022), are well-known and commonly utilized ML 
algorithms. The study involves eight indicative physicochemical 
parameters implicated in the mechanism of toxicity of MOX NPs: 
surface charge, dispersion stability, dissolution, oxidative stress, and 
particle reactivity. Then, for the first time, SVM- and NN-based QSAR 
models for predicting the cytotoxicity of mixtures of individual MOX 
NPs with diverse metal elements and different mixture ratios were 
developed. The goal of this study is to develop a rapid and 
cost-effective model for predicting the toxicity of mixtures of ENPs 
and provide a more suitable method for the risk assessment of 
multiple ENPs. 

6.2 Materials and methods 

6.2.1 Experimental sections 

Test materials 

CuO NPs with a primary size of 40 nm (advertised specific surface 
area > 10 m2/g; purity 99 %), ZnO NPs with a primary size of 14 nm 
(advertised specific surface area of 30 ± 5 m2/g; purity > 99 %), TiO2 
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NPs with a primary size of 21 ± 5 nm (advertised specific surface area 
50 ± 10 m2/g; purity > 99.5 %), and ZrO2 NPs with a primary size of 
5−25 nm (advertised specific surface area 130 ± 20 m2/g; purity > 
97.2 %) were purchased from PlasmaChem GmbH (Berlin, Germany). 
The MOX stock suspensions were freshly prepared in pure water after 
30 min sonication in a water bath sonicator and then stored at 4 °C 
until use. 

Physicochemical analysis 

Zeta potential (ζP) and hydrodynamic diameters (DH) of the MOX NP 
suspensions at 10 mg/L were analyzed in water using a ZetaSizer 
instrument (Nano ZS90, Malvern Instruments Ltd., Worcestershire, 
UK). 

Toxicity testing 

Cytotoxicity tests were performed with E. coli using the microtitration 
plate assay (Patton et al., 2006). The initial number of bacteria was 

set at 1 ´ 108 cells/mL. Bacterial solution after exposure to the test 

materials was added into a 96-well white flat-bottom microplate, 
which subsequently was maintained at 37 °C with shaking incubation 
for 12 h in a constant temperature shaker. Bacteria were exposed to 

increasing concentrations of the suspensions of CuO NPs (from 1.26 ´ 

10-4 to 3.02 ´ 10-3 mol/L), ZnO NPs (from 6.14 ´ 10-5 to 6.76 ´ 10-4 

mol/L), TiO2 NPs (from 3.76 ´ 10-4 to 3.76 ´ 10-3 mol/L), and ZrO2 

NPs (from 4.06 ´ 10-4 to 9.74 ´ 10-3 mol/L). Each test concentration 

was replicated four times. The optical density (OD) values 
corresponding to the cell number of E. coli were monitored using an 
enzyme-labeled instrument (Thermo Multiskan FC, USA), and the 
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inhibition rate was calculated from the measured OD values. The 
cytotoxicity of the tested materials was expressed in terms of effect 
concentrations (EC50 and EC10: the effective concentration of a 
toxicant that induces 50 and 10 % bacteria inhibition), which were 
calculated using a concentration-response curve (CRC). For the 
binary mixtures in the internal dataset, E. coli cells were treated with 
various concentrations of MOX NPs with a fixed mixture ratio, where 
the first and second mixtures were based on the initial EC50 and the 
EC10 of each MOX NP, respectively. Thus, the two mixtures were 
named Int (R1) mixture and Int (R2) mixture. 

6.2.2 Computational methods 

Determination of concentration-response curve 

The Logistic regression model, as shown in Equation 6.1, was used to 
fit the CRCs for single and binary MOX NPs. 

! = 466

7489 !
"!#$

:
%
;
                     (6.1) 

where E is the effect confined to the range of 0−100 %, C is the 
exposure concentration of the test materials, and θ represents the 
slope parameter. 

Joint effect modeling 

As the most representative approaches used are the IA and CA 
models (Bliss, 1939; Loewe and Muischneck, 1926), which were 
applied to predict the toxicity (denoted EC50 values) of the mixtures of 
MOX NPs. Throughout the modeling EC50 values were transformed to 
inverted logarithm i.e., log1/EC50. 
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The general expression shown in Equation 6.2 was used for the IA 
model, 

!(B1!2) = 1 −∏ (1 − !(B3))<
3=4              (6.2) 

where E(Cmix) is the effect expected at the total concentration of the 
mixture (scaled between 0 % and 100 %) and E(Ci) is the effect that 
the ith mixture component would provoke if applied singly at 
concentration Ci. 

The total concentration of a mixture causing x % effect (ECxmix) was 
calculated from the CRC of the individual component using the CA 
model, as shown in Equation 6.3, 

!B>1!2 = D∑ ?&
@A'&

<
3=4 E

'4
                (6.3) 

where Pi is the fraction of component i in the mixture and ECxi is the 
concentration of component i that would result in x % effect if used 
alone. 

Construction of datasets 

Two datasets were constructed for the development and validation of 
the predictive models. The dataset was chosen not only to take into 
account data sample diversity (i.e., diversity of mixed components 
and mixed concentration ratios), but also to reduce the variability of 
inter-laboratory toxicity testing conditions. The first dataset (named 
internal dataset) consists of experimental data from our laboratory. 
The internal dataset consists of 12 data rows, consisting of the binary 
mixtures of four MOX NPs (CuO, ZnO, TiO2, and ZrO2) at two 
different mixture ratios. The results of physicochemical analysis 
which included the assessment of the ζP and the DH of MOX NPs in 
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the single and binary mixture systems and the CRCs for the mixtures 
obtained from the E. coli toxicity testing and predicted by the IA and 
CA models are described in the Appendix. 

The second dataset (named combined dataset) comprised both 
internal data and external data. The external data of the toxicity of 10 
binary mixtures of five MOX NPs (Al2O3, Fe2O3, SiO2, TiO2, and ZnO) 
to E. coli was collected from Kar et al. (2022). The binary 
nano-mixtures in the external dataset and the internal dataset have 
both different kinds of combinations and different mixture ratios of 
components between them. The external dataset was named Ext (R3) 
mixture. The combined dataset has a total of 22 data rows. 

Calculation of mixture descriptors 

A mixture descriptor (Dmix) is a weighted descriptor that quantifies 
how much each component contributes to the overall activity of a 
mixture (Altenburger et al., 2003). Dmix has been practically applied 
in the toxicity prediction studies of ENP mixtures (Kar et al., 2022; 
Trinh et al., 2022). Dmix is expressed by arithmetic mean (Equation 
6.4): 

21!2 = 9323 + 9B2B                  (6.4) 

where xi and xj are the mole fractions of constituent i and j in the 
mixtures, and Di and Dj are descriptors of the individual MOX NPs. 
The selected descriptors of the individual MOX NPs and the calculated 
Dmix based on Equation 6.4 are shown in the Appendix Table S6.1 and 
Table S6.2, respectively. In the selection of descriptors for the 
individual MOX NPs, we referred to the qualities summarized by Roy 
et al. (2015). Moreover, the selected descriptors are universal 
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descriptors, which are effectively used to construct QSAR models of 
individual MOX NPs. Furthermore, these descriptors not only reflect 
the characteristics of nanostructures but also directly respond to 
toxicologically relevant properties. In details, there were eight 
descriptors of the individual MOX NPs from three different types: two 
periodic table-based descriptors (electronegativity of metal atoms, χme 
and sum of metal electronegativity for an individual metal oxide 
divided by the number of oxygen atoms present in a particular metal 
oxide, Σχme/nO) derived from the publicly available periodic table 
information (Kar et al., 2014), two experimental descriptors (ζP and 
DH) determined in our laboratory (CuO, ZnO, TiO2, and ZrO2 NPs) 
and obtained from a previous study (Al2O3, Fe2O3, SiO2, TiO2, and 
ZnO NPs) (Kar et al., 2022), three metal oxide energy descriptors 
including the enthalpy of formation of a gaseous cation having the 
same oxidation state as the oxidation state of the metal in the metal 
oxide structure (ΔHme+) (Puzyn et al., 2011), the metal oxide standard 
molar enthalpy of formation (ΔHsf) (Haynes, 2011), and the energy of 
the conduction band (EC) (Zhang et al., 2012) of the nanoparticle, as 
well as the ionic index of the metal cation (Z2/r) (Walker et al., 2003). 
Stepwise multiple linear regression in SPSS 23.0 was used to perform 
a preliminary screening of the descriptions obtained, and the t value 
was selected to determine the comparative importance of the 
descriptors on the toxic effect concentrations (log1/EC50) of binary 
mixtures of MOX NPs. 

Machine Learning-based modeling 

Two popular ML algorithms, namely SVM and NN, were used to 
develop the QSAR models for predicting the toxicity of binary 
mixtures of MOX NPs. The datasets were divided into training (60 % 
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data) and test (40 % data) sets at random. For the SVM algorithm, the 
Gaussian radial basis function (RBF) was used. For the NN algorithm, 
the hyperbolic tan function for the hidden layer and the 
quasi-Newton method for weight optimization were applied. We used 
the data mining toolbox in Python for developing the ML-based 
predictive models (Demšar et al., 2013). To validate the models, the 
squared correlation coefficient (R2) and the adjusted squared 
correlation coefficient (R2adj) between observed and predicted 
log1/EC50, the root mean square error (RMSE), and the mean 
absolute error (MAE) of the training and test datasets were used. 
These statistical parameters are commonly used in current 
nano-QSAR studies and are widely accepted (Gajewicz et al., 2015; 
Kar et al., 2022; Trinh et al., 2022). Randomization tests proposed for 
testing the robustness of the selected models were performed using 
the metric cR2P (Kar et al., 2014). If the cR2P value is more than the 
stipulated threshold value of 0.5 then an acceptable model has been 
developed. The second-order bias-corrected Akaike Information 
Criterion (AICc) index as an additional statistical measure was 
employed on the full set to evaluate the relationship between 
variables. The AICc value was calculated using R software. 

Applicability domain 

The OECD principles of QSAR validation recommend that: A (Q)SAR 
should be associated with a defined domain of applicability (OECD, 
2014). The function of the applicability domain (AD) is to define the 
compounds that can be reliably predicted by the QSAR model, which 
can also be understood as the set of compounds to which the model 
applies. The AD in this work was generated by using the Student's 
t-distribution on Euclidean distances (structural domain) and 
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standardized residuals (response domain) of a training dataset to 
define the space where accurate predictions can be made with a 
specified level of confidence (Gajewicz, 2018). 

6.3 Results and Discussion 

6.3.1 Toxicity of binary ENP mixtures 

CRCs established for the binary mixtures of CuO, ZnO, TiO2, and 
ZrO2 NPs are shown in the Appendix Figure S6.1. Based on the curves, 
the log1/EC50 values were determined and these are summarized in 
Table 6.1. 

Table 6.1. Toxicity data of binary mixtures of MOX NPs for the internal dataset a 

Mixture system 

of MOX NPs 

Observed log1/EC50 

(mol/L) 

Predicted log1/EC50 (mol/L) 

QSAR models Mixture models 

S12 S31 N12 N31 IA CA 

Int (R1)  

CuO + ZnO NPs 2.72 2.68 2.70 2.72 2.72 2.85 3.05 

TiO2 + ZrO2 NPs 2.10 2.14 2.13 2.10 2.10 2.32 2.44 

ZnO + TiO2 NPs 2.17 2.20 2.18 2.18 2.18 2.96 3.00 

ZnO + ZrO2 NPs* 2.30 2.23 2.14 2.37 2.37 2.39 2.54 

CuO + TiO2 NPs* 2.77 2.81 2.80 2.88 2.80 2.70 2.80 

CuO + ZrO2 NPs 2.29 2.25 2.27 2.29 2.29 2.30 2.46 

Int (R2)  

CuO + ZnO NPs* 2.82 2.68 2.70 2.69 2.66 2.92 3.15 

TiO2 + ZrO2 NPs* 2.11 2.14 2.13 2.11 2.10 2.32 2.44 

ZnO + TiO2 NPs 2.20 2.21 2.18 2.19 2.18 2.77 3.05 

ZnO + ZrO2 NPs 2.37 2.23 2.14 2.37 2.37 2.39 2.54 

CuO + TiO2 NPs 2.74 2.71 2.72 2.75 2.75 2.70 2.80 

CuO + ZrO2 NPs 2.14 2.21 2.18 2.14 2.15 2.31 2.41 

a * indicates the test data. 
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For the binary mixtures with a certain mixture ratio, TiO2 and ZrO2 
NPs induced the least toxicity in the combined exposure setting. 
Comparative analysis also revealed that the toxicity of CuO NPs 
combined with ZnO or TiO2 NPs was higher than for other binary 
combinations. 

6.3.2 Machine learning-based QSAR prediction 

Based on the ML methods, 72 QSAR models integrating different Dmix 
(Figure 6.1) were developed. The performance of 36 SVM-and 36 
NN-based QSAR models is shown in the Appendix Tables S6.3 and 
S6.4, respectively. 

 

Figure 6.1. SVM (S1−S36)- and NN (N1−N36)-based QSAR models prepared from 

the pool of different mixture descriptors. χme — metal electronegativity, Σχme/nO — 
sum of metal electronegativity for individual metal oxide divided by the number of 
oxygen atoms present in particular metal oxide, ζP — zeta potential, DH — 
hydrodynamic diameters, ΔHme+ — enthalpy of formation of a gaseous cation, ΔHsf 

— metal oxide standard molar enthalpy of formation, EC — nanoparticle energy of 
conduction band, and Z2/r — ionic index of metal cation. 

We selected a good prediction model according to the following three 
criteria: (i) R2 ≥ 0.81 for in vitro data (Kubinyi, 1993); (ii) adjusted 
R2 > 0.60 (Olasupo et al., 2020); (iii) the above two conditions need 
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to be satisfied not only for both the training and the test sets but also 
for both the internal and combined datasets, as well as for both the 
SVM- and NN-based models when applying the same descriptors. 
Among the developed QSAR models, two SVM-based models (S12 
and S31) and two NN-based models (N12 and N31) performed 
comparably better than other models for both the internal and 
combined datasets. This also means that the selected QSAR models 
can reliably predict the toxicity of mixtures of individual MOX NPs 
under multiple different experimental conditions. 

Moreover, the predicted log1/EC50 values by the good models (S12, 
S31, N12, and N31) are shown in Table 6.1 (the internal dataset) and 
in Table 6.2 (the combined dataset). The percental difference 
averaged between the experimental and predicted values by the 
selected models for the internal and combined datasets was 2.34, 
2.50, 1.08, 1.04 and 7.16, 7.29, 2.87, 2.61 % respectively. In addition, 
the obtained cR2P values for the selected models via the 
Y-randomization test are higher than 0.5 (Appendix Tables S6.5 and 
S6.6), demonstrating that the models were not created randomly and 
that they are robust. 

Experimentally determined log1/EC50 are plotted against predicted 
log1/EC50 for the internal and combined datasets (Figure 6.2 and 
Figure 6.3, respectively). The green dotted line indicates that the 
experimental and the predicted values correspond exactly. The bule 
straight line depicts a linear relationship between the experimental 
and predicted values based on the training sets. 
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Table 6.2. Toxicity data of binary mixtures of MOx NPs for the combined dataset a 

Mixture system 

of MOX NPs 

Observed log1/EC50 

(mol/L)  

Predicted log1/EC50 (mol/L) 

QSAR models 

S12 S31 N12 N31 

Int (R1)  

CuO + ZnO NPs 2.72 2.80 2.89 2.72 2.72 

TiO2 + ZrO2 NPs 2.10 2.18 2.05 2.10 2.11 

ZnO + TiO2 NPs* 2.17 1.92 2.09 2.21 2.18 

ZnO + ZrO2 NPs 2.30 2.22 2.13 2.30 2.30 

CuO + TiO2 NPs 2.77 2.82 2.94 2.77 2.77 

CuO + ZrO2 NPs 2.29 2.27 2.47 2.27 2.26 

Int (R2)  

CuO + ZnO NPs* 2.82 2.88 2.92 2.74 2.75 

TiO2 + ZrO2 NPs* 2.11 2.18 2.05 2.11 2.11 

ZnO + TiO2 NPs 2.20 1.92 2.10 2.19 2.18 

ZnO + ZrO2 NPs* 2.37 2.22 2.13 2.30 2.30 

CuO + TiO2 NPs* 2.74 2.27 2.58 2.05 2.50 

CuO + ZrO2 NPs 2.14 2.22 2.31 2.17 2.19 

Ext (R3)  

Al2O3 + ZnO NPs 4.26 3.93 3.88 4.26 4.26 

Al2O3 + Fe2O3 NPs 2.06 2.14 2.01 2.06 2.07 

Al2O3 + SiO2 NPs* 1.71 1.86 1.85 1.88 1.54 

Al2O3 + TiO2 NPs 1.70 1.95 1.87 1.71 1.70 

ZnO + Fe2O3 NPs 3.89 3.81 3.72 3.89 3.89 

ZnO + SiO2 NPs 4.13 3.62 3.57 4.13 4.13 

Fe2O3 + SiO2 NPs 2.25 2.17 2.08 2.25 2.25 

Fe2O3 + TiO2 NPs* 1.99 1.75 2.10 1.72 2.28 

SiO2 + TiO2 NPs 1.80 1.88 2.01 1.81 1.80 

ZnO + TiO2 NPs* 4.59 3.76 3.69 4.46 4.01 

a * indicates the test data. 
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Figure 6.2. Performance of the selected SVM- and NN-based QSAR models and the 
component-based mixture models developed based on the internal dataset. 

In general, the selected QSAR models exhibited good agreement (R2 ≥ 
0.81) between the observed and predicted toxicity for the binary 
mixtures of MOX NPs from the training set (blue circle) and those 
from the test sets (red circle). It can also be seen that the lines of the 
regression for the N12 and N31 models overlap with the line of 
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perfection, implying that the NN-based models showed better 
consistency between the experimental and predicted values compared 
to the SVM-based models. Furthermore, the percental difference 
averaged between the experimental and predicted values by the 
NN-based models was 2.17−2.40 and 2.49−2.79 times lower than the 
percental difference averaged between the experimental and 
predicted values by the SVM-based models in the internal (Appendix 
Table S6.7) and combined datasets (Appendix Table S6.8), 
respectively. Note that the N31 model had the lowest average 
difference between the experimental and predicted values among the 
selected QSARs. 

In addition, the results for the statistics of the selected models are 
shown in the insets of Figures 6.2 and 6.3. In the internal dataset 
(Figure 6.2), the S12 model with higher R2adj and lower RMSE and 
MAE performed better than the S31 and N12 models for predicting 
the test data. In addition to this, the NN-based models showed better 
than the SVM-based models for predicting both the training and test 
data. Further comparisons revealed that the N31 model with higher 
R2adj and lower RMSE and MAE performed better than the N12 model 
for predicting the test data. In the combined dataset (Figure 6.3), the 
NN-based models with higher R2adj and lower RMSE and MAE 
outperformed the SVM-based models for both the training and test 
data. Of the four models validated, the N31 model with the highest 
R2adj and the lowest RMSE and MAE had the best performance 
capability for predicting the test data. 
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Figure 6.3. Performance of the selected SVM- and NN-based QSAR models 
developed based on the combined dataset. 

Current research on biological effect prediction also indicates that 
NN-based models outperform SVM-based models empirically 
resulting from the training process and overall data prediction 
(Almansour et al., 2019; Bennett-Lenane et al., 2022), while other 
studies have shown that the SVM-based modeling approach often 
shows a better performance than the NN-based approach (X. Li et al., 
2021; Zhao et al., 2006). In theory, both ML algorithms have 
advantages and disadvantages. This is reflected in that the training 
time for NN-based technique is higher than the training time for SVM, 
while the prediction time for NN models is generally lower than for 
SVM models. Taken together, the performance indicators of the 
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selected QSARs indicate that both the NN and the SVM were practical 
tools for the prediction of the toxicity of mixtures of ENPs. 

To compare the differences between the developed QSAR models and 
the classical mixture models in predicting the toxicity of mixtures of 
MOX NPs, we also constructed the IA and CA prediction models 
(Appendix Figure S6.1). As shown in Figure 6.2, the selected QSAR 

models gave better predictions of log1/EC50 (R2 ³ 0.873) compared to 

those models based on mixture modeling making use of IA (R2 = 
0.326) and CA (R2 = 0.330). This implies that the QSAR models are 
low-cost approach to risk assessment of multiple ENP mixtures, due 
to the fact that the QSAR models do not need concentration-response 
information on each mixture component as with the commonly 
applied mixture models either using IA or CA. For the CuO + ZrO2 
NPs mixture at ratio 1 and the ZnO + ZrO2 NPs mixture at ratio 2, the 
percental difference averaged between the experimental and 
predicted values by the IA model was lower than the percental 
difference averaged between the experimental and predicted values 
by the SVM-based models (Appendix Table S6.7). This means that for 
a particular mixture the mixture model has the ability to predict the 
toxicity of the mixture of MOX NPs. 

The mixture model has become a prevailing approach for the 
quantitative prediction of mixture toxicity with concentration 
addition being a conservative measure of addition of stress and 
independent action as assuming induced effects not at the same 
target and affecting a percentage at the overall response, which 
strengthens the theorization from the basic principles of mixture 
toxicology. However, the interactions between the joint chemicals are 
not taken into consideration in the mixture models. Especially, the 
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distinctive physicochemical features of ENPs, which have a high 
surface area for adsorption, may hinder the mixture models from 
accurately estimating the toxicological effects of mixtures containing 
ENPs (Martinez et al., 2022). A previous study indicated that the IA 
and CA models did not perform well in predicting the toxicity of 
mixtures comprising TiO2 NPs and other pollutants to Daphnia 
magna (Trinh et al., 2022). Thus, it is reasonable to assume that the 
ML-integrated QSAR approach can be considered a highly promising 
tool for the assessment of the toxicity of a mixture of multiple ENPs. 

6.3.3 Applicability domains of QSAR models 

The AD of a QSAR is the physicochemical, structural, or biological 
space, knowledge or information on which the training set of the 
model has been developed, and for which it is applicable to make 
predictions for new compounds (Jaworska et al., 2005). The AD of 
the SVM-based models (S12 and S31) and NN-based models (N12 and 
N31) constructed from the internal and combined datasets is shown 
in Figures 6.4 and 6.5, respectively. The light and dark green elliptical 
boundaries correspond to the 95 and 99 % confidence intervals, 
respectively. Reliable predictions can only be generated within these 
confidence intervals. In the internal dataset (Figure 6.4), all the 
training data fall inside the 95 % confidence area, while two test data 
for the S12 model and only one test data for the S31 and N31 models 
falls between 95 % and 99 % confidence area. In the combined 
dataset (Figure 6.5), all the training and testing data fall inside the 95 % 
confidence area. Generally, all the studied binary mixtures of MOX 
NPs were located within the 99 % confidence area of the selected 
QSAR models. Thus, the mixture toxicity predictions for each training 
and test mixtures of MOX NPs are highly reliable for the selected 
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QSAR models. This suggests that the QSAR models can be used to 
predict the toxicity of any other binary combinations of MOX NPs, 
especially because the predominant first-generation ENPs are within 
this training set as well as the mechanistically relevant descriptors. 

 

Figure 6.4. Applicability domains of the selected SVM- and NN-based QSAR 
models developed based on the internal dataset. 

A QSAR model should have a well-defined AD to reflect its reliability 
in order to be applicable for chemical assessment and management. 
The dataset with 22 binary combinations has proven to be large and 
robust to effectively built ML-driven QSAR models for toxicity 
prediction. This is in line with previous conclusions confirming that 
ML-assisted QSAR models has good predictive power for relatively 
small datasets (Gajewicz et al., 2015; Puzyn et al., 2011; Zhong et al., 
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2022b). These findings do give prospects of application to move the 
field on mixture toxicity predictions further especially when ENPs 
mixtures are considered in which chemicals as well as particles 
influence fate and responses. 

 

Figure 6.5. Applicability domains of the selected SVM- and NN-based QSAR 
models developed based on the combined dataset. 

The characterization of the AD reflects the dependence of a QSAR 
model on training data (Zhong et al., 2022a). Thus, only 
nanostructured materials that are similar to the ENPs constituting 
the training set, can be reliably predicted. While artificial intelligence, 
ML, and big data analytics provide powerful algorithms and tools for 
QSAR modeling, high-quality toxicity data remain the driving force 
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for constructing QSAR models for the prediction of the toxicity of 
nano-mixtures. Therefore, further research needs to expand the 
amount of high-quality data available on the toxicity of mixtures of 
ENPs in the training set and enlarge the AD of QSAR models. 

6.3.4 Importance of descriptors and mechanistic knowledge 

Appendix Table S6.9 shows the comparative importance of the 
proposed descriptors for the toxicity prediction of binary mixtures of 
MOX NPs. The magnitude of the relative importance of ΔHsf (62 %) 
and ΔHme+ (47 %) is the highest in the internal and combined datasets 
studied respectively, suggesting that the two descriptors are very 
important in explaining the QSAR models. As an efficient descriptor, 
ΔHme+ was previously employed to explain the cytotoxicity of MOX 
NPs to E. coli based on their chemical stability. The chemical stability 
of MOX NPs is associated with the release of metal cation from the 
particles as well as the catalytic properties and redox modifications of 
the surface (Puzyn et al., 2011). For a given size, ΔHsf might be also 
used as an indicator of "the ability of releasing metal cation", since it 
is proportional to the energy of a single metal-oxygen bond in the 
oxides (Gajewicz et al., 2015). The cellular damage caused by MOX 
NPs may be attributed to the release of metal cations. The metal ions 
present in suspension can not only chelate with specific ligands of 
biological macromolecules to affect the toxicity of MOX NPs to 
biological cells, but also can instigate the generation of free radicals 
such as hydroxyl radicals in both cells and mitochondria, causing 
DNA and mitochondrial DNA breakage (Roy et al., 2019). 

In addition, χme was a significant descriptor in developing the S12 and 
N12 models, and indicates the energy needed to separate the metal 



 

 144 

cation from the metal oxides as part of the mechanisms underlying 
the toxic effects of the metal oxides. MOX NPs with a higher χme tend 
to gain electrons from the bonding pair of the electrons. This 
indicates an increase in the catalytic capabilities of cationic metal 
(Roy et al., 2019). Thus, the toxicity of MOX NPs may be enhanced in 
accordance with the Haber-Weiss-Fenton cycle (Koppenol, 2001). χme 
is also independent of the size range of MOX NPs (Kar et al., 2014). 
Following the release of metal cations, redox interactions with the 
molecules in biological media frequently result in the production of 
reactive oxygen species (ROS) (Puzyn et al., 2011). Thus, the released 
cations themselves, ROS-induced oxidative damage, or both may be 
responsible for the observed cytotoxicity. Our results indicated that 
these descriptors could indicate possible mechanism for the mixture 
toxicity of individual MOX NPs. What is more, the descriptors used in 
the models are well-defined and can be derived quickly from the 
chemical composition information (χme) and chemical stability (ΔHme+ 
and ΔHsf). 

The AICc values were further applied to evaluate the relationship 
among the proposed descriptors (χme, ΔHme+, and ΔHsf). As shown in 
the Appendix Table S6.10, in both the internal dataset and the 
combined dataset, the AICc value of the model developed by applying 
ΔHme+ and ΔHsf was the smallest among all the models combined with 
the binary descriptors. This indicates that the fitting ability of the 
model incorporating ΔHme+ and ΔHsf was higher than the fitting 
ability of the other models using the combination of two descriptors. 
This is generally consistent with the results of the screening and 
comparative analysis regarding the performance of ML models as 
described previously. The models developed by applying ΔHsf and 
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ΔHme+ to the internal and combined datasets, respectively, had the 
lowest AICc (Appendix Table S6.10). However, the predictive power 
of the ML models developed by both single descriptors cannot ensure 
equal predictive power for the internal dataset and the combined 
dataset (Appendix Tables S6.3 and S6.4). 

Furthermore, we found that the AICc values of models developed by 
the combination of three descriptors (χme, ΔHme+, and ΔHsf) were the 
highest in the internal dataset, while the AICc values of the models 
developed by the combination of three descriptors in the combined 
dataset were higher than those of the models developed by the single 
descriptor (ΔHme+) and the combination of ΔHme+ and ΔHsf (Appendix 
Table S6.10). This implies that applying more descriptors (n = 3) to 
the model in this study could not significantly improve the predictive 
performance of the model. Furthermore, using fewer descriptors in 
QSAR analysis not only allows for avoiding over-fitting, but also 
establishes meaningful models with understandable chemical 
mechanisms (Wang and Chen, 2020). Thereupon, the suggested 
QSAR models with few utilized nano-descriptors can be regarded as 
robust and simple to use for predicting the mixture toxicity of ENPs. 

6.4 Conclusions 

Our results show that the ML methods present unprecedented 
opportunities and challenges for the assessment of the mixture 
toxicity of ENPs. The nano-QSAR models that we developed and 
validated, outperformed conventional mixture models. The χme, 
ΔHme+, and ΔHsf were found to be the key nano-descriptors capable of 
predicting the mixture toxicity. At the present stage, the synthesis of 
new NMs and the advanced complexity of materials has a more rapid 
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pace than the science to predict the fate and effects of those 
complexes and mixtures of ENPs. Knowledge on the mixture impacts 
of various shaped and chemically diverse ENPs as well as the 
evaluation of the environmental hazards of combinations of ENPs is a 
necessity to work on. 
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