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Chapter 1 

General Introduction 

1
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1.1 Novel entities 

In September 2021 Claire Asher wrote an essay entitled: Novel 
chemical entities: Are we sleepwalking through a planetary boundary? 
This title gives the exact expression for humans' low state of 
consciousness while performing activities with increasing pollution 
which result in affecting the Earth system in a variety of ways. These 
"new substances with potential geophysical and/or biological effects" 
are referred to as "novel entities" (Persson et al., 2022). Scientists 
generally recognize that novel entities become the focus of global 
environmental attention when they exhibit the potential for lasting 
impact, large-scale distribution, and influence on important Earth 
system processes (De Souza Machado et al., 2019). The majority of 
man-made chemical "novel entities" have been reported to enter the 
environment (L. Chen et al., 2023; Kuznetsova et al., 2023; Nunes et 
al., 2023; Zhang et al., 2023), including engineered nanoparticles 
(ENPs), microplastics (MPs), pesticides, per- and polyfluoroalkyl 
substances, flame retardants, antibiotics even novel living organisms. 

The Planetary Boundaries framework created by the international 
scientific team of the Stockholm Resilience Centre is trying to get a 
handle on the myriad of environmental impacts of this chemical 
onslaught (Steffen et al., 2015). Because novel entities are so 
pluriform, just recently quantification of the extent and magnitude of 
the pollution was estimated (Diamond et al., 2015; MacLeod et al., 
2014; Persson et al., 2022, 2013; Steffen et al., 2015) with a lot of 
focus and help of visible plastic pollution (Arp et al., 2021). 

The "planetary boundary" is the boundary value used to define the 
global "safe operating space" (Rockström et al., 2009), which relates 
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to e.g., biosphere integrity, climate change, and novel entities (Steffen 
et al., 2015). "Planetary boundaries" are proposed to maintain the 
normal functioning of the Earth system and human society by 
defining variables that humans need to control, setting thresholds, 
and reducing the risk of human activities exceeding Earth system 
thresholds (MacLeod et al., 2014). However, these "novel entities" are 
being created at such a rapid pace that they are far outpacing the risk 
assessments conducted by governments and organizations. This 
makes that the majority of the novel entities are still existing in the 
natural environment, and production and associated contamination 
are likely to rise further (Persson et al., 2022). 

 

Figure 1.1. Potential control of the quality of the Earth's ecosystem by novel 
entities. 

At present, it is still difficult to control the impacts on the Earth's 
ecosystem from these "novel entities". To maintain the balance of 
planetary health in relation to the continued increase of novel entities 
(Figure 1.1), there is an urgent need to investigate the environmental 
behavior and toxicological effects of novel entities. Toxicological 
testing has confirmed the ecotoxicity of typical novel entities such as 
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ENPs and MPs (Minetto et al., 2016; Rai et al., 2021). Most notably, 
novel entities often enter the environment as mixtures (Kar and 
Leszczynski, 2019; Martinez et al., 2022; Trinh and Kim, 2021). 
Simultaneous exposure to multiple novel entities requires 
consideration of the possible interactions between these novel entities 
and their effects on organisms. 

1.1.1 Engineered nanoparticles 

Nanotechnology has emerged as the most promising technology of 
the 21st century (Sharma et al., 2023). Nanomaterials are widely used 
in many fields (Singh et al., 2023), and most of them are engineered 
and gradually integrated into people's lives and used in thousands of 
products (Pérez-Hernández et al., 2021), such as cosmetics, 
sunscreens, fabrics, pharmaceuticals, and sports equipment. Along 
with the large-scale industrial production, transportation, and 
disposal processes of nanomaterials, especially during the wash-off 
process of personal care products doped with nanomaterials (e.g., 
cosmetics, sunscreens, textiles, etc.) and during the use and 
decomposition of industrial products, ENPs are released or flow into 
and seep into the atmosphere, water bodies, and soil environment, 
becoming "environmental nano-pollutants" (Abbas et al., 2020; 
Ahmed et al., 2018). 

ENPs have been detected in surface water (Azimzada et al., 2021; 
Sanchís et al., 2020; Wu et al., 2020) and sediments (Tou et al., 2021), 
and nanoparticles containing titanium, copper, zinc, and silver have 
been detected in aquatic organisms for instance marine mollusks (e.g., 
oysters, mussels, scallops, and clams) (Xu et al., 2020). When a 
particle is small and approaches the nanoscale, its physicochemical 
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properties are greatly altered and it has the potential to freely cross 
cell membranes and enter the cells of organisms (Verma et al., 2008). 
Numerous studies have confirmed that ENPs have a significant 
impact on ecology and human health (Das et al., 2016; Jogaiah et al., 
2021; Tiede et al., 2016). In fact, environmental nano-pollutants have 
become one of the most dominant and important objects of 
environmental science research and environmental protection 
technologies. 

1.1.2 Microplastics and nanoplastics 

In terms of time span change, humankind has taken a big step into 
the "plastic era" (Lee et al., 2022). However, with the growing 
awareness of environmental protection, it has been recognized that 
"microplastics" (MPs, < 5 mm) pollution has taken over the world 
(Jung et al., 2022). MP pollution not only affects the development of 
human society, but also negatively affects the function of marine 
organisms, biomes, and the entire global ecosystem, and is a potential 
global boundary threat (Allen et al., 2021; González-Pleiter et al., 
2021; Romera-Castillo et al., 2023). MP pollution has posed an 
unprecedented challenge to geoscience research and has become a 
global challenge to address. MPs include micron- to millimeter-scale 
plastics (> 1000 nm to 5 mm) as differentiated from nanoplastics 
(NPs, 1 to 1000 nm) (Junaid et al., 2023). NPs are characterized by 
large fugitive quantities, high adsorption efficiency, and high 
trans-biofilm capacity, and may exhibit more intense ecological and 
toxic effects compared to MPs (Z. Chen et al., 2023; Qi et al., 2023). 

MPs and NPs can cause damage to biological organisms through 
oxidative stress (Rodrigues et al., 2023), cytotoxicity (Shi et al., 2022), 



 

 11 

inflammatory responses (Wang et al., 2023), metabolic alterations 
(Zhao et al., 2023), and neurotoxicity (J.-L. Xu et al., 2022). MPs and 
NPs are frequently found in the environment and are easily ingested 
by organisms and can enter the food chain by virtue of their small size 
(Kim et al., 2022; Zhu et al., 2021), ultimately affecting human health 
(Dong et al., 2023; W. Wang et al., 2022). In vitro studies have also 
confirmed that MPs and NPs have toxic effects on the human 
digestive, respiratory, immune, and reproductive systems (Bastyans 
et al., 2022; J.-L. Xu et al., 2022). Due to the strong specific surface 
area, MPs and NPs may have more serious negative effects on 
organisms when they act as "Trojan horses" carrying other 
contaminants through biofilms or across tissues (Katsumiti et al., 
2021; Roje et al., 2019; Sun et al., 2023). Therefore, the phenomenon 
of complex contamination caused by the interaction of MPs and NPs 
with harmful "novel entities" coexisting in the environment cannot be 
ignored. 

1.1.3 Viral particles 

Different from engineered chemical "novel entities", biological "novel 
entities" include amongst others viruses (like, among others the 
coronavirus). Viruses can exist in sizes ranging in between 1−100 nm, 
with novel coronaviruses typically having a diameter of 60−140 nm 
(Gunathilake et al., 2022). 

These biological entities distribute globally. Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) spreads mostly through direct 
contact and respiratory droplets (Jennings and Perez, 2020; Ragab et 
al., 2020), although pathways via water, air, and soil may also be 
important vectors of coronavirus transmission (Sanchez-Galan et al., 
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2021). Coronavirus-containing waste or wastewater can enter the 
aquatic environment, especially in urban water environments, by 
several routes (Saingam et al., 2023). Wastewater contains a large 
number of viruses, bacteria, fungi and chemical reagents, which are 
mixed together and are highly infectious. This allows them to easily 
cause various human diseases and complications, posing a serious 
public health risk. At the same time, the aquatic environment 
contains a large number of viruses and other pathogens that are 
extremely destructive to other ecological species. A more 
comprehensive understanding of the environmental behavior of 
viruses or viral ribonucleic acid (RNA) in environmental media is not 
only beneficial to the development of more scientific-based control 
and prevention strategies, but also allows for a deeper understanding 
and scientific cognition of the relevance of ecological changes to 
viruses. 

1.2 Interactions of micro- and nanoparticles with other 

novel entities 

Small particles have a relative large surface area (e.g., ENPs, MPs, 
NPs, and virus) and inherently have good adsorption capacity owing 
to their special physicochemical properties, including small particle 
size, huge specific surface area, and high hydrophobicity at 
nanostructured surfaces. Once these micro- and nanoparticles (MNPs) 
enter the environment, they are likely to sorb, enrich and carry other 
pollutants in the environment. This will not only alter the transport 
and transformation behavior of other pollutants in the environment, 
but these pollutants will also change the dissolution, agglomeration, 
precipitation, bioconcentration and migration, microbial degradation 
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and other behavioral properties of MNPs themselves in the 
environment (Figure 1.2). In addition, when MNPs act 
simultaneously with other novel entities on organisms, they may 
induce toxic responses that are different from the effects of a single 
toxicant (Figure 1.2). Thus, it can be seen that the carrier effect is the 
key by which MNPs influence the environmental behavior and toxic 
effects of other novel entities. 

 

Figure 1.2. Interactions between novel entities and their potential environmental 
behavior and toxicological effects. 

1.2.1 Interaction of ENPs with metals 

ENPs readily adsorb metals/metal ions and their oxides from the 
environment (Deshwal et al., 2023; Rosenfeldt et al., 2016). This 
adsorption behavior can affect not only the physicochemical 
properties of ENPs such as particle size and surface charge, but also 
the environmental transport and transformation of the adsorbed 
substances. When the composite system belongs to the category of 
colloids (particle size between 1 nm and 10 µm), the particles have 
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well-defined physicochemical properties such as surface charge and 
kinetic diameter. Meanwhile, the classical colloid dispersion theory — 
the Derjaguine-Landaue-Verwaye-Overbeek (DLVO) theory — can 
provide a solid theoretical basis for the analysis of nanoparticle 
composite systems (Nur et al., 2015). 

1.2.2 Interaction of ENPs with organic pollutants 

ENPs have large chemical activity and surface energy, which make 
them have strong interaction with organic pollutants and allows them 
to adsorb a large amount of organic pollutants (Pan and Xing, 2008; 
Qi et al., 2014; Xin et al., 2023; Yang and Xing, 2010). In recent years, 
scientists have conducted various studies on the ENPs' capacity to 
bind organic contaminants and demonstrated that the interaction of 
ENPs with organic pollutants is mainly related to the hydrophilicity 
and polarity of organic pollutants (Chen et al., 2007). The 
mechanisms of interaction between ENPs and hydrophobic organic 
pollutants are mainly based on hydrophobic and π-π interactions, 
while the adsorption of hydrophilic organic pollutants is mainly 
through partitioning, electrostatic force, and hydrogen bonding (Pan 
and Xing, 2008). 

1.2.3 Interaction of ENPs with microorganisms 

The interactions between ENPs and microorganisms are complex and 
diverse. For instance, once ENPs are released into the environment, a 
large fraction of the nanoparticles flow into wastewater treatment 
plants and come into contact with microorganisms present in the 
wastewater treatment (Saravanan et al., 2022; Zhou et al., 2023). 
These microorganisms can be present in biological wastewater 
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treatment systems in many forms. ENPs discharged from wastewater 
plants or directly into the environment can also come into contact 
with environmental microorganisms such as bacteria and algae (Gong 
et al., 2023). Therefore, understanding the interaction between ENPs 
and microorganisms is important to recognize the migration, toxicity, 
and elimination of ENPs in the microbial environment. 

Recently, scientists have identified novel coronaviruses in wastewater 
in several countries (Conde-Cid et al., 2021). Previous studies have 
shown that both hepatitis viruses (Brisebois et al., 2018) and 
enteroviruses (Upfold et al., 2021) are transmitted to humans 
through wastewater. Therefore, wastewater containing novel 
coronaviruses can pose a serious threat to the population. After going 
through the entire standard wastewater treatment process, it may be 
sufficient to remove or destroy the virus. However, if there is still 
virus remaining in the effluent of wastewater treatment plants or in 
the effluent of treatment plants with poor wastewater treatment, the 
virus may still enter surface waters (Kolarević et al., 2022) with the 
effluent discharge (e.g., lakes, rivers, and various recreational sites) 
and may also become a source of infection. In addition, virus-laden 
effluent that seeps into natural waterways can cause infection 
through airborne aerosols (Q. Wang et al., 2022). Furthermore, the 
consumption of fruits and vegetables irrigated with wastewater that 
has not been properly disinfected may also be an indirect route of 
infection (Fernandes et al., 2023). Studies have reported that novel 
coronavirus RNA fragments have been detected in wastewater 
samples (Langeveld et al., 2023). The residence of novel 
coronaviruses and their RNA fragments in different water bodies and 
aerosols provides an opportunity for their coexistence with ENPs in 
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the environment. 

The interaction between ENPs and microorganisms involves three 
main processes: physical, chemical, and biological. Both the 
agglomeration of nanoparticles and their deposition on microbial 
surfaces involve common physical interaction forces, as described by 
the traditional DLVO theory, hydrophobic interactions, spatial site 
resistance, and multimer bridging. ENPs also undergo a number of 
chemical transformation processes in the microbial environment, 
including redox transformations, photochemical degradation 
processes, surface adsorption, precipitation, complexation and cation 
bridging. In addition to physicochemical processes, some biologically 
relevant processes also occur between ENPs and microorganisms, 
including endocytosis, mitochondrial effects and biodegradation. 

1.2.4 Interaction of MPs and NPs with microorganisms 

MPs and NPs provide substrates and ecological niches for 
microorganisms to attach and selectively enrich environmental 
microorganisms to form biofilms, a new artificial ecosystem called the 
"plastisphere" (Zettler et al., 2013). Harmful microorganisms in the 
environment are adsorbed by MPs or NPs and transported over long 
distances in the environmental media. In these media they propagate 
and spread, facilitating the spread of antibiotic resistance genes and 
thus causing potential harm to the ecosystem. Numerous studies have 
focused on the enrichment and succession of microbial communities 
(algae, bacteria, archaea, fungi, viruses, protozoa, etc.) in the 
plastisphere, exploring the interactions within microbial communities, 
metabolic capabilities, and how microbial communities affect the 
surrounding environment (Barros and Seena, 2021; Junaid et al., 
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2022; Wang et al., 2022). Thus, the impact of MPs and NPs is not 
only associated with themselves, but the microbial impact on their 
surface may be even more profound. 

Possibly harmful effects on biota being amplified by interactions 
between SARS-CoV-2 and plastic pollutants in the aquatic 
environment is another growing subject. For example, recent studies 
have shown that particles of the SARS-CoV-2 virus can adhere to 
MPs' surfaces (Belišová et al., 2022), raising concerns about potential 
increased infectivity and virus transmission in humans, as well as the 
possibility of ecotoxicological risk that such interactions could 
present to organisms that are not the targets. For example, MPs can 
bind SARS-CoV-2 pseudoviruses on their surface and enhance 
infection of human cells in vitro, suggesting that plastic particles 
present in the environment or in the respiratory or gastrointestinal 
tracts of humans (target organism) have the potential to interact with 
SARS-CoV-2 and increase the risk of viral infection (Zhang et al., 
2022). In addition, airborne MPs from waste could also serve as a 
transmission vector for SARS-CoV-2 (Liu and Schauer, 2021), and 
knowledge on this interaction can help to understand the 
transmission process. 

1.2.5 Main factors affecting the interaction between MNPs 

and other novel entities 

The adsorption of novel entities to MNPs can be described by 
considering that: 

1) The ability of MNPs to adsorb other novel entities is closely 
related to the inherent properties of MNPs. It is both size and surface 
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related. Additionally, the physicochemical properties of MNPs are 
essentially determined by their composition, morphology, and 
internal structure. 

2) The ability of MNPs to adsorb other novel entities is also 
related to the physicochemical properties of the other novel entities 
with which it has the interaction, such as the molecular size, structure 
and polarity of novel entities. 

3) The ability of MNPs to adsorb other novel entities is also 
influenced by external field conditions such as pH, ionic strength and 
temperature. 

1.3 Combined toxic effects of MNPs and other novel 

entities 

MNPs can affect the biotoxicity and bioefficacy of other novel entities 
through adsorption, enrichment, and carrier effects, while altering 
their environmental behavior and fate. However, the current 
ecological risk assessment of MNPs typically relies on toxicity data 
regarding the toxicity of single constituents, and the potential risks 
caused by combined adverse effects are not fully taken into account. 
Therefore, the study of the mixture toxicity of MNPs has important 
theoretical value and practical significance, which is conducive to 
improving the scientific and rational nature of ecological risk 
evaluation. 

To address the ecological risks caused by MNPs and their mixtures, 
studies on the combined toxicity of MNPs with other novel entities 
are gradually emerging. Current studies have focused on the mixture 
toxicity of MNPs with metals and organic pollutants, while studies on 
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the mixture toxicity of MNPs with other novel entities in the 
particulate state (other ENPs, M/NPs) have lagged behind. 
Up-to-date 1st generation metal oxide ENPs were tested most 
frequently on these test systems (Das et al., 2022; Mansouri et al., 
2016; Yu et al., 2016a). 

The mechanisms of interaction of MNPs and other novel entities in 
the particulate state and the combined toxicity of the mixture of these 
two entitites to ecological species are relatively complex, and the 
mechanisms of toxicity due to particle-particle interactions may also 
differ from those of particle-organic substance and particle-metal ion 
interactions. In addition, a non-homogeneous mixture composed of 
multiple particulate components has very different properties as 
compared to the properties of a single particulate component. This 
makes the combined toxicity of MNPs and other novel entities in the 
particulate state being affected by a combination of factors, including 
the composition, structure, and properties of each particulate 
component, the agglomeration and stability of particles, and the 
composition of exposure medium. 

There are currently two approaches to determine the mixture toxicity 
of novel entities, namely a bottom-up approach (i.e., 
component-based or reductionist approach) and a top-down 
approach (i.e., whole mixture-based or holistic approach). Mixture 
toxicity studies depend on the methodology chosen. In the bottom-up 
approach, the challenge may be to relate experimental results of 
carefully controlled and well-defined mixtures to real-world 
situations. To respond to this challenge, mixtures consisting of 
chemicals with actual scenario exposure information or with common 
toxicity indicators can be prioritized for evaluation in studies of 
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mixture toxicity (Rider and Simmons, 2018). In the top-down 
approach, on the other hand, whole mixtures are often treated like 
single chemicals. However, such method is needed to determine the 
similarity between different mixtures. It is also essential to determine 
the interacting effects between components in a mixture. 

1.4 Computational simulation methods for 

interactions between MNPs and other novel entities 

Computational simulation models can be used to assist in solving 
complex problems and in data-rich situations. Along with the 
innovation of computer technology and the explosive development of 
big data, machine learning (ML) and artificial intelligence, as well as 
computational simulation (or in silico) methods have been rapidly 
applied to investigate the environmental behavior of novel entities 
(Gastaldi et al., 2023). Currently, the use of computational simulation 
methods in the field of nanotoxicology has increased significantly. 
Computational simulation methods can not only reduce the time and 
money spent on identifying the impacts of novel entities for in vivo 
and in vitro experiments, but also improve the understanding of the 
toxicity of novel entities. 

Four major categories of computational simulation methods are 
commonly used: molecular simulations, physiologically based 
pharmacokinetics (PBPKs), quantitative structure-activity 
relationship (QSAR) models, and ML. Among them, molecular 
simulation methods are frequently used to study the structure-effect 
relationship of nanoparticle-novel entity interactions (Brinkmann et 
al., 2022; Dowlatabadi et al., 2019; Geitner et al., 2017). Molecular 
simulation uses computers to simulate the structure and behavior of 
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molecular models at the microscopic (atomic), nanoscopic, and 
mesoscopic scales, and then obtain various physical and chemical 
properties of molecular systems (Figure 1.3). 

 

Figure 1.3. Computational simulation methods for environmental behavior and 
toxicological effects of mixtures of novel entity. 

It constructs a set of models and algorithms based on physical laws 
with basic principles to calculate reasonable molecular structures and 
molecular behaviors. Molecular simulation can simulate not only the 
static structure of molecules, but also the dynamics of molecular 
systems. The typical methods of molecular simulation are: quantum 
mechanics (QM), molecular mechanics (MM), molecular dynamics 
(MD) simulation, molecular docking, Monte Carlo simulation. 

MD simulation can simulate the flexible binding processes of 
multi-molecular systems and the dynamic conformations of 
complexes, providing more comprehensive information on the 
interaction mechanisms. Unlike other molecular simulation methods 
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(e.g., molecular docking, Monte Carlo simulation) that can deal with 
the static binding properties of multi-molecular systems, a MD 
method is capable of simulating both static and dynamic processes in 
multi-molecular systems. In addition, the MD method is more time 
efficient in dealing with multi-molecular systems than a QM method 
that takes the electron motion into account. Moreover, the MD 
method can also increase the accuracy. Therefore, the method has an 
irreplaceable advantage in simulating multi-molecular systems at the 
microscopic scale. 

A QSAR is a statistical model that relates a set of structural 
parameters that describe a chemical compound to its biological 
activity (Buglak et al., 2019; Chen et al., 2017), as depicted in Figure 
1.3. These parameters, which are called descriptors, are typically 
related to the steric and electronic properties of the compound, and 
they can be computed or measured in experiments. Biological activity, 
however, is determined through biological assays involving organisms 
of different trophic levels like algae, daphnids, and fish. Currently, the 
development of QSAR can offer a new way to rapidly screen 
chemicals alone or in mixtures and prioritize testing (Chatterjee and 
Roy, 2023; Reddy et al., 2023). 

Recently, ML algorithms and deep learning (DL) algorithms have 
been developed for the study of multi-component interactions. ML 
modeling mainly uses publicly available structural information and in 
chemico, in vivo, and in vitro bioactivity data to construct QSAR 
models built on ML algorithms to further deepen the analysis of 
contaminant-biomolecule interactions in complex biological contexts 
(Figure 1.3). Therefore, ML modeling becomes a new computational 
technique that is completely different from molecular simulation. 
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Commonly used ML algorithms include support vector machines, 
neural networks, and random forests. These algorithms are capable of 
uncovering the intrinsic connections between numerous molecular 
features and predicted endpoints. Each algorithm has its own 
strengths, and the ability to make good use of such strengths is 
related to a variety of factors (e.g., the structure of the data). However, 
there is a key problem with ML modeling — poor interpretability. 
Previous statistical methods with excellent predictive power for linear 
data, such as linear-based multiple linear regression and partial least 
squares regression, are no longer able to cope with the explosive 
growth of biological "big data". The huge volume of data and the 
complexity of biological processes have led to a more advanced 
nonlinear class of data analysis methods. ML algorithms as applied to 
QSAR models with decision boundaries and hyperparametric 
dependence prediction problems that allow ML modeling with both 
high prediction accuracy and low interpretability. Combining 
multiple computational toxicology techniques to develop an 
integrated workflow for analysis of the underlying mechanisms can 
compensate for their respective shortcomings and allows to obtain 
optimal results. However, how to add computational flux screening 
while maintaining mechanistic analysis is still a critical issue to be 
addressed in the future. 

1.5 Mixtures modeling 

In ecotoxicological studies, screening of contaminant compound risks 
is mainly achieved by qualitatively assessing the mode of action of 
combined toxicity and quantitatively predicting the magnitude of 
combined toxicity. Two pharmacological concepts can be used for 
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data description and data interpretation for mixture toxicity, namely: 
"concentration addition" (CA) is used to predict the toxicity of mixed 
systems composed of compounds with similar modes of toxic action 
(Loewe and Muischneck, 1926); whilst "independent action" (IA) is 
used to predict the toxicity of mixed systems composed of compounds 
with different modes of toxic action (Bliss, 1939). 

The CA and IA models have been applied to the assessment and 
prediction of nanoparticle mixture toxicity (Baek et al., 2020; Lai et 
al., 2022; Liu et al., 2016; Martín-de-Lucía et al., 2019). For example, 
the CA and IA models were used to effectively predict the combined 
toxicity of Cu and ZnO nanoparticles to Lactuca sativa L., and it was 
found that the fit of the IA model to experimental data on the 
combined toxicity of the two ENPs was better than the fit in case of 
the CA model (Liu et al., 2016). However, it is worth pointing out that 
the CA and IA models also require toxicity tests to determine the 
concentration-response relationships for single components. This 
increases the resources, money and time invested in the experiments 
on the one hand. On the other hand, it reduces the efficiency of the 
risk assessment of mixtures. 

1.6 Extrapolation methods for assessing and predicting 

the combined toxicity of MNPs with other novel 

entities 

Testing the toxicity of all chemicals and their mixtures is impractical, 
so there is an increasing need to rely on expert systems and 
computational methods (e.g., PBPKs, QSAR models) in future risk 
assessments. QSAR models can compensate for the low predictive 
efficiency of CA and IA models for mixture toxicity. As mentioned 
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above, QSAR models are mathematical relationships between toxicity 
indicators (e.g., lethality) and descriptors (e.g., physicochemical 
properties of chemicals) (Chen et al., 2017). In particular, QSAR 
model inputs do not require information on the concentration- 
response relationships of all single components in a mixture. 

In previous studies, many breakthroughs have been achieved in the 
application of QSAR approaches to predict single toxicity studies of 
ENPs (Ehret et al., 2014; Epa et al., 2012; Huang et al., 2020; Puzyn 
et al., 2011), and hence QSAR model has become one of the most 
effective approaches for predicting the toxicity of single ENPs. 
However, QSAR studies on quantitative prediction of the toxicity of 
nanoparticles in combination with other novel entities are still in 
their infancy. The primary problem could be a lack of sufficient 
experimental data and standardized toxicity endpoints for developing 
predictive models. In addition to toxicity indicators, descriptors are 
also important for the development of QSAR models. Descriptors for 
nanoparticles can be obtained based on their properties at different 
multiple scales (Wang et al., 2018), which include quantum chemical 
properties of nanoclusters (e.g., total energy, orbital energy, and 
thermodynamic parameters), intrinsic structural properties of 
nanoparticles (e.g., chemical components, primary size, surface 
charge, specific surface area, and solubility), and colloidal properties 
of nanoparticles at mesoscopic scales (e.g., zeta potential and 
hydrodynamic diameter). Since nanoparticle mixtures contain both 
nanoparticle and mixture components, it is necessary to screen or 
calculate the features that can describe the hybrid system. Currently, 
some pioneering studies have developed QSAR models for predicting 
the biotoxicity of nTiO2-based nanoblends (Mikolajczyk et al., 2019; 
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Trinh et al., 2022). The aforementioned nTiO2-based nano-mixtures 
are mainly concerned with mixtures composed of metals and organics 
(Mikolajczyk et al., 2019; Trinh et al., 2022). However, there are still 
limited studies on the application of QSAR models for toxicity 
prediction of mixtures between nanoparticles and other novel entities 
in granular form. 

1.7 Aims, research questions and objectives 

The Earth will be under constant threat when the pressure from new 
types of entities persists over time. The coexistence of multiple novel 
entities in the environment is bound to exacerbate this threat. 
Exploring the interactions between different novel entities and 
clarifying the effects of these interactions on the environmental 
behavior, exposure pathways, toxic effects, and toxicity mechanisms 
of novel entities is a key part to understand and to enable mitigation 
actions. Thus, in this thesis, three novel entities of interest, namely 
ENPs, MPs, and SARS-CoV-2, were selected for study. 

This thesis aimed to (scheme as shown in Figure 1.4): 

1) Assess and quantify the interactions of carbon nanoparticles 
(CNPs) of different types and dimensions with the key fragment of 
the SARS-CoV-2 RNA. 

2) Characterize the interactions of MPs with the non-enveloped 
structural materials of SARS-CoV-2 including a nucleocapsid protein 
and a SARS-CoV-2 RNA fragment in the water phase and in vacuum.
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Figure 1.4. Scheme of main research contents in this thesis.
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3) Collate information on the mixture toxicity of ENPs spanning 
trophic levels as well as aquatic and terrestrial environments 
available in the literature. 

4) Propose a smart strategy for forecasting the toxicity of a 
mixture of ENPs. 

5) Rebuild existing nano-QSAR models by incorporating ML 
methods to describe the toxicity of a mixture of ENPs. 

According to the aims, the following research questions were 
addressed: 

1) What is the mechanism of interaction between CNPs and the 
SARS-CoV-2 RNA fragment? How can the interactions be predicted? 
How do these interactions affect the human exposure and 
transmission of novel coronavirus? (Chapter 2) 

2) What is the mechanism of interaction between MPs and the 
SARS-CoV-2 RNA fragment? What are the factors affecting this 
interaction? How does the interaction affect exposure and 
transmission of novel coronavirus? (Chapter 3) 

3) What joint interactions have been reported after exposure of a 
range of aquatic and terrestrial test species to multiple ENPs? Which 
factors determine the toxicity of a mixture of multiple ENPs? Is there 
a difference between the environmental behavior and fate of multiple 
ENPs compared to single ENPs and do such differences subsequently 
affect the induced ecotoxicological effects? Which important 
knowledge gaps and further research needs have been identified in 
assessing mixture-nanoecotoxicology by experimentalists, compu-
tational modelers, risk assessors, and regulators? (Chapter 4) 
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4) How to quantitatively predict the joint toxicity of emerging or 
untested/unknown mixtures of multiple ENPs? How to establish 
reliable prediction models for mixed toxicity of multicomponent 
ENPs based on ML methods? Which ML models have better 
predictive performance and efficacy based on study samples? How do 
ML methods differ from traditional hybrid models in terms of 
predictive ability? (Chapters 5 and 6) 

Focusing on the above scientific issues, theoretical models and 
computational simulations were used to assess and predict the 
interaction of MNPs with other novel entities and their combined 
toxicity. To accomplish this overall purpose the following objectives 
were achieved: 

1) Probe the molecular interactions between CNPs and a 
SARS-CoV-2 RNA fragment using molecular mechanics simulations; 
Develop QSAR models to describe the interactions of 17 different 
types of CNPs from three dimensions with the SARS-CoV-2 RNA 
fragment. (Chapter 2) 

2) Explore the molecular interactions between five MPs and a 
SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 
K in vacuum and in water using MD simulations. (Chapter 3) 

3) Assess the toxicity of mixtures of ENPs to a variety of different 
species, covering algae, bacteria, daphnia, fish, fungi, insects, and 
plants using data mining methods. (Chapter 4) 

4) Develop nano-QSAR models by ML techniques to predict the 
joint toxicity of seven metallic ENPs for Escherichia coli at different 
mixing ratios; Compare the differences in the ability to predict the 
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joint toxicity by means of ML-based nano-QSAR models and 
component-based mixture models. (Chapters 5 and 6) 

1.8 Thesis outline 

Chapter 1 A general introduction is given to the definition of novel 
entities and to the types of micron or nano scaled novel entities. 
Moreover, the interactions between MNPs and other novel entities 
and the impacts of these interactions on the behavior and toxicity of 
novel entities are illustrated. Meanwhile, the theoretical models and 
in silico methods for the studies of the interactions between MNPs 
and other novel entities and their joint toxicity are provided. 
Furthermore, the objectives and research questions of this thesis are 
proposed in this chapter. 

Chapter 2 The molecular interactions between CNPs and a 
SARS-CoV-2 RNA fragment were investigated using molecular 
mechanics simulations. The mechanism of molecular interactions 
between the CNPs and the SARS-CoV-2 RNA fragment was 
elucidated. A predictive model was developed that quantifies the 
relationship between the structural properties of CNPs and these 
interactions. 

Chapter 3 The molecular interactions between five model MPs and a 
SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 
K in vacuum and in water were investigated using MD simulations. 
The mechanism of the molecular interactions between the MPs and 
the SARS-CoV-2 RNA fragment was elucidated. A correlation was 
established between the interaction affinity and molecular 
parameters of MP monomers. 
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Chapter 4 The toxicity of mixtures of individual ENPs and of hybrid 
nanomaterials to a variety of different species, covering algae, 
bacteria, daphnia, fish, fungi, insects, and plants was reviewed. The 
strength of the joint interactions of multiple nanoparticles and the 
main factors influencing the joint response of the mixtures were 
identified. The knowledge of building a computational approach that 
is able to reduce the experimental costs of ecotoxicity testing of 
mixtures of nanoparticles of varying composition and to include both 
nanohybrids and mixtures of different ENPs was concluded. 

Chapter 5 The classical mixture toxicology models and advanced 
computational toxicology models for toxicity prediction of chemical 
mixtures are summarized and demonstrated. The key strategy to 
quantitatively predict the joint toxicity of an emerging or 
untested/unknown mixtures of multiple ENPs is proposed. 

Chapter 6 Nano-QSAR models by incorporating ML methods to 
predict the cytotoxicity of a mixture of ENPs were developed. The 
differences in the ability to predict the combined toxicity by means of 
the ML-based methods and two component-based mixture models 
(IA and CA) are compared. 

Chapter 7 The research questions and main findings of the thesis are 
discussed. This includes discussion of the interactions between ENPs 
and SARS-CoV-2 genetic materials, mechanisms and influencing 
factors, and the impacts of these interactions on exposure and 
transmission of novel coronavirus; modes of action, influencing 
factors and assessment methods for the toxicity of ENP mixtures to 
ecological species; computational simulation methods for interaction 
and joint toxicity prediction between nanoparticles and other novel 
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entities; research perspectives on experimental and computational 
simulations for the study of environmental behavior, toxic effects and 
mechanisms of mixtures of novel entities; and future risk and hazard 
assessment of novel entities and their mixtures. 
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Abstract 

The coronavirus disease-19 (COVID-19) pandemic caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
rampant in the world and is a serious threat to global health. The 
SARS-CoV-2 RNA has been detected in various environmental media, 
which speeds up the pace of the virus becoming a global biological 
pollutant. Because many engineered nanomaterials (ENMs) are 
capable of inducing anti-microbial activity, ENMs provide excellent 
solutions to overcome the virus pandemic, for instance by application 
as protective coatings, biosensors, or nano-agents. To tackle some 
mechanistic issues related to the impact of ENMs on SARS-CoV-2, we 
investigated the molecular interactions between carbon nanoparticles 
(CNPs) and a SARS-CoV-2 RNA fragment (i.e., a model molecule of 
frameshift stimulation element from the SARS-CoV-2 RNA genome) 
using molecular mechanics simulations. The interaction affinity 
between the CNPs and the SARS-CoV-2 RNA fragment increased in 
the order of fullerenes < graphenes < carbon nanotubes. Furthermore, 
we developed quantitative structure-activity relationship (QSAR) 
models to describe the interactions of 17 different types of CNPs from 
three dimensions with the SARS-CoV-2 RNA fragment. The QSAR 
models on the interaction energies of CNPs with the SARS-CoV-2 
RNA fragment show high goodness-of-fit and robustness. Molecular 
weight, surface area, and the sum of degrees of every carbon atom 
were found to be the primary structural descriptors of CNPs 
determining the interactions. Our research not only offers a 
theoretical insight into the adsorption/separation and inactivation of 
SARS-CoV-2, but also allows to design novel ENMs which act 
efficiently on the genetic material RNA of SARS-CoV-2. This 
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contributes to minimizing the challenge of time-consuming and 
labor-intensive virus experiments under high risk of infection, whilst 
meeting our precautionary demand for options to handle any new 
versions of the coronavirus that might emerge in the future. 

Graphical abstract 

Keywords: COVID-19; Coronavirus; Genetic material; 
Nanomaterials; Interaction. 
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2.1 Introduction 

The outbreak of a new coronavirus which by now has lasted for more 
than a year, has brought great disaster to human beings (Diffenbaugh 
et al., 2020; Slot et al., 2020; Snape and Viner, 2020). To deal with 
the most serious global public health emergency in recent decades, 
the governments of various countries have employed a number of 
measures to control the epidemic situation (Cheng et al., 2020). 
Scientists from various fields are stimulated to either improve 
existing or to develop new "weapons" against the coronavirus 
(Allawadhi et al., 2020; Florindo et al., 2020; Talebian et al., 2020). 
In response to the virus pandemic, nanoscience and nanotechnology 
are offering opportunities and challenges (Figure 2.1). 

 

Figure 2.1. Use of compositional and combinatorial ENM libraries, including 
metals, metal oxides, carbon nanotubes, and silica-based nanomaterials, to 
perform mechanism-based toxicological screening that links material composition 
and systematic variation of specific properties to biological outcomes. 

Viruses such as the avian influenza virus (H5N1), the severe acute 
respiratory syndrome coronavirus (SARS), the swine influenza virus 
(H1N1), and the Middle East respiratory syndrome coronavirus 
(MERS-CoV) are nature's nanostructures (Kostarelos, 2020) which 
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easily enter biological entities because of their special 
nanostructure-related advantages. Similarly, engineered 
nanomaterials (ENMs) also have such special properties due to the 
small size and hence relative large surface to volume ratio, which is in 
part why ENMs have been widely used for a variety of biomedical 
applications. In this respect there is a growing need for design of 
ENMs that are highly specific and efficiently taken up into target cells. 
The controllable physicochemical properties (e.g., size, shape, and 
surface) of ENMs facilitate their direct interactions with viral 
particles (e.g., interacting with viral envelope proteins and nucleic 
acids) or with host cell surface receptors to inhibit virus-cell 
interactions (Y. Chen et al., 2020). Hence, there is an urgent need to 
realize whether ENMs as anti-viral nano-agents can offer effective 
therapeutic strategies to combat the emergence of the coronavirus 
disease-19 (COVID-19). Although there has been criticism about the 
negative impact of nano-technology, the time for the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has 
now come to highlight the knowledge and previous experience of 
nanotechnologists in vaccine and drug development, delivery, and 
distribution (Anonymous, 2020). At the same time, the presence of 
the SARS-CoV-2 RNA in the environment such as in air (Mohan et al., 
2021; Morawska and Cao, 2020) and water (Kitajima et al., 2020; 
Mohan et al., 2021) requires us to confirm whether ENMs because of 
their strong tendency to adsorb to any biotic or abiotic moiety, can 
efficiently remove the novel coronavirus. Understanding the 
interaction mechanisms between ENMs and macromolecules that are 
part of SARS-CoV-2 is an important foundation for the application of 
ENMs versus COVID-19. 
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Molecular simulation methods could be effective tools in exploring 
the interactions between ENMs and biomacromolecules with key 
biological functions (Ge et al., 2011), which would facilitate the design 
of novel nano-agents and improve the development and application 
of new therapeutic techniques. Quantitative structure-activity 
relationships for nanomaterials (nano-QSARs) are guided by the 
classical QSAR model and combine impacts of (non-tested) ENMs 
with their specific physicochemical properties (Chen et al., 2017; 
Puzyn et al., 2011). This provides a new way for rapid screening and 
priority testing of those ENMs that are predicted to be the most 
effective anti-viral agents. Combined with molecular simulation, 
nano-QSAR will play an increasingly important role in the fight 
against COVID-19 and future virus pandemics. 

Many ENMs are known to exhibit high anti-microbial activity; either 
via induction of oxidative stress by for instance metal-based ENMs 
from which ions dissolve having the ability to generate oxidative 
stress (Sánchez-López et al., 2020), or via photothermal/ 
photocatalytic effects, lipid extraction, inhibition of bacterial 
metabolism, isolation by wrapping the microbes (Maleki Dizaj et al., 
2015) with a nano-layer due to the high adsorption and high 
mechanical strength of ENMs. Also carbon nanoparticles (CNPs) are 
recognized as a promising nanomaterial for the detection, filtering, 
and inactivation of viruses. According to recent studies the physical 
interaction of carbon-based nanomaterials with bacteria, rather than 
oxidative stress, is the primary antimicrobial activity of these 
nanostructures (Maleki Dizaj et al., 2015). An additional benefit of 
carbon-based nanoparticles is that their high bio-safety and high 
biological compatibility, which are the characteristics used to comply 
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with various medical drugs (Aasi et al., 2020; Łoczechin et al., 2019; 
Palmieri and Papi, 2020; Vermisoglou et al., 2020). Therefore, this 
work is devoted to assessing and quantifying the interactions of the 
key fragment of the SARS-CoV-2 RNA (K. Zhang et al., 2021) with 
CNPs of different type and dimension. The fragment is a model 
molecule of frameshift stimulation element (FSE) from the 
SARS-CoV-2 RNA genome (K. Zhang et al., 2021). What is more, the 
FSE plays an important role in the virus replication cycle and has 
emerged as a major drug target (Lan et al., 2022). Subsequently, a 
predictive model is developed which quantifies the relationship 
between the structural properties of CNPs and these interactions. 

2.2 Computational methods 

2.2.1 Annealing simulations 

The three-dimensional structure of the SARS-CoV-2 fragment 
determined by K. Zhang et al. (2021) was used for the simulations. 
Seventeen CNPs from three families of fullerenes, carbon nanotubes 
(CNTs), and graphene were selected as model molecules (Figure 2.2). 
The constructed fullerene molecular models include C20, C36, C70, C240, 
carbon nanoballs C60 and C20@C60, as well as the carbon nano-onion 
C20@C60@C240. The constructed carbon nanotube molecular models 
include single-walled carbon nanotube (SCNT) (10,0), SCNT (6,6), 
SCNT (28,0), double-walled carbon nanotube (DCNT) (10,0), DCNT 
(6,6), triple-walled carbon nanotube (TCNT) (10,0), nanorope (NR) 
(6,6), and the complexes SCNT (16,0) with C60 named SCNT 
(16,0)@C60. The constructed graphene molecular models include 
mono-layer graphene (MG) and bilayer graphene (BG).  
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Figure 2.2. Structure, morphology, and character of the studied models of carbon 
nanoparticles. 

To search for the best geometry with various forms of energy for each 
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annealing simulation was performing with the Materials Studio 
software package (ver. 8.0). The universal force field was adopted to 
perform this simulation. The cutoff radius was chosen to be 18.5 Å. 
The annealing simulation was performed as follows: a total of 200 
annealing cycles which represented an optimal balance of total energy 
(Appendix Figure S2.1) were simulated with an initial temperature of 
200 K, a midcycle temperature of 300 K, and 50 heating ramps per 
cycle, with 100 dynamic steps per ramp. The canonical ensemble 
(NVT ensemble, in which the number of molecules [N], volume [V], 
and temperature [T] of the system are kept constant) was used and 
the molecular dynamic simulations were performed with a time step 
of 1.0 fs and a Nosé thermostat. After each cycle, the lowest energy 
configuration was optimized. The van der Waals energies, 
electrostatic and total potential energies of the studied systems were 
calculated using the annealing simulation. 

For the interaction systems, interaction energy (Eint) is used to 
evaluate the stability of the complexes of the CNPs with the 
SARS-CoV-2 RNA fragment. The magnitude of Eint is an indication of 
the magnitude of the driving force towards complexation. A negative 
value reflects a stable adsorption on the CNPs. Eint was calculated by 

!!"# = !$%&'()*+%, − !$%& − !()*+%,          (2.1) 

where ECNP-covRNA, ECNP, and EcovRNA represent the energies (van der 
Waals, electrostatic, or total potential energies) of the complex, the 
isolated CNPs, and the individual SARS-CoV-2 RNA fragment, 
respectively. 
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2.2.2 Development of a predictive nano-QSAR model for Eint 

Based on the interactions between the CNPs and the SARS-CoV-2 
RNA fragment implied by the annealing simulations, several 
constitutional geometric and topological descriptors (Table 2.1) such 
as molecular weight (MW), overall surface area (OSA), volume (Vol), 
specific surface area (SSA), and sum of degrees (SDeg), were selected 
to correlate with Eint so as to construct predictive models. OSA and 
Vol were calculated using Multiwfn 3.8 software (Lu and Chen, 2012a, 
2012b). The SSA values were obtained directly from the derivation of 
OSA and Vol. SDeg was calculated using Chem3D Ultra (ver. 19.0). 
Orthogonal partial least squares (OPLS) regression was performed 
with Simca (ver. 14.1 Umetri AB & Erisoft AB) to select variables and 
to develop models. Randomization tests proposed for testing the 
rationality of the models were performed using the RAND () function 
to generate the pseudo-random numbers of the Eint derived from the 
total potential energy. 

2.3 Results and discussion 

2.3.1 Modeling the interaction of CNPs with the SARS-CoV-2 
RNA fragment 

In order to reveal the mechanisms of the interactions of CNPs with 
the SARS-CoV-2 RNA fragment, the Eint derived from the total 
potential energies, the van der Waals energies, and electrostatic 
energies are summarized in Figure 2.3 and Appendix Table S2.1. The 
optimized conformations obtained after the annealing simulations are 
shown in Figure 2.3A. The computed values are negative, indicating 
that the CNPs can form stable complexes with the SARS-CoV-2 RNA 
fragment. 
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Figure 2.3. Optimized structures of the complexes of the CNPs with the 
SARS-CoV-2 RNA fragment (abbreviated as covRNA) obtained after the 
annealing/geometry optimization procedure (A) and the calculated total potential 
energy interaction energies (Eint), van der Waals interaction energies, and 
electrostatic interaction energies between the CNPs and the SARS-CoV-2 RNA 
fragment using the simulated annealing method. The first 7 pictures (A) and the 
orange block (B) represent the fullerenes, the middle 8 pictures (A) and blue block 
(B) represent the nanotubes, the last 2 pictures (A) and the pink block (B) represent 
the graphenes. 

E i
nt

 (k
J/

m
ol

)

-1000

-750

-500

-250

0

Total potential
van der Waals
Electrostatic 

C 20 C 36 C 60 C 70 C 24
0

C 20
@

C 60

C 20
@

C 60
@

C 24
0

SCNT (1
0,0

)

SCNT (6
,6)

SCNT (2
8,0

)

DCNT (1
0,0

)

DCNT (6
,6)

TCNT (1
0,0

)

NR (6
,6)

SCNT (1
6,0

)@
C 60 MG BG

C20-covRNA C36-covRNA C60-covRNA C70-covRNA C240-covRNA C20@C60-covRNA

C20@C60@C240-covRNA SCNT (10,0)-covRNA SCNT (6,6)-covRNA SCNT (28,0)-covRNA DCNT (10,0)-covRNA

DCNT (6,6)-covRNA TCNT (10,0)-covRNA NR (6,6)-covRNA SCNT (16,0)@C60
-covRNA

MG-covRNA BG-covRNA

A

B



 

 44 

Figure 2.3B shows that CNTs have the highest absolute energy of 
interaction with the SARS-CoV-2 RNA fragment among the studied 
CNPs, as derived from the total potential energies. This suggests a 
strong interaction between the CNTs and the SARS-CoV-2 RNA 
fragment. 

Generally, the interaction affinity between the CNPs and the 
SARS-CoV-2 RNA fragment increased in the order of fullerenes < 
graphenes < CNTs. In addition, the computed electrostatic 
interaction energies between the CNPs and the SARS-CoV-2 RNA 
fragment are similar to the Eint values derived from the total potential 
energies (Figure 2.3B). This implies that the electrostatic interaction 
contributes mainly to the mechanism of interaction. Wang et al. (2017) 
also concluded that electrostatic interactions contribute to the 
gaseous adsorption energies of organic molecules onto carbon-based 
nanomaterials by means of polyparameter linear free energy 
relationships. As the SARS-CoV-2 has a positive charge (K. Zhang et 
al., 2021), whereas the studied CNPs are neutral, the electrostatic 
interactions are mainly ion-induced dipole interactions. 

2.3.2 Nano-QSAR prediction of the interaction of CNPs with 
the SARS-CoV-2 RNA fragment 

The OPLS regression technique was used to find the most suited 
descriptors (Table 2.1) for developing models to quantify the Eint 
derived from the total potential energies Equations 2.2–2.4. SSA is 
the parameter that most significantly correlates with the Eint values of 
fullerenes, and there is a positive correlation between SSA and the 
absolute value of Eint. For CNTs and graphenes, OSA and SDeg are the 
parameters that correlate most significantly with the Eint values. At 
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the same time, OSA showed a positive correlation with the absolute 
Eint, whereas SDeg displayed a negative correlation with the absolute 
Eint. For the whole set of fullerenes, CNTs, and graphenes, MW and 
SDeg are the parameters correlating most significantly with the Eint 
values. Moreover, MW presented a positive correlation with the 
absolute value of Eint, while SDeg had a negative correlation with the 
absolute value of Eint. 

Table 2.1. Molecular parameters of the carbon nanoparticles. 

CNPs * Chemical 
formula 

Mol 
Weight 
(g/mol) 

Overall 
surface 

area 
(nm2) 

Volume 
(nm3) 

Specific 
surface 

area 
(m2/g) 

Sum of 
Degrees 

C20 C20 240.220  1.859  0.234  4659.147  60 

C36 C36 432.396  2.678  0.404  3729.094  108 

C60 C60 720.660  3.812  0.645  3185.747  180 

C70 C70 840.770  4.325  0.750  3098.086  210 

C240 C240 2882.640  13.127  2.538  2742.369  720 

C20@C60 C80 960.880 4.340 0.824 2720.323 240 

C20@C60@C240 C320 3843.520  10.283  3.047  1611.094  960 

SCNT (10,0) C2010H22 24164.286  108.576  21.858  2705.906  6010 

SCNT (6,6) C2100 25223.100  113.148  22.822  2701.464  6288 

SCNT (28,0) C5846 70291.912  314.016  62.889  2690.280  1098 

DCNT (10,0) C2282H58 29767.822  65.384  22.949  1322.735  1495 

DCNT (6,6) C2080H68 27148.064  61.193  21.367  1357.418  1454 

TCNT (10,0) C2146H130 28069.814  50.583  21.944  1085.212  2173 

NR (6,6) C2160H144 28266.192  92.495  23.584  1970.605  3204 

SCNT (16,0)@C60 C2108H32 27415.828  109.455  22.416  2404.270  1091 

MG C2046H126 26763.882  124.221  23.031  2795.087  6012 

BG C2112H180 27677.568  77.180  22.648  1679.300  6156 

*= more details in Figure 2.2. 
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Among the selected descriptors, MW usually describes the size of a 
molecule. SDeg as a molecular descriptor of topology is the sum of 
degrees of every atom, and an atom's degree is the number of 
nonhydrogen atoms to which it is bonded. Moreover, SSA and OSA 
are known to be associated with the steric structures of NPs. Note 
that surface properties such as surface area generally dominate the 
behavior (Yang and Xing, 2010) and effects (Mottier et al., 2016) of 
CNPs. Taken together, the selected nano-specific descriptors not only 
are easy to obtain, but also can explain the interaction mechanism. 

Fullerenes: 

!!"# = −32.241 − 0.021 ∙ ++,              (2.2) 

n = 7, R2 = 0.804, RMSE = 0.485, Q2CUM = 0.737. 

CNTs and graphenes: 

!!"# = −309.469 − 0.742 ∙ 0+, + 0.039 ∙ +234     (2.3) 

n = 10, R2 = 0.849, RMSE = 0.440, Q2CUM = 0.681. 

Fullerenes, CNTs, and graphenes: 

!!"# = −110.679 − 0.007 ∙ 56 + 0.020 ∙ +234     (2.4) 

n = 17, R2 = 0.804, RMSE = 0.473, Q2CUM = 0.710. 

where n stands for the number of CNPs, R2 is squared regression 
coefficient, RMSE is root mean squared error, and Q2CUM is the 
cumulative percentage of variance explained for extracted 
components. The values of Q2CUM of the models are higher than 0.5, 
suggesting the good robustness and internal predictability of the 
models and the models thus have high goodness-of-fit. 
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To further ensure the reliability of the obtained models, 
randomization tests were carried out by generating a fake pool of data 
for the Eint values derived from the total potential energies (Appendix 
Table S2.2). The Eint values were scrambled in two ways, namely a 
single sample one and a full one, to generate the pseudo-random 
numbers. As shown in Appendix Table S2.2, all the OPLS models 
obtained with the scrambled data exhibited non-competitive R2 and 
Q2CUM values, as comparison to the three models provided in 
Equations 2.2−2.4. Thus, it is clear that the developed models are 
reliable and grasp the most significant information used to interpret 
the interactions of CNPs with the SARS-CoV-2 RNA fragment. The 
outcome of the randomization testing also shows that the 
nano-specific descriptors are relevant. 

2.3.3 Implications of nano-QSAR based approaches in 
battling coronaviruses 

A virus can be regarded as a nanoscale particle consisting of 
outer-capsid proteins and inner-core nucleic acids (RNA or DNA). 
ENMs can not only directly interact with viral particles including the 
envelope protein and the nucleic acids, but they can also 
competitively bind with the cell receptors. As aforementioned, CNPs 
can interact with the SARS-CoV-2 RNA fragment and stabilize it. 
Knowing the interaction affinity between ENMs and virus particles is 
important for accurately inferring the efficacy of antiviral 
nano-agents, which can be applied to disrupt the viral replication 
cycle (Y. Chen et al., 2020) and even directly to destroy its structure. 

The SARS-CoV-2 RNA has been detected in environmental media (Al 
Huraimel et al., 2020; Kitajima et al., 2020; Mohan et al., 2021; 
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Morawska and Cao, 2020), which causes the novel coronavirus to 
become an environmental pollutant especially in air, in sewage (e.g., 
via the stool of contaminated patients) and in watersheds. It is known 
that ENMs, especially carbon-based nanomaterials, are widely 
utilized in the adsorption and separation of environmental pollutants 
because of their strong adsorption capacity and high adsorption 
efficiency (Ji et al., 2013; Pan and Xing, 2008; Wang et al., 2017; 
Yang and Xing, 2010). It is reported that the SARS-CoV-2 RNA is 
likely to persist for a long time in untreated wastewater (Ahmed et al., 
2020). Hence, it is important to elucidate the interactions of the 
CNPs with the SARS-CoV-2 RNA fragment. Besides, the knowledge of 
these interactions can deepen and expand related research in other 
nanotechnology-based applications, e.g., disinfectants for personal 
protective equipment and sensors for SARS-CoV-2 detection. 

All human beta-coronaviruses share a certain degree of genetic and 
structural homology (Shin et al., 2020). As reported, the SARS-CoV-2 
genome sequence homology with SARS-CoV and MERS-CoV is 77 % 
and 50 %, respectively (Kim et al., 2020). Hence, the nano-QSAR 
models developed for SARS-CoV-2 in the present study are likely to 
be suitable for forecasting the interactions between the CNPs and 
other beta-coronaviruses. Furthermore, we advocate to keep the 
modeling as simple as it can be, and to filter those molecular 
descriptors which are easy to obtain and are related to antimicrobial 
(physical) properties. In the face of the urgency of the COVID-19 
pandemic, nano-QSAR is a useful tool to investigate the impacts of 
nanotechnology on the novel coronavirus, and it has the advantages 
of preliminary screening of effective ENMs that will save valuable 
research time — the step towards validating the models by means of 
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experimental research can be started and done faster in a justified 
way. Eventually this may lead to saving efforts and preventing 
infection during experimental testing. 

Nanomaterials entered the consumer market around 2000, meaning 
that by now nanoparticles are used in many products. For instance, 
within toothpaste titanium dioxide nanoparticles can be found as well 
as in creams to whiten products (Braakhuis et al., 2021; Rompelberg 
et al., 2016), and silver nanoparticles are used within many cosmetics 
like anti-aging creams (Kaul et al., 2018). The use of carbon-based 
nanomaterials for antiviral purposes is not so far off (Patel et al., 
2019), and the virus killing activity of differently shaped 
carbon-based nanomaterials is intensively discussed (Innocenzi and 
Stagi, 2020; Serrano-Aroca et al., 2021). Serrano-Aroca et al. (2021) 
concluded that carbon-based nanomaterials had antiviral activity 
against 13 enveloped positive-sense single stranded RNA viruses, 
including SARS-CoV-2. It has been shown that the toxicity of 
nanomaterials is difficult to unravel, the antimicrobial activity of the 
nanoparticles depends on their composition, surface modification, 
intrinsic properties (Innocenzi and Stagi, 2020). Especially for 
unwanted toxicity, rigid high aspect ratio carbon fibers might be an 
issue in this respect that need to be dived furth into. Nonetheless, the 
use of carbon-based biocompatible nanomaterials as antivirals is still 
an almost unexplored field, while the published results show 
promising prospects. 

2.4 Conclusions 

To sum up, through molecular mechanics simulations, we have 
mainly addressed the molecular interactions between CNPs and the 
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SARS-CoV-2 RNA fragment. The estimated Eint suggests that the 
electrostatic interaction could be the predominant driving force for 
the interactions. The models on Eint developed by OPLS show high 
goodness-of-fit and robustness. Four nanostructural descriptors (MW, 
SSA, OSA, and SDeg) were found to be the decisive factors controlling 
Eint. 
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Abstract 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
causes the coronavirus disease-19 (COVID-19) pandemic spread 
across the world and remains difficult to control. Environmental 
pollution and habitat conditions do facilitate SARS-CoV-2 
transmission as well as increase the risk of exposure to SARS-CoV-2. 
The coexistence of microplastics (MPs) with SARS-CoV-2 affects the 
viral behavior in the indoor and outdoor environment, and it is 
essential to study the interactions between MPs and SARS-CoV-2 
because they both are ubiquitously present in our environment. To 
determine the mechanisms underlying the impact of MPs on 
SARS-CoV-2, we used molecular dynamic simulations to investigate 
the molecular interactions between five MPs and a SARS-CoV-2 RNA 
fragment at temperatures ranging from 223 to 310 K in vacuum and 
in water. We furthermore compared the interactions of MPs and 
SARS-CoV-2 RNA fragment to the performance of SARS-CoV-1 and 
Hepatitis B virus (HBV) RNA fragments in interacting with the MPs. 
The interaction affinity between the MPs and the SARS-CoV-2 RNA 
fragment was found to be greater than the affinity between the MPs 
and the SARS-CoV-1 or HBV RNA fragments, independent of the 
environmental media, temperature, and type of MPs. The 
mechanisms of the interaction between the MPs and the SARS-CoV-2 
RNA fragment involved electrostatic and hydrophobic processes, and 
the interaction affinity was associated with the inherent structural 
parameters (i.e., molecular volume, polar surface area, and molecular 
topological index) of the MPs monomers. Although the evidence on 
the infectious potential of SARS-CoV-2 RNA is not fully understood, 
humans are exposed to MPs via their lungs, and the strong 
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interaction with the gene materials of SARS-CoV-2 likely affects the 
exposure of humans to SARS-CoV-2. 

 

Graphical abstract 

Keywords: Microplastic pollution; SARS-CoV-2; Nucleic acid 
material; Behavior and fate; Environmental conditions. 
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3.1 Introduction 

The global pandemic of the coronavirus disease-19 (COVID-19) has 
suddenly made us realize that viruses have become important 
biological pollutants. The outbreak of the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) not only seriously threatens 
human health (Topol, 2020; Turner et al., 2021), but also greatly 
increases environmental stress (Adelodun et al., 2021a, 2021b; 
Bedrosian et al., 2021). It is thus essential to understand the 
environmental fate and the behavioral dynamics of the coronavirus. 
The SARS-CoV-2 can travel in all environmental compartments like 
water (Navarro et al., 2021; Sala-Comorera et al., 2021), air (Dubey et 
al., 2021; Razzini et al., 2020), and soil (Anand et al., 2021; Steffan et 
al., 2020). A nucleic acid material (DNA or RNA) enclosed in a 
nucleocapsid protein is referred to as the non-enveloped structure of 
a virus particle (Müller et al., 2019). This is in contrast to the 
enveloped structure of a virus particle which contains a biological 
membrane. An envelope increases viral sensitivity to external 
physical stressors (pH, heat, dryness, etc.) as biological membranes 
are relatively fragile structures. Consequently, the SARS-CoV-2 as an 
enveloped virus is more sensitive to environmental factors than 
non-enveloped viruses (Achak et al., 2021). Thus, it is reasonable to 
believe that the non-enveloped structural materials of the 
SARS-CoV-2 could be more resistant to these inactivation factors and 
are likely to maintain their stability for a long time. Furthermore, 
studies on the nucleic acid material of SARS-CoV-2 are used for its 
detection and control in the environment and even for the 
implementation of personal health prevention measures. 
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Microplastics (MPs, i.e. particle sizes < 5 mm) are one of the most 
common and persistent emerging human-made pollutants. MPs are 
widespread in a ubiquitous fashion (Sheng et al., 2021), like they are 
detected in coastal waters (Roscher et al., 2021), freshwater and 
sediment (Q. Zhang et al., 2021), influents and effluents of sewage 
treatments (Nakao et al., 2021), agricultural soils (Boughattas et al., 
2021), the atmosphere (Amato-Lourenço et al., 2020), and biosphere 
(Patil et al., 2022; Rezania et al., 2018). 

The plethora of sources that can contribute to the release of MPs into 
air have been summarized in (Catarino et al., 2018; UNEP, 2016). In 
addition, the main sources of indoor and outdoor plastic debris 
released into the air and subject to human inhalation are illustrated 
by Amato-Lourenço et al. (2020). The indoor concentrations ranged 
between 1.0 and 60.0 fibers/m3 whereas outdoor concentrations were 
significantly lower as they range between 0.3 and 1.5 fibers/m3 (Dris 
et al., 2017). This is important to quantify and realize, because MPs 
have been reported as carriers or vectors for concurrent pollutants, 
e.g., metals (R. Li et al., 2021), organic pollutants (Yu et al., 2021), 
and they exhibit diverse interactive effects (Bhagat et al., 2021; Kim et 
al., 2017; Sun et al., 2021). In addition, MPs are becoming a novel 
ecological habitat termed the plastisphere (Zettler et al., 2013), and 
could facilitate the survival and dissemination of bacterial and fungal 
pathogens (Moresco et al., 2021), and antibiotic resistance genes (R. 
Li et al., 2021). Importantly, plastic pollution could be a secondary 
pathway for the transmission of human pathogenic viruses (Moresco 
et al., 2021) via the respiratory exposure route. We focus here on the 
MPs–SARS-CoV-2 interactions because both the virus as well as the 
sources of MPs (like fibers from clothes, building materials, 
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household objects, polymer fragments in urban dust) are closely 
correlated to the presence of human. It was also reported that 
SARS-CoV-2 remains more stable on plastic surfaces than on 
stainless steel, glass, and ceramics (Gidari et al., 2021) which has its 
consequences for the oral and hand contact exposure routes for 
humans. Amato-Lourenço et al. (2022) found that SARS-CoV-2 
aerosols may bind to total suspended particles, such as MPs, and 
facilitate virus entry into the human body. Moreover, SARS-CoV-2 
virus particles have the ability to sorb to the surface of MPs released 
during washing processes (Belišová et al., 2022). Hence, there is an 
urgent need to further explore the interactions and mechanisms of 
MPs and SARS-CoV-2. 

Virus stability in the environment is strongly influenced by the size 
and structure of the virus particle (including the presence or absence 
of an envelope), the type of genome (DNA or RNA), a transmission 
route such as faecal-oral and air droplets, the presence of vectors or 
carriers like the MPs, and the viral concentration of the 
contamination source. As known, the intrinsic properties such as 
polymer type of MPs dictate their interaction affinity with other 
co-contaminants (Fred-Ahmadu et al., 2020; Menéndez-Pedriza and 
Jaumot, 2020). Besides, many environmental factors can affect the 
stability of viruses in the environment (Aboubakr et al., 2021; Achak 
et al., 2021; Paul et al., 2021), in humans (Matson et al., 2020), and 
on common touch surfaces (Aboubakr et al., 2021). Notably, 
temperature (Paul et al., 2021) and relative humidity (Zhao et al., 
2020) are the two critical factors that determine the fate and 
transport of coronaviruses given certain environmental conditions. 
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Therefore, searching for some key characteristics that may affect the 
interaction of the MPs and SARS-CoV-2 is a noteworthy issue. 

In silico methods are a promising approach and play a significant role 
in elucidating the mechanisms of the interactions of pollutants and 
biomacromolecules (Chen et al., 2019; Ge et al., 2011). In particular, 
the molecular simulation method such as molecular dynamics (MD) 
simulation is a practical in silico method in environmental 
applications (Chen et al., 2021; Feng et al., 2022; Sun et al., 2013). In 
addition, the molecular simulation method has shown to be an 
effective tool in exploring the interactions between MPs and 
SARS-CoV-2, and offered theoretical insights into the 
adsorption/separation and inactivation of carbon nanoparticles with 
a SARS-CoV-2 RNA fragments (F. Zhang et al., 2021a). This way in 
silico methods can not only contribute to minimizing the challenge of 
time-consuming and labor-intensive virus experiments under high 
risks of infection, but also to meeting our precautionary demand for 
options to handle any new versions of the coronavirus that might 
emerge in the future. 

In light of the demands from the exploration of the interaction and 
mechanism between MPs and SARS-CoV-2, this knowledge gap needs 
to be addressed. Hence, in this work for the first time MPs were 
studied theoretically by MD simulation to characterize their 
interactions with the non-enveloped structural materials of 
SARS-CoV-2 including a nucleocapsid protein and a SARS-CoV-2 
RNA fragment in the water phase and in the vacuum phase (as a 
reference for the water phase and as an approximation to the gas 
phase). Two reference viruses, namely SARS-CoV-1 (homologous 
coronavirus similar to SARS-CoV-2) and Hepatitis B virus (HBV, 



 

 58 

non-coronavirus dissimilar to SARS-CoV-2) were selected to compare 
the performance in interacting with MPs. The influence of five 
different MP types and the temperature as an environmental factor is 
considered. The objectives of this study were divided in several parts: 
1) Comparison of the interactions of the MPs with the nucleocapsid 
protein and with the viral RNA fragments; 2) Interaction mechanisms 
between the MPs and viral RNA fragments; and 3) Correlation of the 
interaction affinity and molecular parameters of MP monomers. 

3.2 Computational methods 

3.2.1 MD simulation 

The selected three-dimensional structure models of the SARS-CoV-2 
RNA fragment determined by K. Zhang et al. (2021), the SARS-CoV-1 
RNA fragment determined by Robertson et al. (2004), and the HBV 
RNA fragment determined by LeBlanc et al. (2022) were used as 
model compounds for the simulation of the interactions between MPs 
and the viral RNA fragments. It should be noted that the SARS-CoV-2 
RNA fragment is a model molecule of a frameshift stimulation 
element (FSE) from the SARS-CoV-2 RNA genome (K. Zhang et al., 
2021). The FSE plays an important role in the virus replication cycle 
and has emerged as a major drug target (Lan et al., 2022). The 
selected three-dimensional structure models of the SARS-CoV-2 
nucleocapsid protein determined by Kang et al. (2020), the 
SARS-CoV-1 nucleocapsid protein determined by Huang et al. (2004), 
and the HBV nucleocapsid protein determined by Böttcher and 
Nassal (2018) were used as model compounds for the simulation of 
the interactions between MPs and the viral nucleocapsid protein. The 
structures of the RNA fragments [PDB ID: 6XRZ (SARS-CoV-2), 
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1XJR (SARS-CoV-1), 6VAR (HBV)] and nucleocapsid proteins [(PDB 
ID: 6M3M (SARS-CoV-2), 1SSK (SARS-CoV-1), 6HU7 (HBV)] were 
obtained from the RCSB Protein Data Bank (Burley et al., 2019). 

The polymer chains derived from five plastic monomers were built as 
model compounds for MPs including polybutene (PB), polyethylene 
(PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride 
(PVC) within the simulation. All the simulations were carried out in a 
box with three-dimensional boundary conditions. The dimensions of 
the simulation boxes were a = b = c = 85 Å, a = b = c = 90°. The 
length of the simulation box in each direction was large enough to 
enable the interactions between the MP polymer chain and the 
materials of the viruses. The process of building the MP models refers 
to the simulation methods developed by Guo et al. (2019) with slight 
modifications. The MP polymer chains were built and energy 
minimized using the smart geometry optimization algorithm, which is 
the combination of steepest descent, conjugate gradient, and 
quasi-Newton geometry optimization algorithms. Then the optimized 
polymer chain was randomly packed in rectangular boxes with 
three-dimensional periodic boundary conditions by Amorphous Cell 
Construction. For each box, only one polymer chain was added. The 
amount of PB, PE, PP, PS, and PVC monomer molecules were 200, 
600, 500, 200, and 600. The MP-virus systems included one polymer 
chain, one RNA fragment or one nucleocapsid protein, and either a 
vacuum layer (83 Å) or a water layer (83 Å). For the water system, 
1000 water molecules were incorporated in each unit cell. The smart 
geometry optimization algorithm was used to minimize the energy of 
the simulation systems. Then the MD calculations were performed in 
the canonical ensemble NVT system in which the number of 
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molecules [N], volume [V], and temperature [T] of the system are 
kept constant at 223, 263, 273, 298, and 310 K. These temperatures 
represent the range from a low-temperature environment to the 
temperature of the human body. The universal force field was 
adopted in the simulation framework. The van der Waals interaction 
cut-off was 12.5 Å, and the Ewald method (accuracy 0.001 kcal/mol) 
was used. The simulation was performed for 100 ps which allowed the 
studied system to reach equilibrium, and each step was 1.0 fs. A Nose 
thermostat was adopted. All the simulations were performed with the 
Materials Studio software package (ver. 8.0). 

3.2.2 Interaction energy 

For the interaction systems, the magnitude of the interaction energy 
(Eint) is an indication of the magnitude of the driving force towards 
complexation. A negative value reflects stable adsorption on the 
plastisphere. Eint was calculated by 

!!"# = !-&'*!./0 − !-& − !*!./0             (3.1) 

where EMP-virus, EMP, and Evirus represent the energies of the complex, 
the isolated MPs, and the viral RNA fragment or nucleocapsid protein, 
respectively. 

3.2.3 Molecular parameters and linear correlation models 

The MP monomers' molecular parameters (Appendix Table S3.1) 
such as volume of molecule (VM), polar surface area (PSA), and 
molecular topological index (MTI) were selected to correlate with Eint 
so as to develop a quantitative relationship between the inherent 
properties of MPs and Eint. The molecular parameters were calculated 
using Multiwfn 3.8 software (Lu and Chen, 2012a, 2012b). 
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Correlation of interaction affinity and molecular parameters of the 
MP monomers was described using a polynomial relationship by 
performing linear regression models in Sigma Plot, ver. 14.0 (Systat 
Software Inc., San Jose, CA). 

3.2.4 Statistical analysis 

Statistically significant differences between test groups were 
determined by independent t-test and one-way analysis of variance 
with the Waller-Duncan test post hoc, at a significance level of p < 
0.05 (IBM SPSS Statistics for Windows, ver. 23.0, IBM Corp., 
Armonk, NY). Linear regression analysis at the significant level of p < 
0.05 was carried out using the SPSS. 

3.3 Results 

3.3.1 Comparison of interactions of MPs with viral 
nucleocapsid protein and RNA fragments 

To fully understand the interactions between the MPs and the 
non-enveloped structures of the virus, the interactions of the MPs 
with the nucleocapsid protein and with the viral RNA fragments were 
compared after geometry optimization (Figure 3.1). As shown in 
Figure 3.1A, for the SARS-CoV-2, the absolute Eint values between the 
MPs and the nucleocapsid protein were significantly lower (p < 0.05) 
than those between the MPs and the RNA fragment. In contrast, for 
the HBV (Figure 3.1C), the absolute Eint values between the MPs and 
the nucleocapsid proteins were significantly higher (p < 0.05) than 
those between the MPs and the RNA fragments. For the SARS-CoV-1 
(Figure 3.1B), the absolute Eint values between the MPs and the 
nucleocapsid proteins were higher than the corresponding values 
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between the MPs and the RNA fragments, but the two groups showed 
no significant difference (p > 0.05). Moreover, there was no 
significant difference in the absolute Eint values between the 
interactions of the MPs with the nucleocapsid proteins of the 
SARS-CoV-2 and the SARS-CoV-1. However, the absolute Eint values 
between the MPs and the nucleocapsid proteins of the HBV were 
significantly higher than those between the MPs and the nucleocapsid 
proteins of the SARS-CoV-2 or the SARS-CoV-1 (p < 0.05). In 
addition, the absolute Eint values between the MPs and the RNA 
fragments of the SARS-CoV-2 were significantly higher than those 
between the MPs and the nucleocapsid proteins of the SARS-CoV-1 or 
the HBV (p < 0.05). Moreover, no significant difference in the 
absolute Eint values between the interactions of the MPs with the RNA 
fragments of the SARS-CoV-1 and the HBV was found. 

 

Figure 3.1. Interaction energies of five types of MPs with the SARS-CoV-2 RNA 
fragment and the nucleocapsid protein (A), the SARS-CoV-1 RNA fragment and the 
nucleocapsid protein (B), as well as the HBV RNA fragment and the nucleocapsid 
protein (C), as obtained by geometry optimization. 

Generalizing, when comparing the nucleocapsid protein and the RNA 
fragment, then the MPs exhibited a stronger interaction with the RNA 
fragment for the SARS-CoV-2, while the MPs exhibited a stronger 
interaction with the nucleocapsid protein for the HBV. Furthermore, 
this difference in the interactions was not affected by the type of MP. 
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The plastic types were a bit more discriminative for SARS-CoV-1 and 
HBV compared to the SARS-CoV-2 that had interactions energies all 
similar for each type of MPs. 

3.3.2 Interaction mechanisms between MPs and viral RNA 
fragments 

To reveal the mechanisms of the interactions of the MPs with the viral 
RNA fragments, the values of Eint as derived from the total energy (Et), 
the potential energy (Ep), the van der Waals energy (Ev), and the 
electrostatic energy (Ee) are summarized in Figure 3.2, Appendix 
Figures S3.1 and S3.2. As shown in Figure 3.2A and B, the computed 
Eint values were negative across most of the temperature range in 
vacuum and the full temperature range in water. This indicates that 
the MPs can form stable complexes with the SARS-CoV-2 RNA 
fragment. Furthermore, the computed Eint derived from the Ee 
between the MPs and the SARS-CoV-2 RNA fragment were generally 
closer to the Eint values derived from the Et/Ep than the Eint values 
derived from the Ev in both vacuum and water. Moreover, there were 
no significant differences between the Eint values derived from the Ee 
and Et/Ep (p > 0.05) in vacuum, but significant differences between 
the Eint values derived from the Ev and Et/Ep (p < 0.05). This implies 
that the electrostatic interaction contributed mainly to the 
mechanism of interaction between the MPs and SARS-CoV-2 RNA 
fragment. The genetic material of the SARS-CoV-2 is positive 
single-stranded RNA (K. Zhang et al., 2021), whereas the studied MPs 
are neutral and the electrostatic interactions are mainly ion-induced 
dipole interactions. 
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Figure 3.2. Interaction energies of the five types of MPs with the SARS-CoV-2 RNA 
fragment in vacuum (A) and in water (B) at different temperatures. Et: interaction 
energy derived from total energy, Ep: interaction energy derived from potential 
energy, Ev: interaction energy derived from van der Waals energy, and Ee: 
interaction energy derived from electrostatic energy. 

Moreover, the absolute Eint values derived from the Et, Ep, or Ee for 
the interactions between the MPs and the SARS-CoV-2 RNA fragment 
(Figure 3.2B) in water were significantly greater than those in 
vacuum (p < 0.05) (Figure 3.2A), implying that the interaction 
affinity of the MPs with the SARS-CoV-2 RNA fragment in water was 
stronger compared with the affinity in vacuum. This may be caused 
by the hydrophobicity of MPs (Ding et al., 2020; J. Zhang et al., 
2020), which can provide stronger interactions with the viral RNA 
fragment in water. 
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As depicted in the Appendix Figures S3.1 and S3.2, the Eint values 
derived from the Et and Ep for the interaction between the MPs and 
the SARS-CoV-1 RNA or HBV RNA fragments in vacuum and water 
phases were significantly lower than those for the interaction between 
the MPs and SARS-CoV-2 RNA fragment (p < 0.05). This means that 
the MPs exhibited stronger interaction with the SARS-CoV-2 RNA 
fragment than with the SARS-CoV-1 RNA and the HBV RNA 
fragments. Moreover, most of the Eint values for the interaction 
between the MPs and the SARS-CoV-1 RNA fragment or the HBV 
RNA fragment tended to be positive. This implies that the complexes 
of the MPs with SARS-CoV-1 RNA fragment or HBV RNA fragment 
were instable. As a result, it is difficult to analysis the interaction 
mechanisms of the MPs and the SARS-CoV-1 RNA fragment or the 
HBV RNA fragment. 

3.3.3 Correlation of interaction affinity and temperatures 

To test the impact of the studied temperature on the interactions of 
the MPs with the viral RNA fragments, the variation of the interaction 
affinity with the temperatures was plotted (Figure 3.3, Appendix 
Figures S3.3 and S3.4). In general, for each of the MPs, the Eint values 
derived from the total energies fluctuated with the temperature. In 
particular, the Eint values between the MPs and SARS-CoV-2 RNA 
fragment tended to reach the highest value at 298 K in vacuum 
(Figure 3.3A), implying that the interaction affinity between the MPs 
and SARS-CoV-2 RNA fragment was lowest at 298 K. In water, the 
Eint values between the PS MPs and SARS-CoV-2 RNA fragment 
decreased with an increase of the temperature (Figure 3.3B). A 
similar phenomenon occurs in the interaction between the PS MPs 
and SARS-CoV-1 RNA fragment in water (Appendix Figure S3.3B). In 
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terms of considering the various types of MPs as a whole, the Eint 
values were not significantly different between the temperatures 
(Figure 3.3, Appendix Figures S3.3 and S3.4). This also means that 
temperature was not a determinative factor affecting the interaction 
affinity between the MPs and viral RNA fragments in the present 
simulation study. 

 

 

Figure 3.3. Variation of the interaction energies derived from the total energies of 
the five types of MPs with the SARS-CoV-2 RNA fragment in vacuum (A) and in 
water (B) with the studied temperatures (223, 263, 273, 298, and 310 K). Different 
letters represent statistically significant differences between the treatments (p < 
0.05). 
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3.3.4 Correlation of interaction affinity and molecular 
parameters of MP monomers 

To explore the impact of the inherent properties of MPs on their 
interactions with the viral RNA fragments, a correlation was 
conducted between the interaction affinity and molecular parameters 
of MP monomers (Table 3.1, Appendix Tables S3.2 and S3.3, and 
Figure 3.4). 

Table 3.1. Correlation coefficients between the Eint values derived from the total 
energies between the MPs and SARS-CoV-2 RNA fragment and the molecular 
parameters of the MP monomersa. 

Correlation  
model 

Temperature 
(K) 

Volume 
(nm3) 

Polar surface area 
(nm2) 

Molecular topological 
index 

n = 5 n = 4 n = 5 n = 4 n = 5 n = 4 

Eint in 

vacuum 

310 0.652 0.839 0.648 0.821 0.427 0.892 

298 0.068 0.929 0.063 0.927 0.399 0.866 

273 0.065 0.791 0.073 0.797 0.235 0.683 

263 0.203 0.888 0.194 0.896 0.502 0.917 

223 0.510 0.739 0.523 0.760 0.274 0.645 

Eint in 
water 

310 0.615 0.959 0.616 0.959 0.326 0.989 

298 0.535 0.704 0.530 0.704 0.346 0.803 

273 0.577 0.123 0.563 0.123 0.621 0.223 

263 0.749 0.171 0.756 0.171 0.800 0.168 

223 0.669 0.334 0.659 0.334 0.817 0.376 
a The correlation was tested for five types (n = 5) of MPs (PB, PE, PP, PS, and PVC)/four types (n = 4) 
of MPs (PB, PE, PP, and PVC) and the SARS-CoV-2 RNA fragment; The magnitude of correlation 
coefficient (R) reflects the degree of correlation between the Eint and molecular parameter values; 

The bold numbers indicate high values of the correlation coefficients (R > 0.800); The numbers 
marked in both bold and italic indicate a significant correlation at the 0.05 level (p < 0.05). 

As shown in Table 3.1, the Eint values derived from the total energies 
for the interaction of each of the MPs with the SARS-CoV-2 RNA 
fragment in vacuum and water phases correlated with the molecular 
parameters VM, PSA, and MTI of the MP monomers to varying degree. 
The degree of correlation tended to be higher in vacuum and at 310 
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and 298 K in water except for the PS MPs with aromatic 
hydrocarbons. In particular, the Eint values correlated highly (Figure 
3.4A–C) and significantly (Figure 3.4D–F) with the molecular 
parameters except for the PS MPs. On the whole, the greater the VM, 
PSA, and MTI values, the stronger the interactions between the MPs 
and the SARS-CoV-2 RNA fragment (Figure 3.4). 

 

Figure 3.4. Variation of the interaction energies derived from the total energies of 
the five types of MPs with the SARS-CoV-2 RNA fragment at 298 K (A and B) and 
263 K (C) in vacuum and at 310 K (D, E, and F) in water with the molecular 
parameters of the MP monomers. 

Generally, the Eint values derived from the total energies for the 
interaction of the SARS-CoV-1 (Appendix Table S3.2) or the HBV 
(Appendix Table S3.3) RNA fragment with the MPs in vacuum and 
water phases correlated moderately or weakly with the molecular 
parameters VM, PSA, and MTI of the MP monomers. It can be also 
found that there was a higher correlation between the Eint values for 
the interaction of the SARS-CoV-1 RNA fragment with the MPs and 
the molecular parameters of the MP monomers at 310 K in vacuum 
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except for the PS MPs. In addition, for the interaction of the MPs with 
the SARS-CoV-1 and the HBV RNA fragment, no significant 
correlation was found between the Eint values and the molecular 
parameters of the MP monomers. 

3.4 Discussion 

Owing to the high prevalence of both enteric and respiratory viruses 
in the population and the environment, there is significant potential 
for human viruses to become associated with the plastisphere 
(Moresco et al., 2021). There are many sources of MPs in the 
environment and potential pathways for the interaction, colonisation, 
and dissemination of viruses. We have studied the interaction 
between three different viruses and five different MPs in water and 
vacuum air. For these exposure routes we have taken different 
conditions; being different temperatures, and different coating of the 
virus. These coatings have been modelled theoretically how the 
genetic material such as the RNA of a virus is released into cells after 
the virus undergoes fusion. There, the RNA segments are covered 
with the nucleocapsid protein enabling to travel to specific organelles 
such as the ribosome. 

The first pathway described is via the respiratory path: MPs can enter 
the human body through breathing, mainly due to the presence of MP 
pollution in the air (Amato-Lourenço et al., 2020); indoor dust as 
well as air in cities were shown to be large contributors. So not only 
the virus and MPs dose will be higher indoors, also interaction 
effectivity is large. It makes it a large potential exposure route for 
humans. It has been proven that face masks can release large 
numbers of MPs, which were detected in nasal mucus of mask 
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wearers and can be inhaled by human beings (Ma et al., 2021). In a 
way face masks are preventing inhalation of virus for human not 
infected, but those infected may even breathe the virus out. It is 
speculated that the virus can bind to MPs from the mask and human 
beings inhale them again as an agglomerate. 

Second, the SARS-CoV-2 is transmitted primarily through respiratory 
droplets (Stadnytskyi et al., 2020) and/or aerosols (Yuan Liu et al., 
2020). Airborne dust is another transmission route linked to 
infectious diseases (Maestre et al., 2021; Moreno et al., 2021). More 
severe weather phenomena such as sandstorms may exacerbate the 
migration of the virus (Meo et al., 2021). The adsorption of the 
SARS-CoV-2 on these airborne media can contribute to the 
long-range transport of the virus. Note that the airborne transmission 
route refers to the presence of particles with diameter < 5 µm, who 
can remain in the air for long periods (Morawska and Cao, 2020). 
The particle sizes of the MPs are also in this scale range. Thus, MPs 
dispersed in air can be inhaled by humans (Amato-Lourenço et al., 
2020). The MPs can be released into the atmospheric air via several 
sources, e.g., synthetic textiles (G. Chen et al., 2020), tire wear 
particles (Lee et al., 2020), domestic laundry dryers (O'Brien et al., 
2020), etc. Hence, there is a high probability that the MPs and the 
SARS-CoV-2 will meet in the atmospheric environment. It has been 
reported that SARS-CoV-2 aerosols may bind to MPs and facilitate 
virus entry into the human body (Amato-Lourenço et al., 2022). Our 
results show that the MPs stabilized the SARS-CoV-2 RNA fragment 
in both vacuum and water. This also means that the MPs could act as 
a carrier capable of carrying the gene materials of the SARS-CoV-2 
and become a new airborne media for the transport of the virus. 
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Third, a non-droplet transmission is also possible, as the infectious 
SARS-CoV-2 particles are also present in human excretions 
(Wiktorczyk-Kapischke et al., 2021). The fragment of the 
SARS-CoV-2 RNA has been frequently detected in various countries 
in wastewater (M. Kumar et al., 2020; La Rosa et al., 2020; Randazzo 
et al., 2020), particularly hospital effluent (Gonçalves et al., 2021). 
The transmission of SARS-CoV-2 via the fecal-oral route highlights 
the presence and persistence of SARS-CoV-2 in the aquatic 
environment (Arslan et al., 2020). Moreover, the SARS-CoV-2 RNA is 
relatively stable in sewage and non-chlorinated drinking water 
(Ahmed et al., 2020). The viral RNA was also found to be relatively 
stable in contrast to the rapid inactivation of infectious SARS-CoV-2 
in river and in sea water (Sala-Comorera et al., 2021). The COVID-19 
pandemic has a huge impact on the plastic waste management in 
many countries, in large due to the sudden surge of medical waste 
which has led to a potential significant release of MPs (Khoo et al., 
2021). Recent studies indicated that MPs have a significant 
abundance in sewage. Therefore, the sewage treatment system may 
be an important site for the interaction between the MPs and the gene 
materials of SARS-CoV-2. Belišová et al. (2022) also confirmed the 
ability of SARS-CoV-2 virus particles to sorb to the surface of MPs, 
specifically microfibers in wastewater. The present results implied 
that the MPs stabilized the SARS-CoV-2 RNA fragment in the water 
phase, regardless of temperature and MP types. Additionally, the 
persistence of the SARS-CoV-2 RNA fragment when present on the 
MPs was different from the persistence of the SARS-CoV-1 and HBV 
RNA fragments. In comparison, the SARS-CoV-2 RNA fragment 
preferred to maintain on the MPs, which may cause the gene 
materials of the SARS-CoV-2 to be long lasting on the MPs. 
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The fourth path is via the oral route such as food and water. The 
results in Figure 3.2 also indicated that the interaction affinity of the 
MPs with the SARS-CoV-2 RNA fragment in water was stronger 
compared with the affinity in vacuum by a factor of 10 at least. This 
means the MPs and viral genetic material may co-present in dairy 
products we eat. If the MPs are entered through the food chain 
(Bouwmeester et al., 2015; Mercogliano et al., 2020), the MPs enter 
cells via endocytosis and then are released into the cytoplasm. 
Particularly, the intestinal tract is the main place where MPs exist and 
is the channel into the circulatory system (Fournier et al., 2021; 
Visalli et al., 2021). In the meanwhile, it is confirmed that the 
SARS-CoV-2 can effectively infect intestinal epithelial cells and their 
precursors (Lamers et al., 2020), which reveals the fact that the 
intestinal tract is the potential infection site of the SARS-CoV-2 in 
humans. Taken together, an intercellular environment provides an 
opportunity for interaction between the MPs and the viral RNA 
segments/nucleocapsid protein. In our study, we revealed that the 
MPs showed stronger interaction with the SARS-CoV-2 RNA 
fragment than with its nucleocapsid protein. Comparison and 
analysis on the Eint also supported the finding that the MPs interacted 
with the SARS-CoV-2 RNA fragment more strongly than with the 
SARS-CoV-1 or HBV RNA fragments. This also means that the MPs 
are more apt to stabilize the genetic materials of the SARS-CoV-2 in 
the intercellular environment, whereas this interaction may limit the 
transcription and replication of the viral RNA genomes. 

The fifth potential route is via inanimate surfaces such as plastic, 
stainless steel, and glass has been established (Corpet, 2021; Gidari et 
al., 2021) on which the persistence of the SARS-CoV-2 is detected. 
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For instance, Gidari et al. (2021) showed the ability of SARS-CoV-2 to 
persist on most common materials such as glass, stainless steel, and 
plastic with half-lives of 4.2, 4.4, and 5.3 h respectively. The 
SARS-CoV-2 is thus more stable on plastics than on steel or on glass. 
With the global outbreak and spread of COVID-19, disposable 
surgical masks as effective and cheap protective medical equipment 
have been widely used by the public. The random disposal of masks 
may result in new and greater MP pollution, because masks made of 
polymer materials would release MPs after entering the environment. 
More importantly, potential co-release of the MPs and the 
SARS-CoV-2 into the environment will be ineluctable. This might be 
expected as the result of the unreasonable disposal of the masks, 
especially the masks contaminated with the virus. MPs have been 
detected in the air. Thus, MPs can deposit upon the surface of various 
materials. Thus, there may be an opportunity for the interaction of 
MPs and the virus RNA. There is evidence that the SARS-CoV-2 RNA 
fragment has been detected on frozen food packaging (Han et al., 
2021; Peipei Liu et al., 2020), and aquatic products can be a route of 
transmission of COVID-19. Positive detection of COVID-19 nucleic 
acid in the samples of frozen food packaging is still occurring. Our 
theoretical investigation also indicated that the MPs stabilized the 
SARS-CoV-2 RNA fragment at very low temperatures ranging from 
273 to 223 K. The presence of the genetic material of SARS-CoV-2 on 
the surfaces is not the same as the presence of the infectious virus, 
but indicates the transit and contact of infected individuals 
(Casabianca et al., 2022). Therefore, theoretical evidence of 
interactions between the MPs and the SARS-CoV-2 RNA fragment 
could support practices (e.g., strict sanitization of medical equipment, 
supplies, fabrics, environmental surfaces, and air contaminated with 
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pathogens) that reduce the risk of SARS-CoV-2 infection and cut off 
its transmission route. 

The plastisphere is a diverse microbial community of heterotrophs, 
autotrophs, predators, and symbionts (Zettler et al., 2013). Several 
studies demonstrated that the gene materials of microorganisms can 
be extracted from MPs and subsequently identified (Debeljak et al., 
2017; Zettler et al., 2013). Regardless of environmental media and 
temperature, a stable binding between the MPs and the SARS-CoV-2 
fragment was proven theoretically. After such a binding, the 
SARS-CoV-2 fragment is more difficult to degrade in the natural 
environment. This also means that entering the plastisphere appears 
to be an important process that significantly affects the global 
environmental fate of SARS-CoV-2. 

SARS-CoV-2 belongs to the family of enveloped, single-strand RNA 
viruses (Mei and Tan, 2021). The viral membrane of SARS-CoV-2 
surrounds a helical nucleocapsid in which the viral genome is 
encapsulated by the nucleocapsid protein (Savastano et al., 2020). 
The biological membrane, known as an envelope, contains lipids and 
proteins. An envelope may increase the viral sensitivity to physical 
influencing factors (pH, heat, dryness, etc.) as biological membranes 
are relatively fragile structures. The nucleocapsid protein of 
SARS-CoV-2 is produced at high levels within infected cells, enhances 
the efficiency of viral RNA transcription, and is essential for viral 
replication (Savastano et al., 2020). It is reported that the 
SARS-CoV-2 RNA is likely to persist for a long time in untreated 
wastewater (Ahmed et al., 2020). Consequently, it is essential to 
elucidate the interactions of the MPs with the nucleocapsid protein 
and SARS-CoV-2 RNA fragment. Further studies are warranted to 
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evaluate the interaction of the MPs with other structural proteins of 
SARS-CoV-2, e.g., spike, membrane, and envelope. Furthermore, the 
interactions as addressed in this study are the first stepping stone to 
meet our precautionary demand for options to handle any new 
versions of the coronavirus that might emerge in the future. 

It was also found that there are differences in the interaction affinity 
between the MPs with different compositions and SARS-CoV-2 RNA 
fragment (Figures 3.1 and 3.2). Notably, the molecular parameters of 
the PS monomer performed very different in affecting the interaction 
affinity as compared to the other MP monomers (Figure 3.4). The 
benzene ring contained in PS allowed it to form π-π interactions with 
the SARS-CoV-2 RNA fragment that might modulate the interaction 
affinity. The differences in the composition of MPs are most directly 
reflected in the functional groups contained in their polymeric 
structural units. The properties of the MP monomer compounds can 
determine the mechanism of interaction of MPs with organic 
pollutants, which in turn exhibit a different interaction affinity for 
organic pollutants (Lee et al., 2014). In addition, changes in 
environmental conditions such as temperature can modulate the 
interaction between the MPs and SARS-CoV-2 RNA fragment (Figure 
3.3). Other factors such as pH, salinity, and dissolved organic matter 
which may result in differences in the interaction can also not be 
neglected. Accordingly, the single and combined effects of different 
environmental factors on the interaction of the MPs and SARS-CoV-2 
will need to be considered in subsequent studies. 

It is undeniable that in silico methods still have limitations in both 
space and time scales, which weakens their correlation with 
experimental observations and available experimental data. Moreover, 
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quality assurance is required to minimize uncertainty in the 
calculation of toxicological data. In spite of this, in the face of the 
urgency of the COVID-19 pandemic, in silico methods are a useful 
tool to investigate the interaction of environmental pollutants such as 
MPs with the novel coronavirus, particularly the proposed 
methodologies that rely upon alternatives to biological testing with 
high risk of infection. Furthermore, in silico methods have the 
advantages of preliminary screening of high-risk combinations of 
multiple co-existing pollutants (e.g., SARS-CoV-2 and MPs) in the 
environment, and it will save valuable research time and efforts (e.g., 
model validation) as well as prevent infection during experimental 
testing. 

3.5 Conclusions 

In this work, we carried out MD simulations to investigate the 
interactions between five MPs and RNA fragments of three viruses 
including, SARS-CoV-2, SARS-CoV-1, and HBV at temperatures 
ranging from 223 to 310 K, in vacuum and in water phases. The 
estimated Eint implied that the interactions of the MPs with the 
SARS-CoV-2 RNA fragment were stronger than those with the 
SARS-CoV-1 and HBV RNA fragments, regardless of the 
environmental media, temperature, and MP types. Furthermore, the 
electrostatic and hydrophobic processes were the predominant 
mechanisms for the interactions between the MPs and the 
SARS-CoV-2 RNA fragment, and the interaction affinity was 
associated with the inherent structural parameters (i.e., VM, PSA, and 
MTI) of the MP monomers. Our theoretical results suggest that MPs 
are capable of regulating the behavior and fate of the SARS-CoV-2 
RNA fragment in the environment. While MPs are within air, food 
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and water, this plastic pollution could be a secondary pathway for the 
transmission of human pathogenic virus and hence have 
consequences for the exposure of humans to SARS-CoV-2, both by 
the respiratory pathway (enhancing potential exposure) and the 
touch pathway where the plastic surface binds the SARS-CoV-2 RNA 
fragment and thus lowers potential exposure and infectious risks for 
human. It should be noted that the SARS-CoV-2 RNA fragment can 
be immobilized by MPs which are ubiquitous in the human 
environments and thus their persistence and circulation would 
prolong the presence of virus RNA in the environment. This in silico 
work serves to minimize the challenges of conducting 
time-consuming and labor-intensive virus experiments with a high 
risk of infection, while meeting our precautionary need for options to 
deal with any new versions of coronaviruses that may emerge in the 
future. 
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Abstract 

The rapid development of nanomaterials (NMs) and the emergence of 
new multicomponent NMs will inevitably lead to simultaneous 
exposure of organisms to multiple engineered nanoparticles (ENPs) 
at varying exposure levels. Understanding the joint impacts of 
multiple ENPs and predicting the toxicity of mixtures of ENPs are 
therefore evidently of importance. We reviewed the toxicity of 
mixtures of ENPs to a variety of different species, covering algae, 
bacteria, daphnia, fish, fungi, insects, and plants. Most studies used 
the independent-action (IA)-based model to assess the type of joint 
effects. Using co-occurrence networks, it was revealed that 53 % of 
the cases with specific joint response showed antagonistic, 25 % 
synergistic, and 22 % additive effects. The combination of nCuO and 
nZnO exhibited the strongest interactions in each type of joint 
interaction. Compared with other species, plants exposed to multiple 
ENPs were more likely to experience antagonistic effects. The main 
factors influencing the joint response type of the mixtures were 1) the 
chemical composition of individual components in mixtures, 2) the 
stability of suspensions of mixed ENPs, 3) the type and trophic level 
of the individual organisms tested, 4) the biological level of 
organization (population, communities, ecosystems), 5) the exposure 
concentrations and time, 6) the endpoint of toxicity, and 7) the 
abiotic field conditions (e.g., pH, ionic strength, natural organic 
matter). This knowledge is critical in developing efficient strategies 
for the assessment of the hazards induced by combined exposure to 
multiple ENPs in complex environments. In addition, this knowledge 
of the joint effects of multiple ENPs assists in the effective prediction 
of hybrid NMs. 
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4.1 Introduction 

Nanotechnology has undergone enormous developments recently (P. 
Kumar et al., 2020; Leonel et al., 2021; Lowry et al., 2019; Oksel 
Karakus et al., 2021). With the uninterrupted development of new 
emerging nanomaterials (NMs), engineered nanoparticles (ENPs) are 
becoming potential environmental pollutants (Stuart and Compton, 
2015). Mixtures of ENPs can occur due to multiple single-component 
NMs entering an ecosystem (Wu et al., 2021). Mixtures of individual 
ENPs have been detected within municipal wastewater treatment 
systems (Georgantzopoulou et al., 2020; Musee et al., 2014; Simelane 
and Dlamini, 2019; Singh and Kumar, 2020; Sundaram and Kumar, 
2017) and subsequently in the receiving waters and soils. Mixtures of 
individual ENPs may harm aquatic and terrestrial species (including 
humans) by coaccumulating in the food chain. Considering that 
multiple distinct ENPs may coexist in the same environmental 
compartments, it is critical to determine how mixtures of individual 
ENPs may affect environmental receptors. Additionally, 
multicomponent NMs, so-called hybrid or advanced NMs, are by 
definition a mixture but need to be distinguished from mixtures of 
individual ENPs. There currently is a clear trend of technological 
innovations moving toward the development of more complex 
advanced materials. However, limited information is available on the 
occurrence, fate, and toxicity of mixtures of NMs as well as for 
multicomponent NMs in the environment. It thus is imperative to 
perform studies that characterize the hazards of hybrid NMs at an 
early stage of their development, starting at the research phase. The 
knowledge built from mixtures of NMs can be used to get an estimate 
of the (magnitude of) quantification of the joint impacts of multiple 
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elements and particles. There is also an urgent need for extrapolating 
knowledge gained on individual ENPs toward hybrid NMs. This will 
minimize undesirable impacts on human and environmental health at 
later stages of development and production and will allow a conscious 
move toward sustainable nanotechnology and responsible innovation 
(Hutchison, 2016). 

Assessing the joint impacts of chemicals is already notoriously 
difficult, and for ENPs this could be even more challenging. After all, 
the chemical composition and the particle characteristics need to be 
accounted for. Subsequently, the toxicity of NMs is inherently 
composed of the toxicity of the particle constituents as well as the 
particle-specific fate and toxicity. Analyzing the scattered 
experimental data on mixtures of ENPs will lead to a better 
understanding and will allow verification of whether conventional 
mixture models can be used to describe joint impacts of NMs (Li et al., 
2020). 

In this paper, we therefore addressed the following subresearch 
questions. 1) What joint interactions have been reported after 
exposure of a range of aquatic and terrestrial test species to multiple 
ENPs? 2) Which factors determine the toxicity of a mixture of 
multiple ENPs? 3) Is there a difference between the environmental 
behavior and fate of multiple ENPs compared to single ENPs and do 
such differences subsequently affect the induced ecotoxicological 
effects? 4) Which important knowledge gaps and further research 
needs have been identified in assessing mixture-nanoecotoxicology 
for experimentalists, computational modelers, risk assessors, and 
regulators? To address these scientific questions, we have collated 
information on the mixture toxicity of ENPs spanning trophic levels 
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as well as aquatic and terrestrial environments available in the 
literature. Herein, we focus on two types of multiple ENPs, namely 
mixtures of individual ENPs and hybrid NMs. Meanwhile, the 
nanohybrids of concern are mainly synthetic materials with organic 
or inorganic ENP components that are linked together by 
noncovalent bonds or covalent bonds at the nanometer scale. The 
strength of the joint interactions of multiple ENPs and the main 
factors influencing the joint response of the mixtures were identified 
for the first time in this work. Ultimately this knowledge constitutes 
the first building blocks that allow building a computational approach 
able to reduce the experimental costs of ecotoxicity testing of 
mixtures of ENPs of varying composition and to include both 
nanohybrids and mixtures of different ENPs. 

4.2 Methods 

Data were mined from peer-reviewed articles as published between 
2003 and 2022, making use of the search machines Web of Science 
and PubMed (last access date March 10th, 2022). The inclusion 
criteria were as follows: (Toxicity OR Ecotoxicity) AND 
(Nanomaterial* OR Nanoparticle* OR Nanoplastic*) AND (Mixture* 
OR hybrid) AND (Alga* OR Bacteria* OR Daphnia OR Fish OR 
Insect* OR Plant*). 

On the basis of these search terms, we obtained 1263 publications and 
removed duplicate papers as well as those in which the title, abstract, 
or text was not related to the toxicity of mixtures of NMs to ecological 
species (e.g., papers on microsized plastic particles). A final total of 
86 papers were filtered and extracted for future reviewing, as shown 
in the Appendix Figure S4.1. 
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Data were collected for representative ecological species (algae, 
bacteria, daphnia, fish, fungi, insects, and plants). Binary and ternary 
ENP toxicity data reported from laboratory-derived studies were 
collected, as well as effect data on nanohybrids. The types of joint 
interactions (additive, synergistic, and antagonistic) of the mixtures 
of ENPs given in the original literature were extracted from the 
eligible papers. The mixtures induced additive effects or deviated 
from additivity, either by synergistic (toxicity of the mixture higher 
than the summed toxicity of the individual ENPs) or antagonistic 
(toxicity of the mixture lower than the summed toxicity of the 
individual ENPs) mixture toxicity. 

In the selected papers, three common concepts enabling to assess 
mixture toxicity — concentration addition (CA), independent action 
(IA), and toxic unit (TU) — were used. In addition to assessing the 
impacts of the mixtures, the abiotic conditions expected to influence 
toxicity and information on the existing predictive methods for 
evaluating the mixture toxicity were collected as well. 

Following the evaluation of the first 86 papers, an association rule 
analysis (which is a technique to uncover how items are associated 
with each other) was performed to mine the literature data. 
Calculated networks based on co-occurrence explain which 
combination of NMs has been most studied, which combination of 
NMs is more likely to have an additive, synergistic, or antagonistic 
effect, which species are more sensitive to additive, synergistic, or 
antagonistic effects, and which method is commonly used in 
assessing the joint toxicity of multi-ENP mixtures. The association 
rule analysis was performed using the Apriori algorithm in the 
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classification of association rule in IBM SPSS Modeler (ver. 18.0) and 
was further visualized using Cytoscape (ver. 3.9.0). 

4.3 Results and discussion 

4.3.1 Types of joint interactions of multiple ENPs 

The data in the Appendix Tables S4.1 and S4.2 illustrate the different 
combination types of individual ENPs, ecological species, test 
concentrations and mixture ratios, endpoints, and intentions in joint 
action analyses of mixtures. Figure 4.1A depicts a network that 
connects ENPs in different combinations on the basis of the data 
gathered from the literature (Appendix Tables S4.1 and S4.2). 

 

Figure 4.1. Co-occurrence network showing the correlations between different 
ENPs (A, B, C, and D) and illustration of the main mechanisms of single toxicity (E) 
and joint interactions (F: antagonism; G: synergism; H: additivity) of mixtures of 
individual ENPs. 

The binary mixture of nCuO and nZnO is the most studied 
combination in the available reports, as indicated in Figure 4.1A. As is 
known, nCuO and nZnO are among the most produced and 
commonly used ENPs (Muhammad et al., 2022). In addition, 
frequently studied combinations are nTiO2 (anatase) + nTiO2 (rutile) 
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and nCu + nZnO in order of preference. Generally, at the current 
stage, studies have mainly focused on examining the toxicity of 
mixtures of metal-based ENPs (75 % of all combinations). 

Figure 4.1B−D depicts a network that connects ENPs in different 
types of joint interactions, on the basis of the data gathered from the 
literature (Appendix Tables S4.1 and S4.2). In all combinations with a 
known joint response, 53 % of the interactions induced antagonistic 
effects, 25 % of the interactions induced synergistic effects, and 22 % 
of the interactions were additive. In addition, note that the same 
combinations such as nCuO and nZnO might induce antagonistic and 
synergistic as well as additive effects. It is important to note that the 
reported data involved both aquatic and terrestrial environments and 
different trophic levels. Following that, the prevalent concentration 
levels, bioavailability, and physical-chemical behavior of ENPs in 
mixtures and present as hybrids vary in different compartments. The 
effects of the mixtures could potentially be affected by this inherent 
difference with regard to the fate of ENPs in the environmental 
compartments. The interaction strengths that were found by using a 
co-occurrence network analysis (Figure 4.1B−D) are described in 
detail below. 

Antagonistic effects 

Antagonism is the most common mode of joint interactions of 
multiple ENPs observed in the current studies on mixture toxicity of 
ENPs. As shown in Figure 4.1B, nCuO showed the strongest 
antagonistic interactions with nZnO. The nTiO2 (anatase) and nTiO2 
(rutile) combination was also found to be more inclined to show 
antagonistic effects, followed by nCr2O3 + nZnO, nCuO + nCr2O3, 
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nCuO + nFe2O3, nCuO + nTiO2, nFe2O3 + nZnO, and nTiO2 + nZnO. 
In most instances, the occurrence of antagonistic responses implies 
that the presence of one ENP component in a mixture reduces the 
uptake of other ENP components by an organism or allows for 
adsorption of toxic metal ions released by the dissolution of other 
ENP components (Figure 4.1E, F). This leads in turn to an overall 
reduction of the toxicity of the mixture. For example, the combined 
toxicity of nCu and nCuO to the luminescent bacterium Vibrio 
fischeri is antagonistic, and this joint response is associated with the 
saturation of Cu uptake by the bioreceptor (H. Zhang et al., 2020). 
This differs from the general assumption that an additive effect is 
expected as both nCu and nCuO release Cu ions. This assumption 
tends to take into account only the intrinsic properties of the ENPs 
and does not take into account the interactions between the mixed 
components and the interactions between organisms and ENPs. The 
binary mixtures of nCu and nZnO exhibit antagonistic effects on V. 
fischeri, which is associated with the adsorption of nCu ions released 
by dissolution of nCu onto nZnO (H. Zhang et al., 2020). Yu et al. 
(2016b) found that the mode of joint toxic action of nCeO2 and nTiO2 
against Nitrosomonas europaea was antagonistic, and the impacts of 
nCeO2 were mitigated as a function of the exposure dose of nTiO2. As 
both negatively charged nCeO2 and nTiO2 particles can interact with 
bacterial cells, and as the electrostatic repulsion between the particles 
may prevent their coagglomeration/aggregation, the two 
nanoparticles may compete for adsorption sites on the cell wall, thus 
mitigating the toxic effect of nCeO2 exposed solely (Yu et al., 2016b). 
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Synergistic effects 

As shown in Figure 4.1C, the coexistence of nCuO and nZnO also 
showed the strongest synergistic interactions among all of the 
combinations with known synergistic effects. The interactions 
between nAg and polystyrene nanoplastics (nPS), nAg and nTiO2 
(anatase@rutile), nAg and nZnO, and nCuO and nTiO2 
(anatase@rutile) are slightly weaker than the interaction between 
nCuO and nZnO. The synergistic effects of ENPs can be largely due to 
the fact that they synergistically induce elevated levels of reactive 
oxygen species (ROS) (Figures 4.1E, G). For example, the synergistic 
effect of exposure of Escherichia coli to a mixture of nAg and nTiO2 
was associated with enhanced photocatalytic activity and elevated 
intracellular ROS levels (Wilke et al., 2018). H. Zhang et al. (2020) 
also found that the effects of the binary mixtures of nCu and nZn, 
nCuO and nZn, and nCuO and nZnO were synergistic to V. fischeri. 
This is related to the enhancement of intracellular ROS levels induced 
by these mixtures. Additionally, Z. Wang et al. (2021) addressed that 
the synergistic cytotoxicity induced by graphene nanoplatelets (GNs) 
or reduced graphene oxide (rGO) and metal-based nZrO2 to Chlorella 
pyrenoidosa and the mechanism underlying this synergistic action 
were associated with the induction of intracellular oxidative stress 
and cellular membrane functional changes by the carbon-metal-based 
mixtures. In addition, the effects of mixtures of nAg and nZnO on 
Daphnia magna were synergistic, while their respective salts (AgNO3 
and ZnCl2) behaved antagonistically (Lopes et al., 2016). This finding 
indicates that the dissolved ions are not always responsible for ENP 
toxicity but that ions + nanoparticles together can cause different 
effects to aquatic organisms (Lopes et al., 2016). The synergistic 
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effects of ENPs can be more harmful to ecologically relevant species 
and to human health, and there is an urgent need to examine the 
toxicity of mixtures of various combinations of ENPs and thus assess 
their potential synergistic risks. 

Additive effects 

Relatively fewer studies have reported on the combined toxicity of 
ENPs in an additive manner. As shown in Figure 4.1D, the 
combination of nCuO and nZnO displays stronger additive 
interactions than other ENP combinations. An additive effect is also 
frequently found in the mixtures of nTiO2 (anatase) and nTiO2 (rutile). 
H. Zhang et al. (2020) reported that a binary mixture of nZn and 
nZnO exhibited additive toxicity to V. fischeri. An analysis of the type 
of joint response suggested that nZn did not interact with nZnO and 
that the bioreceptor might not be saturated with Zn (H. Zhang et al., 
2020). Singh and Kumar (2020) found that a combination of 
nanosilver oxide (nAg2O) and nTiO2 caused additive toxicity to 
Spinacia oleracea and improved the plant biomass. In addition, 
graphene oxide (GO) and nZnO also exerted combined toxic effects 
on D. magna in an additive manner (Ye et al., 2018). The toxicity of 
multiple ENPs works in an additive manner in the sense that the 
toxicity of a mixture of individual ENPs is equal to the sum of the 
toxicity of each ENP component acting alone (Figure 4.1E, H). The 
additive effect is characterized by the fact that each ENP component 
in the mixture can proportionally substitute for another ENP 
component without altering the overall toxicity of the mixture. 
Furthermore, the additive type of joint interaction is further divided 
into concentration-additive and effect-additive modes. Future studies 
are needed to identify the types of additive modes of action in order 
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to elucidate the main pathways by which multiple ENPs achieve 
additive joint interaction. 

4.3.2 Potentiation or attenuation of effects 

Some of the studies shown in the Appendix Tables S4.1 and S4.2 do 
not directly indicate the type of joint interactions for mixtures of 
ENPs but imply a difference between combined and single exposures. 
The mixture effects caused by this scenario are expressed in detail in 
the Appendix Table S4.3. Multiple ENPs cause enhanced toxic effects 
in a manner where one ENP in a mixture is less toxic or nontoxic to 
the organism, but its toxic effects are enhanced by concurrent 
exposure with another ENP. An example of potentiation effects was 
that coexposure to the binary mixtures of nCu and nZnO caused 
mortality of Oncorhynchus mykiss at no-effect concentration levels 
for each of the individual ENPs (Hernández-Moreno et al., 2019). The 
authors explained this by the higher Zn-ion accumulation in the fish 
when nCu was present. Collectively, the current studies indicated that 
the potentiation of the effects of multiple ENPs was mainly correlated 
with increased bioaccumulation of toxic components (Haghighat et al., 
2021; Yin et al., 2022) and oxidative stress (Das et al., 2022; Yin et al., 
2022). Conversely, an attenuated toxic effect was found by Zhao et al. 
(2018), who reported that nAl2O3 was shown to mitigate the growth 
inhibition toxicity of GO to C. pyrenoidosa. Zhao et al. (2018) 
explained the reduced exposure of alga to GO in the presence of 
nAl2O3 due to GO-nAl2O3 heteroaggregation. Evidently, the proposed 
reason for the attenuation effect is related to coaggregation and 
surface complexation (Jahan et al., 2018), a reduction in the 
bioavailability of toxic components (Haghighat et al., 2021; Sayadi et 
al., 2021), and oxidative stress symptoms (Haghighat et al., 2021; 
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Skiba et al., 2021). In addition, such potentiation or attenuation of 
effects is relative if the mixture effect lies between the effects of the 
individual ENPs (Kaur et al., 2019). 

4.3.3 Exposure of biota to hybrid NMs 

To date, concerns about the toxicity and safety of nanohybrids on 
release into the environment have also increased considerably. In 
particular, the strong interactions between nanoparticles in hybrid 
NMs (the primary concern here is that enhanced toxicity is induced 
when ENPs are mixed within a (crystalline) matrix of different NMs) 
could allow the nanocomposite to act in a mode of toxic action that 
may be different from the mode(s) of toxic action of a mixture that is 
composed of the separate nanosized components. The collected 
publications addressing the ecotoxicity of advanced NMs are 
summarized in the Appendix Table S4.4. Generally, there is 
controversy about the ecotoxicity of nanohybrids. Some studies 
addressed that hybrid NMs show no signs of toxicity to ecological 
species. For instance, Da Silva et al. (2018) found that nTiO2 and 
multiwalled carbon nanotubes (MWCNTs) hybrids presented no 
acute toxicity to zebrafish embryos. However, most of the studies 
indicated that hybrid NMs exhibited diverse levels of toxic effects on 
ecological species (Azevedo et al., 2017; de Medeiros et al., 2021; 
Sellami et al., 2017). In particular, the minimum inhibitory 
concentration (MIC) of selected hybrid NMs (i.e., α-nFe2O3@nCo3O4, 
Chit-nAg@GO, nAg@GO, nAg@MWCNT, nAu@nAg, and 
rGO@nCu2O) to bacteria ranges from 1 to 1000 µg/mL (Appendix 
Table S4.4 and Figure S4.2), implying that nanohybrids could be 
harmful to ecological species. Moreover, hybrid NMs containing nAg 
and any other material with a lower MIC may provoke more toxic 
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effects, as shown in the Appendix Figure S4.2. Furthermore, hybrid 
NMs can be either more or less toxic than that where each separate 
component of the nanohybrid was to act on its own. This implies that 
the ecotoxicity of multicomponent NMs is either between (de 
Medeiros et al., 2021) or higher than the toxicities (Azevedo et al., 
2017) of the individual ENP components. In particular, some studies 
have highlighted that the enhanced bactericidal activity of binary 
ENP nanocomposites was the result of the synergistic effect of their 
individual ENP components (Bhaisare et al., 2016; Bhushan et al., 
2018; Yang et al., 2017). The combination of multiple NMs allows 
new properties to emerge and/or adds to the targeted properties (Da 
Silva et al., 2018). Because of this, the properties that determine the 
toxicity of a single NM may not be the same for multicomponent NMs. 
Therefore, an understanding of the risks of nanohybrids remains 
uncertain and needs to be clarified. 

With the emergence of new hybrid NMs, such as early-transition- 
metal carbides and nitrides (MXene) (Shao et al., 2020) and graphitic 
carbon nitride based nanohybrids (Liang et al., 2021), the areas of 
application are widening and the value of their applications is 
increasing (Wu et al., 2022). However, due to the diversity and 
complexity of hybrid NMs, toxicological studies and assessment 
methods on these hybrid materials are challenging. In particular, 
nanohybrids which have abundant interfaces and active sites (e.g., 
defects, dangling bonds, and functional groups) tend to be very 
sensitive and unstable in the exposure medium (being the mimicked 
environment). Therefore, there is an urgent need to carry out studies 
on the physical, chemical, and biological transformations that occur 
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in hybrid NMs in environmental media and to determine how these 
transformation behaviors ultimately affect their ecotoxicity. 

4.3.4 Main factors influencing mixture toxicity of multiple 
ENPs 

From the above results, it appears that multiple ENPs in different 
studies exhibit different or even opposite mixture effects. For 
example, the joint toxicity of nCuO and nZnO was determined to be 
antagonistic in most studies, while some studies determined it to be 
synergistic or additive. This is because the type and intensity of the 
joint response of multiple ENPs are influenced by a number of factors, 
such as chemical composition, physicochemical behavior, organismal 
factors, and the environmental conditions in which multiple ENPs 
and organisms would be located. Scientifically, the determination of 
the various factors influencing toxic effects is an important part of the 
study of mechanisms of toxic action and an important building block 
for exploring methods and mechanisms to reduce the biological 
toxicity of multiple ENPs before they are widely used or released into 
the environment. From an engineering perspective, it is particularly 
important to guide environmental remediation, which is the use of 
physical, chemical, and biological techniques to reduce the 
concentration or toxicity of pollutants present in the environment or 
to render them completely harmless (Ge et al., 2022; He et al., 2021). 
In environmental remediation, depending on the toxic factors, 
control can be sought to make environmental remediation efforts 
relevant. Therefore, there is a need to explore ways and mechanisms 
to reduce the toxicity of a mixture of multiple ENPs by analyzing how 
each factor affects the mixture toxicity. 
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Chemical composition of mixed components 

The toxicological effects of ENPs are closely related to especially their 
chemical composition. Mixtures composed of ENPs of different 
chemical compositions also exhibit markedly different toxic effects on 
the same species. For example, the joint toxicity of nCuO and nCu 
against V. fischeri showed antagonistic effects, while the joint toxicity 
of nCuO and nZn against V. fischeri showed synergistic effects (H. 
Zhang et al., 2020). Similarly, nCeO2 had an antagonistic toxic effect 
on N. europaea in a combination with nTiO2, while nCeO2 had a 
synergistic toxic action with nZnO (Yu et al., 2016b). It can also be 
deduced that the presence of nTiO2 alleviated the toxicity of nAg to E. 
coli (Wilke et al., 2016), whereas the presence of nPt strengthened the 
toxicity of nAg to E. coli (Breisch et al., 2020). Moreover, the hybrid 
NM nAg@GO (MIC: 3.2 µg/mL (Zhu et al., 2013)) is more toxic to E. 
coli than the hybrid NM nAu@nAg (MIC: 10 µg/mL (Yang et al., 
2017)). The type of joint interaction between nSiO2 and other ENPs 
(nCdS, nTiO2, and nZnS) to Heterosigma akashiwo was also 
significantly influenced by the absence and presence of metal 
inclusions in nSiO2 (Pikula et al., 2022). In addition, the mode of 
joint toxic action of three metal oxide ENPs (nCuO, nCeO2, and nZnO) 
against Carassius auratus changes from synergistic or antagonistic to 
additive effects when the chemical composition of a mixture changes 
from a binary to a ternary mixture (Xia et al., 2013). 

Stability of suspensions of mixed ENPs 

The stability of suspensions of ENPs is affected by processes such as 
aggregation/agglomeration, dispersion, sedimentation, dissolution, 
and other transformations of ENPs. These processes affect the size, 
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morphology, or form (nano or ionic) of ENPs in environmental media, 
and they are therefore important factors affecting the toxicity of ENPs. 
By means of the Derjaguine-Landaue-Verwaye-Overbeek (DLVO) 
theory, it was shown that the aggregation of a mixture of ENPs such 
as nCuO and nZnO in aquatic systems might be happening due to the 
combined effects of ionic layer compression, charge neutralization, 
and van der Waals attraction (Parsai and Kumar, 2019). These 
interaction forces drive the occurrence of coaggregation or 
agglomeration of multiple ENPs and also contribute to the distinct 
differences in their modes of joint toxic action (Yu et al., 2016b). It 
has also been found that the copresence of naturally derived cellulose 
nanocrystals (CNCs) significantly reduced the aggregation of nZnO, 
resulting in enhanced bioavailability and toxicity to Eremosphaera 
viridis (Yin et al., 2022). Furthermore, interactions between 
individual ENPs in a mixture play a mediating role in ENP toxicity, 
particularly for a mixed system consisting of a soluble ENP such as 
nZnO and other stable ENPs such as nTiO2 (Tong et al., 2014). The 
concentration of free Zn ions released from nZnO can be scavenged 
due to the formation of Zn(II)-TiO2 surface complexes, which may 
consequently alter the exposure and bioavailability of nZnO to 
organisms (Tong et al., 2014). This interaction would often cause 
antagonistic effects of multiple ENPs (Tong et al., 2015; Yu et al., 
2016a). Besides, the ability of an ENP in a mixed system to act as 
"Trojan horses" carrying a dissolved ion released from another 
soluble ENP to targeted organs and sites cannot be underestimated. 
This may elevate the mixture effects of individual ENPs, though the 
effects of such interactions on the toxicity of multiple ENPs still need 
further investigation. 
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Types and trophic level of individual organisms tested 

Figure 4.2A depicts a network that connects tested organisms with 
types of joint interactions of multiple ENPs. An association analysis 
indicated that antagonistic effects occur particularly in plants, 
followed by algae. Synergistic effects frequently take place in algae. 
An additive effect is also mostly observed in algae and plants. For the 
frequency of occurrence of types of joint responses, all three types of 
joint interactions are observed in algae, bacteria, daphnids, fish, and 
plants. Furthermore, it is evaluated that 68 % of the interactions are 
more likely to have an effect on lower trophic level organisms, 
including algae and plants. This means that organisms which are at 
lower trophic levels present more sensitivity to joint responses to the 
mixtures of multiple ENPs than those which are at higher trophic 
levels. Consequently, the trophic level may have an important impact 
on the mixture toxicity of multiple ENPs. 

This sensitivity is particularly observed when mixtures of ENPs with 
the same composition exhibit different toxic effects on different 
species. For example, enhanced toxicity of the binary mixtures of nCu 
and nZnO to Oncorhynchus mykiss was observed (Hernández- 
Moreno et al., 2019), while the binary mixture showed an 
antagonistic effect on V. fischeri (H. Zhang et al., 2020) and lettuce 
(Lactuca sativa L.) (Liu et al., 2016). The binary mixtures of GO and 
nZnO had an additive toxicity against D. magna, while the binary 
mixtures had an antagonistic toxicity against zebrafish (Danio rerio) 
(Ye et al., 2018). In addition, the joint toxicity of spherical nTiO2 and 
tubular nTiO2 to C. pyrenoidosa was observed to be significantly 
higher than their joint toxicity to Scenedesmus obliquus, and the 
mode of interaction of the binary mixtures of spherical nTiO2 and 
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tubular nTiO2 to C. pyrenoidosa was found to be effect addition, 
whereas the joint toxicity to S. obliquus was based on concentration 
addition (Wang et al., 2020). 

 

Figure 4.2. Main factors influencing mixture toxicity of multiple ENPs. A: 
Network diagram of association rules of ecotoxicological test species combined with 
types of joint interactions of multiple ENPs. ANT: antagonism, SYN: synergism, 
and ADD: additivity. B: Biological levels of organization in ecosystems relevant 
ecological toxicology of multiple ENPs. C: Comparison of the ENP concentrations 
used in exposure studies with binary ENP mixtures. D: Endpoints of toxicity 
selected in current studies on mixture toxicity of multiple ENPs. E: Schematic 
description of the effects of natural organic matter (NOM) on the toxicity of the 
mixture of individual ENPs. 
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Biological level of organization 

Ecotoxicological effects resulting from exposure to ENPs can be 
attributed to changes in the state or dynamics of biological 
organization, because fitness differences at individual organism levels 
can have a range of ecological consequences (Figure 4.2B). Overall, 
most existing nanoecotoxicological studies have focused on the 
cellular and individual levels, for which mortality, ROS, and 
reproduction rates are the most often reported endpoints for the 
standard laboratory species. If for at least three trophic levels (e.g., 
algae, daphnids, fish) data are collected, a species sensitivity 
distribution (SSD) curve can be generated to assess the impact of the 
NMs on the potential affected species at the community level. For a 
variety of nAg these SSDs have been calculated and reported by Chen 
et al. (2018). For mixtures these types of SSD curves can be calculated 
as well, making use of the multisubstance formulas. However, these 
types of SSDs have not yet been reported in the literature for mixtures 
of ENPs or for hybrid NMs. The main reason for this is the lack of 
toxicity data for sublethal effects of mixtures of NMs: i.e., the median 
effect concentration (EC50), the lowest observed effect concentration 
(LOEC), or data on the no observed effect concentration (NOEC) of 
mixtures. 

Experimentally, some data have been reported on mixtures of 
individual ENPs, mostly how they affect microbial communities 
(Kumar et al., 2012; Londono et al., 2019; Sundaram and Kumar, 
2017; Wu et al., 2021) for a range of exposure scenarios. A river 
bacterial community structure was shifted significantly as a 
consequence of addition of nTiO2, nZnO, and nAg in different 
combinations, and with the dominant population being suppressed, 
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the community exposed to ENPs became more diverse (Londono et 
al., 2019). Another study reported that, even at the relatively modest 
concentrations used, a combination of nAg, nCu, and nSiO2 has the 
potential to disrupt an arctic soil community (Kumar et al., 2012). 
Additionally, a mixture of nAg2O and nTiO2 had a greater impact on 
activated sludge than the individual ENPs when they were present at 
the same concentrations (Sundaram and Kumar, 2017). It is evident 
that the effect of ENP mixtures is not diminished by the increased 
biological level of organization. By modulating ENP properties such 
as ion release and shape, ENPs such as nAg can play a significant role 
in the functional composition of microbial communities (Zhai et al., 
2016). This warrants the consideration of the combined effects of 
individual ENPs with different properties on a biological community 
and associated ecosystem processes in environmental science and 
management. 

Exposure concentrations and time 

The concentration distribution of the mixture components in the 
toxicity studies of the selected binary mixtures for different species is 
given in Figure 4.2C. A wide range of concentrations used for mixture 
toxicity testing was studied. The concentrations studied have been 
more focused on the range between 0.1 to 100 mg/L, which 
corresponds mainly to joint toxic effects on algae, bacteria, daphnia, 
fish, and plants. A combination of available examples found the type 
of joint interactions can be dependent on the doses of ENPs. For 
example, when the doses are close to the concentration that causes 
50 % of immobilization, the synergism between nAg and nZnO in D. 
magna changes to antagonism (Azevedo et al., 2017). In addition, 
lower mixture concentrations of nTiO2 (0.025 or 0.25 mg/L) and 1 
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mg/L nPS showed an antagonistic type of interactions in S. obliquus 
(Das et al., 2022). In contrast, an additive interaction was observed 
between the highest concentration of nTiO2 (2.5 mg/L) and 1 mg/L 
nPS (Das et al., 2022). It is evident that the ratio of exposure 
concentration of individual ENPs in a mixture also plays a role in 
determining the type of joint response. 

The type of joint response for mixtures of individual ENPs is also 
time-dependent. For instance, the antagonistic and synergistic effects 
of Zn- and Cu-based ENPs on the reproduction reduction of Folsomia 
candida were observed in soil samples after 1 and 90 days, 
respectively (Jośko et al., 2022). Combined treatment of ENPs 
triggered different physiological, chemical, and transcriptional effects 
on soil-grown barley Hordeum vulgare than those caused by 
individual exposure to nCuO or nZnO in a time-dependent manner 
(Jośko et al., 2021). The distinct joint effects of multiple ENPs may be 
caused by the differences in the transformation of ENPs (e.g., 
aggregation/agglomeration, dissolution) over time in environmental 
media. 

Endpoints of toxicity 

Figure 4.2D depicts the endpoints of toxicity used for mixture toxicity 
testing. Current tests examining the toxicity of mixtures of multiple 
ENPs include various endpoints of toxicity, which characterize their 
toxic effects from the apical to the mechanistic level. In existing 
studies apical toxicity endpoints (e.g., growth inhibition, mortality) 
are used as the primary toxic endpoints for characterizing the impacts 
of mixtures of multiple ENPs on ecological species, as shown in 
Figure 4.2D. It can also be observed that oxidative stress has become 
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the primary endpoint of toxicity assessment in elucidating the 
mechanisms of joint responses of biota to exposure to mixtures of 
multiple ENPs. Furthermore, the selection of toxicological endpoints 
has an obvious impact on the manner in which the joint responses of 
multiple ENPs are interpreted. For instance, multilayer graphenes 
(MLGs) and nZnO showed synergistic effects on Capoeta fusca using 
mortality rate as an endpoint, whereas MLGs and nZnO showed 
antagonistic effects on the same species when behavioral responses 
and histopathological changes were used as endpoints (Sayadi et al., 
2022). Likewise, chitosan-functionalized molybdenum disulfide 
nanosheets (nMoS2) attenuated the oxidative stress induced by nAg 
on yeast cells, while nMoS2 had a synergistic effect with nAg in 
destroying the yeast cell membrane integrity (Yang et al., 2018). 
Generally, apical toxicity endpoints provide the most robust findings 
to describe multiple ENP toxicity. 

Field conditions 

Under different abiotic field conditions (i.e., pH, ionic strength, 
dissolved organic carbon, etc.), ENPs can undergo various 
physicochemical transformations (Lowry et al., 2012) such as 
dissolution, adsorption, aggregation/agglomeration, and dispersion. 
Each of these processes can affect the biological availability of ENPs 
(Figure 4.2E). The multi-ENP mixtures can also undergo these 
physicochemical transformation processes, thus affecting the fate and 
toxicity of individual ENPs in the mixtures (Liu et al., 2016; Tong et 
al., 2015). Understanding the extent of physicochemical 
transformation of multi-ENP mixtures in environmental media is 
therefore essential for estimating ecological risks (Geitner et al., 
2020). The extent of these transformations such as dissolution and 
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aggregation/agglomeration will be controlled by abiotic field 
conditions. The aggregation and settling behavior of a mixture of 
ENPs such as nCuO and nZnO within aquatic systems was found to 
be dependent on pH, ionic strength, and concentration, and 
dissolution of the ENPs was observed to be significantly affected by a 
change in the pH of a suspension (Parsai and Kumar, 2019). 
Furthermore, the stability of suspensions containing a mixture of 
nCuO and nZnO was found to decrease with increasing pH, ionic 
strength, and ENP concentration (Parsai and Kumar, 2019). Another 
study showed that aggregation in a suspension containing a mixture 
of nCuO and nZnO in natural water was significantly affected by the 
ENP concentration, clay concentration, and humic acid (Parsai and 
Kumar, 2020). 

It is known that abiotic field conditions, such as UV exposure (Gomes 
et al., 2021), pH (Xiao et al., 2016), ionic strength (Chao et al., 2021), 
and natural organic matter (NOM) (Deng et al., 2017; Xiao et al., 
2016), can influence how ENPs affect different organisms. 
Consequently, ecotoxicological testing for mixtures of ENPs should 
include assessment of the exposure of organisms under a variety of 
exposure conditions to fully represent the field conditions found in 
the natural environment. One critical parameter influencing chemical 
interactions is exposure to light. In the dark, nTiO2 attenuated 
bacterial stress caused by low concentrations of nAg due to Ag+ 
adsorption (Wilke et al., 2016). Yet, since both nTiO2 and nAg are 
photoactive, their photochemistry may play a key role in their 
interactions. In a further study by Wilke et al. (2018), the chemical 
interactions of nAg and nTiO2 mixtures in a natural aqueous medium 
under simulated solar irradiation were studied to investigate 
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photoinduced stress. Wilke et al. (2018) observed that nTiO2 and nAg 
together exert synergistic toxic stress in E. coli by using adenosine 
triphosphate levels and cell membrane integrity as probes. In 
addition, NOM is demonstrated to be an important parameter 
affecting the behavior and effect of ENP mixtures. Zhao et al. (2018) 
found that humic acid decreased GO-Al2O3 toxicity to C. pyrenoidosa 
due to enhanced steric hindrance through a surface coating of 
GO-Al2O3 heteroaggregates. In contrast, Yu et al. (2022) 
demonstrated that Suwannee River NOM increased the relative 
contribution of dissolved ions released from nCu and nZnO to the 
toxicity of the binary mixtures at high-effect concentrations of 
individual ENPs to D. magna. Moreover, the presence of Suwannee 
River NOM significantly enhanced the accumulation of either nCu or 
nZnO in D. magna exposed to the ENP mixtures (Yu et al., 2022). As 
depicted in Figure 4.2E, the increase in the accumulation of a mixture 
of ENPs in the presence of NOM may be related to the direct 
ingestion of metal-NOM complexes and ENP-NOM complexes by 
water-exposed free-swimming species. 

Once released into the environment, nanoparticles can also adsorb 
naturally occurring biomacromolecules such as secreted proteins and 
polysaccharides onto their surface: namely, an eco-corona formation 
(Martinez et al., 2022). The presence of an eco-corona can alter the 
surface properties and aggregation state of nanoparticles in the 
aquatic environment (Yanjun Liu et al., 2020; Saavedra et al., 2019), 
as well as alter their ecotoxicity (Chakraborty et al., 2021; Nasser and 
Lynch, 2016). However, there is a paucity of literature reporting on 
the properties, patterns, and mechanisms of competitive formation of 
an eco-corona on multiple ENPs or formation of mixtures of 
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individual ENP-eco-corona complexes. Consequently, the impact of 
eco-corona formation on the combined adverse effects of mixtures of 
ENPs has also become one of the scientific challenges to be solved. 

Additionally, biochar as a sustainable and renewable source has been 
used successfully for the in situ remediation of various pollutants 
during different environmental governance processes (Shao et al., 
2022; Zhao et al., 2021). The concurrence of biochar also induces a 
positive effect in reducing the biotoxicity and bioavailability of ENPs 
(Abbas et al., 2019; Nyoka et al., 2018). However, the current 
understanding of the interactive effects of biochar and multiple ENPs 
on ecological species is rather limited. The impacts of biochar on the 
combined toxicity of individual ENPs need to be highlighted and 
potential opportunities identified to maximize the understanding of 
the environmental risk of biochar and ENPs. 

It is also worth emphasizing that multiple ENPs in different studies 
exhibit different mixture effects, since the mixture effects are 
commonly caused by the interaction of multiple factors. Thus, the 
toxicity of ENP mixtures can be reduced by modulating several 
controllable factors, such as changes in the chemical composition of 
the components present in the mixture, reduction of the effective 
exposure dose, and adjustment of the external environmental 
conditions. Note that abiotic field conditions can drive the 
transformation of ENPs in the natural environment, causing a 
reduction in the mixture effects of multiple ENPs. With respect to the 
mechanism of toxicity, it should be noted that the interaction of 
multiple ENPs with biological systems can cause different levels of 
damage, such as at the tissue level, organ level, cellular level, 
subcellular level, and biomolecular (glycans, lipids, proteins, and 
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genes) level. In particular, the production of ROS can cause 
biomolecular damage and therefore excessive ROS production 
induced by multiple ENPs needs to be controlled by the organism. By 
optimizing the inherent structures and physicochemical properties of 
ENPs (e.g., size, purity, and surface properties), the direct interaction 
of ENPs with organisms and the uptake, accumulation, distribution, 
action, and clearance of ENPs in organisms can be improved. This 
also requires more purposely designed experiments investigating the 
impacts of the structure and properties of individual ENPs on the 
mixture effects induced by multiple ENPs. 

4.3.5 Assessment and prediction methods for the mixture 
toxicity of multiple ENPs 

Screening the risks of contaminants is mainly achieved by 
qualitatively assessing the types of joint interactions and 
quantitatively predicting the magnitude of mixture toxicity. Assessed 
and predictive methods (Figure 4.3A) may help to reduce the 
intensive laboratory experiments needed to determine the toxicity of 
mixtures of ENPs. An association analysis indicated that the most 
common way of assessing the joint interactions of multiple ENPs 
reported in existing studies is the IA-based model (Figure 4.3B). 
Moreover, the most frequently evaluated combination applying the 
IA-based method is the combination of nCuO and nZnO. 
Furthermore, it is estimated that the type of joint interaction of an 
ENP mixture is predicted correctly or overpredicted by default in 
approximately 42 % of all combinations. 
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Figure 4.3. Assessment and prediction methodology of multi-ENP mixtures. A: 
Schematic framework for the methodology. B: Network diagram of association 
rules of ENPs in binary mixtures combined with the assessment methods for their 
joint toxicity. CA: Concentration Addition, IA: Independent Action, and TU: Toxic 
Unit. C: Scheme of machine learning- or deep learning-based QSAR approach used 
for the ecotoxicity prediction of the mixtures of individual ENPs. 

CA and IA models have been preliminarily applied to the assessment 
and prediction of the mixture toxicity of multiple ENPs. For example, 
Liu et al. (2016) applied CA and IA models to effectively predict the 
combined toxicity of nCu and nZnO to Lactuca sativa L., and the fit 
of the IA model to the experimental data on the combined toxicity of 
the two ENPs was higher than that of the CA model. Wang et al. 
(2020) used the IA model to effectively predict the combined toxicity 
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of spherical nTiO2 and tubular nTiO2 to C. pyrenoidosa, while the CA 
model effectively predicted the combined toxicity of this binary 
mixture to S. obliquus. Although the CA and IA models offer some 
promise toward predicting the mixture toxicity of multiple ENPs, a 
great deal of validation will be necessary. In addition, one important 
realization is that the CA and IA models also require experiments to 
determine the toxicity characters (i.e., effect concentrations and 
concentration-response relationships) of all single components of a 
mixture. Taken together, the CA and IA models have become the two 
most commonly used methods in assessing and predicting the 
combined toxic effects of multiple ENPs, as shown in Figure 4.3B. 
Furthermore, the two methods are frequently used for the mixtures 
consisting of nCuO, nZnO, or nTiO2. In particular, toxicity assessment 
and prediction of mixtures containing nCuO and nZnO prefer IA 
models. 

Quantitative structure-activity relationship (QSAR) models are 
mathematical relationships between indicators of toxicity (e.g., 
lethality) and descriptors (e.g., physicochemical properties of 
chemicals) (Chen et al., 2017, 2015). QSAR models have been 
successfully applied to predict the single toxicity of ENPs. However, 
the data that have been used for QSAR models were mostly generated 
from toxicity studies with single ENPs rather than making use of 
multiple ENPs. Currently, a limited number of studies have been 
developed to establish QSAR models for the photocatalytic activity 
and toxicity of nTiO2-based nanomixtures (Mikolajczyk et al., 2019, 
2018, 2016). These studies aimed to develop models for predicting 
the photocatalytic activity and cytotoxicity of nanoblends consisting 
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of nTiO2 and (poly) metal clusters (Au, Ag, Pd, and Pt) (Mikolajczyk 
et al., 2019, 2018, 2016). 

QSAR models can fill in the limitations of CA and IA models (Trinh 
and Kim, 2021). QSAR model inputs do not require the toxicity of all 
single components in a mixture or the dose-response curves of single 
components in the mixture. However, QSAR studies on the 
quantitative prediction of the mixture toxicity of multiple ENPs still 
constitute a knowledge gap. The main reason for this may be the lack 
of sufficient experimental data and the absence of uniform toxicity 
endpoints to develop predictive models. In addition to quantitative 
data on toxicity endpoints, descriptors are also important for the 
development of QSAR models. Descriptors for ENPs can be obtained 
based on the properties of nanoparticles at different scales (Wang et 
al., 2018), including physicochemical properties (e.g., chemical 
composition, shape, particle size, surface charge, specific surface area, 
and solubility), quantum chemical properties of nanocluster 
structures, and mesoscale nanoparticle properties. However, because 
ENP mixtures contain both nanoparticle and mixture components, 
there is a need to develop mixture descriptors for multiple ENPs and 
hence QSAR models can quantitatively predict the toxicity of 
multi-ENP mixtures. The weighted descriptor approach in Equation 
4.1 represents a preferred approach to developing descriptors for 
chemical mixtures (Dmix) (Altenburger et al., 2003; Giner et al., 2020). 
Then, a generic QSAR model for the prediction of activities of 
chemical mixtures can be expressed by Equation 4.2 (Altenburger et 
al., 2003) 

21!2 = ∑(9323)                     (4.1) 
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log ,1!2 = > log∑(93243) + ? log∑(93253) + ⋯+ A    (4.2) 

where Amix represents the activity of the chemical mixtures to be 
modeled, xi represents the molar fraction of a component (i) in the 
mixtures, D1 and D2 are the structural descriptors used for each 

component, and >, ?, and z are the coefficients of the regression 
function. A QSAR approach with mixture descriptors was 
implemented in a user-friendly application for assessing the aquatic 
toxicity of nanomixtures containing nTiO2 and one of the selected 
inorganic/organic compounds (Trinh et al., 2022). 

Assessing and predicting the toxicity of mixtures of multiple ENPs is 
facing unprecedented opportunities and challenges. Computational 
nontesting methods (i.e., in silico models) representing a fast and 
reliable alternative approach to in vivo and in vitro methods, for 
example, machine learning, read-across, docking, expert systems, and 
structural alerts, are expected to play key roles in the toxicity 
prediction of mixtures of ENPs. In particular, the integration of QSAR 
and machine-learning methods (e.g., support vector machine, 
random forest, K-nearest neighbor, naïve Bayes, decision tree, neural 
network, and logistic regression) can serve as a very powerful tool for 
solving the problem of toxicity prediction of mixtures of NMs (Figure 
4.3C). The reality, however, is that the lack of databases on the 
mixture toxicity of ENPs hinders the development and application of 
artificial-intelligence-based methods for toxicity prediction. As the 
size of the data increases, deep-learning methods perform better than 
machine-learning methods. It is worth noting that deep learning 
attempts to obtain high-level features directly from the data, which is 
the main difference between deep-learning and traditional 
machine-learning algorithms. In addition to the prediction of 
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ecotoxicity endpoints/classification, machine-learning methods 
combined with QSAR notions can provide valuable hints for the 
design of low-toxicity nanohybrids. On balance, comprehensive and 
predictive knowledge about NM risks to environmental and ecological 
health must include explicit consideration of interactions in multiple 
ENP mixtures. 

4.4 Outlook and prospects 

The mixture toxicity of multiple ENPs is an emerging topic, and this 
topic faces numerous opportunities and challenges. Based on the 
current state of the science, the following key research needs have 
emerged. 

(1) Currently, single-component ENPs as the first generation have 
reached full market penetration. New-generation multi- 
component NMs, made up of e.g. binary or ternary or quaternary 
constituents or ENP components with sometimes advanced 
properties, are just starting to enter the market. The association 
rule analysis performed shows that applying the notion of simple 
additivity is often justified, and the predictability of mixtures of 
ENPs can be done with approximately 42 % accuracy by taking 
single ENP hazard information and using a simple additive 
approach. An understanding of joint interactions for those novel 
materials is in its infancy. Continued studies will be required to 
investigate the combined toxicity of hybrid NMs, particularly at 
environmentally relevant concentrations. 

(2) Based on the single ENP data, the physicochemical behavior (e.g., 
stability, aggregation/agglomeration, dissolution) is the most 
important of all characteristics of ENPs. It is known that the 
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presence of ligands to bind to and pH drive the single toxicity of 
ENPs. Thus, the effects of the physicochemical behavior such as 
stability (versus binding ligands) and pH versus dissolution on 
the toxicity of mixtures of ENPs need to be recognized. At the 
higher biological levels most experimental data collected for 
microbial communities and all other communities need to be 
estimated by making use of SSDs or other modeling techniques 
that are built from the standard laboratory test species data. 

(3) When facing the continuous emergence of various new ENPs, the 
workload of the assessment and prediction of the mixture toxicity 
of multiple ENPs will multiply. In particular, the interaction 
behavior between different particles in the mixtures of ENPs has 
been screened but a mechanistic understanding has not been 
explored. In this study, we used the classical addition models and 
assumed antagonistic or synergistic joint interactions when a 
deviation on additivity was found. A 75 % chance of a correct 
prediction would be given approximately when drawing lessons 
from making use of the CA and IA models for metal mixtures (Liu 
et al., 2017; Vijver et al., 2011, 2010). The importance of modeling 
is recognized for screening purposes not only in prospective but 
also in retrospective effect assessments. Comprehensive 
computational approaches of predicting the mixture toxicity of 
multiple ENPs need to be developed further. This study gives the 
first building blocks on what data are currently present and 
accessible, and what types of joint interactions exist for mixtures 
of multiple ENPs and provides insights into what we can expect as 
response types for hybrid NMs. 
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Abstract 

An approach to solve the emerging need of prediction of the toxicity 
of mixtures of engineered nanoparticles (ENPs) is presented. The 
integration of classic approaches to mixture toxicity assessment and 
computational toxicology approaches is proposed to be a smart 
strategy for forecasting the toxicity of a mixture of ENPs. 
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Various nanostructured materials have been found to be attractive for 
applications due to their distinctive physicochemical properties from 
atoms, molecules, and traditional bulk materials. With the increasing 
market entry of existing nanomaterials and the uninterrupted 
development of new nanomaterials, a wide diversity of engineered 
nanoparticles (ENPs) will inevitably be released into the atmosphere, 
water, and soil, which also raises concerns about the risks of these 
ENPs to human and ecological health (Peijnenburg et al., 2015). 
Assessing the environmental risks of ENPs is not only a challenge for 
the scientific community but also a major international demand for 
the sustainable development of nanotechnology. 

The presence of chemical contaminants in the form of mixtures in the 
environment is a common rule rather than an exception. Due to the 
extensive use of ENPs in industrial and consumer products, ENPs will 
inevitably be released into the environment. Natural ecosystems will 
thus be exposed to a mixture of ENPs. At present, with the ongoing 
development and application of nanocomposites, different types of 
ENPs will be jointly discharged into the environment. In addition, 
sewage systems and municipal wastewater treatment plants have 
become important in-between ways to transfer ENPs to the 
environment. Thereupon, industrial and municipal sewage is viewed 
as the main source of mixtures of ENPs of varying composition. The 
formulation of current environmental quality standards and risk 
assessments is usually based on toxicity data of individual ENPs 
(Guinée et al., 2017), and the potential hazards of their combined 
toxic effects are not fully considered. This may be because the 
intrinsic toxicity of a mixture of ENPs (addition, synergism, or 
antagonism) is strikingly different from the toxicity of the individual 
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ENPs. Meanwhile, a standardized and trustworthy method for 
estimation of ENP-mixture toxicity is lacking. 

We propose that the key strategy to quantitatively predict the joint 
toxicity of an emerging or untested/unknown mixtures of multiple 
ENPs is to integrate the classical mixture toxicology methods with 
computational toxicology approaches. This integration not only 
allows to properly incorporate the characteristics of the underlying 
mechanisms of toxicity (from the intrinsic structure information) as 
based on the classical mixture toxicology approaches but also 
strengthens the theorization (from the basic principles of mixture 
toxicology) of computational toxicology approaches. 

On the basis of the classical mixture toxicology, the toxicity induced 
by exposure to mixtures of ENPs can be assessed using a 
component-based (CB) method. The CB method relies upon the 
response of the individual components of a mixture to predict the 
joint toxicity of the mixture (Bopp et al., 2018). The CB method for 
the toxicity prediction of chemical mixtures can be further classified 
as following joint actions in toxicodynamic processes: similar joint 
action (concentration addition, CA), dissimilar joint action 
(independent action, IA), and synergistic/antagonistic actions. The 
CA and IA models are usually applied to quantify the joint toxicity 
(including toxicity indicators and full dose/concentration-response/ 
effect relationships) of chemical mixtures. CA is accustomed to 
predicting the toxicity of mixtures consisting of chemicals with a 
similar mode of toxic action (MOA), and IA is conditioned to 
predicting the toxicity of mixtures comprising chemicals with a 
dissimilar MOA. Joint action as induced by chemical mixtures is a 
fundamental hypothesis (Kar and Leszczynski, 2019). Note that the 
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assessment of distinctive types of MOA of individual ENP-induced 
toxicity is prerequisite for the assessment of joint action of ENP 
mixtures. Furthermore, CA and IA have become two prevailing 
approaches for the quantitative prediction of mixture toxicity based 
upon the hypothesis of joint action. It is reasonable to believe that the 
widely accepted approaches to modeling mixture toxicity are 
applicable to mixtures of ENPs. 

The development of nanotechnology has advanced by leaps and 
bounds, but our knowledge of the toxicological effects and risks of 
ENPs lags far behind the speed of their production and utilization. 
Most importantly, emerging nanomaterials are continuously being 
developed, introduced, and released. Nonetheless, different organism 
toxicity data are insufficient for single ENPs and yet are considerably 
scarcer for mixtures of ENPs. In addition, the experimental 
evaluation of the toxicity of single and mixtures of ENPs by means of 
biological models has a high cost and is time-consuming. In response 
to these issues, environmental scientists and toxicologists around the 
world have generally recognized the need to develop and validate 
theoretical prediction methods for ENPs, namely in silico (i.e., 
computational) toxicology models or predictive-toxicology models 
(mainly used for the prediction of toxicological indicators) (Chen et 
al., 2017). Computational toxicology can offer powerful technique 
support to fill a vacancy in mixture toxicity data, as the majority of 
mixtures even lack toxicity data for the individual ENPs. Additionally, 
computational toxicology methods have the potential of being capable 
of in advance prediction of the joint toxicity of ENP mixtures of any 
composition. There have been notable examples of the prediction of 
toxicity of chemical mixtures through computational toxicology 
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methods (Kar and Leszczynski, 2019), for example, the quantitative 
structure-activity relationship (QSAR) model, the structural alerts 
model, the rule-based model, the uncertainty factors model and 
read-across, docking, and expert systems. Such methods could be 
applicable to the toxicity prediction of mixtures of ENPs. 

The physicochemical and steric structures of ENPs determine the 
intrinsic mechanisms and linkages of their environmental behavior 
and toxicological effects, which are the core issues and challenges in 
constructing a predictive toxicology model, such as nano-QSAR. 
Through theoretical chemistry calculations such as molecular 
simulation, many nanodescriptors/parameters (such as energy levels, 
frontier orbital energy levels, charge, etc.) describing the 
characteristics of a single ENP structure can be obtained. 
Mechanism-based nanodescriptors for discriminating the toxicity of 
ENPs can be further screened via classification/regression methods, 
for example, decision tree, logistic regression, and support vector 
machine. The mechanism of toxicity of ENPs can also be revealed at 
the molecular level. The computation of descriptors for mixtures of 
ENPs is the real challenge. The weighted descriptor approach 
represents a preferred practice to work out descriptors for chemical 
mixtures (Giner et al., 2020). 

To achieve the integration of the classical mixture toxicity and 
computational toxicology methods, we suggest that research priorities 
for the prediction of the toxicity of mixtures of ENPs are identified to 
systematically sort out the toxicity and ecotoxicity information 
(macroscopic and microscopic toxicity end points) of ENPs gathered 
into "databases". Moreover, expected and/or actual environmental 
concentrations of ENPs need to be obtained to be implemented for 
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actual risk profiling of various combinations of ENPs in the 
environment. These environmental concentrations can be further 
used for the estimation of mixture ratios of multiple ENPs, and then 
the weighted descriptors of ENP mixtures can be evaluated by the 
mixture ratios. Furthermore, it is essential that information on the 
MOA of single ENPs to species is systematically documented, and this 
issue deserves priority in the selection of methods to assess mixture 
toxicity and the selection of mechanism-based nanodescriptors. 
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Abstract 

Research on theoretical prediction methods for the mixture toxicity of 
engineered nanoparticles (ENPs) faces significant challenges. The 
application of in silico methods based on machine learning is 
emerging as an effective strategy to address the toxicity prediction of 
chemical mixtures. Herein, we combined toxicity data generated in 
our lab with experimental data reported in the literature to predict 
the combined toxicity of seven metallic ENPs for Escherichia coli at 
different mixing ratios (22 binary combinations). We thereafter 
applied two machine learning (ML) techniques, support vector 
machine (SVM) and neural network (NN), and compared the 
differences in the ability to predict the combined toxicity by means of 
the ML-based methods and two component-based mixture models: 
independent action and concentration addition. Among 72 developed 
quantitative structure-activity relationship (QSAR) models by the ML 
methods, two SVM-QSAR models and two NN-QSAR models showed 
good performance. Moreover, an NN-based QSAR model combined 
with two molecular descriptors, namely enthalpy of formation of a 
gaseous cation and metal oxide standard molar enthalpy of formation, 
showed the best predictive power for the internal dataset (R2test = 
0.911, adjusted R2test = 0.733, RMSEtest = 0.091, and MAEtest = 0.067) 
and for the combination of internal and external datasets (R2test = 
0.908, adjusted R2test = 0.871, RMSEtest = 0.255, and MAEtest = 0.181). 
In addition, the developed QSAR models performed better than the 
component-based models. The estimation of the applicability domain 
of the selected QSAR models showed that all the binary mixtures in 
training and test sets were in the applicability domain. This study 
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approach could provide a methodological and theoretical basis for the 
ecological risk assessment of mixtures of ENPs. 
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6.1 Introduction 

The unique physicochemical features of nanostructured materials 
make them particularly appealing for specific applications 
(Wyrzykowska et al., 2022). Developments go with a fast pace, with 
first-generation nanomaterials (NMs) already embedded in a variety 
of products and advanced NMs such as nanocomposites continuously 
generated (Jayaramulu et al., 2022). With the continuous 
development and application of NMs, different types of engineered 
nanoparticles (ENPs) will now be co-discharged into the environment. 
Municipal wastewater treatment facilities and sewage systems are 
becoming crucial intermediary routes for the release of the mixtures 
of ENPs into the environment (Georgantzopoulou et al., 2020; 
Simelane and Dlamini, 2019; Singh and Kumar, 2020). It is expected 
that industrial and municipal wastewater are a major source of 
mixtures of ENPs of different compositions. As a consequence, a wide 
range of structurally and chemically diverse ENPs will unavoidably be 
released into the environmental compartments (Hong et al., 2021), 
raising worries about potential ENPs-induced human and ecological 
impacts (Avellan et al., 2021). This requires to explore the scientific 
challenge of assessing mixture toxicity of multiple ENPs (Zhang et al., 
2022a). 

Fortunately experimental data on the mixture toxicity of ENPs is 
expanding quite recently, while progress on methods for evaluating 
and predicting the mixture toxicity of ENPs is lagging (Zhang et al., 
2022a). Enabling ENPs' mixture predictions, classical 
component-based mixture models have been used (Lopes et al., 2016; 
Martín-de-Lucía et al., 2019). However, these mixture models such as 
concentration addition (CA), independent action (IA), and a 
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combination of the two models rely on the assessment of the 
concentration-response relationship of the single components and on 
the identification of the toxic mode of action of the single components 
(F. Zhang et al., 2021b). In silico predictive toxicology appears to be a 
promising alternative to the mixture modeling. Among the novel 
approach methodologies based on in silico predictions, quantitative 
structure-activity relationships (QSAR) modeling proves to be a 
useful tool for the prediction of the biological activity or property of a 
compound by providing a mathematical correlation with its structural 
features (Tropsha, 2010). Recently, QSAR methods are being applied 
in methodological studies for the quantitative prediction of the 
toxicity of mixtures of ENPs (Kar et al., 2022; Mikolajczyk et al., 2016; 
Na et al., 2023; Zhang et al., 2022b). Meanwhile, machine learning 
(ML) methods, which seek to construct an explicit or implicit model 
based on current data (known as training data) to make predictions 
or decisions on complicated issues (M. Wang et al., 2021), have 
already stepped into the spotlight for in silico prediction of toxicology. 
ML methods to date have shown unprecedented predictive power in 
predicting the toxicity of ENPs (Balraadjsing et al., 2022; Ji et al., 
2022; Jia et al., 2021; Trinh et al., 2022). Thus, ML-powered QSAR 
modeling approaches could be a strong tool to deal with the problem 
of predicting the toxicity of mixtures of ENPs, and would perform 
better and more cost-effective than the classical mixture models. 
However, there is still a scarcity of QSAR models based on ML 
approaches for predicting the mixture toxicity of multiple ENPs. 

The present study aimed at rebuilding existing QSAR for use with 
NMs (nano-QSAR) by incorporating ML methods to describe the 
toxicity of a mixture of ENPs and comparing the performance with 



 

 125 

the mixture models. This enables the understanding of the link 
between the physicochemical properties describing the components 
in the mixture and the cytotoxicity of 22 binary mixtures of metal 
oxide nanoparticles (MOX NPs) against Escherichia coli, a commonly 
used bacterium species in toxicity screening. Toxicity data for 12 
binary mixtures with two different mixing ratios from our laboratory 
were used as an internal dataset. Toxicity data for 10 binary mixtures 
with another mixing ratio from the literature were used as an external 
dataset. The selected ML methods, namely support vector machine 
(SVM) (Ban et al., 2022; Liu et al., 2013) and neural network (NN) 
(Yang et al., 2022), are well-known and commonly utilized ML 
algorithms. The study involves eight indicative physicochemical 
parameters implicated in the mechanism of toxicity of MOX NPs: 
surface charge, dispersion stability, dissolution, oxidative stress, and 
particle reactivity. Then, for the first time, SVM- and NN-based QSAR 
models for predicting the cytotoxicity of mixtures of individual MOX 
NPs with diverse metal elements and different mixture ratios were 
developed. The goal of this study is to develop a rapid and 
cost-effective model for predicting the toxicity of mixtures of ENPs 
and provide a more suitable method for the risk assessment of 
multiple ENPs. 

6.2 Materials and methods 

6.2.1 Experimental sections 

Test materials 

CuO NPs with a primary size of 40 nm (advertised specific surface 
area > 10 m2/g; purity 99 %), ZnO NPs with a primary size of 14 nm 
(advertised specific surface area of 30 ± 5 m2/g; purity > 99 %), TiO2 
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NPs with a primary size of 21 ± 5 nm (advertised specific surface area 
50 ± 10 m2/g; purity > 99.5 %), and ZrO2 NPs with a primary size of 
5−25 nm (advertised specific surface area 130 ± 20 m2/g; purity > 
97.2 %) were purchased from PlasmaChem GmbH (Berlin, Germany). 
The MOX stock suspensions were freshly prepared in pure water after 
30 min sonication in a water bath sonicator and then stored at 4 °C 
until use. 

Physicochemical analysis 

Zeta potential (ζP) and hydrodynamic diameters (DH) of the MOX NP 
suspensions at 10 mg/L were analyzed in water using a ZetaSizer 
instrument (Nano ZS90, Malvern Instruments Ltd., Worcestershire, 
UK). 

Toxicity testing 

Cytotoxicity tests were performed with E. coli using the microtitration 
plate assay (Patton et al., 2006). The initial number of bacteria was 

set at 1 ´ 108 cells/mL. Bacterial solution after exposure to the test 

materials was added into a 96-well white flat-bottom microplate, 
which subsequently was maintained at 37 °C with shaking incubation 
for 12 h in a constant temperature shaker. Bacteria were exposed to 

increasing concentrations of the suspensions of CuO NPs (from 1.26 ´ 

10-4 to 3.02 ´ 10-3 mol/L), ZnO NPs (from 6.14 ´ 10-5 to 6.76 ´ 10-4 

mol/L), TiO2 NPs (from 3.76 ´ 10-4 to 3.76 ´ 10-3 mol/L), and ZrO2 

NPs (from 4.06 ´ 10-4 to 9.74 ´ 10-3 mol/L). Each test concentration 

was replicated four times. The optical density (OD) values 
corresponding to the cell number of E. coli were monitored using an 
enzyme-labeled instrument (Thermo Multiskan FC, USA), and the 
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inhibition rate was calculated from the measured OD values. The 
cytotoxicity of the tested materials was expressed in terms of effect 
concentrations (EC50 and EC10: the effective concentration of a 
toxicant that induces 50 and 10 % bacteria inhibition), which were 
calculated using a concentration-response curve (CRC). For the 
binary mixtures in the internal dataset, E. coli cells were treated with 
various concentrations of MOX NPs with a fixed mixture ratio, where 
the first and second mixtures were based on the initial EC50 and the 
EC10 of each MOX NP, respectively. Thus, the two mixtures were 
named Int (R1) mixture and Int (R2) mixture. 

6.2.2 Computational methods 

Determination of concentration-response curve 

The Logistic regression model, as shown in Equation 6.1, was used to 
fit the CRCs for single and binary MOX NPs. 

! = 466

7489 !
"!#$

:
%
;
                     (6.1) 

where E is the effect confined to the range of 0−100 %, C is the 
exposure concentration of the test materials, and θ represents the 
slope parameter. 

Joint effect modeling 

As the most representative approaches used are the IA and CA 
models (Bliss, 1939; Loewe and Muischneck, 1926), which were 
applied to predict the toxicity (denoted EC50 values) of the mixtures of 
MOX NPs. Throughout the modeling EC50 values were transformed to 
inverted logarithm i.e., log1/EC50. 
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The general expression shown in Equation 6.2 was used for the IA 
model, 

!(B1!2) = 1 −∏ (1 − !(B3))<
3=4              (6.2) 

where E(Cmix) is the effect expected at the total concentration of the 
mixture (scaled between 0 % and 100 %) and E(Ci) is the effect that 
the ith mixture component would provoke if applied singly at 
concentration Ci. 

The total concentration of a mixture causing x % effect (ECxmix) was 
calculated from the CRC of the individual component using the CA 
model, as shown in Equation 6.3, 

!B>1!2 = D∑ ?&
@A'&

<
3=4 E

'4
                (6.3) 

where Pi is the fraction of component i in the mixture and ECxi is the 
concentration of component i that would result in x % effect if used 
alone. 

Construction of datasets 

Two datasets were constructed for the development and validation of 
the predictive models. The dataset was chosen not only to take into 
account data sample diversity (i.e., diversity of mixed components 
and mixed concentration ratios), but also to reduce the variability of 
inter-laboratory toxicity testing conditions. The first dataset (named 
internal dataset) consists of experimental data from our laboratory. 
The internal dataset consists of 12 data rows, consisting of the binary 
mixtures of four MOX NPs (CuO, ZnO, TiO2, and ZrO2) at two 
different mixture ratios. The results of physicochemical analysis 
which included the assessment of the ζP and the DH of MOX NPs in 
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the single and binary mixture systems and the CRCs for the mixtures 
obtained from the E. coli toxicity testing and predicted by the IA and 
CA models are described in the Appendix. 

The second dataset (named combined dataset) comprised both 
internal data and external data. The external data of the toxicity of 10 
binary mixtures of five MOX NPs (Al2O3, Fe2O3, SiO2, TiO2, and ZnO) 
to E. coli was collected from Kar et al. (2022). The binary 
nano-mixtures in the external dataset and the internal dataset have 
both different kinds of combinations and different mixture ratios of 
components between them. The external dataset was named Ext (R3) 
mixture. The combined dataset has a total of 22 data rows. 

Calculation of mixture descriptors 

A mixture descriptor (Dmix) is a weighted descriptor that quantifies 
how much each component contributes to the overall activity of a 
mixture (Altenburger et al., 2003). Dmix has been practically applied 
in the toxicity prediction studies of ENP mixtures (Kar et al., 2022; 
Trinh et al., 2022). Dmix is expressed by arithmetic mean (Equation 
6.4): 

21!2 = 9323 + 9B2B                  (6.4) 

where xi and xj are the mole fractions of constituent i and j in the 
mixtures, and Di and Dj are descriptors of the individual MOX NPs. 
The selected descriptors of the individual MOX NPs and the calculated 
Dmix based on Equation 6.4 are shown in the Appendix Table S6.1 and 
Table S6.2, respectively. In the selection of descriptors for the 
individual MOX NPs, we referred to the qualities summarized by Roy 
et al. (2015). Moreover, the selected descriptors are universal 



 

 130 

descriptors, which are effectively used to construct QSAR models of 
individual MOX NPs. Furthermore, these descriptors not only reflect 
the characteristics of nanostructures but also directly respond to 
toxicologically relevant properties. In details, there were eight 
descriptors of the individual MOX NPs from three different types: two 
periodic table-based descriptors (electronegativity of metal atoms, χme 
and sum of metal electronegativity for an individual metal oxide 
divided by the number of oxygen atoms present in a particular metal 
oxide, Σχme/nO) derived from the publicly available periodic table 
information (Kar et al., 2014), two experimental descriptors (ζP and 
DH) determined in our laboratory (CuO, ZnO, TiO2, and ZrO2 NPs) 
and obtained from a previous study (Al2O3, Fe2O3, SiO2, TiO2, and 
ZnO NPs) (Kar et al., 2022), three metal oxide energy descriptors 
including the enthalpy of formation of a gaseous cation having the 
same oxidation state as the oxidation state of the metal in the metal 
oxide structure (ΔHme+) (Puzyn et al., 2011), the metal oxide standard 
molar enthalpy of formation (ΔHsf) (Haynes, 2011), and the energy of 
the conduction band (EC) (Zhang et al., 2012) of the nanoparticle, as 
well as the ionic index of the metal cation (Z2/r) (Walker et al., 2003). 
Stepwise multiple linear regression in SPSS 23.0 was used to perform 
a preliminary screening of the descriptions obtained, and the t value 
was selected to determine the comparative importance of the 
descriptors on the toxic effect concentrations (log1/EC50) of binary 
mixtures of MOX NPs. 

Machine Learning-based modeling 

Two popular ML algorithms, namely SVM and NN, were used to 
develop the QSAR models for predicting the toxicity of binary 
mixtures of MOX NPs. The datasets were divided into training (60 % 
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data) and test (40 % data) sets at random. For the SVM algorithm, the 
Gaussian radial basis function (RBF) was used. For the NN algorithm, 
the hyperbolic tan function for the hidden layer and the 
quasi-Newton method for weight optimization were applied. We used 
the data mining toolbox in Python for developing the ML-based 
predictive models (Demšar et al., 2013). To validate the models, the 
squared correlation coefficient (R2) and the adjusted squared 
correlation coefficient (R2adj) between observed and predicted 
log1/EC50, the root mean square error (RMSE), and the mean 
absolute error (MAE) of the training and test datasets were used. 
These statistical parameters are commonly used in current 
nano-QSAR studies and are widely accepted (Gajewicz et al., 2015; 
Kar et al., 2022; Trinh et al., 2022). Randomization tests proposed for 
testing the robustness of the selected models were performed using 
the metric cR2P (Kar et al., 2014). If the cR2P value is more than the 
stipulated threshold value of 0.5 then an acceptable model has been 
developed. The second-order bias-corrected Akaike Information 
Criterion (AICc) index as an additional statistical measure was 
employed on the full set to evaluate the relationship between 
variables. The AICc value was calculated using R software. 

Applicability domain 

The OECD principles of QSAR validation recommend that: A (Q)SAR 
should be associated with a defined domain of applicability (OECD, 
2014). The function of the applicability domain (AD) is to define the 
compounds that can be reliably predicted by the QSAR model, which 
can also be understood as the set of compounds to which the model 
applies. The AD in this work was generated by using the Student's 
t-distribution on Euclidean distances (structural domain) and 
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standardized residuals (response domain) of a training dataset to 
define the space where accurate predictions can be made with a 
specified level of confidence (Gajewicz, 2018). 

6.3 Results and Discussion 

6.3.1 Toxicity of binary ENP mixtures 

CRCs established for the binary mixtures of CuO, ZnO, TiO2, and 
ZrO2 NPs are shown in the Appendix Figure S6.1. Based on the curves, 
the log1/EC50 values were determined and these are summarized in 
Table 6.1. 

Table 6.1. Toxicity data of binary mixtures of MOX NPs for the internal dataset a 

Mixture system 

of MOX NPs 

Observed log1/EC50 

(mol/L) 

Predicted log1/EC50 (mol/L) 

QSAR models Mixture models 

S12 S31 N12 N31 IA CA 

Int (R1)  

CuO + ZnO NPs 2.72 2.68 2.70 2.72 2.72 2.85 3.05 

TiO2 + ZrO2 NPs 2.10 2.14 2.13 2.10 2.10 2.32 2.44 

ZnO + TiO2 NPs 2.17 2.20 2.18 2.18 2.18 2.96 3.00 

ZnO + ZrO2 NPs* 2.30 2.23 2.14 2.37 2.37 2.39 2.54 

CuO + TiO2 NPs* 2.77 2.81 2.80 2.88 2.80 2.70 2.80 

CuO + ZrO2 NPs 2.29 2.25 2.27 2.29 2.29 2.30 2.46 

Int (R2)  

CuO + ZnO NPs* 2.82 2.68 2.70 2.69 2.66 2.92 3.15 

TiO2 + ZrO2 NPs* 2.11 2.14 2.13 2.11 2.10 2.32 2.44 

ZnO + TiO2 NPs 2.20 2.21 2.18 2.19 2.18 2.77 3.05 

ZnO + ZrO2 NPs 2.37 2.23 2.14 2.37 2.37 2.39 2.54 

CuO + TiO2 NPs 2.74 2.71 2.72 2.75 2.75 2.70 2.80 

CuO + ZrO2 NPs 2.14 2.21 2.18 2.14 2.15 2.31 2.41 

a * indicates the test data. 
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For the binary mixtures with a certain mixture ratio, TiO2 and ZrO2 
NPs induced the least toxicity in the combined exposure setting. 
Comparative analysis also revealed that the toxicity of CuO NPs 
combined with ZnO or TiO2 NPs was higher than for other binary 
combinations. 

6.3.2 Machine learning-based QSAR prediction 

Based on the ML methods, 72 QSAR models integrating different Dmix 
(Figure 6.1) were developed. The performance of 36 SVM-and 36 
NN-based QSAR models is shown in the Appendix Tables S6.3 and 
S6.4, respectively. 

 

Figure 6.1. SVM (S1−S36)- and NN (N1−N36)-based QSAR models prepared from 

the pool of different mixture descriptors. χme — metal electronegativity, Σχme/nO — 
sum of metal electronegativity for individual metal oxide divided by the number of 
oxygen atoms present in particular metal oxide, ζP — zeta potential, DH — 
hydrodynamic diameters, ΔHme+ — enthalpy of formation of a gaseous cation, ΔHsf 

— metal oxide standard molar enthalpy of formation, EC — nanoparticle energy of 
conduction band, and Z2/r — ionic index of metal cation. 

We selected a good prediction model according to the following three 
criteria: (i) R2 ≥ 0.81 for in vitro data (Kubinyi, 1993); (ii) adjusted 
R2 > 0.60 (Olasupo et al., 2020); (iii) the above two conditions need 
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to be satisfied not only for both the training and the test sets but also 
for both the internal and combined datasets, as well as for both the 
SVM- and NN-based models when applying the same descriptors. 
Among the developed QSAR models, two SVM-based models (S12 
and S31) and two NN-based models (N12 and N31) performed 
comparably better than other models for both the internal and 
combined datasets. This also means that the selected QSAR models 
can reliably predict the toxicity of mixtures of individual MOX NPs 
under multiple different experimental conditions. 

Moreover, the predicted log1/EC50 values by the good models (S12, 
S31, N12, and N31) are shown in Table 6.1 (the internal dataset) and 
in Table 6.2 (the combined dataset). The percental difference 
averaged between the experimental and predicted values by the 
selected models for the internal and combined datasets was 2.34, 
2.50, 1.08, 1.04 and 7.16, 7.29, 2.87, 2.61 % respectively. In addition, 
the obtained cR2P values for the selected models via the 
Y-randomization test are higher than 0.5 (Appendix Tables S6.5 and 
S6.6), demonstrating that the models were not created randomly and 
that they are robust. 

Experimentally determined log1/EC50 are plotted against predicted 
log1/EC50 for the internal and combined datasets (Figure 6.2 and 
Figure 6.3, respectively). The green dotted line indicates that the 
experimental and the predicted values correspond exactly. The bule 
straight line depicts a linear relationship between the experimental 
and predicted values based on the training sets. 
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Table 6.2. Toxicity data of binary mixtures of MOx NPs for the combined dataset a 

Mixture system 

of MOX NPs 

Observed log1/EC50 

(mol/L)  

Predicted log1/EC50 (mol/L) 

QSAR models 

S12 S31 N12 N31 

Int (R1)  

CuO + ZnO NPs 2.72 2.80 2.89 2.72 2.72 

TiO2 + ZrO2 NPs 2.10 2.18 2.05 2.10 2.11 

ZnO + TiO2 NPs* 2.17 1.92 2.09 2.21 2.18 

ZnO + ZrO2 NPs 2.30 2.22 2.13 2.30 2.30 

CuO + TiO2 NPs 2.77 2.82 2.94 2.77 2.77 

CuO + ZrO2 NPs 2.29 2.27 2.47 2.27 2.26 

Int (R2)  

CuO + ZnO NPs* 2.82 2.88 2.92 2.74 2.75 

TiO2 + ZrO2 NPs* 2.11 2.18 2.05 2.11 2.11 

ZnO + TiO2 NPs 2.20 1.92 2.10 2.19 2.18 

ZnO + ZrO2 NPs* 2.37 2.22 2.13 2.30 2.30 

CuO + TiO2 NPs* 2.74 2.27 2.58 2.05 2.50 

CuO + ZrO2 NPs 2.14 2.22 2.31 2.17 2.19 

Ext (R3)  

Al2O3 + ZnO NPs 4.26 3.93 3.88 4.26 4.26 

Al2O3 + Fe2O3 NPs 2.06 2.14 2.01 2.06 2.07 

Al2O3 + SiO2 NPs* 1.71 1.86 1.85 1.88 1.54 

Al2O3 + TiO2 NPs 1.70 1.95 1.87 1.71 1.70 

ZnO + Fe2O3 NPs 3.89 3.81 3.72 3.89 3.89 

ZnO + SiO2 NPs 4.13 3.62 3.57 4.13 4.13 

Fe2O3 + SiO2 NPs 2.25 2.17 2.08 2.25 2.25 

Fe2O3 + TiO2 NPs* 1.99 1.75 2.10 1.72 2.28 

SiO2 + TiO2 NPs 1.80 1.88 2.01 1.81 1.80 

ZnO + TiO2 NPs* 4.59 3.76 3.69 4.46 4.01 

a * indicates the test data. 
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Figure 6.2. Performance of the selected SVM- and NN-based QSAR models and the 
component-based mixture models developed based on the internal dataset. 

In general, the selected QSAR models exhibited good agreement (R2 ≥ 
0.81) between the observed and predicted toxicity for the binary 
mixtures of MOX NPs from the training set (blue circle) and those 
from the test sets (red circle). It can also be seen that the lines of the 
regression for the N12 and N31 models overlap with the line of 
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perfection, implying that the NN-based models showed better 
consistency between the experimental and predicted values compared 
to the SVM-based models. Furthermore, the percental difference 
averaged between the experimental and predicted values by the 
NN-based models was 2.17−2.40 and 2.49−2.79 times lower than the 
percental difference averaged between the experimental and 
predicted values by the SVM-based models in the internal (Appendix 
Table S6.7) and combined datasets (Appendix Table S6.8), 
respectively. Note that the N31 model had the lowest average 
difference between the experimental and predicted values among the 
selected QSARs. 

In addition, the results for the statistics of the selected models are 
shown in the insets of Figures 6.2 and 6.3. In the internal dataset 
(Figure 6.2), the S12 model with higher R2adj and lower RMSE and 
MAE performed better than the S31 and N12 models for predicting 
the test data. In addition to this, the NN-based models showed better 
than the SVM-based models for predicting both the training and test 
data. Further comparisons revealed that the N31 model with higher 
R2adj and lower RMSE and MAE performed better than the N12 model 
for predicting the test data. In the combined dataset (Figure 6.3), the 
NN-based models with higher R2adj and lower RMSE and MAE 
outperformed the SVM-based models for both the training and test 
data. Of the four models validated, the N31 model with the highest 
R2adj and the lowest RMSE and MAE had the best performance 
capability for predicting the test data. 
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Figure 6.3. Performance of the selected SVM- and NN-based QSAR models 
developed based on the combined dataset. 

Current research on biological effect prediction also indicates that 
NN-based models outperform SVM-based models empirically 
resulting from the training process and overall data prediction 
(Almansour et al., 2019; Bennett-Lenane et al., 2022), while other 
studies have shown that the SVM-based modeling approach often 
shows a better performance than the NN-based approach (X. Li et al., 
2021; Zhao et al., 2006). In theory, both ML algorithms have 
advantages and disadvantages. This is reflected in that the training 
time for NN-based technique is higher than the training time for SVM, 
while the prediction time for NN models is generally lower than for 
SVM models. Taken together, the performance indicators of the 
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selected QSARs indicate that both the NN and the SVM were practical 
tools for the prediction of the toxicity of mixtures of ENPs. 

To compare the differences between the developed QSAR models and 
the classical mixture models in predicting the toxicity of mixtures of 
MOX NPs, we also constructed the IA and CA prediction models 
(Appendix Figure S6.1). As shown in Figure 6.2, the selected QSAR 

models gave better predictions of log1/EC50 (R2 ³ 0.873) compared to 

those models based on mixture modeling making use of IA (R2 = 
0.326) and CA (R2 = 0.330). This implies that the QSAR models are 
low-cost approach to risk assessment of multiple ENP mixtures, due 
to the fact that the QSAR models do not need concentration-response 
information on each mixture component as with the commonly 
applied mixture models either using IA or CA. For the CuO + ZrO2 
NPs mixture at ratio 1 and the ZnO + ZrO2 NPs mixture at ratio 2, the 
percental difference averaged between the experimental and 
predicted values by the IA model was lower than the percental 
difference averaged between the experimental and predicted values 
by the SVM-based models (Appendix Table S6.7). This means that for 
a particular mixture the mixture model has the ability to predict the 
toxicity of the mixture of MOX NPs. 

The mixture model has become a prevailing approach for the 
quantitative prediction of mixture toxicity with concentration 
addition being a conservative measure of addition of stress and 
independent action as assuming induced effects not at the same 
target and affecting a percentage at the overall response, which 
strengthens the theorization from the basic principles of mixture 
toxicology. However, the interactions between the joint chemicals are 
not taken into consideration in the mixture models. Especially, the 
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distinctive physicochemical features of ENPs, which have a high 
surface area for adsorption, may hinder the mixture models from 
accurately estimating the toxicological effects of mixtures containing 
ENPs (Martinez et al., 2022). A previous study indicated that the IA 
and CA models did not perform well in predicting the toxicity of 
mixtures comprising TiO2 NPs and other pollutants to Daphnia 
magna (Trinh et al., 2022). Thus, it is reasonable to assume that the 
ML-integrated QSAR approach can be considered a highly promising 
tool for the assessment of the toxicity of a mixture of multiple ENPs. 

6.3.3 Applicability domains of QSAR models 

The AD of a QSAR is the physicochemical, structural, or biological 
space, knowledge or information on which the training set of the 
model has been developed, and for which it is applicable to make 
predictions for new compounds (Jaworska et al., 2005). The AD of 
the SVM-based models (S12 and S31) and NN-based models (N12 and 
N31) constructed from the internal and combined datasets is shown 
in Figures 6.4 and 6.5, respectively. The light and dark green elliptical 
boundaries correspond to the 95 and 99 % confidence intervals, 
respectively. Reliable predictions can only be generated within these 
confidence intervals. In the internal dataset (Figure 6.4), all the 
training data fall inside the 95 % confidence area, while two test data 
for the S12 model and only one test data for the S31 and N31 models 
falls between 95 % and 99 % confidence area. In the combined 
dataset (Figure 6.5), all the training and testing data fall inside the 95 % 
confidence area. Generally, all the studied binary mixtures of MOX 
NPs were located within the 99 % confidence area of the selected 
QSAR models. Thus, the mixture toxicity predictions for each training 
and test mixtures of MOX NPs are highly reliable for the selected 
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QSAR models. This suggests that the QSAR models can be used to 
predict the toxicity of any other binary combinations of MOX NPs, 
especially because the predominant first-generation ENPs are within 
this training set as well as the mechanistically relevant descriptors. 

 

Figure 6.4. Applicability domains of the selected SVM- and NN-based QSAR 
models developed based on the internal dataset. 

A QSAR model should have a well-defined AD to reflect its reliability 
in order to be applicable for chemical assessment and management. 
The dataset with 22 binary combinations has proven to be large and 
robust to effectively built ML-driven QSAR models for toxicity 
prediction. This is in line with previous conclusions confirming that 
ML-assisted QSAR models has good predictive power for relatively 
small datasets (Gajewicz et al., 2015; Puzyn et al., 2011; Zhong et al., 
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2022b). These findings do give prospects of application to move the 
field on mixture toxicity predictions further especially when ENPs 
mixtures are considered in which chemicals as well as particles 
influence fate and responses. 

 

Figure 6.5. Applicability domains of the selected SVM- and NN-based QSAR 
models developed based on the combined dataset. 

The characterization of the AD reflects the dependence of a QSAR 
model on training data (Zhong et al., 2022a). Thus, only 
nanostructured materials that are similar to the ENPs constituting 
the training set, can be reliably predicted. While artificial intelligence, 
ML, and big data analytics provide powerful algorithms and tools for 
QSAR modeling, high-quality toxicity data remain the driving force 
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for constructing QSAR models for the prediction of the toxicity of 
nano-mixtures. Therefore, further research needs to expand the 
amount of high-quality data available on the toxicity of mixtures of 
ENPs in the training set and enlarge the AD of QSAR models. 

6.3.4 Importance of descriptors and mechanistic knowledge 

Appendix Table S6.9 shows the comparative importance of the 
proposed descriptors for the toxicity prediction of binary mixtures of 
MOX NPs. The magnitude of the relative importance of ΔHsf (62 %) 
and ΔHme+ (47 %) is the highest in the internal and combined datasets 
studied respectively, suggesting that the two descriptors are very 
important in explaining the QSAR models. As an efficient descriptor, 
ΔHme+ was previously employed to explain the cytotoxicity of MOX 
NPs to E. coli based on their chemical stability. The chemical stability 
of MOX NPs is associated with the release of metal cation from the 
particles as well as the catalytic properties and redox modifications of 
the surface (Puzyn et al., 2011). For a given size, ΔHsf might be also 
used as an indicator of "the ability of releasing metal cation", since it 
is proportional to the energy of a single metal-oxygen bond in the 
oxides (Gajewicz et al., 2015). The cellular damage caused by MOX 
NPs may be attributed to the release of metal cations. The metal ions 
present in suspension can not only chelate with specific ligands of 
biological macromolecules to affect the toxicity of MOX NPs to 
biological cells, but also can instigate the generation of free radicals 
such as hydroxyl radicals in both cells and mitochondria, causing 
DNA and mitochondrial DNA breakage (Roy et al., 2019). 

In addition, χme was a significant descriptor in developing the S12 and 
N12 models, and indicates the energy needed to separate the metal 
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cation from the metal oxides as part of the mechanisms underlying 
the toxic effects of the metal oxides. MOX NPs with a higher χme tend 
to gain electrons from the bonding pair of the electrons. This 
indicates an increase in the catalytic capabilities of cationic metal 
(Roy et al., 2019). Thus, the toxicity of MOX NPs may be enhanced in 
accordance with the Haber-Weiss-Fenton cycle (Koppenol, 2001). χme 
is also independent of the size range of MOX NPs (Kar et al., 2014). 
Following the release of metal cations, redox interactions with the 
molecules in biological media frequently result in the production of 
reactive oxygen species (ROS) (Puzyn et al., 2011). Thus, the released 
cations themselves, ROS-induced oxidative damage, or both may be 
responsible for the observed cytotoxicity. Our results indicated that 
these descriptors could indicate possible mechanism for the mixture 
toxicity of individual MOX NPs. What is more, the descriptors used in 
the models are well-defined and can be derived quickly from the 
chemical composition information (χme) and chemical stability (ΔHme+ 
and ΔHsf). 

The AICc values were further applied to evaluate the relationship 
among the proposed descriptors (χme, ΔHme+, and ΔHsf). As shown in 
the Appendix Table S6.10, in both the internal dataset and the 
combined dataset, the AICc value of the model developed by applying 
ΔHme+ and ΔHsf was the smallest among all the models combined with 
the binary descriptors. This indicates that the fitting ability of the 
model incorporating ΔHme+ and ΔHsf was higher than the fitting 
ability of the other models using the combination of two descriptors. 
This is generally consistent with the results of the screening and 
comparative analysis regarding the performance of ML models as 
described previously. The models developed by applying ΔHsf and 
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ΔHme+ to the internal and combined datasets, respectively, had the 
lowest AICc (Appendix Table S6.10). However, the predictive power 
of the ML models developed by both single descriptors cannot ensure 
equal predictive power for the internal dataset and the combined 
dataset (Appendix Tables S6.3 and S6.4). 

Furthermore, we found that the AICc values of models developed by 
the combination of three descriptors (χme, ΔHme+, and ΔHsf) were the 
highest in the internal dataset, while the AICc values of the models 
developed by the combination of three descriptors in the combined 
dataset were higher than those of the models developed by the single 
descriptor (ΔHme+) and the combination of ΔHme+ and ΔHsf (Appendix 
Table S6.10). This implies that applying more descriptors (n = 3) to 
the model in this study could not significantly improve the predictive 
performance of the model. Furthermore, using fewer descriptors in 
QSAR analysis not only allows for avoiding over-fitting, but also 
establishes meaningful models with understandable chemical 
mechanisms (Wang and Chen, 2020). Thereupon, the suggested 
QSAR models with few utilized nano-descriptors can be regarded as 
robust and simple to use for predicting the mixture toxicity of ENPs. 

6.4 Conclusions 

Our results show that the ML methods present unprecedented 
opportunities and challenges for the assessment of the mixture 
toxicity of ENPs. The nano-QSAR models that we developed and 
validated, outperformed conventional mixture models. The χme, 
ΔHme+, and ΔHsf were found to be the key nano-descriptors capable of 
predicting the mixture toxicity. At the present stage, the synthesis of 
new NMs and the advanced complexity of materials has a more rapid 
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pace than the science to predict the fate and effects of those 
complexes and mixtures of ENPs. Knowledge on the mixture impacts 
of various shaped and chemically diverse ENPs as well as the 
evaluation of the environmental hazards of combinations of ENPs is a 
necessity to work on. 
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Assessing the ecological risks of novel entities is essential for the 
protection of human health and environmental health. When 
multiple novel entities act simultaneously on organisms, they often 
cause toxic responses that are quite different from the effects of a 
single novel entity. However, due to the complexities of interactions 
between multiple novel entities, progress in understanding their 
combined impacts remains slow. Most traditional assessments of 
chemical toxicity effects have relied on in vivo and in vitro tests of 
biological toxicity. Since novel entities (e.g., engineered nanoparticles, 
ENPs) exhibit a high degree of complexity in terms of 
physicochemical properties, quantum mechanical properties, and 
toxicological effects, their risk evaluation is gradually shifting to in 
silico approaches based on understanding of the toxicity mechanisms. 
In order to avoid testing each novel entity from scratch, there is an 
urgent need to develop a series of in silico models to predict the 
environmental fate and biotoxic effects of novel entities. 

This thesis aims to reveal the mechanisms of interaction between 
micro- and nanoparticles (MNPs) and other novel entities, investigate 
the impact of such interactions on the environmental behavior and 
effects of novel entities, and assess and predict the combined toxicity 
of ENPs and other novel entities to ecological species. First, we 
investigated the interaction mechanisms between carbon-based 
nanoparticles (CNPs) and a severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA) fragment and we 
developed quantitative structure-activity relationship (QSAR) models 
to predict this interaction. Second, we revealed the interaction 
mechanism between microplastics (MPs) and a SARS-CoV-2 RNA 
fragment and its influencing factors. Third, we clarified the modes of 
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action and influencing factors of the combined toxicity of multiple 
ENPs to ecological species. Finally, we developed QSAR models based 
on machine learning (ML) methods to predict the ecotoxicity of 
mixtures of binary metal oxide nanoparticles (MOX NPs). 

7.1 Solved research questions and environmental 
implications 

To achieve the aims described above, this thesis answered four 
questions to promote the understanding of the interaction between 
different novel entities and the impacts of the interaction on the 
environmental behavior and biological effects of novel entities. 

7.1.1 Interaction and mechanisms of ENPs with SARS-CoV-2 
macromolecules 

We found that the interaction mechanism between CNPs and a 
SARS-CoV-2 RNA fragment is driven by electrostatic interactions 
through molecular mechanics simulation studies. Furthermore, we 
found that molecular weight, surface area, and the sum of degrees of 
every carbon atom as the primary structural descriptors determined 
the interaction between the CNPs and the SARS-CoV-2 RNA 
fragment. The above findings suggest that the interaction between 
CNPs and biomolecules mainly depends on the intrinsic properties of 
CNPs, especially their surface properties. CNPs have a high specific 
surface area, which leads to a large number of surface atoms or 
molecules that can interact with biomolecules. 

At the same time, we found that the order of magnitude of the 
interaction force between the CNPs and the SARS-CoV-2 RNA 
fragment was: carbon nanotubes > graphene > fullerene. This also 
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indicates that the surface properties of CNPs are affected by various 
factors, such as size, shape, surface charge, hydrophobicity and 
chemical composition. For example, ENPs with a large surface area, 
high surface energy, and hydrophobicity tend to adsorb RNA and 
other biomolecules (e.g., proteins), leading to the formation of 
nanoparticle-RNA or -protein coronas on the surface of ENPs. 
Existing studies confirm that the formation of eco-coronas (Liu et al., 
2023; Wheeler et al., 2021), represented by protein coronas, can alter 
the physicochemical properties of ENPs and affect their toxicity 
(Ekvall et al., 2021). Eco-coronas can reduce the surface charge and 
increase the hydrophilicity of ENPs, leading to changes in their 
cellular uptake, biodistribution and toxicity (Chakraborty et al., 2021; 
Diaz-Diestra et al., 2022). Eco-coronas may also modulate the 
interaction of ENPs with cell membranes and intracellular organelles 
(Feng et al., 2023; Liu et al., 2022), leading to alterations in their 
intracellular fate and toxicity. 

In addition, such interactions may also have affected the structure or 
stability of viral RNA. In terms of viral migration and exposure, the 
interaction between ENPs and viral RNA may have positive effects. 
For example, ENPs may interfere with the ability of the virus to enter 
cells, replicate, or spread throughout the body (Bhatti and DeLong, 
2023; Campos et al., 2020; Li et al., 2023). This may reduce the 
severity of infection or prevent it from occurring altogether. 
Furthermore, the effect of ENP-viral RNA interactions on viral 
migration and exposure would depend on the specific characteristics 
of the ENPs and the virus. 
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7.1.2 Interaction and mechanisms of MPs with SARS-CoV-2 
macromolecules 

We found that the interaction mechanism between MPs and 
SARS-CoV-2 RNA fragments involves electrostatic and hydrophobic 
processes through molecular dynamics simulation studies. Moreover, 
the affinity of the interaction was related to the intrinsic structural 
parameters of the MP monomer (i.e., molecular volume, polar surface 
area, and molecular topological index). It can be seen that the surface 
properties of MPs make biomolecules to attach to the surface of MPs. 
This also implies that MPs may be an important homing site for 
biomolecules. We also found that for the SARS-CoV-2, the interaction 
force between MPs and their RNA fragments was stronger than the 
interaction force between MPs and their nucleocapsid proteins. 
However, for the Hepatitis B virus (HBV), the MPs showed stronger 
interactions with the nucleocapsid protein than with its RNA 
fragment. This also suggests that the interaction between the MPs 
and the viral biomolecules is closely related to the type of 
microorganism. 

The interaction between MPs and biomolecules is a complex process 
that can have a range of impacts on their environmental behavior and 
biological toxicity (Junaid and Wang, 2022; Luo et al., 2022). First, 
this interaction could alter the physical properties of MPs, such as 
surface charge, hydrophobicity, and aggregation, leading to changes 
in their transport and distribution in the environment. Second, the 
adsorption of biomolecules on MPs could affect their biological 
interactions with organisms. For example, the adsorption of proteins 
on MPs can alter the bioavailability and toxicity of MPs to organisms 
(Cao et al., 2022). Finally, the adsorption of biomacromolecules on 
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MPs could affect the fate and persistence of MPs in the environment, 
similar to nanomaterials (Lowry et al., 2012). MPs with adsorbed 
biomacromolecules may be more resistant to degradation and 
biofouling, making their long-term persistence in the environment 
more likely. Thereupon, understanding the mechanisms of 
interaction between MPs and biomolecules is essential for developing 
effective strategies to mitigate their environmental impacts and 
protect human and ecological health. 

Currently, viral infections remain a major public health concern and 
the potential role of MPs in facilitating virus transmission and 
exposure is an area of active research. The small size of MPs may 
allow them to serve as carriers for transporting viral particles (Lu et 
al., 2022; Zhai et al., 2023). For instance, a recent study found that 
MPs in wastewater can carry SARS-CoV-2 (Belišová et al., 2022). This 
thesis also found that the high surface area of MPs and their ability to 
adsorb the biomolecules of SARS-CoV-2 may make them effective 
carriers of viral particles. 

The effect of MPs on virual transmission and exposure may also 
depend on environmental factors. The present findings in this thesis 
reveal that MPs interact stronger with viral RNA fragments in an 
aqueous environment than in the gas phase. Previous studies have 
also found that the presence of MPs in water may increase the 
likelihood of virus particles surviving and remaining infectious 
(Amato-Lourenço et al., 2022; Moresco et al., 2021), but MPs may 
also decrease the concentration in air of virus particles by adsorbing 
them to the MP surface. The interaction of MPs with viral RNA may 
also be influenced by a range of other environmental factors, 
including temperature, pH, and the presence of other contaminants. 
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7.1.3 Joint interactions after exposure of ecological test 
species to multiple ENPs and factors determining the 
toxicity of a mixture of multiple ENPs 

When multiple novel entities are present in the environment, they 
exert effects on ecological species (including algae, bacteria, Daphnia, 
fish, fungi, insects and plants) via different modes of action. Taking 
mixtures of multiple ENPs as an example, we found that in studies 
specifying the combined toxic response of mixtures of ENPs, 53 % 
showed antagonistic effects, 25 % synergistic effects, and 22 % 
additive effects. From this result, it is clear that the interactions 
between multiple ENPs are mainly antagonistic. This implies that if 
multiple ENPs coexist in the environment, their combined effects on 
ecological species will be smaller than the effects when each of them 
is present alone. However, the synergistic effects exhibited among 
multiple ENPs cannot be ignored. The synergistic effects occur so that 
the presence of multiple ENPs can have a greater effect on ecological 
species compared to exposure to each pollutant individually. 

The combined toxic effects of multiple novel entities on ecological 
species depend on many factors. This thesis reveals that the main 
factors influencing the type of combined toxic response of biota to 
exposure to mixtures of ENPs are 1) the chemical composition of the 
individual components of the mixture, 2) the stability of the 
suspension of mixed ENPs, 3) the type and trophic level of the 
individual organisms tested, 4) the level of biological organization 
(population, community, and ecosystem), 5) the exposure 
concentration and exposure duration, 6) the toxicity endpoints, and 7) 
abiotic scenario conditions (e.g., pH, ionic strength, natural organic 
matter). 
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Specifically, different combinations of ENPs have different toxic 
effects on ecological species, and their joint effects may be influenced 
by their exposure concentrations in the environment. The 
concentration of a mixture component may be influenced by the 
source of the ENP mixtures and the environmental conditions which 
affect their distribution and transport (Buzea et al., 2007). Another 
factor that affects the joint toxic effects of multiple ENPs is the 
exposure pathway. Ecological species can be effectively exposed to 
mixtures of ENPs through a variety of routes, such as inhalation, 
ingestion, and dermal contact. Exposure routes affect the toxicity 
levels of mixtures of ENPs and the extent of their effects on ecological 
species. Duration of exposure is one factor that affects the toxic 
effects of multiple ENPs. Short-term exposure to mixtures of ENPs 
can have different effects on ecological species compared to long-term 
exposure (Jośko et al., 2022). Long-term exposure to low levels of 
ENPs can lead to chronic toxicity that may not be immediately 
apparent, but can have cumulative effects over time. The sensitivity of 
ecological species to mixtures of ENPs is also an important factor 
affecting their joint toxic effects. Additionally, environmental 
conditions, such as temperature, pH, and solution parameters, can 
also affect the distribution and transport of ENPs in the environment, 
as well as their persistence and bioavailability, and thus their joint 
effects on ecological species. Understanding the interactions of 
multiple ENPs and their joint toxic effects is critical to developing 
effective strategies to prevent and mitigate pollution and to protect 
the environment and ecological species. 
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7.1.4 Development of QSAR models based on ML 
approaches for predicting the mixture toxicity of multiple 
ENPs 

In this thesis, a ML-based QSAR method was established to 
quantitatively predict the cytotoxicity of a mixture of binary ENPs 
against Escherichia coli, using MOX NPs as a case. The QSAR model 
based on support vector machine and neural network methods was 
found to exhibit good predictive power for both the constructed 
internal dataset and the combined internal and external datasets. It is 
thus seen that the combination of ML and QSAR methods provides 
several advantages for predicting the toxicity of ENPs. These include: 

1) Accurate predictions: ML models can identify complex 
relationships between nanostructure and toxicity, which can lead to 
more accurate toxicity predictions than traditional QSAR models. 

2) Improved efficiency: ML models can analyze datasets quickly 
and efficiently, saving time and resources compared to traditional 
QSAR modeling. 

3) Ability to handle large data: With the rapid growth of nano-
toxicological data, ML techniques can effectively handle large and 
complex datasets with high dimensionality. 

4) Generalizability: ML models can learn patterns from a large 
number of different nanostructures, making them more generalizable 
to new ENPs. 

5) Flexible modeling: ML models can be tailored to specific 
toxicological endpoints and can handle complex nonlinear 
relationships, allowing the development of models that can predict a 
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wide range of toxicological endpoints. 

However, there are still areas for improvement in ML-based QSAR 
models used to predict the toxicity of ENPs. Some of these areas 
include: 

1) Data quality: The quality and reliability of the 
nanotoxicological data used to develop and validate ML models are 
critical to their accuracy and reliability. Further improvements in 
data quality are necessary to ensure the validity and reproducibility of 
these models. 

2) Interpretability: The interpretation of ML models can be 
challenging and complex, which may limit their utility in regulatory 
decision making. Developing methods to improve the interpretability 
of these models is thus critical. 

3) Nanostructure diversity: Many ML models are based on a 
relatively small subset of nanostructures. More studies are required 
to ensure that these models can accurately predict the toxicity of a 
broader range of nanostructures. Consequently, further work is 
needed to demonstrate the reliability and robustness of these models 
for use in regulatory decision making. 

In short, methodologies for assessing and predicting the mixture 
toxicity of multiple novel entities are lagging far behind the rapid 
emergence of new chemicals. Big data, deep learning, and artificial 
intelligence present unprecedented opportunities and challenges for 
assessing the toxicity of mixtures of novel entities. The models 
developed in this thesis show that our research approach can provide 
a methodological and theoretical basis for ecological risk assessment 
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of mixtures of novel entities. 

7.2 Future risk and hazard assessment of novel entities 
and their mixtures 

7.2.1 Ecological risk assessment of multiple novel entities 

Today, scientists recognize that novel entities require global 
environmental attention because the majority of man-made chemical 
"novel entities" have been reported to enter the environment and 
most likely in future MNPs have the potential for lasting impact, 
large-scale distribution, and influence on important Earth system 
processes. Advances in synthesizing MNPs is also occurring at a rapid 
pace. Therefore, risk assessment of novel entities is a critical step in 
ensuring the safety of chemical products, the environment and public 
health. It involves identifying, assessing, and quantifying the 
potential risks posed by chemical substances present in a variety of 
environments, such as water, air, and soil. The risk assessment 
process for novel entities could learn from the traditional chemical 
risk assessment process (Van Leeuwen et al., 1996), which comprises 
of the stages listed below: 

1) Hazard identification: The potential hazards associated with 
chemicals are identified and described. This involves the collection 
and analysis of data on toxicity, exposure, and other relevant factors 
that might have negative health consequences. 

The general paradigm of comparing exposure to hazards, also applies 
to novel entities albeit that it is essential to base hazard and exposure 
on the same metrics of exposure (number, surface area, mass 
concentration, etc.). 
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2) Exposure assessment: The extent and frequency of exposure to 
chemicals in the environment or related products are determined. 
This involves collecting data on sources, routes, and levels of 
exposure. 

The classical chemicals are usually dealt with homogeneous solutions. 
However, in case of novel entities such as ENPs and MPs, we often 
deal with non-stable suspensions. This requires a different approach 
to assessment of the effective exposure and the assessment of 
bioavailability of the novel entities. 

3) Dose-effect assessment: The relationship between the 
exposure dose of chemicals and their adverse health effects is 
assessed. This involves assessing toxicological data and establishing 
dose-effect relationships. 

In addition to the exposure dose or concentration, the 
physicochemical properties (particle size, surface charge, etc.) of 
novel entities such as ENPs and MPs have a significant impact on 
their toxic effects on ecological species. Therefore, establishing the 
relationship between the physicochemical properties of novel entities 
and their effects would help to determine their biological toxicity 
quickly. Besides, the toxic effects of novel entities are also closely 
related to abiotic factors (pH, divalent cations, natural organic matter, 
etc.). Thereupon, the impacts of abiotic factors need to be considered 
when establishing the dose/concentration-effect relationships of 
novel entities. 

4) Risk characterization: The information gathered in the 
previous steps to assess the overall risk posed by the chemicals is 
integrated. This includes assessing the likelihood and severity of 
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adverse effects and determining appropriate risk management 
measures. 

A series of assessment standards and rules, index parameters, testing 
tools and methods for the risk management of novel entities need to 
be proposed. Furthermore, advanced analytical and testing 
technologies combined with in silico methods need to be used for 
detection, exposure assessment, hazard and risk identification of 
novel entities. 

How to implement a scientific, systematic and comprehensive risk 
assessment of novel entities is an important topic for future 
environmental toxicology research. A powerful and extremely 
practical strategy for accelerating the evaluation process is the 
establishment of reliable assessment procedures. Moreover, essential 
information on risk management measures would be provided, 
including setting exposure limits, establishing regulations, and 
implementing control measures. 

7.2.2 Developments in toxicity prediction for novel entities 
and their mixtures 

The novel entities in the environment are diverse in nature and are 
associated with complex distribution patterns, bringing about 
complex ecological and environmental health effects. With the 
advancement of modern society and global economy, new chemicals 
are constantly produced and applied, and inevitably constantly 
released into the environment. The novel entities released into the 
environment are in the form of mixtures of monomers or complexes, 
and there are complex interactions between different novel entities 
such as antagonism and synergism. The study of the biological 
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activities of different combinations of novel entities and their joint 
effects is a difficult and hot research area for the international 
environmental science community. Therefore, the complex effects of 
the coexistence of multiple novel entities bring new opportunities and 
new challenges to environmental health research. 

Development of advanced prediction methods 

Chemical toxicity prediction is an important task in the fields of drug 
discovery, environmental protection and public health (Alves et al., 
2018; Pérez Santín et al., 2021). To date, advanced methods for 
chemical toxicity prediction are emerging, such as QSAR models 
(Chen et al., 2017), ML models (Balraadjsing et al., 2022), and deep 
learning models (M. Xu et al., 2022), which can not only analyze the 
chemical structures of compounds but also predict their toxicity with 
high accuracy. These methods are based on the principle that the 
molecular structural characteristics of a chemical determine its 
biological activity, including its toxicity. 

Advanced in silico methods for chemical toxicity prediction have the 
potential to revolutionize the field of toxicology. In silico predictions 
have the ability to handle large and complex datasets. Moreover, in 
contrast to traditional component-based toxicity prediction methods, 
in silico methods can provide accurate and interpretable chemical 
toxicity predictions that can help researchers and policy makers to 
make informed decisions about the safety of chemicals. More 
importantly, in silico methods can provide insight into the molecular 
properties that contribute to chemical toxicity. This information can 
be used to design safer and more effective drugs or chemicals. 

For the purpose of environmental risk management of novel entities 
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and their mixtures, future research can develop classification and 
cross-comparison analogy techniques for novel entities and their 
mixtures by using ML algorithms such as classification-based fuzzy 
clustering, decision trees, and support vector machines. Meanwhile, 
further research can develop QSAR models for toxicity prediction of 
novel entities and their mixtures by utlizing nanostructure-based 
molecular mechanics/dynamics, Monte Carlo, quantum chemistry, 
and other molecular simulation methods. A complete system of 
intelligent detection strategies for ecotoxicological risk assessment of 
novel entities (including mixtures) is likely to be established in future 
by using in silico methods. 

Constructing a toxicity prediction platform 

Screening and assessing the toxicity effects of emerging novel entities 
as they are identified, is important to avoid the release of high-risk 
novel entities into the environment to produce more serious hazards. 
To quickly and accurately determine the biological toxicity effects of 
novel entities and their mixtures, it is necessary to develop a 
computer-based platform for predicting the environmental behavior 
and toxicity of novel entities (Figure 7.1). 

The establishment of a toxicity prediction platform for novel entities 
(including mixtures) involves the development of a system that can 
accurately predict the toxicity of novel entities based on their 
molecular structure and properties. With the use of this platform, it is 
possible to evaluate any risks that could come with exposure to novel 
entities and to identify safer alternatives for use in various industries, 
including pharmaceuticals, agriculture, and consumer products. As 
an example of the process of building a mixture toxicity prediction 
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platform for multiple novel entities, the platform building process 
consists of the following: 

1) Data collection: A process of collecting a great deal of data on 
the chemical structure and properties of various novel entities, as well 
as information on their single and combined toxic effects. These data 
can be obtained from various sources, including experimental studies, 
toxicological databases, and published literature. 

 

Figure 7.1. Schematic diagram of the construction of a toxicity prediction platform 
for novel entities and their mixtures. 

2) Predictive model selection: Based on the completeness and 
richness of the collected toxicity data of mixtures of novel entities, the 
basic methodologies for building predictive models are selected, i.e., 
traditional mixture models based on mixed components and QSAR 
and ML models based on computational methods. 

3) Predictive model development and validation: Analysis with 
computational methods to identify patterns and associations between 
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chemical structure and toxicity is carried out. This analysis typically 
includes the use of ML algorithms that are trained on the collected 
data to develop predictive models that accurately predict the toxicity 
of novel entities based on their molecular structures and properties. 
These predictive models are then validated using additional 
experimental data to ensure that they are accurate and reliable. This 
validation process typically involves comparing the predicted toxicity 
of the novel entities with the actual toxic effects measured in 
laboratory studies. To improve the accuracy and reliability of the 
predictive models, additional data can be included in the analysis, 
including information on the metabolic pathways and biological 
targets of the novel entities, as well as their physical and chemical 
properties. 

4) The output of results: Once the predictive models have been 
validated, they can be integrated into a user-friendly platform that 
researchers and industry experts can use to evaluate the toxicity of 
the novel entities and to identify safer alternatives. This platform 
could include various features such as a user-friendly interface, 
customizable search capabilities, and interactive visualization tools. 

To sum up, building a toxicity prediction platform for novel entities 
(including mixtures) requires a multidisciplinary approach that 
combines expertise in chemistry, toxicology, computational methods, 
and data analysis. By accurately predicting the toxicity of novel 
entities (including mixtures), the constructed platform can help 
reduce the single and joint risks associated with exposure to 
hazardous novel entities and promote the development of safer and 
more sustainable chemical products. This thesis brings the scientific 
community as a well as policymakers and industrial stakeholders new 
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information such as theoretical models and computational 
simulations were used to combine cytotoxicity experiments and data 
to understand and predict interactions between MNPs and novel 
entities. Within the thesis the interaction of MNPs of different 
dimensions with the SARS-CoV-2 RNA fragment only was 
investigated, but it can be used as a reference for exploring the 
interaction of MNPs with other RNA-based fragments. Similarly the 
work on the mixture and interaction models developed for metallic 
ENPs would also be the basis for the modeling of hybrid and other 
advanced metal-bearing ENPs. 
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Summary 

With the rapid development and intensification of society and 
economy, novel entities such as engineered nanoparticles (ENPs), 
microplastics (MPs), nanoplastics (NPs), and viral particles are 
emerging. These novel entities may pose risks to humans and to the 
environment. Micro- and nanoparticles (MNPs) can adsorb other 
novel entities to form aggregated contamination, due to their small 
particle size and relative large surface area. In this thesis, we used 
advanced computational methods including molecular simulation, 
data mining, machine learning (ML), and quantitative 
structure-activity relationship (QSAR) modeling. These methods were 
used to investigate the mechanisms of interaction between MNPs and 
other novel entities (chapters 2 and 3), the joint toxic action of 
MNPs and other novel entities, the factors affecting their joint toxicity 
to ecological species (chapter 4), as well as to quantitatively predict 
the interaction forces between MNPs and other novel entities 
(chapters 2 and 3), and the toxicity of their mixtures (chapters 5 
and 6). 

In chapter 2, we have investigated the molecular interactions 
between carbon nanoparticles (CNPs) and the SARS-CoV-2 RNA 
fragment using molecular mechanics simulations to tackle some 
mechanistic issues related to the impact of ENPs on SARS-CoV-2. 
The interaction affinity between the CNPs and the SARS-CoV-2 RNA 
fragment increased in the order of fullerenes < graphenes < carbon 
nanotubes. Furthermore, we developed QSAR models to determine 
the interactions of 17 different types of CNPs from three dimensions 
with the SARS-CoV-2 RNA fragment. The QSAR models on the 



 

 223 

interaction energies of CNPs with the SARS-CoV-2 RNA fragment 
show high goodness-of-fit and robustness. Molecular weight, surface 
area, and the sum of degrees of every carbon atom were found to be 
the primary structural descriptors of CNPs determining the 
interactions. Within this chapter a theoretical insight into the 
adsorption/separation and inactivation of SARS-CoV-2 was provided. 
The results allow to design novel ENPs which interact efficiently with 
the genetic materials of SARS-CoV-2. This contributes to minimizing 
the challenge of time-consuming and labor-intensive experiments 
with viruses under high risk of infection, whilst meeting our 
precautionary demand for options to handle any new versions of the 
coronavirus that might emerge in the future. 

In chapter 3, we have used molecular dynamic simulations to 
investigate the molecular interactions between five MPs and the 
SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 
K in vacuum and in water to determine the mechanisms underlying 
the impact of MPs on SARS-CoV-2. Furthermore, we have compared 
the interactions of the SARS-CoV-2 RNA fragment with the MPs to 
the performance of the RNA fragments of SARS-CoV-1 and Hepatitis 
B virus interacting with the MPs. The interaction affinity between the 
MPs and the SARS-CoV-2 RNA fragment was found to be greater 
than the affinity between the MPs and the RNA fragments of 
SARS-CoV-1 or Hepatitis B virus, independent of the environmental 
media, temperature, and type of MPs. The mechanisms of the 
interaction between the MPs and the SARS-CoV-2 RNA fragment 
involve electrostatic and hydrophobic processes, and the interaction 
affinity was associated with the inherent structural parameters of the 
MPs monomers. The results presented in this chapter indicate that 
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humans are exposed to MPs via their lungs, and the strong 
interaction with the gene materials of SARS-CoV-2 likely affects the 
exposure of humans to SARS-CoV-2. 

In chapter 4, we have applied data mining methods to understand 
the joint impacts of multiple ENPs and predict the toxicity of 
mixtures of ENPs. Accordingly, we have collected and categorized the 
toxicity of mixtures of ENPs to a variety of different species, covering 
algae, bacteria, daphnia, fish, fungi, insects, and plants. Using 
co-occurrence networks, it was revealed that 53 % of the cases with 
specific joint response showed antagonistic, 25 % synergistic, and 22 % 
additive effects. The combination of nCuO and nZnO exhibited the 
strongest interactions in each type of joint interaction. Compared 
with other species, plants exposed to multiple ENPs were more likely 
to experience antagonistic effects. The main factors influencing the 
joint response type of the mixtures were 1) the chemical composition 
of individual components in mixtures, 2) the stability of suspensions 
of mixed ENPs, 3) the type and trophic level of the individual 
organisms tested, 4) the biological level of organization (population, 
communities, ecosystems), 5) the exposure concentrations and time, 
6) the endpoint of toxicity, and 7) the abiotic field conditions (e.g., pH, 
ionic strength, natural organic matter). Ultimately this knowledge 
constitutes the first building blocks that allow to build a 
computational approach able to reduce the experimental costs of 
ecotoxicity testing of mixtures of ENPs of varying composition, and 
including both nanohybrids as well as mixtures of different ENPs. 

In chapter 5, we proposed computational toxicity approaches with 
classical mixture equations to quantitatively predict the joint toxicity 
of emerging or untested/unknown mixtures of multiple ENPs. 
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Research priorities for the prediction of the toxicity of mixtures of 
ENPs are identified and we suggest to systematically sort out the 
toxicity and ecotoxicity information of ENPs gathered into 
"databases". Moreover, expected and/or actual environmental 
concentrations of ENPs need to be obtained to be implemented for 
actual risk profiling of various combinations of ENPs in the 
environment. These environmental concentrations can be further 
used for the estimation of ratios of the individual particles present in 
mixtures of ENPs, and then the weighted descriptors of ENP mixtures 
can be evaluated by the mixture ratios. It is essential that information 
on the mode of toxic action of single ENPs to species is systematically 
documented. This issue deserves priority in the selection of methods 
to assess mixture toxicity and the selection of mechanism-based 
nano-descriptors. 

In chapter 6, we have combined toxicity data generated in our lab 
with experimental data reported in the literature to predict the 
combined toxicity of seven metallic ENPs for Escherichia coli at 
different mixing ratios (22 binary combinations). We thereafter 
applied two ML techniques, support vector machine (SVM) and 
neural network (NN), and compared the differences in the ability to 
predict the combined toxicity by means of ML-based methods and 
two component-based mixture models: IA and CA. Among 72 
developed QSAR models by the ML methods, two SVM-QSAR models 
and two NN-QSAR models showed good performance. Moreover, an 
NN-based QSAR model combined with two molecular descriptors, 
namely enthalpy of formation of a gaseous cation and metal oxide 
standard molar enthalpy of formation, showed the best predictive 
power for the internal dataset (R2test = 0.911, adjusted R2test = 0.733, 
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RMSEtest = 0.091, and MAEtest = 0.067) and for the combination of 
internal and external datasets (R2test = 0.908, adjusted R2test = 0.871, 
RMSEtest = 0.255, and MAEtest = 0.181). In addition, the developed 
QSAR models performed better than the IA and CA models. The 
estimation of the applicability domain of the selected QSAR models 
showed that all the binary mixtures in the training and test sets were 
within the applicability domain. Hence, this work confirms that the 
models developed can provide a methodological and theoretical basis 
for the ecological risk assessment of mixtures of ENPs. 

The results of this thesis indicate that understanding the mechanisms 
of interactions between novel entities in the environment and their 
modes of joint toxic action can provide an important theoretical basis 
for establishing effective risk assessment procedures to mitigate the 
effects of novel entities on ecosystems and human health. 
Furthermore, this thesis provides an important technical support and 
practical basis for the quantitative prediction of the environmental 
behavior and toxicological effects of novel entities and their mixtures 
by applying various advanced in silico methods individually or in 
combination. 
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Samenvatting 

Met de snelle ontwikkeling en intensivering van de samenleving en 
economie ontstaan er nieuwe entiteiten zoals gemanipuleerde 
nanodeeltjes (ENP's), microplastics (MP's), nanoplastics (NP's) en 
virale deeltjes. Deze nieuwe entiteiten kunnen risico's opleveren voor 
de mens en voor het milieu. Micro- en nanodeeltjes (MNP's) kunnen 
andere nieuwe entiteiten adsorberen om geaggregeerde 
verontreiniging te vormen, vanwege hun kleine deeltjesgrootte en 
relatief grote oppervlak. In dit proefschrift hebben we een 
verscheidenheid aan geavanceerde computationele methoden 
gebruikt, waaronder moleculaire simulatie, datamining, machinaal 
leren (ML) en kwantitatieve structuur-activiteitsrelatie (QSAR) 
modellering. Deze methoden zijn ingezet om de 
interactiemechanismen tussen MNP's en andere nieuwe entiteiten 
(hoofdstuk 2 en 3), de gezamenlijke toxische werking van MNP's en 
andere nieuwe entiteiten, de factoren die hun gezamenlijke toxiciteit 
voor ecologische soorten beïnvloeden (hoofdstuk 4), en ook om de 
interactiekrachten tussen MNP's en andere nieuwe entiteiten 
(hoofdstuk 2 en 3) en de toxiciteit van hun mengsels (hoofdstuk 5 
en 6) kwantitatief te voorspellen. 

In hoofdstuk 2 hebben we de moleculaire interacties tussen 
koolstofnanodeeltjes (CNP's) en het SARS-CoV-2 RNA-fragment 
onderzocht met behulp van moleculaire mechanica simulaties om 
enkele mechanistische kwesties met betrekking tot de invloed van 
ENP's op SARS-CoV-2 aan te pakken. De interactieaffiniteit tussen de 
CNP's en het SARS-CoV-2 RNA-fragment nam toe in de volgorde 
fullerenen < grafeen < koolstofnanobuisjes. Verder ontwikkelden we 



 

 228 

QSAR-modellen om de interacties van 17 verschillende typen CNP's 
uit drie dimensies met het SARS-CoV-2 RNA-fragment te bepalen. De 
QSAR-modellen voor de interactie-energieën van CNP's met het 
SARS-CoV-2 RNA-fragment vertonen een hoge 'goodness-of-fit' en 
robuustheid. Molecuulgewicht, oppervlakte en de som van de graden 
van elk koolstofatoom bleken de primaire structurele descriptoren 
van CNP's te zijn die de interacties bepalen. In dit hoofdstuk werd een 
theoretisch inzicht gegeven in de adsorptie/separatie en inactivatie 
van SARS-CoV-2. De resultaten laten toe om nieuwe ENP's te 
ontwerpen die efficiënt interageren met het genetisch materiaal van 
SARS-CoV-2. Dit draagt bij aan het minimaliseren van de uitdaging 
van tijdrovende en arbeidsintensieve experimenten met virussen met 
een hoog infectierisico (o.a. SARS-CoV-2), terwijl we tegelijkertijd 
voldoen aan onze voorzorgsprincipe naar opties om te gaan met 
eventuele nieuwe versies van het coronavirus die in de toekomst 
zouden kunnen opduiken. 

In hoofdstuk 3 hebben we moleculair dynamische simulaties 
gebruikt om de moleculaire interacties tussen 5 MPs en het 
SARS-CoV-2 RNA fragment te onderzoeken bij temperaturen 
variërend van 223 tot 310 K in vacuüm en in water om de 
mechanismen te bepalen die ten grondslag liggen aan de invloed van 
MPs op SARS-CoV-2. Verder hebben we de interacties van het 
SARS-CoV-2 RNA-fragment met de MP's vergeleken met de 
prestaties van de RNA-fragmenten van SARS-CoV-1 en Hepatitis 
B-virus die interacteren met de MP's. De interactieaffiniteit tussen de 
MP's en het SARS-CoV-2 RNA-fragment bleek groter te zijn dan de 
affiniteit tussen de MP's en de RNA-fragmenten van SARS-CoV-1 of 
Hepatitis B-virus, onafhankelijk van de omgevingsmedia, de 
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temperatuur en het type MP's. De mechanismen van de interactie 
tussen de MP's en het SARS-CoV-2 RNA-fragment omvatten 
elektrostatische en hydrofobe processen, en de interactieaffiniteit 
werd in verband gebracht met de inherente structurele parameters 
van de MP's-monomeren. De resultaten gepresenteerd in dit 
hoofdstuk geven aan dat mensen worden blootgesteld aan MPs via 
hun longen, en de sterke interactie met het genmateriaal van 
SARS-CoV-2 beïnvloedt waarschijnlijk de blootstelling van mensen 
aan SARS-CoV-2. 

In hoofdstuk 4 hebben we dataminingmethoden toegepast om de 
gezamenlijke effecten van meerdere ENP's te begrijpen en de 
toxiciteit van mengsels van ENP's te voorspellen. Hiervoor hebben we 
de toxiciteit van mengsels van ENP's voor verschillende soorten algen, 
bacteriën, daphnia, vissen, schimmels, insecten en planten verzameld 
en gecategoriseerd. Met behulp van co-occurentienetwerken werd 
onthuld dat 53 % van de gevallen met specifieke gezamenlijke reactie 
antagonistische, 25 % synergetische en 22 % additieve effecten 
vertoonden. De combinatie van nCuO en nZnO vertoonde de sterkste 
interacties in elk type van gezamenlijke interactie. Vergeleken met 
andere soorten hadden planten blootgesteld aan meerdere ENP's 
meer kans op antagonistische effecten. De belangrijkste factoren die 
van invloed waren op het type gezamenlijke reactie van de mengsels 
waren 1) de chemische samenstelling van individuele componenten in 
mengsels, 2) de stabiliteit van suspensies van gemengde ENP's, 3) het 
type en trofisch niveau van de individuele geteste organismen, 4) het 
biologische organisatieniveau (populatie, gemeenschappen, 
ecosystemen), 5) de blootstellingsconcentraties en -tijd, 6) het 
eindpunt van toxiciteit, en 7) de abiotische veldomstandigheden (bijv. 
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pH, ionensterkte, natuurlijk organisch materiaal). Uiteindelijk vormt 
deze kennis de eerste bouwstenen voor een computationele aanpak 
waarmee de experimentele kosten van ecotoxiciteitstesten van 
mengsels van ENP's van verschillende samenstelling, waaronder 
zowel nanohybriden als mengsels van verschillende ENP's, kunnen 
worden verlaagd. 

In hoofdstuk 5 hebben we computationele toxiciteitsbenaderingen 
met klassieke mengselvergelijkingen voorgesteld om de gezamenlijke 
toxiciteit van opkomende of ongeteste/onbekende mengsels van 
meerdere ENP's kwantitatief te voorspellen. Onderzoeksprioriteiten 
voor de voorspelling van de toxiciteit van mengsels van ENP's worden 
geïdentificeerd en we stellen voor om de informatie over toxiciteit en 
ecotoxiciteit van ENP's die in "databases" is verzameld, systematisch 
te sorteren. Bovendien moeten verwachte en/of actuele 
milieuconcentraties van ENP's worden verkregen om te kunnen 
worden gebruikt voor de feitelijke risicoprofilering van verschillende 
combinaties van ENP's in het milieu. Deze milieuconcentraties 
kunnen verder worden gebruikt voor de schatting van verhoudingen 
van de individuele deeltjes die aanwezig zijn in mengsels van ENP's, 
waarna de gewogen descriptoren van ENP-mengsels kunnen worden 
geëvalueerd aan de hand van de mengverhouding. Het is essentieel 
dat informatie over de toxische werking van afzonderlijke ENP's op 
soorten systematisch wordt gedocumenteerd. Deze kwestie verdient 
prioriteit bij de selectie van methoden om de toxiciteit van mengsels 
te beoordelen en de selectie van mechanisme-gebaseerde 
nano-descriptoren. 

In hoofdstuk 6 hebben we toxiciteitsgegevens uit ons laboratorium 
gecombineerd met experimentele gegevens uit de literatuur om de 
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gecombineerde toxiciteit van 7 metallische ENP's voor Escherichia 
coli bij verschillende mengverhoudingen (22 binaire combinaties) te 
voorspellen. Daarna pasten we twee ML-technieken toe, support 
vector machine (SVM) en neuraal netwerk (NN), en vergeleken we de 
verschillen in het vermogen om de gecombineerde toxiciteit te 
voorspellen door middel van ML-gebaseerde methoden en twee 
componentgebaseerde mengmodellen: IA en CA. Van de 72 
ontwikkelde QSAR-modellen door middel van ML-methoden 
vertoonden twee SVM-QSAR-modellen en twee NN-QSAR-modellen 
goede prestaties. Bovendien vertoonde een NN-gebaseerd 
QSAR-model gecombineerd met twee moleculaire descriptoren, 
namelijk enthalpie van vorming van een gasvormig kation en 
standaard molaire enthalpie van vorming van metaaloxide, de beste 
voorspellende kracht voor de interne dataset (R2test = 0,911, 
aangepaste R2test = 0,733, RMSEtest = 0,091 en MAEtest = 0,067) en 
voor de combinatie van interne en externe datasets (R2test = 0,908, 
aangepaste R2test = 0,871, RMSEtest = 0,255 en MAEtest = 0,181). 
Bovendien presteerden de ontwikkelde QSAR-modellen beter dan de 
IA- en CA-modellen. De schatting van het toepassingsdomein van de 
geselecteerde QSAR modellen toonde aan dat alle binaire mengsels in 
de trainings- en testsets binnen het toepassingsdomein vielen. Dit 
werk bevestigt dus dat de ontwikkelde modellen een methodologische 
en theoretische basis kunnen bieden voor de ecologische 
risicobeoordeling van mengsels van ENP's. 

De resultaten van dit proefschrift geven inzicht in de mechanismen 
van interacties tussen nieuwe entiteiten in het milieu en hun 
gezamenlijke toxische werkingsmechanismen een belangrijke 
theoretische basis kan vormen voor het vaststellen van effectieve 
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risicobeoordelingsprocedures om de effecten van nieuwe entiteiten op 
ecosystemen en de menselijke gezondheid te beperken. Verder biedt 
dit proefschrift een belangrijke technische ondersteuning en 
praktische basis voor de kwantitatieve voorspelling van het gedrag in 
het milieu en toxicologische effecten van nieuwe entiteiten en 
mengsels daarvan door verschillende geavanceerde in silico 
methoden afzonderlijk of in combinatie toe te passen.
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Appendix 

Supplementary information for Chapter 2 

 

Figure S2.1. Variation of total energy of the complexes of the carbon nanoparticles 
with SARS-CoV-2 RNA fragment during Forcite Anneal optimization.
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Table S2.1. Calculated total potential energy interaction energies (Eint), van der 
Waals interaction energies, and electrostatic interaction energies between the 
carbon nanoparticles (CNPs) and the SARS-CoV-2 RNA fragment (covRNA) 

CNP-covRNA complex 
Eint (kJ/mol) 

Total potential energy van der Waals Electrostatic 

C20-covRNA -137.608  -9.415  -175.137  

C36-covRNA -108.956  -28.314  -148.972  

C60-covRNA -79.874  -25.355  -105.241  

C70-covRNA -96.413  -33.106  -108.117  

C240-covRNA -87.358  -22.031  -198.906  

C20@C60-covRNA -100.055  -37.002  -146.696  

C20@C60@C240-covRNA -70.335  -49.281  -150.333  

SCNT (10,0)-covRNA -185.127  -26.885  -239.362  

SCNT (6,6)-covRNA -153.478  -41.943  -197.572  

SCNT (28,0)-covRNA -489.113  -58.486  -410.306  

DCNT (10,0)-covRNA -244.928  -56.431  -274.291  

DCNT (6,6)-covRNA -261.953  -61.665  -253.979  

TCNT (10,0)-covRNA -298.677  -65.354  -265.589  

NR (6,6)-covRNA -195.360  -49.726  -135.640  

SCNT 

(16,0)@C60-covRNA 
-448.289  -53.492  -400.611  

MG-covRNA -142.530  -70.631  -136.654  

BG-covRNA -141.717  -51.850  -161.298  
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Table S2.2. OPLS regression models obtained from the fake pool data of the 
interaction energies derived from the total potential energy a 

Fullerenes CNTs and graphenes Fullerenes, CNTs, and 
graphenes 

data 1 data 2 data 3 data 4 data 5 data 6 
-187 -116 -185.127 -334 -137.608 -71 

-108.956 -119 -153.478 -124 -108.956 -156 
-79.874 -135 -426 -215 -79.874 -288 
-96.413 -43 -244.928 -487 -96.413 -486 
-87.358 -53 -261.953 -489 -87.358 -121 

-100.055 -36 -298.677 -362 -100.055 -167 
-70.335 -73 -195.360 -433 -70.335 -230 

  -448.289 -157 -185.127 -447 
-142.530 -412 -153.478 -473 
-141.717 -170 -489.113 -339 

  -244.928 -82 
-469 -364 

-298.677 -226 
-195.360 -415 
-448.289 -168 
-142.530 -196 
-141.717 -291 

Fullerenes 
Model 1 Eint=-22.105-0.028·SSA 

n = 7, R2 = 0.593, RMSE = 0.698, Q2CUM = 0.247 
Model 2 Eint=-10.341-0.024·SSA 

n = 7, R2 = 0.411, RMSE = 0.841, Q2CUM = 0.325 
CNTs and graphenes 

Model 3 Eint=-304.189-0.606·OSA+0.035·SDeg 
n = 10, R2 = 0.795, RMSE = 0.480, Q2CUM = 0.614 

Model 4 Eint=-479.223+0.833·OSA+0.019·SDeg 
n = 10, R2 = 0.255, RMSE = 0.915, Q2CUM = 0.073 

Fullerenes, CNTs, and graphenes 
Model 5 Eint=-92.390-0.006·MW+0.003·SDeg 

n = 17, R2 = 0.614, RMSE = 0.642, Q2CUM = 0.577 
Model 6 Eint=-197.742-0.0.01·MW-0.018·SDeg 

n = 17, R2 = 0.191, RMSE = 0.929, Q2CUM = 0.044 
a The pseudo-random numbers of the interaction energies derived from the total potential energy are 

shown in red. 
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Supplementary information for Chapter 3 

 

 
 

Figure S3.1. Interaction energies of the five types of MPs with the SARS-CoV-1 
RNA fragment in vacuum (A) and in water (B) at different temperatures. Et: 
interaction energy derived from total energy, Ep: interaction energy derived from 
potential energy, Ev: interaction energy derived from van der Waals energy, and Ee: 
interaction energy derived from electrostatic energy.
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Figure S3.2. Interaction energies of the five types of MPs with the HBV RNA 
fragment in vacuum (A) and in water (B) at different temperatures. Et: interaction 
energy derived from total energy, Ep: interaction energy derived from potential 
energy, Ev: interaction energy derived from van der Waals energy, and Ee: 
interaction energy derived from electrostatic energy.
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Figure S3.3. Variation of the interaction energies derived from the total energies 
of the five types of MPs with the SARS-CoV-1 RNA fragment in vacuum (A) and in 
water (B) with the studied temperatures (223, 263, 273, 298, and 310 K). Different 
letters represent statistically significant differences between the treatments (p < 
0.05).
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Figure S3.4. Variation of the interaction energies derived from the total energies 
of the five types of MPs with the HBV RNA fragment in vacuum (A) and in water (B) 
with the studied temperatures (223, 263, 273, 298, and 310 K). Different letters 
represent statistically significant differences between the treatments (p < 0.05).
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Table S3.1. Calculated molecular parameters of the MP monomers. 

Monomers Volume 
(nm3) 

Polar surface area 
(nm2) 

Molecular 
topological index 

PB 0.140  1.414  104 

PE 0.084  0.968  16 

PP 0.112  1.192  48 

PS 0.194  1.833  576 

PVC 0.102  1.125  36 
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Table S3.2. Correlation coefficients between the Eint values derived from the total energies between the MPs and SARS-CoV-1 RNA 
fragment and the molecular parameters of the MP monomers a. 

Correlation  
model 

Temperature 
(K) 

Volume 
(nm3) 

Polar surface area 
(nm2) 

Molecular topological 
index 

n = 5 n = 4 n = 5 n = 4 n = 5 n = 4 

Eint in vacuum 

310 0.136 0.918 0.137 0.907 0.194 0.890 

298 0.055 0.212 0.049 0.197 0.036 0.107 

273 0.627 0.569 0.628 0.567 0.489 0.445 

263 0.076 0.195 0.076 0.192 0.011 0.054 

223 0.013 0.014 0.022 0.084 0.035 0.259 

Eint in water 

310 0.151 0.439 0.144 0.418 0.011 0.370 

298 0.308 0.177 0.291 0.211 0.418 0.102 

273 0.493 0.735 0.488 0.736 0.722 0.822 

263 0.751 0.171 0.746 0.179 0.867 0.294 

223 0.521 0.739 0.511 0.761 0.754 0.724 

a The correlation was tested for five types (n = 5) of MPs (PB, PE, PP, PS, and PVC)/four types (n = 4) of MPs (PB, PE, PP, and PVC) and the SARS-CoV-1 RNA 
fragment; The magnitude of correlation coefficient (R) reflects the degree of correlation between the Eint and molecular parameter values; The bold numbers 

indicate high values of the correlation coefficients (R > 0.800).
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Table S3.3. Correlation coefficients between the Eint values derived from the total energies between the MPs and HBV RNA 
fragment and the molecular parameters of the MP monomers a. 

Correlation  
model 

Temperature 
(K) 

Volume 
(nm3) 

Polar surface area 
(nm2) 

Molecular topological 
index 

n = 5 n = 4 n = 5 n = 4 n = 5 n = 4 

Eint in vacuum 

310 0.744 0.162 0.744 0.169 0.784 0.546 

298 0.289 0.190 0.273 0.155 0.261 0.262 

273 0.155 0.268 0.144 0.288 0.294 0.009 

263 0.519 0.382 0.519 0.380 0.428 0.747 

223 0.186 0.204 0.185 0.202 0.303 0.679 

Eint in water 

310 0.429 0.595 0.432 0.574 0.652 0.007 

298 0.620 0.203 0.606 0.169 0.640 0.258 

273 0.649 0.106 0.636 0.140 0.765 0.114 

263 0.663 0.834 0.659 0.831 0.876 0.245 

223 0.507 0.668 0.496 0.689 0.729 0.062 

a The correlation was tested for five types (n = 5) of MPs (PB, PE, PP, PS, and PVC)/four types (n = 4) of MPs (PB, PE, PP, and PVC) and the HBV RNA fragment; 
The magnitude of correlation coefficient (R) reflects the degree of correlation between the Eint and molecular parameter values; The bold numbers indicate high 
values of the correlation coefficients (R > 0.800).



 

 248 

Supplementary information for Chapter 4 

 
 

Figure S4.1. Flowchart showing the decision process for inclusion and exclusion of 
literature on the ecotoxicity of mixtures of nanomaterials, identified using the ISI 
Web of Knowledge and PubMed search. 
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Table S4.1. List of studies on the joint toxicological effects of multiple metal-based engineered nanoparticles (ENPs) on ecological 
species a 

ENPs 
Types of mixtures 

Ecological species Test concentrations Toxicity endpoints 
Types of joint 
interactions 

References 

Algae 

nTiO2 (anatase) + nTiO2 (rutile) Chlorella sp. 

nTiO2 (anatase) + nTiO2 (rutile): 
0.25+0.25, 0.25+0.5, and 0.5+0.5 

mg/L 
Cell viability, chlorophyll 

content, uptake/internalization, 
cell surface morphology, 

ultra-structural changes, DNA 
damage, and ROS generation 

Antagonistic 

Iswarya et al., 2015 

nTiO2 (anatase) + nTiO2 (rutile): 
0.25+1, 0.5+0.25, 0.5+1, 1+0.25, 

1+0.5, and 1+1 mg/L 
Additive 

nSiO2 + nTiO2 (anatase@rutile) 

Scenedesmus obliquus 

nSiO2: 1 µg/L and 1 mg/L 
nTiO2 (anatase@rutile): 1 µg/L and 

1 mg/L 
nZrO2: 1 µg/L and 1 mg/L 

Mixtures (1:1 and 1:1:1 ratios) 

Chlorophyll content, 
intracellular levels of ROS, 
mitochondrial membrane 

potential, permeability of cell 
membrane, antioxidant 

activities, and cell surface 
morphology 

n.d. 

Liu et al., 2018 

nSiO2 + nZrO2 n.d. 

nTiO2 (anatase@rutile) + nZrO2 n.d. 

nSiO2 + nTiO2 (anatase@rutile) 
+ nZrO2 

Synergistic 

nCdS + nZnS 

Heterosigma akashiwo 

nCdS: 12 mg/L 
nSiO2 (with no inclusions): 143.5 

mg/L 
nSiO2 (with metal inclusions): 2.1 

mg/L  
nTiO2 (anatase): 79.5 mg/L  

nZnS: 53 mg/L 

Growth inhibition, esterase 
activity, membrane potential, 

ROS 
generation, and cell size 

Antagonistic 

Pikula et al., 2022 
nCdS + 

nTiO2 (anatase) 
Synergistic 

nCdS+ nSiO2 (with no 
inclusions) 

Synergistic 

nCdS + nSiO2 (with metal 
inclusions) 

Antagonistic 
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nTiO2 (anatase) + nZnS Synergistic 
nSiO2 (with no inclusions) + 

nZnS 
Synergistic 

nSiO2 (with metal inclusions) + 
nZnS 

Antagonistic 

nSiO2 (with no inclusions) + 
nTiO2 (anatase) 

Synergistic 

nSiO2 (with metal inclusions) + 
nTiO2 (anatase) 

Additive 

nSiO2 (with no inclusions) + 
nSiO2 (with metal inclusions) 

Additive 

nTiO2 (Spherical, 
anatase@rutile) + nTiO2 

(Tubular) 

Scenedesmus obliquus 
nTiO2 (Spherical, anatase@rutile) + 

nTiO2 (Tubular): 
2.33+13.16 and 19.75+211.26 mg/L Growth inhibition and 

intracellular ROS generation 

Additive 

Wang et al., 2020 

Chlorella pyrenoidosa 
nTiO2 (Spherical, anatase@rutile) + 

nTiO2 (Tubular): 0.13+0.002 and 
5.38+4.87 mg/L 

Additive 

Synergistic 

nCuO + nZnO Scenedesmus obliquus 
nCuO: 2.1 µg Cu/L-4.3 mg Cu/L 

 nZnO: 6.6 µg Zn/L-33.1 mg Zn/L 
Mixtures: equal toxic ratio 

Growth inhibition Additive Ye et al., 2017 

Bacteria 

nAg + nPt 
Escherichia coli 

nAg + nPt: 30+70, 50+50, and 
70+30 wt% 

Antimicrobial activity n.d. Breisch et al., 2020 
Staphylococcus aureus 

nCuO + nTiO2 (anatase@rutile) Escherichia coli 
nCuO + nTiO2 (anatase@rutile): 
0.1+2, 0.2+2, 0.3+2, and 0.4+2 

mg/L 

Bacterial ATP levels, cell 
membrane integrity, and ROS 

production 

Synergistic 
Chen et al., 2020 

Slight additive 

nAg + nCuO Nitrifying bacteria The concentration of each Nitrification inhibition and Additive Choi and Hu, 2009 
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nAg + nTiO2 (anatase) 
metallic/oxide nanoparticles was 1 

mg/L 
intracellular ROS concentrations 

Additive 

nAg + nZnO Antagonistic 

nAg + nCuO + nTiO2 (anatase) Additive 

nTiO2 (anatase) + nZnO Escherichia coli 

nTiO2 (anatase):1, 10, 100, and 
1000 mg/L 

nZnO:1, 10, 100, and 1000 mg/L 
Mixtures (1:1 ratio) 

Growth reduction and cell wall 
damage 

Antagonistic 
Srivastava and 
Kumar, 2017 

nTiO2 (anatase@rutile) + nZnO 

Escherichia coli 
nTiO2 (anatase@rutile) + nZnO: 

10+1 and 10+25 mg/L 

ATP levels, cell membrane 
integrity, ROS production, and 
nanoparticle/bacterial surface 

interactions 

Antagonistic Tong et al., 2015 

Aeromonas hydrophila 

nAg + nTiO2 (anatase@rutile) Escherichia coli 
nAg: 5, 10, 20, 30, and 40 µg/L 

nTiO2 (anatase@rutile): 1 and 10 
mg/L 

ATP levels 
n.d. 

(under dark) 
Wilke et al., 2016 

nAg + nTiO2 (anatase@rutile) Escherichia coli 
nAg: 5, 10, 20, and 30 µg/L 

nTiO2 (anatase@rutile): 1 and 2 or 
10 mg/L 

ATP levels, cell membrane 
integrity, and ROS production 

Synergistic 
(under light) 

Wilke et al., 2018 

nCeO2 + nZnO 

Nitrosomonas europaea 

nCeO2 + nZnO: 1+10, 10+10, and 
50+10 mg/L 

Cell size, charge, morphology, 
density, membrane integrity, 
ammonia removal rate, amoA 

gene expression, and AMO 
activity 

Synergistic 

Yu et al., 2016a 

nCeO2 + nTiO2  (anatase) 
nCeO2 + nTiO2 (anatase): 50+1, 

50+10, and 50+50 mg/L 
Antagonistic 
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nTiO2 (anatase) + nZnO Nitrosomonas europaea 
nTiO2 (anatase) + nZnO: 1+10, 

10+10, and 50+10 mg/L 

Cell size, charge, morphology, 
density, membrane integrity, 
ammonia removal rate, AMO 
activity, and transcriptional 

response 

Antagonistic Yu et al., 2016b 

nAg + nCu 
Escherichia coli 40 mL of nAg and 40 mL of nCu 

were separately synthesized in 3% 
(w/v) of chitosan and then mixed 

together 

Bacterial growth inhibition n.d. Zain et al., 2014 
Bacillus subtilis 

nCuO + nZn 

Vibrio fischeri 

nCu (EC50): 4.1 mg/L 
nZn (EC50): 20.5 mg/L 

nCuO (EC50): 118.7 mg/L 
nZnO (EC50): 11.6 mg/L 

Equitoxic binary mixtures of 
nanoparticles were prepared based 

on the EC50 values of individual 
nanoparticles to determine their 

joint effects 

Bioluminescence inhibition 

Synergistic 

Zhang et al., 2020 

nCuO + nZnO Synergistic 

nCu + nZn Synergistic 

nCu + nCuO Antagonistic 

nCu + nZnO Antagonistic 

nZn + nZnO Additive 

Daphnia 

nAg + nZnO Daphnia magna 

nAg: 0.05 to 0.25 mg·Ag/L and 
nZnO: 0.5 to 1.3 mg·Zn/L for 

immobilization tests; Combined 
exposures: based on a full factorial 

design 
nAg: 0.095 to 0.5 mg·Ag/L and 
nZnO: 0.1 to 0.4 mg·Zn/L for 
reproduction tests; Combined 

exposures: a fixed ray design based 
on individual toxic units 

Immobilization and 
reproduction 

Synergistic 

Azevedo et al., 2017 

Antagonistic 
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nTiO2 (anatase) + nTiO2 (rutile) Ceriodaphnia dubia 

nTiO2 (anatase): 4.63, 9.26, 13.89, 
18.52, 23.15, 27.78, and 32.41 mg/L 
nTiO2 (rutile): 6, 12, 18, 24, 30, 36, 

and 42 mg/L 
Mixtures: equal toxic proportions 

Mortality and biouptake 

Antagonistic 
(under visible 

irradiation) 

Iswarya et al., 2016 
nTiO2 (anatase): 2.82, 5.64, 8.46, 

11.28, 14.10, 16.92, and 19.74 mg/L 
nTiO2 (rutile): 2.97, 5.94, 8.91, 

11.88, 14.85, 17.82, and 20.79 mg/L 
Mixtures: equal toxic proportions 

Additive (under 
UV-A irradiation) 

nTiO2 (anatase) + nTiO2 (rutile) Ceriodaphnia dubia 

Mixtures: 75, 300, and 1200 µM 
the mixtures treated algal diet 
In case of a binary mixture, the 

equal concentration of anatase and 
rutile nanoparticles forms the total 

concentration of binary mixture 

Mortality, ultra-structural 
deformities, bioaccumulation, 

and biomagnification 

Antagonistic 
(under visible 

irradiation) 
Iswarya et al., 2018 

Antagonistic 
(under UV-A 
irradiation) 

nTiO2 (anatase) + nTiO2 (rutile) Ceriodaphnia dubia 

Mixtures: 75, 150, 300, 600, and 
1200 µM 

the mixtures treated algal diet 
The binary mixture comprises an 
equal concentration of rutile and 

anatase nanoparticles 

Mortality and oxidative stress 
(MDA, CAT, and GSH) 

Synergistic 
(lower 

concentration, 
under visible 
irradiation) 

Iswarya et al., 2019 

Additive 
(higher 

concentration, 
under visible 
irradiation) 

Additive 
(lower 

concentration, 
under UV-A 
irradiation) 
Antagonistic 

(higher 
concentration, 

under UV-A 
irradiation) 
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nAg + nZnO Daphnia magna 
nAg: 1-25 µg/L and nZnO: 0.25-5 

mg/L 
Immobilization and feeding 

inhibition 
Synergistic Lopes et al., 2016 

nCu + nCr Daphnia magna 

Joint toxicity of binary mixtures 
was determined at an equal 

concentration (1:1), and the total 
concentrations were 0.4, 2, 10, 50, 

and 100 µg/L 

Reproduction and growth, rates 
of filtration and ingestion, as 

well as changes in enzyme 
activities: AChE, SOD, CAT, and 

GST 

More-than- 
additive 

Lu et al., 2017 

nTiO2 (anatase) + nTiO2 (rutile) Daphnia similis 
70:30 anatase: rutile ratio (w/w) 

1 to 100 mg/L TiO2 
Immobilization n.d. Marcone et al., 2012 

nCu + nZnO Daphnia magna 

nCu + nZnO: 0.11 mg Cu/L+1.29 
mg Zn/L 

nCu + nZnO: 0.40 mg Cu/L+4.01 
mg Zn/L 

Mortality and bioaccumulation 

Additive 

Yu et al., 2022 More-than- 
additive 

nCuO + nZnO Daphnia magna 

Binary mixtures were also tested 
according to an equiconcentration 
ratio of 1:1 and the total exposure 

concentrations were 0.0004, 
0.002, 0.01, 0.05, and 0.25 mg/L 

Immobilization, mortality, 
reproduction (fecundity) and 

growth, as well as filtration and 
ingestion rates 

Synergistic 

Zhao et al., 2012 

Partial additive 

Fish 

nAg + nTiO2 (anatase@rutile) Cyprinus carpio 

nAg: 0.05, 0.10, 0.20, 0.30, 0.40, 
0.50, 0.60, and 0.70 mg/L for 

acute toxicity tests and nAg: 0.05 
and 0.1 mg/L for chronic toxicity 

tests 
nTiO2 (anatase@rutile): 1 mg/L 

Mortality, bioaccumulation, 
oxidative stress (SOD, CAT, and 

GST), and gill histopathology 

Antagonistic 

Haghighat et al., 
2021 

Synergistic 

Additive 

nCu + nZnO Poeciliopsis lucida 
nCu: 0.39, 0.78, 1.56, 3.13, 6.25, 

12.5, and 25 µg/mL 
nZnO: 6.25 µg/mL 

Cell viability, cell morphology, 
and metal internalization 

n.d. 
Hernández-Moreno 

et al., 2016 

nCu + nZnO Oncorhynchus mykiss nCu: 0.0425, 0.085, 0.17, and 0.34 Survival, metal internalization, n.d. Hernández-Moreno 
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mg/L 
nZnO: 1.25 mg/L 

and oxidative stress (EROD 
activity, GST activity, and 

GSH/GSSG ratio) 

et al., 2019 

nTiO2 (spherical, anatase) + 
nZnO (stick-shaped) 

Danio rerio 
nTiO2 (spherical, anatase): 1.5, 3, 6, 

12, and 24 mg Ti/L 
nZnO: 2, 4, 8, 16, and 32 mg Zn/L 

Mortality and hatching rate Antagonistic Hua et al., 2016 

nCeO2 + nCuO Zebrafish embryos 

nCeO2: 0.01, 0.1, 1, 10, and 50 
µg/mL 

nCuO: 0.01, 0.1, 1, 10, and 50 
µg/mL 

Mixtures (1:1 ratio) 

Mortality rate, hatching rate, 
malformations, oxidative stress 

genes, CAT enzyme activity, 
DNA damage, and apoptosis and 

necrosis 

n.d. Kaur et al., 2019 

nCuO + nTiO2 (anatase@rutile) Cyprinus carpio 
nCuO + nTiO2 (anatase@rutile): 

2.5+10 and 
5.0+10 mg/L 

Oxidative stress biomarkers 
in the liver, brain, and gills and 

acetylcholinesterase 
activity (a biomarker that 

indicates neurotoxicity) in the 
brain and muscle, as well as 

induce histopathological 
alterations in the gills, liver and 

retina 

n.d. 
Mansouri et al., 

2016 

nCuO + nTiO2 (anatase@rutile) Cyprinus carpio 
nCuO + nTiO2 (anatase@rutile): 

2.5+10 and 
5.0+10 mg/L 

Histopathological anomalies of 
gill and intestine tissues in C. 

carpio 
Synergistic Mansouri et al., 2017 

nTiO2 + nZnO Prochilodus lineatus nTiO2 + nZnO: 1+1 µg/L 

Biochemical responses (AchE 
activity, protein carbonylation, 

lipid peroxidation, and 
non-protein thiols) and injuries 

in organs (histological and 
ultra-structural analyses) 

n.d. Miranda et al., 2016 

nAg + nCuO Clarias gariepinus 

nCuO: 6.25, 12.5, 25, 50, and 100 
mg/L 

nAg: 6.25, 12.5, 25, 50, and 100 
mg/L 

Mixtures (1:1 ratio) 

Frequency of micronucleus, 
haematology, histopathology 

(skin, gills and liver), and 
hepatic oxidative stress analysis 
(MDA, reduced GSH, SOD, and 

Antagonistic Ogunsuyi et al., 2019 
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CAT) 

Synergistic 

nCuO + nCeO2 

Carassius auratus 

20, 40, 80, 160, and 320 mg/L. The 
binary and ternary mixtures were 

tested at an equi-concentration 
ratio of 1:1 or 1:1:1 (W/V) 

AChE activity, Na+/K+-ATPase 
activity, SOD activity, and CAT 

activity 

Antagonistic 

Xia et al., 2013 
nCuO + nZnO Synergistic 
nCeO2 + nZnO Antagonistic 

nCeO2 + nCuO + nZnO Additive 

Fungi 

nAg + nMoS2 (chitosan 
functionalization) 

Saccharomyces 
cerevisiae 

nAg: 5, 10, 20, 30, and 40 µg/L  
nMoS2 (chitosan functionalization): 

1 and 10 mg/L 

Oxidative stress (intracellular 
ROS generation), membrane 
stress (intracellular lactate 

dehydrogenase activity), and 
metabolic activities 

Synergistic Yang et al., 2018 

Insects 

nCdO + nPbO Apis millefera 
nCdO: 0.01 mg/mL 
nPbO: 0.65 mg/mL 

Content of nCdO and nPbO in 
midgut tissues, survival, 

morphological assessment of 
midgut tissues, ultrastructure 
observations, and incidence of 

apoptosis and necrosis of midgut 
epithelia 

Antagonistic Dabour et al., 2019 

nZn + nCu 
Folsomia candida 

nZn: nCu: 300+300 mg/kg 
Survival and reproduction 

Antagonistic 
Jośko et al., 2022 

nZnO + nCuO nZnO: nCuO: 300+300 mg/kg Synergistic 

Plants 

nCo + nFe + nNi Lactuca sativa 
Influent: 2,700 mg nCo + 50,000 
mg nFe + 6,250 mg nNi; DI Water 

123 kg 
Germination and growth n.d. 

Hassanein et al., 
2021 

nTiO2 (anatase) + nZnO Vigna angularis 

nTiO2 (anatase): 20, 40, 60, 80, 
100, and 200 µg/mL 

nZnO: 20, 40, 60, 80, 100, and 200 
µg/mL 

Mixtures (1:1 ratio) 

Seed germination, root/shoot 
length, total chlorophyll content, 

carotenoids and lipid 
peroxidation, oxidative stress 

and antioxidant enzyme activity, 

n.d. Jahan et al., 2018 
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kinetic uptake and transport 

nCuO + nZnO Hordeum vulgare 
nCuO: 300 mg Cu/kg 
nZnO: 300 mg Zn/kg 

Mixtures (1:1 ratio) 

Biomass, plant mineral 
composition as well as 

expression of genes regulating 
metal homeostasis 

(ZIP1,3,6,8,10,14, RAN1, PAA1,2, 
MTP1, COPT5) and 

detoxification (MT1–3) 

n.d. Jośko et al., 2021 

nCuO + nZnO 
nCuO + nTiO2 
nCuO + nCr2O3 
nCuO + nFe2O3 
nZnO + nTiO2 
nZnO + nCr2O3 
nZnO + nFe2O3 

Lepidium sativum 

Concentration of each 
nanoparticles was set to be 100 

mg/L 
Mixtures (1:1 ratio) 

Seed germination, root growth 
inhibition rates, and the external 
and internal surface area of root 

Antagonistic Jośko et al., 2017 

Linum utisassimmum 

Cucumis sativus 

Triticum aestivum 

nCdO + nCuO Vigna radiata 
0.1, 1, and 10 mg/L 
Mixtures (1:1 ratio) 

Germination percent, relative 
germination rate, and metal 

accumulations 
n.d. Jung et al., 2020 

nCuO + nZnO 
nCuO + nNiO 
nZnO + nNiO 

Lactuca sativa 
nCuO: 0.06 and 0.12 mg/L 
nZnO: 0.12 and 0.25 mg/L 
nNiO: 0.15 and 0.3 mg/L 

Root and shoot growth Additive Kong et al., 2021 

Raphanus sativus 
nCuO: 0.09 and 0.18 mg/L 
nZnO: 0.31 and 0.62 mg/L 
nNiO: 0.71 and 1.42 mg/L 

nCu + nZnO Lactuca sativa 
nCu: 0.10 to 0.80 mg/L 

nZnO: 0.50 to 50.00 mg/L 
Relative root elongation rate Antagonistic Liu et al., 2016 

nTiO2 (anatase) + nTiO2 (rutile) Pisum sativum 800 mg of TiO2 per kg of soil TiO2 particles' entry in the root n.d. Muccifora et al., 
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Mixture of anatase and rutile 
nTiO2: 1:1 ratio 

system, bioaccumulation, 
relative distribution, and 

localiz-ation, as well as the main 
crystalline form preferentially 

absorbed and their effect in cells 
ultrastructure of plant roots 

2021 

nCuO + nZnO Spinacia oleracea 
nCuO: 10, 100, and 1000 mg/L 
nZnO: 10, 100, and 1000 mg/L 

Mixtures (1:1 ratio) 

Root length, shoot length, total 
weight, chlorophyll content, 
carotenoid content, and ion 
content of S. oleracea plants 

n.d. 
Singh and Kumar, 

2016 

nCuO + nZnO Raphanus sativus 
nCuO: 10, 100, and 1000 mg/kg 
nZnO: 10, 100, and 1000 mg/kg 

Mixtures (1:1 ratio) 

Seed germination (root length, 
shoot length, and 

fresh weight) and metal uptake 
Antagonistic 

Singh and Kumar, 
2018 

nCuO + nZnO Raphanus sativus 

nCuO: 0.1, 1, 10, 100, and 1000 
mg/L 

nZnO: 0.1, 1, 10, 100, and 1000 
mg/L 

Mixtures (1:1 ratio) 

Seed germination (root length, 
shoot length, and fresh weight) 

and metal uptake 
Antagonistic 

Singh and Kumar, 
2019 

nCuO + nZnO Spinacia oleracea 
nCuO + nZnO: 1.2×10-4 +1.2×10-4, 

1.2×10-3+1.2×10-3, 
1.2×10-2+1.2×10-2 mol/kg of soil 

Maturity, plant fresh weight, 
root length, and metal uptake 

Additive 
Singh and Kumar, 

2020a 

nAg2O + nTiO2 (anatase) Spinacia oleracea 
nAg2O: 1 and 10 mg/kg 

nTiO2 (anatase): 1 and 10 mg/kg 
Mixtures (1:1 ratio) 

Plant physiology and 
development (root length, shoot 
length, and fresh weight), total 

chlorophyll and carotenoid 
contents, and metal uptake 

Additive 
Singh and Kumar, 

2020b 

nCeO2 + nZnO Pisum sativum 
Ce: 100 and 200 mg/L 
Zn: 100 and 200 mg/L 

Mixtures (1:1 ratio) 

Plant growth (root and stem 
lengths and fresh weight), Ce 

and Zn concentrations in roots 
and shoots, photosynthesis 

pigments (contents of 
chlorophyll a, chlorophyll b, and 
carotenoids), and photosynthetic 

parameters (leaf net 
photosynthesis, sub-stomatal 

CO2 

n.d. Skiba et al., 2021 
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concentration, transpiration, 
stomatal conductance, 
photosynthetic water 

use efficiency, and 
photosynthetic CO2 response 

curve 

nCdO + nCuO Vigna radiata 
nCdO + nCuO: 1+1, 10+10, and 

100+100 mg/kg 
Seed germination, plant growth, 

and metal accumulation 
Antagonistic 

Subpiramaniyam et 
al., 2021 

a N.d. = not determined. AChE ‒ acetylcholinesterase, AMO ‒ ammonia monooxygenase, ATP ‒ adenosine triphosphate, ATPase ‒ adenosine triphosphatase, 

CAT ‒ catalase, COX ‒ cyclooxygenase, EROD ‒ ethoxyresorufin-O-deethylase, GSH ‒ glutathione, GSSG ‒ oxidized glutathione, GST ‒ glutathione S-transferase, 

LPO ‒ lipid peroxidation, MDA malondialdehyde, nMoS2 ‒ molybdenum disulfide nanosheets, ROS ‒ reactive oxygen species, SOD ‒ superoxide dismutase. 

For presentation purposes, nSiO2 (with metal inclusions) is shortened to nSiO2(m), nTiO2 (anatase) is shortened to nTiO2(a), nTiO2 (anatase@rutile) is 
shortened to nTiO2(a@r), nTiO2 (rutile) is shortened to nTiO2(r).
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Table S4.2. List of studies on the joint toxicological effects of multiple engineered nanoparticles (ENPs) comprising of 
non-metal-based components on ecological species a 

ENPs 
Types of mixtures 

Ecological species Test concentrations Toxicity endpoints 
Types of joint 
interactions 

References 

nPS + nTiO2 

(anatase@rutile) 
Scenedesmus obliquus 

nPS: 1 mg/L 
nTiO2 (anatase@rutile): 0.025, 

0.25, and 2.5 mg/L 

Cell viability, morphological changes, 
oxidative stress (total ROS, 

superoxide radical, hydroxyl radical), 
antioxidant activity, 

photosynthetic efficiency, and 
esterase activity 

Antagonistic 

Das et al., 2022 

Additive 

nPS + nZnO Ctenopharyngodon idella 
nPS: 760 µg/L 

nZnO: 760 µg/L 

Behavioral, biochemical (nitric oxide 
dosage, TBARS, hydrogen peroxide, 

total glutathione content, DPPH 
radicals' scavenging, SOD, and AChE 

activity, nutritional status), and 
genotoxic biomarkers 

No observed 
antagonistic, 

synergistic or additive 
effect 

Estrela et al., 2021 

MWCNTs + nCuO Tetradesmus obliquus 
MWCNTs: 1, 10, and 100 mg/L  

nCuO: 2 and 200 mg/L 

Growth inhibition, membrane 
damage, physical damage, oxidative 
stress (ROS level, SOD, and MDA), 

and internalization of Cu 

n.d. Fang et al., 2022 

nSe + nZnO Zebra fish (D. rerio) nSe + nZnO (2 mg/kg each) 

Survivability, growth performance 
parameters, intracellular ROS, gene 

expression, and fecundity and 
development 

Synergetic Fasil et al., 2021 

MWCNTs + nZnO Brassica rapa 
MWCNTs: 10 and 100 mg/L 
nZnO: 10, 50, and 100 mg/L 

The length of roots and stems, 
chlorophyll content, oxidative stress 

(relative ROS, soluble sugar, and 
MDA contents), antioxidant enzyme 
activity (CAT, POD, and SOD), metal 
element content, and root scanning 

electron microscopy 

Synergetic Hong et al., 2022 



 

 261 

nPS + nAg 

Chlamydomonas 
reinhardtii 

nAg: 3, 10, 30, 100, and 200 
µg/L 

nPS: 3 and 30 mg C/L Cell-specific growth rate and 
subcellular distributions 

Synergistic Huang et al., 2019 

Ochromonas danica 
nAg: 10, 30, 100, 200, and 300 

µg/L nPS: 3 and 30 mg C/L 

nPS + nTiO2 

(anatase@rutile) 

Chlorella sp. 

nPS, COOH-nPS, and NH2-nPS: 
5 mg/L 

nTiO2 (anatase@rutile): 0.25, 
0.5, and 1 mg/L 

Cell viability, oxidative stress (total 
ROS, superoxide and hydroxyl 

radical, CAT and SOD, and MDA), 
maximum quantum yield of PS II, 

and esterase activity 

Antagonistic 
Natarajan et al., 

2022 
COOH-nPS + nTiO2 

(anatase@rutile) 
NH2-nPS + nTiO2 

(anatase@rutile) 

GNs + nZnO Capoeta fusca 
GNs + nZnO: 6.5+0.04 and 

6.5+0.09 mg/L 
Bioconcentration (uptake and 

elimination) 
n.d. Sayadi et al., 2021 

MLGs + nZnO Capoeta fusca 

MLGs: 6.5 mg/L 
nZnO: 0.1, 0.4, 0.9, 1, 5, 10, 15, 
20, 25, and 30 mg/L for acute 
toxicity test and nZnO: 0.09 

mg/L for behavioural assay and 
histopathology 

Lethality, histopathological and 
behavioral changes 

Synergistic  

Sayadi et al., 2022 

Antagonistic 

GO + nZnO 

Scenedesmus obliquus 

GO: 0.5-50 mg/L 
nZnO: 0.01-50 mg/L 

Mixture ratios: EC10 and EC50 of 
each component 

Growth inhibition rate and total ROS 
level 

Additive 

Ye et al., 2018 Daphnia magna 

GO: 1-80 mg/L 
nZnO: 0.01-0.4 mg/L 

Mixture ratios: EC10 and EC50 of 
each component 

Immobilization rate and total ROS 
level 

Additive 

Danio rerio 

GO: 20-160 mg/L 
nZnO: 2-20 mg/L 

Mixture ratios: LC10 and LC50 of 
each component 

Lethality and total ROS level Antagonistic 
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CNCs + nZnO 
Eremosphaera 

viridis 
CNCs: 100 mg/L 

nZnO: 1, 5, and 10 mg/L 

Dry weight, chlorophyll a, chlorophyll 
b, ROS level, CAT activity, MDA 
content, cellular superficial- and 

ultra-structures, elemental 
distribution as well as proteins and 

lipids in a single algal cell 

n.d. Yin et al., 2022 

GNs + nZrO2 

Chlorella pyrenoidosa 

GNs: 0.1 and 1 mg/L 
nZrO2: 1, 5, 10, 17.5, 25, and 50 

mg/L 
GNs + nZrO2: 1+EC10 and 1+EC50 

mg/L 

Growth inhibition, intracellular levels 
of ROS, mitochondrial membrane 

potential, permeability of cell 
membrane, and cellular superficial- 

and ultra-structures 

Synergistic 

Wang et al., 2021 

rGO + nZrO2 

rGO: 0.1 and 1 mg/L 
nZrO2: 1, 5, 10, 17.5, 25, and 50 

mg/L 
rGO + nZrO2: 1+EC10 and 1+EC50 

mg/L 

Synergistic 

MWCNTs + nPS Microcystis aeruginosa 
MWCNTs: 5, 10, 20, and 50 

mg/L 
nPS: 5, 10, 20, and 50 mg/L 

Growth (cell density), photosynthesis 
(chlorophyll a), total protein, 

antioxidant responses (SOD and 
MDA), membrane damage, genetic 

material damage, and metabolic 
process 

Antagonistic Zhang et al., 2022 

GO + nAl2O3 Chlorella pyrenoidosa 
GO: 25 mg/L 

nAl2O3: 50, 100, 150, 300, 450, 
and 600 mg/L 

Growth inhibition, membrane 
damage, oxidative stress, and physical 

damage 
n.d. Zhao et al., 2018 

GQDs + nZnO Gymnodinium 
GQDs + nZnO: 1+1, 20+5, and 

20+20 mg/L 

Cell density, specific growth rates, 
total intracellular ROS, enzyme 

activities (SOD and ATPase), and 
surface interaction of nanoparticles 

and algal cells 

Antagonistic Zhu et al., 2022 

a N.d. = not determined. AChE ‒ acetylcholinesterase, ATPase ‒ adenosine triphosphatase, CNCs ‒ cellulose nanocrystals, COOH-nPS ‒ carboxyl-functionalized 

polystyrene nanoplastics, DPPH ‒ diphenyl-1-picrylhydrazyl, EC10 ‒ 10% effect concentration, EC50 ‒ 50% effect concentration, GNs ‒ graphene nanosheets, GO 

‒ graphene oxide, GQDs ‒ graphene quantum dots, LC10 ‒ 10% lethal concentration, LC50 ‒ 50% lethal concentration, MDA‒ malondialdehyde, MLGs ‒ 
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multi-layer graphenes, MWCNTs ‒ multiwall carbon nanotubes, NH2-nPS ‒ amine-functionalized polystyrene nanoplastics, POD ‒ peroxidase, nPS ‒ 

polystyrene nanoplastics, rGO ‒ reduced graphene oxide, nSe ‒ nano-selenium, SOD ‒ superoxide dismutase, SWCNTs ‒ single walled carbon nanotubes, 

TBARS ‒ thiobarbituric acid reactive species. 

For presentation purposes, nTiO2 (anatase@rutile) is shortened to nTiO2(a@r). 
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Table S4.3. List of studies on the potentiation or attenuation of effects of mixtures of individual engineered nanoparticles (ENPs) on 
ecological species a 

ENPs 
Types of mixtures 

Ecological species Potentiation or attenuation of effects References 

nAg + nPt 
Escherichia coli 

nPt significantly increased the toxicity of nAg ↑ Breisch et al., 2020 
Staphylococcus aureus 

MWCNTs + nCuO Tetradesmus obliquus 

The existence of nCuO in some groups reduced cell membrane damage caused by 
MWCNTs 

↓ 
Fang et al., 2022 

The highest concentration of nCuO combined with the highest concentration of 
MWCNTs enhanced the induced ROS level 

↑ 

nAg + nTiO2 (anatase@rutile) Cyprinus carpio 

nTiO2 increased acute toxicity of nAg ↑ 

Haghighat et al., 2021 
nTiO2 increased Ag accumulation in liver and intestine ↑ 

nTiO2 decreased Ag accumulation in gills ↓ 
nTiO2 somewhat mitigated the effects of nAg on antioxidant enzymes activities ↓ 

nCu + nZnO Poeciliopsis lucida 
The cytotoxicity exerted by nCu was enhanced in presence of non-toxic 

concentrations of nZnO 
↑ 

Hernández-Moreno et al., 
2016 

nCu + nZnO Oncorhynchus mykiss 
The co-exposure of rainbow trout to non-toxic concentrations of nCu and a fixed 

non-toxic concentration of nZnO resulted in lethal effects 
↑ 

Hernández-Moreno et al., 
2019 

nTiO2 (anatase) + nZnO Vigna angularis The combination led to attenuated uptake and translocation behavior ↓ Jahan et al., 2018 

nCuO + nZnO Hordeum vulgare 

After combined treatment of ENPs, the extractable concentrations of Cu and Zn were 
lower than upon individual exposure in bulk soil 

↓ 
Jośko et al., 2021 

Genes related to metal uptake (ZIP) and cellular compartment (PAA2, RAN1) were 
mostly up-regulated by single rather than combined application of ENPs 

↓ 

nCdO + nCuO Vigna radiata 
The germination rate of the nCdO + nCuO treatment was less than that of the single 

metal exposure under both humidities (70% and 80%) at 48 h 
↓ Jung et al., 2020 

nCuO + nCeO2 Zebrafish embryos 
The harmful effects of the mixtures were more than nCeO2 and less than that of 

nCuO 
↑↓ Kaur et al., 2019 

nCuO + nTiO2 
(anatase@rutile) 

Cyprinus carpio 
The joint presence of nTiO2 can potentially increase the uptake of nCuO in the tissues 

of carp 
↑ Mansouri et al., 2016 

nCeO2 + nZnO Pisum sativum The effects of nZnO were decreased by nCeO2 ↓ Skiba et al., 2021 
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GNs + nZnO Capoeta fusca The presence of GNs reduced the bioavailability of nZnO ↓ Sayadi et al., 2021 

nAg + nTiO2 (anatase@rutile) Escherichia coli nTiO2 attenuated the toxicity of nAg ↓ Wilke et al., 2016 

nAg + nMoS2 (chitosan 
functionalization) 

Saccharomyces cerevisiae 
nMoS2 attenuated the oxidative stress induced by nAg on the yeast cells ↓ 

Yang et al., 2018 
nAg inhibited the metabolic activities in yeast cells, but this inhibition phenomenon 

could be alleviated by nMoS2 
↓ 

CNCs + nZnO 
Eremosphaera 

viridis 

The addition of CNCs enhanced the bioavailability and toxicity of nZnO to the algae ↑ 
Yin et al., 2022 The nZnO-CNC association enhanced the envelopment of the algal cells and exerted 

strong oxidative stress as compared to bare nZnO 
↑ 

GO + nAl2O3 Chlorella pyrenoidosa 

Algal growth inhibition by GO with coexisting nAl2O3 particles was much lower than 
the sum of inhibitions from the individual materials for nAl2O3, showing the toxicity 

mitigation by nAl2O3 

↓ 

Zhao et al., 2018 

GO-induced algal membrane damage was suppressed by the nAl2O3 ↓ 

a ↑ indicates the potentiation of effect of mixtures of individual ENPs and ↓ indicates the attenuation of effect of mixtures of individual ENPs. CNCs ‒ cellulose 

nanocrystals, GNs ‒ graphene nanosheets, GO ‒ graphene oxide, MWCNTs ‒ multiwall carbon nanotubes. 

For presentation purposes, nTiO2 (anatase) is shortened to nTiO2(a), nTiO2 (anatase@rutile) is shortened to nTiO2(a@r). 
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Table S4.4. List of studies on the toxicological effects of multicomponent nanomaterials (NMs) on ecological species a 

Types of hybrid NMs Ecological species Toxicity endpoints 
Minimum inhibitory 

concentration 
Toxic effects References 

nAg@nZnO Daphnia magna 
Immobilization and 

reproduction 
n.d. 

nAg@nZnO hybrid NMs showed 
higher toxicity than predicted based 

on the toxicity of nAg and nZnO 
Azevedo et al., 2017 

GO@nZnO 
Escherichia coli 

Growth of bacteria n.d. 
The antibacterial activity of 

GO@nZnO nanorods hybrid NMs has 
been demonstrated 

Bhaisare et al., 2016 
Staphylococcus aureus 

α-nFe2O3@nCo3O4 

B. subtilis 

Bacterial growth inhibition 

90 mg/dL The enhanced bactericidal activity of 
the α-nFe2O3@nCo3O4 

nanocomposite was the result of 
synergistic effects of iron oxide and 

cobalt oxide nanoparticles 

 Bhushan et al., 2018 
S. aureus 75 mg/dL 

E. coli 60 mg/dL 

S. typhi 45 mg/dL 

GO@nAg Fusarium graminearum 
Spore germination 

inhibition 
n.d. 

The GO@nAg nanocomposite showed 
almost a 3- and 7-fold increase of 

inhibition efficiency over pure nAg 
and GO suspension, respectively. 

Chen et al., 2016 

nTiO2@MWCNT 
Danio rerio  

embryos 

Acute toxicity, hatching 
rate, growth, yolk sac size, 

and sarcomere length 
n.d. 

TiO2@MWCNT hybrid NMs showed 
no acute toxicity to zebrafish embryos 

Da Silva et al., 2018 

GO@nAg 
Zebrafish  
embryos 

Mortality, malformation, 
edema, hatching, total 

length, and yolk sac size 
n.d. 

With chorion: LC50 of GO@nAg 
hybrid NMs: 1.4 [1.3-1.7] mg/L; 

Without chorion: LC50 of GO@nAg 
hybrid NMs: 1.0 [0.9-1.2] mg/L; 

The toxic effects of GO@nAg were 
lower than AgNO3, but higher than 

GO 

de Medeiros et al., 2021 
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nSe@nIO Staphylococcus aureus Biofilm viability n.d. 

The relative fraction of dead-to-live 
bacteria of the nanocomposites 

(400.0%) was much higher than that 
of nSe (51.6%) and nIO (60.0%) 

Li et al., 2020 

GO@polyvinylpyrrolidon
e-stabilized nAg 

Pseudomonas 
aeruginosa 

Bacterial growth inhibition n.d. 

This hybrid nanocomposite poses en-
hanced antibacterial activity against 
carbapenem-resistant P. aeruginosa 

strains through a possible synergy 
between toxicity mechanisms of GO 

nanosheets and nAg 

Lozovskis et al., 2020 

nTiO2@MWCNT-CNF 
Pseudokirchneriella 

subcapitata 
Growth inhibition and 

sublethal oxidative stress 
n.d. 

Acute exposure of P. subcapitata to 
various concentrations of 

TiO2@MWCNT-CNF nanocomposite 
may cause algal growth inhibition 

including undesirable sublethal 
oxidative stress effects 

Malatjie et al., 2022 

nZn@nCuO Xenopus laevis embyos 
Bioaccumulation, oxidative 
stress, and histopathology 

n.d. 

nZn@nCuO nanocomposite does 
induce only mild acute toxicity in X. 
laevis embryos. Nevertheless, these 

effects are smaller than those of 
nZnO. Interestingly, embryos 
exposed to the nanocomposite 

accumulate NPs more efficiently than 
those exposed to nCuO and nZnO, but 

the internalized NMs do not induce 
severe acute toxicity 

Mantecca et al., 2015 

nAg@GO 
Chit-nAg@GO 

Staphylococcus aureus 
 UCLA 8076 

Bacterial growth inhibition 
nAg@GO: 1.90 Ag + 1.5 

GO µg/mL 
Chit-nAg@GO (1:8): 1.19 

Chit-nAg@GO exhibit higher 
antibacterial activity than most of the 
antibacterial agents based on nAg or 

Marta et al., 2015 
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Staphylococcus aureus 
1190R 

Ag + 1.41 GO µg/mL nAg@GO reported 

PSF-CNF@nAg 

Bacillus subtilis 

Bacterial growth inhibition n.d. 

In solid phase the gram-positive 
bacteria showed higher sensitivity for 
PSF-CNF@nAg membranes, while in 
liquid phase the antimicrobial activity 

of the hybrid membrane is more 
pronounced towards gram-negative 
species. Furthermore, in the case of 

E. coli, the growth inhibition in liquid 
medium is probably due to the 

synergetic action of the modified CNF 
and nAg 

Mocanu et al., 2019 

Escherichia coli 

Ag-nZnO@SWCNT 
Escherichia coli 

Viable cell numbers n.d. 

All multicomponent NMs have been 
reported to possess strong 

antimicrobial activity towards E. coli 
and S. aureus bacteria, due to 

synergistic effect between 
metal-doped ZnO nanoparticles and 

carbon nanotubes 

Mohammed et al., 2019 
Au-nZnO@SWCNT 

Ag-nZnO@MWCNT 
Staphylococcusaureus 

Au-nZnO@MWCNT 

nAg@GO 
Escherichia coli Antimicrobial effect 

mean inhibition zone 
n.d. 

An increase in the inhibition zone 
with the increase in amount of 

nAg@GO nanocomposite is obvious 
due to greater antimicrobial agents 

Naeem et al., 2019 

Staphylococcus aureus 

rGO@nCu2O 

Escherichia coli 

Bacterial growth inhibition 

5.9 µg/mL rGO@nCu2O nanocomposite have a 
higher antimicrobial activity toward 

gram-negative and gram-positive 
bacteria when compared with 
reference antibiotics such as 
kanamycin and streptomycin 

Selim et al., 2020 
Pseudo-monas 

aeruginosa 
2.9 µg/mL 

Bacillus subtilis 2.9 µg/mL 
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nAu@nZnO Ruditapes decussatus 

Levels of H2O2, 
MDA, intracellular iron and 

calcium as well as the 
activities of SOD and CAT 

n.d. 

nAu@nZnO hybrid NMs induced 
biochemical and histological 

alterations within either the digestive 
gland or gill tissues at high 

concentration 

Sellami et al., 2017 

nAg@MWCNT 

Methylobacterium spp. 

Bacterial growth inhibition 30 µg/mL 

30 µg/mL of synthesized 
Ag@MWCNTs yielded an efficient 

level of antibacterial activity against 
Methylobacterium spp. and 

Sphingomonas spp. 

Seo et al., 2014 

Sphingomonas spp. 

nAu@nAg 

Escherichia coli 

Bacterial growth inhibition 

10 µg/mL 

Compared with individual nAg and 
the simple mixture of nAu and nAg, 

bimetallic nAu@nAg with remarkable 
stability and a long-term antibacterial 

efficiency while possessed 
synergistically enhanced antibacterial 

activity against both gram-negative 
and gram-positive bacteria, even at a 

lower silver concentration 

Yang et al., 2017 

Staphylococcus 
aureus 

15 µg/mL 

nAg@GO 
Escherichia coli 

Bacterial growth inhibition 
3.2 µg/mL 

After conjugating to GO sheets, the 
antibacterial activities of nAg against 

E. 
coli and B. subtilis were significantly 

enhanced 

Zhu et al., 2013 

Bacillus subtilis 6.4 µg/mL 

a N.d. = not determined, Chit ‒ chitosan, CNCs ‒ cellulose nanocrystals, CNF ‒ carbon nanofiber, GO ‒ graphene oxide, IO ‒ iron oxide, MWCNT ‒ multiwall 

carbon nanotube, PSF ‒ polysulfone, rGO ‒ reduced graphene oxide, SWCNT ‒ single walled carbon nanotube. 
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Figure S4.2. Minimum inhibitory concentration (MIC) for bacteria exposed to 
multicomponent nanomaterials. 
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Supplementary information for Chapter 6 

 
Figure S6.1. Comparison between observed and predicted concentration-response curves for Escherichia coli exposed to the binary 
mixtures of CuO, ZnO, TiO2, and ZrO2 NPs at two different mixture ratios. OBS stands for observation. IA and CA represent 
independent action model and concentration addition model, respectively.
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Table S6.1. Single descriptors of the MOX NPs studied a. 

MOX NPs Periodictable-based 
descriptors 

Experimental  
descriptors 

Metal oxide energy  
descriptors 

Ionic 
index 

χme Σχme/nO ζP DH ΔHme+ ΔHsf EC Z2/r 

mV nm kcal/mol eV eV pm-2 

Al2O3 NPs 1.61 1.073 30.3 330 1,187.83 -17.345 -1.515 0.1667 

CuO NPs 1.90 1.900 -15.1 201 706.25 -1.609 -5.174 0.0548 

Fe2O3 NPs 1.83 1.220 -6.3 > 6000 1,408.29 -8.512 -4.993 0.1636 

SiO2 NPs 1.90 0.950 -29.8 1230 1,686.38 -9.410 -2.018 0.6154 

TiO2 NPs 1.54 0.770 -14.1/-10.7 383/748 1,575.73 -9.779 -4.161 0.2623 

ZnO NPs 1.65 1.650 -16.6/-20.9 373/1614 662.44 -3.608 -3.891 0.0667 

ZrO2 NPs 1.33 0.665 -16.4 262 1,357.66 -11.252 -3.192 0.1905 
a χme — metal electronegativity, Σχme/nO — sum of metal electronegativity for individual metal oxide 

divided by the number of oxygen atoms present in a particular metal oxide, ζP — zeta potential, DH — 
hydrodynamic diameters, ΔHme+ — enthalpy of formation of a gaseous cation, ΔHsf — metal oxide 
standard molar enthalpy of formation, EC — nanoparticle energy of conduction band, and Z2/r — 
ionic index of metal cation. 
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Table S6.2. Mixture descriptors of binary mixtures of MOX NPs studied a. 

Mixture system 

of MOX NPs 

Mixture descriptors 

χme Σχme/nO 
ζP DH ΔHme+ ΔHsf EC Z2/r 

mV nm kcal/mol pm-2 

Int (R1)  

CuO + ZnO NPs 1.85  1.854  -15.3  232  698.225 -45.548 -113.896  0.0570  

TiO2 + ZrO2 NPs 1.37  0.684  -16.0  285  1398.092 -253.179 -77.752  0.2038  

ZnO + TiO2 NPs 1.56  0.917  -14.5  382  1423.106 -231.185 -94.914  0.2296  

ZnO + ZrO2 NPs 1.34  0.708  -16.4  267  1327.297 -259.477 -74.313  0.1851  

CuO + TiO2 NPs 1.71  1.304  -14.6  297  1165.134 -136.538 -106.986  0.1643  

CuO + ZrO2 NPs 1.43  0.874  -16.2  252  1247.443 -221.852 -81.342  0.1675  

Int (R2)  

CuO + ZnO NPs 1.83  1.833  -15.5  247  694.561 -49.404 -111.421  0.0580  

TiO2 + ZrO2 NPs 1.37  0.684  -16.0  284  1396.568 -253.416 -77.596  0.2033  

ZnO + TiO2 NPs 1.56  0.920  -14.5  381  1420.099 -231.297 -94.894  0.2290  

ZnO + ZrO2 NPs 1.34  0.707  -16.4  267  1327.972 -259.477 -74.297  0.1852  

CuO + TiO2 NPs 1.67  1.178  -14.5  317  1262.020 -157.532 -104.383  0.1874  

CuO + ZrO2 NPs 1.39  0.800  -16.3  256  1286.528 -235.194 -78.600  0.1757  

Ext (R3)  

Al2O3 + ZnO NPs 1.64  1.442  -2.4  1150  852.141  -8.568  -3.033  0.1028  

Al2O3 + Fe2O3 NPs 1.72  1.147  11.8  3189  1299.010  -12.890  -3.269  0.1651  

Al2O3 + SiO2 NPs 1.74  1.016  2.4  747  1419.092  -13.664  -1.748  0.3748  

Al2O3 + TiO2 NPs 1.58  0.934  11.4  522  1366.300  -13.864  -2.732  0.2107  

ZnO + Fe2O3 NPs 1.72  1.493  -15.6  3215  934.716  -5.398  -4.293  0.1021  

ZnO + SiO2 NPs 1.73  1.420  -23.8  1488  998.684  -5.513  -3.276  0.2469  

Fe2O3 + SiO2 NPs 1.86  1.096  -17.1  3808  1536.096  -8.925  -3.626  0.3712  

Fe2O3 + TiO2 NPs 1.70  1.015  -8.3  3606  1484.611  -9.090  -4.614  0.2086  

SiO2 + TiO2 NPs 1.72  0.861  -20.3  991  1631.475  -9.593  -3.081  0.4402  

ZnO + TiO2 NPs 1.61  1.364  -17.6  1333  959.297  -5.614  -3.979  0.1303  
a The descriptors of the mixtures of MOX NPs were derived from the descriptors of the individual 

MOX NPs based on Equation 6.4, as shown in the main text.
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Table S6.3. Performance of SVM-based QSAR models. 

Models 

Internal dataset 

 

Combined dataset 

training 
 

test training 
 

test 

R2 R2adj RMSE MAE R2 R2adj RMSE MAE R2 R2adj RMSE MAE R2 R2adj RMSE MAE 

S1 0.838 0.757  0.096 0.093 

 

0.875 0.813  0.108 0.086 

 

0.097 -0.053  0.782 0.536 

 

-0.133 -0.322  0.896 0.566 

S2 0.848 0.772  0.093 0.087 0.853 0.780  0.117 0.099 0.881 0.861  0.284 0.240 0.695 0.644  0.465 0.310 

S3 0.360 0.040  0.191 0.155 0.237 -0.145  0.266 0.220 0.375 0.271  0.650 0.469 -0.467 -0.712  1.020 0.746 

S4 0.667 0.501  0.138 0.133 0.006 -0.491  0.304 0.263 0.343 0.234  0.666 0.555 0.389 0.287  0.658 0.537 

S5 0.532 0.298  0.163 0.120 0.596 0.394  0.194 0.157 0.929 0.917  0.219 0.191 0.885 0.866  0.285 0.223 

S6 0.900 0.850  0.076 0.055 0.895 0.843  0.099 0.090 0.555 0.481  0.549 0.335 0.734 0.690  0.434 0.321 

S7 0.869 0.804  0.087 0.082 0.923 0.885  0.085 0.073 -0.146 -0.337  0.880 0.494 -0.119 -0.306  0.890 0.534 

S8 0.376 0.064  0.189 0.131 0.338 0.007  0.248 0.187 0.408 0.309  0.633 0.436 0.399 0.299  0.653 0.427 

S9 0.868 0.815  0.087 0.084 0.869 0.607  0.110 0.084 0.862 0.837  0.305 0.228 0.659 0.523  0.491 0.317 

S10 0.884 0.838  0.081 0.081 0.863 0.589  0.113 0.081 0.323 0.200  0.676 0.441 -0.167 -0.634  0.909 0.608 

S11 0.886 0.840  0.081 0.074 0.916 0.748  0.088 0.077 0.295 0.167  0.690 0.486 0.170 -0.162  0.767 0.516 

S12 0.935 0.909  0.061 0.050 0.926 0.778  0.083 0.072 0.940 0.929  0.202 0.148 0.809 0.733  0.368 0.277 

S13 0.882 0.835  0.082 0.078 0.870 0.610  0.110 0.092 0.601 0.528  0.519 0.330 0.608 0.451  0.527 0.380 

S14 0.851 0.791  0.092 0.090 0.888 0.664  0.102 0.085 -0.092 -0.291  0.859 0.459 0.054 -0.324  0.819 0.479 

S15 0.938 0.913  0.059 0.043 0.933 0.799  0.079 0.069 0.471 0.375  0.598 0.372 0.400 0.160  0.652 0.388 

S16 0.905 0.867  0.074 0.073 0.891 0.673  0.101 0.075 0.822 0.790  0.347 0.273 0.580 0.412  0.545 0.359 

S17 0.868 0.815  0.087 0.070 0.880 0.640  0.105 0.088 0.905 0.888  0.253 0.215 0.792 0.709  0.383 0.286 

S18 0.881 0.833  0.082 0.046 0.859 0.577  0.114 0.100 0.955 0.947  0.175 0.156 0.855 0.797  0.320 0.239 

S19 0.889 0.845  0.080 0.071 0.882 0.646  0.105 0.092 0.848 0.820  0.321 0.254 0.743 0.640  0.427 0.282 

S20 0.892 0.849  0.078 0.077 0.894 0.682  0.099 0.075 0.907 0.890  0.251 0.221 0.516 0.322  0.585 0.433 

S21 0.892 0.849  0.079 0.049 0.892 0.676  0.100 0.088 0.807 0.772  0.362 0.280 0.653 0.514  0.496 0.337 

S22 0.888 0.843  0.080 0.073 0.746 0.238  0.153 0.111 0.420 0.315  0.626 0.489 0.094 -0.268  0.801 0.603 

S23 0.888 0.843  0.080 0.080 0.881 0.643  0.105 0.078 0.874 0.851  0.292 0.236 0.785 0.699  0.390 0.268 

S24 0.944 0.922  0.057 0.051 0.927 0.781  0.082 0.056 0.701 0.647  0.450 0.302 0.411 0.175  0.646 0.433 
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S25 0.886 0.840  0.081 0.080 0.837 0.511  0.123 0.091 0.171 0.020  0.749 0.426 -0.012 -0.417  0.847 0.514 

S26 0.901 0.861  0.075 0.074 0.891 0.673  0.101 0.070 0.490 0.397  0.587 0.393 0.244 -0.058  0.732 0.453 

S27 0.807 0.730  0.105 0.098 0.789 0.367  0.140 0.125 0.949 0.940  0.186 0.158 0.892 0.849  0.277 0.214 

S28 0.881 0.833  0.082 0.072 0.892 0.676  0.100 0.089 0.728 0.679  0.429 0.287 0.812 0.737  0.365 0.292 

S29 0.904 0.866  0.074 0.071 0.933 0.799  0.079 0.068 0.311 0.186  0.682 0.418 0.046 -0.336  0.822 0.569 

S30 0.785 0.699  0.111 0.100 0.699 0.097  0.167 0.150 0.523 0.436  0.568 0.448 0.579 0.411  0.546 0.396 

S31 0.873 0.822  0.085 0.051 0.878 0.634  0.106 0.087 0.920 0.905  0.233 0.196 0.835 0.769  0.342 0.222 

S32 0.948 0.927  0.055 0.050 0.934 0.802  0.078 0.057 0.944 0.934  0.195 0.191 0.663 0.528  0.489 0.377 

S33 0.558 0.381  0.159 0.115 0.594 -0.218  0.194 0.152 0.894 0.875  0.268 0.227 0.807 0.730  0.370 0.278 

S34 0.893 0.850  0.078 0.076 0.881 0.643  0.105 0.086 0.657 0.595  0.482 0.324 0.568 0.395  0.553 0.399 

S35 0.893 0.850  0.078 0.046 0.901 0.703  0.096 0.079 0.678 0.619  0.467 0.311 0.601 0.441  0.532 0.363 

S36 0.953 0.934  0.052 0.043 0.944 0.832  0.072 0.056 0.206 0.062  0.733 0.408 0.323 0.052  0.693 0.443 
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Table S6.4. Performance of NN-based QSAR models. 

Models 

Internal dataset 

 

Combined dataset 

training 
 

test training 
 

test 

R2 R2adj RMSE MAE R2 R2adj RMSE MAE R2 R2adj RMSE MAE R2 R2adj RMSE MAE 

N1 0.999 0.999  0.009 0.006 

 

0.904 0.856  0.095 0.076 

 

0.472 0.384  0.598 0.429 

 

0.089 -0.063  0.804 0.646 

N2 0.893 0.840  0.078 0.058 0.906 0.859  0.094 0.092 0.972 0.967  0.136 0.087 0.730 0.685  0.438 0.339 

N3 0.994 0.991  0.019 0.015 -0.316 -0.974  0.349 0.210 0.742 0.699  0.418 0.241 -1.725 -2.179  1.390 0.985 

N4 0.994 0.991  0.018 0.013 -0.789 -1.684  0.407 0.298 0.772 0.734  0.392 0.248 0.107 -0.042  0.795 0.523 

N5 0.572 0.358  0.156 0.115 0.759 0.639  0.149 0.116 0.988 0.986  0.090 0.051 0.732 0.687  0.435 0.376 

N6 0.999 0.999  0.009 0.005 0.941 0.912  0.074 0.064 0.972 0.967  0.138 0.088 0.798 0.764  0.379 0.230 

N7 0.999 0.999  0.009 0.006 0.977 0.966  0.046 0.041 0.806 0.774  0.362 0.160 -1074.913 -1254.232  27.609 10.132 

N8 0.993 0.990  0.020 0.015 0.326 -0.011  0.250 0.174 0.970 0.965  0.142 0.077 0.919 0.906  0.239 0.165 

N9 0.999 0.999  0.006 0.003 0.942 0.826  0.073 0.064 0.988 0.986  0.091 0.047 0.723 0.612  0.443 0.287 

N10 0.999 0.999  0.008 0.005 0.884 0.652  0.104 0.070 1.000 1.000  0.011 0.005 -3.702 -5.583  1.825 0.981 

N11 0.999 0.999  0.008 0.004 0.814 0.442  0.131 0.106 0.817 0.784  0.351 0.162 0.856 0.798  0.319 0.238 

N12 0.999 0.999  0.007 0.004 0.908 0.724  0.092 0.078 1.000 1.000  0.011 0.007 0.890 0.846  0.279 0.184 

N13 0.999 0.999  0.009 0.005 0.973 0.919  0.050 0.040 0.998 0.998  0.036 0.028 -3.337 -5.072  1.753 0.975 

N14 0.999 0.999  0.007 0.004 0.918 0.754  0.087 0.066 0.699 0.644  0.451 0.228 -38.970 -54.958  5.322 2.121 

N15 0.999 0.999  0.008 0.004 0.968 0.904  0.054 0.040 0.987 0.985  0.093 0.044 0.131 -0.217  0.784 0.540 

N16 0.999 0.999  0.007 0.004 0.913 0.739  0.090 0.070 0.997 0.996  0.048 0.026 0.296 0.014  0.706 0.521 

N17 0.999 0.999  0.007 0.004 0.855 0.565  0.116 0.090 0.997 0.996  0.047 0.033 0.861 0.805  0.314 0.198 

N18 0.999 0.999  0.006 0.003 0.845 0.535  0.120 0.099 1.000 1.000  0.010 0.006 0.822 0.751  0.355 0.229 

N19 0.999 0.999  0.009 0.005 0.951 0.853  0.067 0.058 0.991 0.989  0.076 0.038 0.656 0.518  0.493 0.283 

N20 0.999 0.999  0.007 0.004 0.921 0.763  0.086 0.072 1.000 1.000  0.007 0.004 0.732 0.625  0.436 0.315 

N21 1.000 1.000  0.005 0.003 0.949 0.847  0.069 0.058 1.000 1.000  0.002 0.001 0.677 0.548  0.478 0.330 

N22 0.981 0.973  0.033 0.023 0.711 0.133  0.164 0.108 0.996 0.995  0.055 0.032 -2.072 -3.301  1.475 0.970 

N23 0.999 0.999  0.008 0.004 0.924 0.772  0.084 0.072 0.999 0.999  0.028 0.016 0.844 0.782  0.333 0.228 

N24 0.999 0.999  0.009 0.006 0.907 0.721  0.093 0.064 1.000 1.000  0.018 0.010 0.489 0.285  0.602 0.450 
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N25 0.999 0.999  0.009 0.006 0.879 0.637  0.106 0.075 0.997 0.996  0.046 0.026 -2.924 -4.494  1.667 1.021 

N26 0.999 0.999  0.008 0.004 0.915 0.745  0.089 0.062 0.999 0.999  0.031 0.017 -0.435 -1.009  1.008 0.707 

N27 0.999 0.999  0.007 0.004 0.515 -0.455  0.212 0.166 0.999 0.999  0.027 0.017 0.922 0.891  0.235 0.162 

N28 0.999 0.999  0.008 0.004 0.967 0.901  0.055 0.046 1.000 1.000  0.013 0.008 0.937 0.912  0.212 0.156 

N29 0.999 0.999  0.008 0.005 0.900 0.700  0.096 0.070 0.717 0.666  0.437 0.223 0.057 -0.320  0.817 0.493 

N30 0.999 0.999  0.006 0.004 0.604 -0.188  0.192 0.153 0.997 0.996  0.042 0.025 0.682 0.555  0.475 0.352 

N31 0.999 0.999  0.009 0.005 0.911 0.733  0.091 0.067 1.000 1.000  0.016 0.009 0.908 0.871  0.255 0.181 

N32 0.999 0.999  0.006 0.004 0.925 0.775  0.083 0.057 1.000 1.000  0.002 0.001 0.492 0.289  0.600 0.355 

N33 0.956 0.938  0.050 0.031 0.934 0.802  0.079 0.053 1.000 1.000  0.011 0.007 0.698 0.577  0.463 0.356 

N34 0.999 0.999  0.009 0.005 0.910 0.730  0.091 0.071 0.998 0.998  0.039 0.028 -7.440 -10.816  2.445 1.059 

N35 0.999 0.999  0.009 0.005 0.953 0.859  0.066 0.054 1.000 1.000  0.002 0.001 -0.105 -0.547  0.885 0.599 

N36 0.999 0.999  0.007 0.004 0.941 0.823  0.074 0.054 1.000 1.000  0.001 0.001 0.638 0.493  0.507 0.295 
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Table S6.5. Y-randomization for the selected SVM-based models developed from 
the internal and the combined dataset. 

Iteration 

Internal dataset Combined dataset 

S12 S31 S12 S31 

R2raining R2test R2raining R2test R2raining R2test R2raining R2test 

1 0.672 0.164 0.463 -0.117 0.672 -0.333 0.431 0.126 

2 0.638 -0.291 0.738 -0.385 0.160 -0.633 0.060 -0.949 

3 0.104 -0.017 0.096 -0.022 0.011 -0.159 0.070 -0.165 

4 0.714 -1.399 0.815 -1.741 0.187 -0.083 0.295 -0.119 

5 0.455 -0.874 0.577 -1.055 0.468 0.041 0.262 -0.823 

6 0.088 -0.844 0.074 -0.885 0.419 -0.208 0.336 -0.596 

7 0.322 -0.480 0.151 -0.512 0.363 -0.940 0.197 -0.872 

8 0.306 0.697 0.238 0.683 0.336 -0.003 0.444 0.150 

9 0.054 -0.199 0.050 -0.208 0.093 -0.232 0.131 -0.221 

10 0.076 -0.166 0.096 -0.128 0.449 -2.598 0.369 -2.118 
cR2p 0.744 1.083 0.689 1.075 0.766 1.035 0.780 1.079 
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Table S6.6. Y-randomization for the selected NN-based models developed from the 
internal and the combined dataset. 

Iteration 

Internal dataset Combined dataset 

N12 N31 N12 N31 

R2test R2test R2test R2test 

1 0.646 0.553 -2.803 -1.770 

2 -2.332 -2.158 -2.727 -4.690 

3 -1.214 -8.204 -1.383 -1.091 

4 -3.254 -2.693 -2.234 -4.516 

5 -2.196 -2.042 -5.742 -0.433 

6 -3.697 -863.167 -0.457 -0.786 

7 -5.346 -2.146 -12.719 -7.102 

8 0.256 0.306 -0.003 -0.382 

9 -136.149 0.075 -9.853 -0.741 

10 -18.164 0.167 -6.736 -6.876 
cR2p 4.049 8.966 2.183 1.844 
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Table S6.7. Percental difference between the experimental and predicted values 
for the internal dataset a. 

Mixture system 
of MOX NPs 

ML-based QSAR models Mixture models 

 S12 S31 N12 N31 IA CA 

Int (R1)  

CuO + ZnO NPs 1.47 0.74 0.00 0.00 4.78 12.13 

TiO2 + ZrO2 NPs 1.90 1.43 0.00 0.00 10.48 16.19 

ZnO + TiO2 NPs 1.38 0.46 0.46 0.46 36.41 38.25 

ZnO + ZrO2 NPs 3.04 6.96 3.04 3.04 3.91 10.43 

CuO + TiO2 NPs 1.44 1.08 3.97 1.08 2.53 1.08 

CuO + ZrO2 NPs 1.75 0.87 0.00 0.00 0.44 7.42 

Int (R2)  

CuO + ZnO NPs 4.96 4.26 4.61 5.67 3.55 11.70 

TiO2 + ZrO2 NPs 1.42 0.95 0.00 0.47 9.95 15.64 

ZnO + TiO2 NPs 0.45 0.91 0.45 0.91 25.91 38.64 

ZnO + ZrO2 NPs 5.91 9.70 0.00 0.00 0.84 7.17 

CuO + TiO2 NPs 1.09 0.73 0.36 0.36 1.46 2.19 

CuO + ZrO2 NPs 3.27 1.87 0.00 0.47 7.94 12.62 

Average value 2.34 2.50 1.08 1.04 9.02 14.46 
a % difference = (experimental value - predicted value) / experimental value ´ 100.
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Table S6.8. Percental difference between the experimental and predicted values 
for the combined dataset a. 

Mixture system 
of MOX NPs 

ML-based QSAR models 

S12 S31 N12 N31 

Int (R1)  

CuO + ZnO NPs 2.94 6.25 0.00 0.00 

TiO2 + ZrO2 NPs 3.81 2.38 0.00 0.48 

ZnO + TiO2 NPs 11.52 3.69 1.84 0.46 

ZnO + ZrO2 NPs 3.48 7.39 0.00 0.00 

CuO + TiO2 NPs 1.81 6.14 0.00 0.00 

CuO + ZrO2 NPs 0.87 7.86 0.87 1.31 

Int (R2)  

CuO + ZnO NPs 2.13 3.55 2.84 2.48 

TiO2 + ZrO2 NPs 3.32 2.84 0.00 0.00 

ZnO + TiO2 NPs 12.73 4.55 0.45 0.91 

ZnO + ZrO2 NPs 6.33 10.13 2.95 2.95 

CuO + TiO2 NPs 17.15 5.84 25.18 8.76 

CuO + ZrO2 NPs 3.74 7.94 1.40 2.34 

Ext (R3)  

Al2O3 + ZnO NPs 7.75 8.92 0.00 0.00 

Al2O3 + Fe2O3 NPs 3.88 2.43 0.00 0.49 

Al2O3 + SiO2 NPs 8.77 8.19 9.94 9.94 

Al2O3 + TiO2 NPs 14.71 10.00 0.59 0.00 

ZnO + Fe2O3 NPs 2.06 4.37 0.00 0.00 

ZnO + SiO2 NPs 12.35 13.56 0.00 0.00 

Fe2O3 + SiO2 NPs 3.56 7.56 0.00 0.00 

Fe2O3 + TiO2 NPs 12.06 5.53 13.57 14.57 

SiO2 + TiO2 NPs 4.44 11.67 0.56 0.00 

ZnO + TiO2 NPs 18.08 19.61 2.83 12.64 

Average value 7.16 7.29 2.87 2.61 
a % difference = (experimental value - predicted value) / experimental value ´ 100
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Table S6.9. Importance and statistical significance of studied descriptors to the 
mixture toxicity of MOX NPs in the internal and the combined datasets. 

Descriptors Internal dataset Combined dataset 

t value Relative importance % t value Relative 
importance % 

χme 0.132 1.45 -0.137 1.37 

Σχme/nO -1.110 12.17 -0.098 0.98 

ζP 0.381 4.18 -1.432 14.37 

DH -0.034 0.37 1.561 15.66 

ΔHme+ 0.836 9.17 -4.706 47.22 

ΔHsf 5.672 62.19 0.613 6.15 

EC -0.369 4.05 0.406 4.07 

Z2/r 0.586 6.43 1.013 10.16 
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Table S6.10. The calculated AICc values for a set of models integrating the 
proposed descriptors in various combinations a. 

Descriptors Internal dataset Combined dataset 

K AICc K AICc 

χme 3 -2.46 3 60.42 

ΔHme+ 3 0.98 3 45.19 

ΔHsf 3 -5.37 3 58.64 

χme, ΔHme+ 4 0.89 4 48.19 

χme, ΔHsf 4 -0.69 4 61.30 

ΔHme+, ΔHsf 4 -1.56 4 47.31 

χme, ΔHme+, ΔHsf 5 3.12 5 48.08 
a K is the number of parameters in the model and its default value is 2. 
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