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Chapter 4: PD-L1 algorithm  

4.1 Title page 

Title: Development and validation of a supervised deep learning algorithm for 
automated whole-slide programmed death-ligand 1 tumour proportion score 
assessment in non-small cell lung cancer 

Short running title: PD-L1 algorithm for NSCLC 

Published: Histopathology, 2022. DOI: 10.1111/his.14571  

 

4.1.1 Authors  

LM Hondelink1, M Hüyük1, PE Postmus1, VTHBM Smit1, S Blom2, JH von der 
Thüsen3, D Cohen1 

 

4.1.2 Affiliations 

1. Department of Pathology and Department of Pulmonology, Leiden 
University Medical Centre, Leiden The Netherlands 

2. Aiforia Technologies Oy, Helsinki, Finland 
3. Department of Pathology, Erasmus Medical Centre, Rotterdam, The 

Netherlands 

 

4.1.4 Acknowledgements 

This study was enrolled in the aiForward project, so the aiForia create software 
was made available free of charge. 

 

4.1.5 Funding and disclosure  

S. Blom is an employee of Aiforia Technologies. 



85 

 

4.2 Abstract 

4.2.1 Aims 

Immunohistochemical programmed death-ligand 1 (PD-L1) staining to predict 
responsiveness to immunotherapy in patients with advanced non-small cell 
lung cancer (NSCLC) has several drawbacks: a robust gold standard is lacking, 
and there is substantial interobserver and intraobserver variance, with up to 
20% discordance around cutoff points. The aim of this study was to develop a 
new deep learning-based PD-L1 tumour proportion score (TPS) algorithm, 
trained and validated on a routine diagnostic dataset of digitised PD-L1 (22C3, 
laboratory-developed test)-stained samples.  

4.2.2 Methods and results 

We designed a fully supervised deep learning algorithm for whole-slide PD-L1 
assessment, consisting of four sequential convolutional neural networks 
(CNNs), using aiforia create software. We included 199 whole slide images 
(WSIs) of ‘routine diagnostic’ histology samples from stage IV NSCLC patients, 
and trained the algorithm by using a training set of 60 representative cases. 
We validated the algorithm by comparing the algorithm TPS with the reference 
score in a held-out validation set. The algorithm had similar concordance with 
the reference score (79%) as the pathologists had with one another (75%). The 
intraclass coefficient was 0.96 and Cohen’s κ coefficient was 0.69 for the 
algorithm. Around the 1% and 50% cutoff points, concordance was also similar 
between pathologists and the algorithm. 

4.2.3 Conclusions 

We designed a new, deep learning-based PD-L1 TPS algorithm that is similarly 
able to assess PD-L1 expression in daily routine diagnostic cases as 
pathologists. Successful validation on routine diagnostic WSIs and detailed 
visual feedback show that this algorithm meets the requirements for 
functioning as a ‘scoring assistant’. 

4.3 Introduction 

The 5-year survival rate of patients with stage IV non-small cell lung cancer 
(NSCLC) is poor, and this, combined with 2 million new patients annually, 
makes lung cancer the leading cause of cancer deaths in the world.[1,2] 
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Immune checkpoint therapy (immunotherapy) targeting the programmed cell 
death protein 1/programmed death-ligand 1 (PD-L1) pathway [3] has greatly 
improved survival for NSCLC patients. [4-6] However, response varies greatly 
between NSCLC patients. Therefore, immunohistochemical PD-L1 expression is 
currently used as a biomarker to select patients for immunotherapy. 

Pathologists measure PD-L1 expression by estimating the percentage of 
tumour cells with membranous PD-L1 positivity (the tumour proportion score 
(TPS); see also Formula 1 in Doc. S1). [7,8] The TPS is a continuous score 
between 0% and 100%, and patients are further divided into three classes, i.e. 
TPS of <1%, TPS of 1–49%, and TPS of >50%, as outlined in Figure 1. [5] These 
classes have different treatment options, provided that no targetable mutation 
(EGFR) or fusion (ALK; ROS1) is detected. [9] 

Figure 1: Categories of programmed death-ligand 1 (PD-L1) expression, measured 
as the tumour proportion score (TPS) (Formula 1 in Doc. S1). Blue staining: 
haematoxylin. Brown staining: PD-L1. A, TPS of 50–100%. B, TPS of 1–49%. C, TPS of 
<1%. 

Unfortunately, this PD-L1 expression scoring system has been proven to be 
imperfect. The study by Cooper et al. showed that problematic interobserver 
and intraobserver discordance exists, with disagreement between pathologists 
in 15.8% of cases around the 1% cutoff point (κ coefficient: 0.68) and 
disagreement between pathologists in 18.1% of cases around the 50% cutoff 
point (κ coefficient: 0.58). This study points out that individual pathologists 
change their assessment in 8–10% of cases and that 1 h of training does not 
help in improving concordance. [10] These data suggest that patients receive 
suboptimal treatment due to misclassification, possibly making them suffer 
from unnecessary side-effects [11, 12] or purposelessly increasing the already 
substantial costs of advanced NSCLC treatment. PD-L1 TPS assessment could 
therefore benefit from computational analysis, which eradicates intraobserver 
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variance and has the potential to eliminate some of the human factors that 
lead to the high rate of interobserver discordance. 

Three computational PD-L1 TPS scoring methods have been proposed in the 
literature so far, [13] all of which produce high rates of concordance with the 
reference scores and therefore constitute a relevant proof of concept that 
computer-aided PD-L1 scoring is possible. However, the proposed algorithms 
all have similar limitations hampering their performance (and therefore their 
implementation in clinical practice) beyond the research domain. The 
limitations include: the use of tissue microarrays (TMAs) [making them not 
applicable to whole slide images (WSIs) with benign tissue backgrounds], the 
use of trial material instead of clinical material (resulting in only easy-to-score 
material being present in the validation set), a limited number of observers for 
the ground truth score, a lack of precise predictions (undermining the 
algorithm’s explainability for clinicians), requiring manual annotations for each 
scoring area (resulting in a very labour-intensive process and potential 
sampling error), and being thresholding-dependent (making them not 
transferable to a clinical setting, in which staining intensity varies over time). 
For all of these algorithms, the question is whether they are reliable in a clinical 
setting. Detailed descriptions of the different study setups and potential 
limitations are included in Table S1. [14-16] 

4.4 Materials and methods 

To summarise, the perfect PD-L1 algorithm does not yet exist. A good, 
practically usable PD-L1 algorithm should be trained and validated on WSIs 
that originate from routine diagnostics. In order to correctly assess the PD-L1 
TPS within the wide variety of tissue contexts from which NSCLC (stage IV) 
biopsies originate (benign bronchial epithelium, lymph nodes, adrenal gland, 
bone and cartilage, skin, liver, kidney, etc.), and also to correctly neglect 
positive immune cells such as macrophages, a deep learning-based approach 
is required. Additionally, because of the high interobserver variance in PD-L1 
scoring that the algorithm is intended to overcome, the reference scores 
should be acquired from multiple observers rather than just one. Finally, the 
algorithm should provide visual feedback at a microscopic level, in order to 
make algorithm scores interpretable for pathologists and pulmonologists. 
These criteria are outlined in Table 1. In this article, we therefore present the 
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first fully supervised deep learning PD-L1 TPS algorithm, based on a cohort 
from routine diagnostics with robust reference scores generated by three 
experienced thoracic pathologists. 

STUDY SETUP 
FEATURE 

CRITERION FOR APPLICABILITY TO CLINICAL 
DIAGNOSTICS 

CASE SELECTION Routine diagnostic cases, including ‘difficult’ features, e.g. 
metastasis tissue background or artefacts 

GROUND TRUTH As robust as possible: multiple expert observers or 
response data 

VALIDATION Validation at the whole slide level 
ALGORITHM 
FEEDBACK 

Easily interpretable, detailed visual feedback 

Table 1: Criteria for algorithm applicability to clinical diagnostics 

4.4.1 Case selection 

One hundred and ninety-nine consecutive NSCLC specimens from routine 
diagnostics at the Leiden University Medical Centre, for which PD-L1 staining 
had been performed for routine diagnostics and the TPS was registered in the 
pathology report, were included. Cases were excluded if the patient (at the 
time of the biopsy) did not give permission for the use of leftover tissue for 
research purposes, if a small-cell or neuroendocrine morphology was 
described, or if the biopsy contained <100 tumour cells. 

The samples originated from both in-house and referral cases. Three cytology 
cases with large tumour islands resembling histology specimens were 
included; all other cytology cases (including all endobronchial ultrasound-
guided transbronchial needle aspiration specimens) were excluded. Patients 
with a second primary NSCLC on which PD-L1 staining had also been 
performed were included twice (both tumours once). Both metastasis biopsies 
and primary tumours were included. All samples were irreversibly anonymised 
after inclusion, by use of a unique four-digit random number.  

4.4.2 PD-L1 staining methods 

Slides were stained for routine diagnostics, over a period of several years. 
Formalin-fixed paraffin-embedded blocks were cut into 3-µm sections with a 
Leica RM2255 Automated Microtome (Leica Biosystems B.V., Amsterdam, the 
Netherlands). Sections were placed on microscope slides and dried at either 
60°C for 30 min to 16 h, or at 37°C for 72 h. After being dried, the slides were 
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deparaffinised, and antigen retrieval was performed in citrate buffer (Target 
Retrieval Solution, pH 6) for 40 min. Immunohistochemistry (IHC) was 
performed according to a laboratory-developed test protocol. Slides were 
stained with the Dako Omnis immunostainer and Dako EnVision Flex+ reagents 
and 1:20 dilution of PD-L1 clone 22C3 (Dako Omnis, Dako Agilent Technologies, 
Leuven, Belgium). The IHC slides were then counterstained with haematoxylin, 
and coverslips were applied. Tonsil and placental tissue were used as positive 
controls for PD-L1 expression. 

4.4.3 Scoring 

All of the 199 included samples were independently scored (TPS; Doc. S1, 
Formula 1) by three trained pulmonary pathologists (D.C., J.T., and V.S.). The 
pathologists were blinded to each other’s scores. The continuous TPS was 
divided into three categories (<1%, 1–49%, and 50–100%) for part of the 
analyses. The level of concordance between the pathologists was calculated by 
making 597 pairwise comparisons from the 199 scored cases. If the paired 
pathologists scored in the same category (<1%, 1–49%, and 50–100%), the case 
was considered to be ‘concordant’. For comparison with algorithm 
performance, we calculated the mean of the three pathologists’ continuous 
TPSs and used that as the reference score for the algorithm (Formula 2 in 
Doc. S1). 

4.4.4 Scanning 

We anonymised glass slides before scanning, by generating random barcodes 
for each slide. Digital WSIs were acquired with Nanozoomer 2.0-HT 
(Hamamatsu Photonics, Hamamatsu City, Japan) scanners at a resolution of 
0.23 µm/pixel. The WSI metadata did not contain any personal data. WSIs were 
uploaded to the Aiforia Hub platform (Aiforia Technologies, Helsinki, Finland) 
as .ndpi files without additional processing. 

4.4.5 Training and validation set  

A training set of 60 samples was selected from the 199 included cases. In the 
training set, there was variance in tumour type, biopsy site, tissue size (tumour 
resection or small core needle biopsy), and the TPS. We included extra lymph 
node biopsies and squamous cell carcinomas in the training set, because only 
a handful of these cases were included in the training set when we selected 
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randomly. All remaining samples were included in the validation set, which 
resulted in a held-out validation set of 139 cases. 

4.4.6 Algorithm setup 

The algorithm consists of four separate convolutional neural networks (CNNs) 
(Figure 2) and is programmed in C++. The first three CNNs are binary semantic 
segmentation models. The first CNN segments high-quality tissue versus 
background or low-quality tissue. The class ‘low-quality tissue’ includes white 
background, out-of-focus tissue, folding artefacts, air bubbles, glass edges, and 
other tissue that is of too low quality to be used for scoring. As the PD-L1 TPS 
score must score only tumour cells and neglect immune cells, such as 
macrophages, the second and third CNNs both segment neoplastic tissue 
versus all other high-quality tissues. Both CNNs use precisely the same 
annotations, but the second CNN utilises a larger tile size (200 µm)—which 
results in coarse segmentation—whereas the third model uses smaller tiles 
(50 µm) and is used to refine the predictions of the second CNN. This method 
of refining segmentation predictions enabled more precise prediction of 
neoplastic cells and islets, and has not been described before for pathology 
image analysis. The fourth CNN is an object detection model with two classes: 
PD-L1-positive cells and PD-L1-negative cells. Each CNN is used only within the 
segmented area of the previous CNN, which, for example, results in the 
ignoring of PD-L1-positive and PD-L1-negative immune cells outside of the 
neoplastic areas. The four-CNN setup was chosen in order to mimic human 
scoring, and to enhance explainability to clinicians and patients. 

4.4.7 Annotations 

All annotations were placed by the same trained annotator (L.H.), under the 
supervision of thoracic pathologists D.C. and J.T., in regions of interest (ROIs) in 
the training set (60 WSIs). Examples of annotations are shown in Figure 2 and  
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Figure 2: Algorithm setup and annotations. A, Schematic algorithm setup with four 
convolutional neural networks (CNNs) to calculate the programmed death-ligand 1 
(PD-L1) tumour proportion score (TPS). B, Annotations for high-quality tissue 
segmentation (CNN1). Green annotated: high-quality tissue that is in focus and 
does not contain artefacts. Black: annotated region of interest (ROI), and non-
annotated area within the ROI: the tissue is of low quality in this example, because 
of air bubbles. C, Annotations for tumour segmentation (CNN2 and CNN3). Red 
annotated: tumour. Black: annotated ROI, and non-annotated area within the ROI: 
non-neoplastic tissue. D,E, Annotations for tumour cell counting (CNN4). Green: 
annotated PD-L1-positive nuclei. Red: annotated PD-L1-negative nuclei. Black: 
annotated ROI. The TPS can be calculated from the number of PD-L1-positive 
tumour cells and the number of PD-L1-negative tumour cells (Formula 1 in Doc. S1). 
All annotations were placed in the training set (n = 60), which was withheld from 
validation. 

Figure S1. In order to speed up the last part of the annotation process, we used 
an adaptation of the human in the artificial intelligence (AI) loop (HAIL) method, 
as outlined in Figure 3. [17] In this method, the preliminary AI model proposes 
annotations that can be approved, edited or rejected by the annotator. This 
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process substantially speeds up annotating, as previously described in the 
literature, [17] and enables screening for ‘difficult’ features early in the 
algorithm development process. All annotations were placed in the training set 
(n = 60), which was not used for validation. 

 

Figure 3: Human in the artificial intelligence loop (HAIL) annotation method. Red: 
neoplastic tissue. Black: region of interest. The preliminary algorithm proposes 
annotations, which can be approved, edited or rejected by the annotator. This 
process speeds up annotating and enables screening for ‘difficult’ features early in 
the algorithm development process. In each HAIL cycle, multiple annotations are 
proposed, edited, and accepted. 

4.4.8 Algorithm training and validation  

Algorithm training and validation were performed with aiforia v4.6, as 
previously published. [18-19] The error against annotated training data was 
used as an evaluation metric for each CNN separately. The loss function for 
semantic segmentation networks was multiclass logistic regression. For the 
object detection network, a custom-built loss function was used within the 
aiforia panel. For each CNN, augmented tiles (the augmentation settings are 
outlined in Figure S2) were used: CNN1, 8 052 800 tiles; CNN2, 5 860 000 tiles; 
CNN3, 6 472 800 tiles; and CNN4, 58 201 600 tiles. 



93 

 

For validation, the algorithm was applied to all WSIs in the validation set. The 
algorithm TPS for each WSI was acquired and compared with the whole-slide 
reference score from the pathologists. Cases were considered to be 
‘concordant’ when the algorithm score and the reference score were in the 
same category: TPS of <1%, 1–49%, or ≥50%. Cases were considered to be ‘not 
scorable’ when the algorithm detected <100 neoplastic cells in the WSI. Cases 
were considered to be either ‘around the 1% cutoff point’ (reference score of 
<25%) or ‘around the 50% cutoff point’ (reference score of ≥25%). 

4.4.9 Ethics 

Cases were anonymised by use of a unique and anonymous research number. 
Specimens were handled according to the Code for Proper Secondary Use of 
Human Tissue in The Netherlands (Dutch Federation of Medical Scientific 
Societies). This study was approved by the local Medical Ethical Committee 
(B20.008). 

4.5 Results 

One hundred and ninety-nine NSCLC histology cases were included in the 
study. We compared our algorithm-derived PD-L1 TPS (algorithm score) with 
the mean of three scores of specialised pathologists (reference score). 

4.5.1 Patients and cases 

The characteristics of the training and validation set are shown in Table 2. The 
two groups are slightly different, which is a result of enriching the training set 
for lymph node biopsies and squamous cell carcinomas, as only a handful of 
those cases were included in the training set by random selection. 

CHARACTERISTIC TRAINING SET 
(N = 60) 

VALIDATION SET 
(N = 139) 

P-VALUE 

AGE (YEARS) (RANGE) 69 (45–86) 68 (48–90) 0.7* 

SEX, N (%)   1.0† 

  MALE 35 (58) 81 (58)  
  FEMALE 25 (42) 58 (42)  
TUMOUR TYPE, N (%)   0.03‡ 

  ADENOCARCINOMA 44 (73) 117 (84)  
  SQUAMOUS CELL 
CARCINOMA 

16 (27) 18 (13)  
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  ADENOSQUAMOUS 
CARCINOMA 

0 4 (3)  

BIOPSY SITE, N (%)   0.01‡ 

  LUNG 30 (50) 89 (64)  
  LYMPH NODE 14 (23) 11 (8)  
  DISTANT METASTASIS 16 (27) 39 (28)  
PD-L1 IN REPORT, N 
(%) 

  0.53‡ 

  NEGATIVE (<1%) 28 (47) 69 (50)  
  LOW POSITIVE (1–
49%) 

20 (33) 36 (26)  

  HIGH POSITIVE (50–
100%) 

12 (20) 34 (24)  

Table 2: Case characteristics. Significant difference are due to enriching the 
training set for lymph node biopsies and squamous cell morphology, as only a few 
of those were included when we selected the training set randomly. *Unpaired t-
test. †Fisher’s exact test. ‡Chi-squared test. 

4.5.2 Interobserver variability between pathologists 

The three pathologists were in complete agreement in 124 of 199 cases (62%). 
In pairwise comparisons (n = 597; Figure 4), the overall concordance between 
any two pathologists was 75%. Around the 1% cutoff (136 cases), all three 
pathologists agreed in 83 cases (61%). There were 408 pairwise comparisons 
around 1%, resulting in an overall concordance of 74%. Around the 50% cutoff 
(63 cases), all three pathologists agreed in 41 cases (65%). Between any two 
pathologists in the 189 pairwise comparisons around 50%, the concordance 
was 77%. The Fleiss κ coefficient was 0.61 overall (substantial agreement; 95% 
confidence interval 0.612–0.616). The mean absolute difference between the 
pathologists’ assessments was 8%. These data are similar to the concordance 
rates described in the literature. [10, 20-26] 

4.5.3 Algorithm training and metrics  

We trained the four CNNs separately. For each CNN, the training settings and 
output (tile size, amount of training data annotated, epochs trained, and error 
against training data) are summarised in Table 3. Error against training data 
was calculated with Formula 1 for semantic CNNs (CNN1, CNN2, and CNN3), 
and with Formula 2 for object detection CNN (CNN4). We used an early 
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Figure 4: Confusion matrix for interobserver variance between pathologists. The 
confusion matrix is based on three observers and 199 cases, constituting 597 
pairwise comparisons. One of the paired observers is plotted on the x-axis and the 
other observer is plotted on the y-axis. 

stopping mechanism, which ended the training after ⁓18 h when there was no 
progress in the loss function output over a set amount of epochs. 

𝑒𝑟𝑟𝑜𝑟 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 (𝑚𝑚2) + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 (𝑚𝑚2)

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑅𝑂𝐼) 𝑎𝑟𝑒𝑎 𝑡𝑜𝑡𝑎𝑙 (𝑚𝑚2)
 

Formula 1: Error formula for segmentation CNNs (CNN1, CNN2, and CNN3). 

𝑒𝑟𝑟𝑜𝑟 = 1 −
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎
 

Formula 2: Error formula for the object detection CNN (CNN4). 

4.5.4 Algorithm validation 

In the validation set, as outlined in Figure 5, the concordance between the 
reference score and the algorithm score was 79% overall, whereas any two 
pathologists agreed with each other in only 75% of the cases. The algorithm 
concordance was also 79% around the 1% and 50% cutoff points, whereas any 
two pathologists agreed with each other in 74% and 77% of the cases around 
these cutoff points. The average difference between any two pathologists was 
8%, and the average difference between the algorithm score and the reference 
score was 5%, which is significantly lower (P = 0.01, unpaired t-test). The 
intraclass coefficient (with a consistency definition) was 0.96 [95% confidence 
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interval (CI) 0.94–0.97], when the continuous algorithm score was compared 
with the continuous reference score. The algorithm identified 39 359 
neoplastic cells per slide on average (range, 188–749 558 cells). Cohen’s κ 
coefficient for the algorithm was 0.68. This is similar to the Fleiss κ coefficient 
calculated for the pathologists (0.61). 

CNN TILE 
SIZE 
(µM) 

RESO-
LUTION 

(µM/PIXEL) 

ANNO-
TATED 
DATA 

NO. OF 
CNN 

LAYERS 

EPOCHS 
TRAINED 

ERROR 
AGAINST 
TRAINING 
DATA (%) 

CNN1: HIGH-
QUALITY 
TISSUE 

50 1.61 517 mm2 8 5033 0.12 

CNN2: 
NEOPLASTIC 
TISSUE 
(COARSE) 

200 1.57 960 mm2 12 14 650 0.49 

CNN3: 
NEOPLASTIC 
TISSUE 
(REFINEMENT) 

50 0.39 960 mm2 12 16 182 0.15 

CNN4: CELL 
DETECTION 

86 0.44 5159 
objects 

6 18188 9.1 

Table 3: Training parameters per convolutional neural network (CNN). Training 
parameters for each CNN included tile size, resolution, the amount of annotated 
training data, the number of convolutional layers per CNN, epochs trained, and 
error against the training data. Error formulas are provided in Formulas 1 and 2. 

Nineteen cases were registered as ‘unscorable’ by the algorithm. In 11 cases, 
this was due to poor scanning quality and the WSI being out of focus (partly or 
completely). In five cases, there were severe artefacts, which had not been 
included in the training set and made the WSI difficult to score for the 
algorithm (Figure S3A) In both of the two remaining slides, the tumour was 
strongly discohesive, falling apart in such small parts that it resembled 
cytology, which was not included in the training set. In these cases, the 
algorithm did not correctly identify all of the tumour cells and counted <100 
tumour cells (Figure S3B). One hundred and twenty cases remained for 
algorithm validation. 

 



97 

 

Figure 5: Algorithm validation set results. A, Flowchart for the validation process. B, 
Scatterplot for the mean of the three pathologists’ continuous tumour proportion 
scores (TPSs): the reference score (Formula 2 in Doc. S1) is on the y-axis, and the 
continuous algorithm score is on the x-axis. C, Confusion matrix for categorical 
TPSs (<1%, 1–49%, and 50–100%): the reference score categories are on the y-axis, 
and the algorithm score categories are on the x-axis. 

For cases scored <0.5% by the algorithm (n = 32), the concordance with the 
reference score was 94%. For cases scored >60% by the algorithm (n = 20), the 
concordance with the reference score was 100%. The cases with scores of 
<0.5% and >60% constituted 43% of the validation set (n = 52). Examples of 
algorithm applicability for both the ‘difficult’ cases (TPS of 0.5–60%) and the 
‘easy’ cases are provided in Figure 7 and Figures S4–S6. 

4.5.5 Explaining discordance  

On closer examination of the cases that were misclassified by the algorithm 
(orange dots; Figure 5B), it is clear that, in 20 of 25 misclassified cases (80%), 
the pathologists were also in disagreement, meaning that one of the 
pathologists scored the case in a different treatment category. This occurred 
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significantly more frequently than in the cases that were correctly classified by 
the algorithm (27%, P = 0.000003, Fisher’s exact test), which suggests that these 
cases were more difficult to score for both human and machine. Common 
features in the misclassified cases included the following: 

1. The reference score was close to the 1% or 50% cutoff point. 
2. Neoplastic tissue was surrounded or infiltrated by PD-L1-positive 
immune cells (Figure 6A,D.) 
3. Neoplastic cells stained for PD-L1, but the staining was non-
membranous (Figure 6B). 
4. Neoplastic cells stained for PD-L1, but the entire membrane did not 

stain positively (incomplete staining) (Figure 6C). 
5. Neoplastic cells stained for PD-L1, but with low intensity (Figure 6C). 
6. There were severe artefacts, including anthracosis, folds, ink, 

degeneration, preservation-related issues, and scanning-related issues 
(Figure 6B). 

7. A small number (<250) of neoplastic cells were available for scoring. 

 

Figure 6: Difficult-to-score features. A, Neoplastic tissue surrounded by benign 
programmed death-ligand 1 (PD-L1)-positive cells. B, PD-L1 staining in neoplastic 
cells: partly nuclear, partly cytoplasmic, and partly membranous (anthracosis and 
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ink). C, Low-intensity PD-L1 staining. D, PD-L1-positive immune cells infiltrating 
neoplastic tissue. 

The misclassified cases were not significantly different from the correctly 
classified cases with regard to tumour type (P = 0.5, chi-squared test), biopsy 
site (P = 0.4, chi-squared test), or PD-L1 TPS category (P = 1.0, chi-squared test). 

4.5.6 Visual algorithm feedback  

The algorithm provides detailed visual feedback of predictions, at both the 
whole slide level and the microscopic level. The cell counting aspect of the 
algorithm enables exact approximation of the TPS, whereas, obviously, 
pathologists can only give a rough estimate. A case example is shown in 
Figure 7. Additional case examples are shown in Figures S4–S6. 

 

Figure 7: Case example algorithm scoring of a ‘difficult’ case close to the 50% 
cutoff. A, A programmed death-ligand 1 (PD-L1)-stained lobectomy slide overview of 
a squamous cell carcinoma. B, Prediction from convolutional neural network (CNN) 
3 (neoplastic area segmentation). Red: neoplastic tissue. C, Representative close-up. 
D, Prediction from CNN4 (cell detection). Red: PD-L1-negative cell. Green: PD-L1-
positive cell. In total, the algorithm counted 98 235 PD-L1-positive cells and 118 604 
PD-L1-negative cells in this whole slide image, resulting in a tumour proportion 
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score of 45.3%. The pathologists scored this case at 30%, 60%, and 45%, 
respectively. The reference score was therefore 45%. 

4.5.7 Segmentation refinement  

Our algorithm utilises two sequential segmentation CNNs for neoplastic tissue 
detection. The first CNN (coarse CNN) has a tile size of 200 µm, whereas the 
subsequent CNN (refinement CNN) has a tile size of 50 µm. An example of this 
setup is outlined in Figure 8. Adding the refinement CNN reduces the error 
against the training data from 0.49% to 0.15%, which constitutes a 3.3-fold 
decrease (Table 3). This approach therefore improves the predictions and 
decreases the required amount of annotations, as both segmentation CNNs 
utilise the same set of annotations. The added benefit of this approach was 
especially clear in cases with small patches of neoplastic tissue, as shown in 
Figure 8. 

 

Figure 8: Segmentation refinement examples. Left: programmed death-ligand 1 
(PD-L1)-stained tissue. Middle: overlay predictions (yellow) from the first neoplastic 
segmentation convolutional neural network (CNN) (coarse CNN). Right: overlay 
predictions from the first (yellow) and second (red) neoplastic segmentation CNNs 
(refinement CNNs). In case A (negative tumour cells with closely associated positive 
immune cells), use of only the coarse CNN would have resulted in falsely counting 
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more PD-L1-positive cells, and potentially a higher tumour proportion score (TPS) 
(false-positive). In case B (negative cells in negative stroma), using only the coarse 
CNN would have resulted in falsely counting more PD-L1-negative cells, and 
potentially a lower TPS (false-negative). 

4.6 Discussion 

The PD-L1 TPS is an established biomarker, with direct treatment 
consequences for late-stage NSCLC patients. However, PD-L1 as a biomarker 
for response to immunotherapy has several drawbacks, the most important 
being the high interobserver and intraobserver variance around rigid cutoff 
points (at 1% and 50%), and the fact that negative patients may also respond 
(and vice versa). Although a more definitive solution for a more accurate 
prediction of response to immunotherapy is still a subject of research, some of 
the human factors leading to high interobserver and intraobserver variance 
may be solved by the use of computational PD-L1 scoring. Several attempts 
have been made to create PD-L1 scoring algorithms, but all have specific 
limitations that hamper robust translation into clinical practice. 

We therefore developed and validated a fully supervised deep learning 
algorithm for computational PD-L1 scoring, which gives scores concordant with 
the reference score in 79% of cases, whereas any two pathologists agree with 
each other in 75% of cases. Cohen’s κ coefficient for the algorithm is 0.68 and 
the intraclass coefficient is 0.96; respectively, these constitute ‘substantial’ to 
‘almost perfect’ agreement, and are close to the agreement rates between the 
three experienced thoracic pathologists in this study. 

An additional strength of our algorithm is that it provides detailed visual whole-
slide predictions at a microscopic level, owing to the fully supervised setup of 
the model. This feedback increases interpretability and explainability, which is 
an important criterion for algorithms that will be used by pathologists in a 
clinical setting. 

We believe that—in order to be of value in daily clinical practice—any algorithm 
should be designed with cases derived from routine diagnostic WSIs, as 
opposed to ‘perfect’ trial material [14, 15] or TMAs. [16] Our algorithm is 
trained and validated on routine diagnostic whole slide histological material, 
including a wide range of metastatic sites and tissue artefacts. Because of its 
deep learning-based nature, the algorithm performs well in the highly 
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heterogeneous tissue backgrounds in WSIs (artefacts, lymph nodes, bronchial 
epithelium, adrenal gland, skin, brain, bone, kidney, etc.), which requires 
extensive annotations and is not easily achieved with simpler machine learning 
approaches. [16] For validation, algorithm scores were compared with the 
scores of multiple observers, which is essential because the reference score 
needs to be as robust as possible. It must be noted that our κ coefficient for 
pathologist agreement is relatively low as compared with those in some PD-L1 
interobserver studies using trial material or TMAs, [14. 15] but is in line with 
those in other studies with similar broad inclusion criteria. [10] 

Given the described accuracy and clinical applicability of our model, one may 
think of two different areas of usage: (i) PD-L1 scoring in a (case-by-case) 
diagnostic setting; and (ii) PD-L1 scoring of trial material and/or large series in a 
research environment. In a diagnostic setting, we see this algorithm as a 
potential ‘scoring assistant’ or second-opinion tool, aiding and saving time for 
pathologists, especially in difficult cases. In a situation in which scoring of large 
series or trial material is required, this algorithm may stand alone in the 
scoring of ‘easy’ cases with <0.5% or >60% PD-L1 positivity, as the algorithm 
reaches an accuracy of 96%. A pathologist could then focus on the subset of 
difficult cases with PD-L1 scores between 0.5% and 60%. A second observer 
pathologist may be replaced by our algorithm. Overall, our PD-L1 algorithm will 
function mostly as a scoring assistant or second observer, thereby saving time 
and human effort, while remaining equally accurate. 

Although the implementation of this and other algorithms in daily clinical 
practice is imminent, the applicability of this algorithm is likely to be hampered 
by domain divergence (different scanners, different antibodies, different 
stainers, etc.). When this algorithm is used in a new laboratory, or when 
laboratory circumstances change, ‘domain adaptation’ (adapting the algorithm 
to the same task but in a new dataset) is required. 

The difficulty of the domain adaption process and the choice of a method of 
adapting is heavily dependent on the domain relatedness (or the measure of 
domain divergence), which is a subject of ongoing research in the field of 
computer vision. Domain adaptation can be performed in many different ways 
(shallow adaptation, deep supervised adaptation, adversarial adaptation, 
semisupervised adaptation, domain matching, etc.). [27, 28] 
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Histopathology articles describing the process of domain adaptation in 
computational pathology are mostly lacking. We consider this to be a potential 
drawback. Clear guidelines for ‘domain adaptation’ and ‘post-implementation 
monitoring’ will need to be established in the near future. This issue will 
therefore be the subject of future research, in which we will use this PD-L1 
algorithm for a nationwide PD-L1 domain adaptation study. 

Another future research challenge for the field of PD-L1 assessment and digital 
pathology is its application in cytology. In cytology specimens, there is 
substantially less tissue context, and the task of PD-L1 TPS assessment is 
therefore different and perhaps more difficult. Despite these challenges, it is 
often necessary to use cytology material for PD-L1 analysis in clinical practice 
when no histology material is available, which is the case in up to 40% of 
cases.9 Our algorithm is not applicable to, and is not easily transferrable to, 
cytology specimens; a separate algorithm would have to be developed for this 
purpose. This algorithm would need to take the different cytological 
backgrounds and common cell types such as mesothelial cells, macrophages 
and (fragments of) lymphoid tissue into account. 

In conclusion, we have developed a deep learning PD-L1 TPS algorithm that is 
truly applicable to daily routine whole slide specimens. State-of-the-art 
computational techniques such as the double segmentation CNN and the HAIL 
annotations worked synergistically with the clinical perspective of highly 
experienced thoracic pathologists in this study, and resulted in the first PD-L1 
algorithm that is accurate on routine diagnostic material, in all tissue contexts, 
and on WSIs. In order to create smart pathology-based deep learning 
algorithms that are actually meaningful for the patients and clinicians of 
tomorrow, a true alliance of both clinical and computational experts is crucial.  
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