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Chapter 1: General introduction 

1.1 Case presentation, a patient journey anno 2023 

A 62-year old former smoker visits the pulmonologist because a pulmonary 
node in the left upper lobe is discovered. His symptoms are limited, only a dry 
cough that he has had for a few weeks. A CT-guided biopsy is taken, which 
leads to the diagnosis of non-small cell lung cancer (NSCLC). Specifically a TTF-1 
positive adenocarcinoma with lepidic, papillary and micropapillary growth 
patterns is diagnosed. After comprehensive staging with PET-CT and EBUS, it’s 
established that the patient has a T1bN0M0 tumor. He undergoes a lobectomy 
of the left upper lobe. The resection margins are tumor-free and the carcinoma 
has not infiltrated the visceral pleura.  

After 2 years and 3 months, a liver nodule is revealed, and a biopsy confirms 
that it is a metastasis of the prior lung adenocarcinoma. Thus, the patient is 
now stage IV, which warrants additional molecular and immunohistochemical 
tests. The PD-L1 tumor proportion score is 5% and mutations in EGFR p. L858R 
and TP53 p. V157S are identified with DNA NGS. The patient is treated with 
Osimertinib. Following an 18-month period of stable disease, growing lesions 
are discovered in the adrenal gland an lymph nodes. A new biopsy is taken 
from one of the growing mediastinal lymph nodes via fine needle aspiration, in 
which an EML4:ALK fusion is identified, in addition to the EGFR p. L858R and 
TP53 p. V157S mutations. The patient is treated with chemoradiation and dies 
within 9 months. (Figure 1) 

This case, of which there are hundreds of similar ones in the Netherlands each 
year, illustrates the complexity of the current NSCLC patient journey. The 
pathologist is prominently involved, and is required to assess the case at key 
decision-making moments in the disease process: at the early-stage diagnosis, 
at the late-stage diagnosis and at the moment of acquired resistance.  

1.2 Introduction Outline 

In this introduction, the characteristics of NSCLC, including the molecular 
makeup and genomic heterogeneity are comprehensively addressed. The most 
important novel treatments are outlined: targeted tyrosine kinase inhibitors 
(TKIs) and immune-checkpoint inhibitors (immunotherapy), including a 
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Figure 1: Case patient journey. Red: pathologist tasks. Grey: New treatment.  

detailed description of testing techniques to select patients for either of these 
therapies. In the final paragraph, the societal impact of lung cancer research 
will be discussed.  

1.3 Lung Cancer demographics  

Lung cancers are one of the most common and deadly cancers worldwide, with 
1.6 million deaths annually. [1] In the Netherlands, approximately 13,000 new 
lung cancer patients are diagnosed each year, the majority of which suffer 
from non-small cell lung cancer (NSCLC). [2]  

The high death rate of NSCLC is in part due to the late stage at diagnosis: due 
to the localization, many tumors remain asymptomatic until after the tumor 
has metastasized. Approximately 50% of patients are therefore diagnosed in 
stage IIIB or IV. In addition, early stage tumors are not always successfully 
cured. Approximately 50% of patients who undergo surgical resection die of 
lung cancer within 5 years, likely due to the presence of occult metastasis at 
the time of surgery.  

NSCLC can be divided into two main subtypes: lung adenocarcinoma and lung 
squamous cell carcinoma. [3, 4] Adenocarcinomas can be further divided using 
growth patterns or differentiation grade, leading to a stratification of patients 
in low risk (well differentiated, lepidic growth), intermediate risk (moderately 
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differentiated, papillary or acinar growth) and high risk (poorly differentiated, 
solid, complex glandular or micropapillary growth). [5]  

Up to 90% of lung cancers can be attributed to tobacco smoking. [6] In 2019, 
21.7% of adults and 8% of children aged 12-16 in the Netherlands were 
smokers. [7] Worldwide, 20% of individuals aged 15 or above are smokers. 
(Figure 2) In 2019, 7.7 million deaths were attributable to tobacco smoking 
worldwide, making smoking the cause of 13.6% of all deaths that year. [8] In 
the Netherlands, 13.1% of deaths are still attributed to smoking in 2019, which 
is only just below the global average.  

Smoking is more common in people in a lower socio-economic class, making 
tobacco addiction a true poverty disease. In the Netherlands, 15.4% of HBO 
and University-educated people were smokers, versus 26.2% of people who 
attended VMBO, MAVO, LBO or primary school only. [7] Remarkably, although 
smoking prevalence is slowly decreasing in the Netherlands, the number of 
smokers is still rising in many other countries, which are often low- to middle-
income countries: Azerbaijan, Georgia, Kyrgyzstan, Mongolia, Uzbekistan, 
Albania, Bosnia and Herzegovina, North Macedonia, Serbia, Belarus, Lithuania, 
Moldova, Russia, Antigua and Barbuda, Belize, Grenada, El Salvador, 
Afghanistan, Egypt, Iran, Jordan, Lebanon, Saudi Arabia, Federated States of 
Micronesia, Kiribati, Solomon Islands, Tuvalu, Indonesia, Laos, Congo, 
Equatorial Guinea, Gabon, Djibouti, Lesotho, Côte d’Ivoire, Guinea-Bissau, Mali, 
Niger and São Tomé and Príncipe. [8]  

Therefore, perhaps the most important aspect of lung cancer management is 
prevention. Smoking eradication, together with screening (heavy) smokers for 
pulmonary nodules is paramount. It was recently demonstrated that low-dose 
CT screening in heavy smokers aged 50-74 reduces lung cancer related 
mortality by 24%, which is an important argument in favor of population 
screening. [9] 

1.4 Molecular landscape of NSCLC; smokers versus non-smokers 

The vast majority of NSCLCs are caused by the inhalation of carcinogens 
(tobacco smoke, air pollution and occupational carcinogens).  These 
carcinogens lead to an accumulation of DNA-mutations, which drives cells to 
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Figure 2: Worldwide prevalence of smoking in 2018, measured in individuals aged 
15 and older. Adapted from Ritchie et al, Our World In Data. [10] 

malignant behavior via the alteration oncogenic driver genes (such as KRAS 
and EGFR) or tumor-suppressor genes (such as TP53 and CTNNB1). [3, 4, 11] 
Due to this mechanism of carcinogenesis, tobacco-related lung cancers can 
harbor many different DNA-alterations and are highly heterogeneous in their 
molecular makeup. [3, 12] Typical smoking-related DNA-alterations are KRAS, 
BRAF, PTEN, PIK3CA and TP53. [13]  

A minority of NSCLCs arises in never-smokers. These tumors have a different 
molecular signature and more frequently harbor mutations in ALK, ROS1, RET, 
HER2 and EGFR. [3, 13, 14] Tumors in never-smokers generally have a lower 
tumor mutational burden (TMB) and fewer co-mutations in tumor suppressor 
genes such as TP53. [13, 14] Never-smokers respond differently to treatment 
with TKIs, [15] immunotherapy [16] and chemotherapy. [17]  

When assessing the smokers and never-smokers together, it’s clear that NSCLC 
is a highly heterogeneous disease, both in the clinical and genomic aspect. 
Known driver alterations, their prevalence and common NSCLC growth 
patterns are outlined in Figure 3.  
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Figure 3: Lung cancer heterogeneity. A: oncogenic driver mutations in metastatic 
lung adenocarcinoma. Adapted from Addeo et al. [18] B: morphological 
heterogeneity in surgical NSCLC specimens.  

1.4.1 Intratumor genomic heterogeneity and tumor evolution 

In addition to these differences between tumors, there is substantial genetic 
heterogeneity within tumors as well. Recent studies have reported that 
genomic aberrations often occur only in subclonal portions of lung cancer cells, 
which is called ‘intratumor genomic heterogeneity’. This is observed for all 
mutations, including oncogenic drivers. [19, 20] Using multi-region tissue 
sequencing experiments, a distinction can be made between ‘trunk mutations’, 
that are homogenously present in all tumor sequencing regions, ‘branch 
mutations’, that are only present in part of the tumor sequencing regions, and 
germline mutations, present in all tumor and benign sequencing regions. 
(Figure 4) [20] It’s hypothesized that intratumor genomic heterogeneity could 
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be the substrate for mixed response, acquired resistance, morphologic 
heterogeneity and tumor progression. [19] 

Figure 4: Example of intratumor genetic heterogeneity (ITH), with one trunk 
mutations (in this case: KRAS) and multiple branch mutations (in this case: STK11, 
TP53, CDKN2A).  

1.5 Targeted therapy and acquired resistance 

For decades, the treatment of NSCLC was limited to surgery, radiation and 
chemotherapy, with limited survival benefit and substantial co-morbidity and 
mortality. [3, 4, 21, 22] An important change started in 2003, with the 
registration of gefitinib for chemotherapy-refractory metastatic NSCLC.  

1.5.1 History: Gefitinib and other TKIs 

Gefitinib, an antagonist for the endothelial growth factor receptor (EGFR), was 
first intended as a generic cancer growth inhibitor, but its introduction in the 
clinic in 2003 led to unexpected results. Whereas a small portion of 
chemotherapy-refractory NSCLC patients (10-19%) showed remarkable 
response to gefitinib, no effect was observed at all in the majority of patients. 
Later, in 2004, activating EGFR-mutations, such as L858R and exon 19 deletion, 
were identified in gefitinib-sensitive patients and showed to be absent in 
gefitinib-insensitive patients. [23]  

These data formed the basis of a new and optimistic field of cancer research – 
targeted DNA-therapy. Simply finding the tumor’s driver mutation and 
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inhibiting it with a specific antagonist – the cancer’s kryptonite – would be the 
key to achieve durable response or even curation for all lung cancer patients.  

In addition to EGFR, there are now tyrosine kinase inhibitors (TKIs) routinely 
available, targeting alterations in BRAF V600, [24] ALK, [25] MET, [26] HER2, [27] 
ROS1, [28] NTRK [29] and RET [30]. (Figure 5) For many other targets, such as 
BRAF non-V600, KRAS G12C and NRG1, new TKIs are available in the 
experimental context or via compassionate use or early access programs. 
However, for some targets, it has been difficult to find an effective TKI, and not 
all TKIs are perhaps as effective as we hoped: although progression-free 
survival has become significantly longer for stage IV patients with targetable 
mutations, complete curation is still far away.  

Figure 5: timeline novel targets and therapies NSCLC. Red: Targets. Green: TKIs. 
Blue: immunotherapy.  

1.5.2 Acquired resistance 

It has also become clear that, although many patients respond excellent to 
TKIs, eventually tumors bypass these inhibitory drugs and become resistant, 
often by acquiring additional oncogenic mutations. From that moment, one or 
more lesions will continue to grow and the disease progresses. [31-33] The 
mechanism by which the tumor acquires resistance can, in turn, be a 
targetable genomic aberration (such as EML4:ALK fusion), for which yet 
another TKI might be administered. [34]  

A famous example is, again, EGFR. After the early successes of gefitinib and the 
discovery of mutations in the EGFR gene, the resistance mechanism EGFR p. 
T790M was discovered in 2005. The T790M mutation makes it impossible for 
gefitinib, afatinib and erlotinib to bind to EGFR, and prohibits its antagonistic 
effects. T790M therefore leads to reactivation of mutant EGFR and perfectly 
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explains the acquired resistance phenotype. In addition to T790M, many other 
resistance mechanisms have been discovered since, in part oncogenic driver 
mutations that we know, such as KRAS p. G12C, ALK fusion, HER2 amplification 
and MET amplification, but also novel mutations, such as EGFR p. C797S after 
treatment with Osimertinib. [35] Treatment with other TKIs, such as crizotinib, 
seems to follow the same principles as EGFR TKI treatment. [32, 36] 

1.5.3 NTRK 

An especially interesting, relatively novel target is NTRK. For most genetic 
targets, TKIs are first established in one cancer type and then translated to 
others. This is true for HER2, which was first discovered and treated in breast 
cancers; BRAF V600E, which was first discovered and treated in melanomas, 
and RET fusions, which were first discovered and treated in thyroid 
carcinomas. This tissue-oriented approach is a distinct disadvantage for 
patients with rare cancers, who are often the last to benefit from these new 
treatments.   

Fusions in NTRK are extremely rare in NSCLC and in most cancers, whereas 
they are common in others (e.g. secretory carcinoma). Entrectinib and 
Larotrectinib trials therefore included all NTRK-rearranged metastatic solid 
tumors from the start, which has led to the registration of NTRK TKIs as first-
line therapy for all solid tumors. [29, 37] This registration clearly marks the 
beginning of a shift from diagnosis-based to gene-based treatment.  

1.6 Towards personalized medicine: selecting the right patients 

There are many methods available for TKI and immunotherapy susceptibility 
testing, and finding the most optimal sequence can certainly be challenging. 
Often, there are significant time constraints, as the performance state of 
patients can be poor and waiting is not optimal, especially when brain 
metastases are present. In addition, the tissue available for genetic testing is 
rarely abundant; in some cases only cytology or small biopsy specimens are 
available, holding a limited number of tumor cells for molecular testing. When 
the tissue runs out before a definitive diagnosis is established, the patient has 
to undergo another biopsy, which can cause serious side effects and delay the 
diagnosis. Additionally, there can be financial limitations as well, since 
comprehensive genetic testing is costly. The pathologist therefore has to 
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identify the diagnosis method that minimizes time, tissue and expenses, while 
still achieving high effectiveness in finding targetable DNA-mutations.  

As outlined in the patient journey figure (Figure 1), testing to select patients for 
immunotherapy or TKI treatment is now required at two specific moments: 
right after the diagnosis of metastatic lung cancer (1) and when acquired 
resistance occurs (2). In the future, testing will be implemented in the early 
stage as well, since there are indications in the literature that immunotherapy 
and treatment with TKIs could give early stage, surgical patients a survival 
benefit as well. [38, 39] In addition, as the management of acquired resistance 
mechanisms continues to evolve, patients could be treated with multiple lines 
of TKI treatment, which would further increase the number of testing 
moments.  

1.6.1 A history of molecular testing 

Since the discovery of the structure and function of DNA and specifically the 
Watson-Crick DNA model in 1953, molecular testing has taken off. In the 1980s, 
molecular testing became routed in routine diagnostics, via the application of 
Southern blotting to identify DNA alterations in Duchenne and fragile X 
syndrome.  

In the 1993, the invention of polymerase chain reaction (PCR) [40] and the 
following introduction into clinical diagnostics was an important milestone, 
that enabled large-scale testing for HIV, hepatitis and other infectious diseases. 
In the late 1990s, genetic testing was applied to population screening for the 
first time, when testing newborns for cystic fibrosis mutations became the 
standard.  

The first application of genetic testing for oncology occurred with the testing 
for the BRC:ABL translocation, the most common driver of chronic 
myelogenous leukemia (95%) and associated with acute lymphoblastic 
leukemia (ALL). With a novel and potent ABL TKI [41, 42] available – the first TKI 
ever described – all CML patients were required to undergo testing for the 
BRC:ALB fusion product, widely known as the ‘Philadelphia gene’. This testing 
was first implemented using Sanger sequencing, a widely used and relatively 
fast technique, [43] which was later also commonly used to detect the first 
pathogenic EGFR mutations, including p. L858R.  
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However, it was only after the completion of the Human Genome Project in 
2003, that the focus of molecular diagnostics research truly shifted from 
infectious and hereditary diseases to cancer. With the approval of Herceptin 
for HER2-amplified breast cancer, testing for HER2 amplifications suddenly 
became a requirement, which led to the implementation of fluorescent in situ 
hybridization in many Pathology laboratories. [44] Additionally, the discovery of 
gefitinib-sensitizing EGFR mutations became an incentive for testing metastatic 
NSCLC for exon 19 deletions and L858R mutations in EGFR. [45]  

Around the same time, PCR and automated Sanger sequencing were slowly 
replaced by next-generation DNA sequencing, a high-throughput multi-target 
method with wide applicability. In the mid-2010s, many laboratories started 
using DNA NGS to routinely screen for frequently occurring somatic oncogene 
mutations in KRAS, EGFR, BRAF, etc. [46] Although DNA NGS is well suited to 
find point mutations, small deletions, insertions and (when the tumor cell 
percentage is sufficient) amplifications, the identification of fusions and exon 
skipping events was always performed with in situ hybridization. In recent 
years, RNA NGS has replaced ISH in many laboratories.  

The newest step in this rapid succession of molecular panels is the transfer to 
whole genome sequencing (WGS) and whole exome sequencing (WES). WGS 
and WES utilize massive sequencing panels covering the entire genome or 
exome. Although not yet routinely used for diagnostics in all clinical 
laboratories, WGS and WES are routinely applied for research purposes.  

1.6.2 Current molecular testing methods 

Testing methods currently available in routine diagnostic laboratories in the 
Netherlands include: immunohistochemistry (IHC), in situ hybridization (ISH), 
DNA NGS and RNA NGS. Each method has distinct advantages and 
disadvantages, as discussed below, which makes choosing the optimal workup 
challenging and complex.  

1.6.2.1 Immunohistochemistry 

IHC can be used to measure expression of a specific protein. (Figure 6A) In 
NSCLC, literature indicates that several genetic targets can be identified with 
IHC (ALK fusion, [47] ROS1 fusion, [48] NTRK fusion, [49] HER2 amplification 
[50]), as well as susceptibility to immunotherapy (PD-L1 expression). [51, 52] 
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The most important advantage of IHC is it’s speed and price – IHC is a relatively 
fast and cheap method. A distinct downside is the fact that IHC is a single-
target assay. In addition, IHC results can be subjective, and thus less than 100% 
sensitive and specific.  

1.6.2.2 In situ hybridization 

ISH can be used to identify translocation or amplification of a specific gene. 
(Figure 6B, 6C) In NSCLC, ISH is frequently used, to detect amplifications in 
MET, [53] EGFR [54] and HER2, [50] as well as fusions in ALK, [47] ROS1, [48] 
RET [55] and NTRK. [49] As ISH is a single-target assay, a separate analysis is 
required for each target gene, which is a disadvantage. In addition, information 
about the breakpoint and fusion partner is generally not provided by ISH. An 
important advantage over DNA NGS, however, is the ability to detect polysomy 
and amplifications in part of the tumor cells, which is an important benefit 
when dealing with intratumor genetic heterogeneity in TKI resistance cases.  

 

Figure 6: IHC and ISH examples. A: HER2 IHC. B: HER2 silver ISH. C: MET:C7 
fluorescent ISH. Adapted from Chapter 3.  

1.6.2.3 DNA NGS 

DNA NGS panels are able to identify alterations on a single nucleotide level 
within the DNA. DNA NGS can detect point mutations, small deletions and 
insertions with high accuracy. To some extent, DNA NGS also detects copy 
number variance, exon skipping and fusions. However, DNA NGS detections 
are highly dependent on which targets are included in the panel. Whole 
genome sequencing covers the entire genome, and is well suited to detect 
copy number variance, exon skipping and fusions, but also requires a much 
higher tissue input. Most laboratories therefore use a much smaller panel, 
which covers hotspots in cancer genes, but excludes introns and non-hotspot 
areas. Most clinically used DNA NGS panels therefore can’t detect fusions and 
exon skipping. The ability to detect amplifications with smaller DNA NGS 
panels greatly depends on the tumor cell percentage. When the tumor cell 
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percentage is too low, amplifications can easily be missed, especially in tumors 
with intratumor genetic heterogeneity.   

1.6.2.4 RNA NGS 

RNA NGS identifies alterations on a single nucleotide level within the RNA. RNA 
NGS therefore identifies fusions, exon skipping events, point mutations and 
small insertions and deletions of covered regions. In contrast to ISH and IHC, 
DNA NGS and RNA NGS are multi-target assays. An important advantage of 
RNA NGS over ISH is the ability to detect fusion partners and breakpoint. 
Although RNA NGS uses more tissue than one ISH analysis, RNA NGS is a multi-
target assay, meaning that multiple genes can be screened for translocations 
in one test. RNA NGS is less effective in bone lesions, as RNA quality decreases 
from the chemicals used in the decalcification process. The applications of RNA 
NGS and the techniques discussed above are summarized in Figure 7.  

1.7 Immunotherapy   

Immunotherapy is based on the interaction between programmed death 
ligand 1 (PD-L1) and programmed death 1 (PD-1). (Figure 8) When tumor cells 
express PD-L1, and this binds to the PD-1 receptor on T-cells, T-cells deactivate 
or undergo apoptosis, thus providing an effective method of immune evasion 
for the tumor. [56] Blocking this PD-1/PD-L1 interaction with monoclonal 
antibodies such as anti-PD-1 (nivolumab, pembrolizumab) constitutes an 
effective anti-tumor therapy, that has been reported to lead to a substantial 
survival benefit. [52, 57-60]  

1.7.1 Immunotherapy, a brief history 

The first mention of cancer immune therapy in the scientific literature was in 
1891, when sarcoma and lymphoma patients were treated with live, 
inactivated Streptococcus pyogenes and Serratia marcescens by dr. Coley, in 
an attempt to activate the immune system against the tumor. [61, 62] Since 
then, the idea of activating the immune system and using it as a weapon 
against cancer, has taken root, and pan-cancer immunotherapy became a 
distant dot on the horizon. Since the discovery of the PD-1/PD-L1 interaction 
and its role in the immune evasion in cancer became clear in 2002, [56] that 
dot has become a lot closer. Years of murine models and preclinical testing 
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finally resulted in the approval of ipilumab in 2011 [63] and nivolumab [59, 64] 
and pembrolizumab in 2014 [58].  

 

Figure 7: testing for molecular alterations per alteration type. Green rectangle: 
testing is possible; red rectangle: testing is not possible; orange rectangle: 
sometimes possible. *: only with good coverage of introns, for example whole 
genome sequencing (WGS). 

Being high-volume and high-mutational burden tumors, most of these 
immunotherapy regimens were registered for advanced metastatic NSCLC and 
melanoma fist, but are now expanding to other cancers as well, including 
breast cancer and head- and neck squamous cell carcinoma, with promising 
results. Immune regulatory drugs have opened up an entirely new avenue for 
cancer treatment and research, which is a true game changer for the field of 
Medical Oncology, and was thus awarded the Nobel Prize in 2018. [65] 
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Figure 8: PD-1/PD-L1 interaction and immunotherapy. A: interaction between 
tumoral PD-L1 and T-cell PD-1, resulting in T-cell apoptosis. B: inhibition of the PD-
L1/PD-1 interaction by immunotherapy (monoclonal anti-PD-1 antibodies, 
pembrolizumab or nivolumab), resulting in T-cell activation.   

1.7.2 Immunohistochemical PD-L1 as a biomarker for immunotherapy 
response  

However, not all patients respond to immunotherapy to the same extent. 
Whereas some patients achieve durable progression-free survival, others have 
limited or no benefit from immunotherapy. [58, 59] The most important 
predictive biomarkers are the expression of immunohistochemical PD-L1 on 
tumor cell membranes [52, 58] and the tumor mutational burden (TMB), [66] 
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which have, since the introduction of immunotherapy in the clinic, become 
tremendously important in routine diagnostics.  

However, both biomarkers are problematic. Both are non-perfect predictors of 
immunotherapy response: some patients with high PD-L1 expression or TMB 
fail to respond, and vice versa. In addition, PD-L1 is subject to substantial 
interobserver variance due to human limitations in estimating percentages, 
and there is a risk of sampling error, due to the intratumor heterogeneity of 
PD-L1 expression. (Formula 1) TMB can be assessed with multiple 
bioinformatics methods and NGS panels, each leading to a different ‘mutations 
per megabase’ score. Most of the currently used (lung) cancer panels are too 
small to determine the TMB, only the bigger panels (with higher drop-out) are 
able to, which means not all laboratories are able to assess TMB yet. And 
finally, due to intratumor genomic heterogeneity, (1.4.1) the TMB is not the 
same in all tumor regions, which could lead to sampling error.  

𝑃𝐷 − 𝐿1 𝑠𝑐𝑜𝑟𝑒 =
PD − L1 positive tumor cells

PD − L1 positive tumor cells + PD − L1 negative tumor cells
 

Formula 1: PD-L1 tumor proportion score. 

1.7.3 Future biomarkers 

Therefore, the search for new biomarkers for immunotherapy response 
continues. Most efforts have been focused on the makeup of the tumor 
immune microenvironment (TME), which is one of the key elements of an anti-
tumor response. Important potential biomarkers, which have already shown to 
be associated with immunotherapy response in lung cancer are: tumor-
infiltrating cytotoxic (CD8+) T-cells, [61, 67] M2-polarized macrophages, [67, 68] 
plasmablasts, [67, 69] IFNγ messenger RNA, [67, 70] dendritic cells [67, 71] and 
macrophage PD-L1 expression. [67, 72] In addition, there are numerous 
potential biomarkers correlated to immunotherapy response in other cancers, 
such as tertiary lymphoid structures. [67]  

What this quantity of TME studies illustrates, is that the interaction between 
cancer and immune system is complex – perhaps even more so than we now 
realize. Efforts to compress this complexity into a single-target biomarker such 
as PD-L1 are ambitious but also slightly naïve. In the future, we might be able 
to comprehensively assess the TME and come with personalized and accurate 
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immunotherapy response predictions, but for now, patient selection remains 
imperfect.    

1.8 Thesis Outline and Aims 

To summarize, there are more treatment options for NSCLC than ever before, 
which makes selecting the treatment regimens an increasingly complex task. 
Pulmonary pathologists are faced with the difficult challenge of testing patients 
for a wide range of molecular alterations and predicting immunotherapy 
susceptibility. For this task, they can use a number of tests: IHC, ISH, DNA NGS 
and RNA NGS. However, in this rapidly changing field of molecular diagnostics 
and cancer immunology, the optimal testing method is not always clear. A 
balance must be found between tissue-efficiency, time, costs and 
comprehensiveness of testing.  

The general aim of this thesis is therefore to retrospectively investigate the 
current testing landscape, and identify the most optimal testing sequence for 
NSCLC patients, at three key decision making moments: 

1. Early stage NSCLC 
2. Late stage NSCLC, treatment-naïve  
3. Late stage NSCLC after acquired resistance 

Chapter 2 describes the yield of molecular testing in early stage NSCLC. 
Chapter 3 discusses the optimal workup in stage IV NSCLC. Chapter 4 
investigates the role of AI in PD-L1 immunoscoring. Chapter 5 describes the 
sensitivity of NTRK IHC, and whether it should be used in routine diagnostics. 
Chapter 6 describes the molecular workup after acquired resistance to EGFR 
TKIs.  
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2.2 Abstract 

2.2.1 Objectives 

The landmark ADAURA study recently demonstrated a significant disease-free 
survival benefit of adjuvant osimertinib in patients with resected EGFR-
mutated lung adenocarcinoma. However, data on prevalence rates and stage 
distribution of EGFR mutations in NSCLC in Western populations are limited 
since upfront EGFR testing in early-stage lung adenocarcinoma is not common 
practice. Here we present a unique, real-world, unselected cohort of lung 
adenocarcinoma to aid in providing a rationale for routine testing of early-
stage lung cancers for EGFR mutations in the West-European population.  

2.2.2 Material and Methods 

We performed routine unbiased testing of all cases, regardless of TNM stage, 
with targeted next generation sequencing (NGS) on 486 lung adenocarcinoma 
cases between 01-01-2014 and 01-02-2020. Clinical and pathological data, 
including co-mutations and morphology, were collected. EGFR-mutated cases 
were compared to KRAS-mutated cases to investigate EGFR-specific 
characteristics.   

2.2.3 Results 

53 of 486 lung adenocarcinomas (11%) harbored an EGFR mutation. In early-
stages (stage 0-IIIA) the prevalence was 13%, versus 9% in stage IIIB-IV. 9 out of 
130 (7%) stage IB-IIIA patients fit the ADAURA criteria. Early-stage cases 
harbored more L858R mutations (p = 0.02), fewer exon 20 insertions (p = 
0.048), fewer TP53 co-mutations (p = 0.007), and were more frequently never 
smokers (p = 0.04) compared to late-stage cases with EGFR mutations. The 
KRAS-mutated cases were distributed more evenly across TNM stages 
compared to the EGFR-mutated cases. 

2.2.4 Conclusion 

As (neo-)adjuvant targeted therapy regimes enter the field of lung cancer 
treatment, molecular analysis of early-stage NSCLC becomes relevant. Testing 
for EGFR mutations in early-stage lung adenocarcinoma holds a substantial 
yield in our population, as our number needed to test ratio for adjuvant 
osimertinib was 14.4. The observed differences between early- and late-stage 
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disease warrants further analysis to work towards better prognostic 
stratification and more personalized treatment.  

2.3 Introduction 

Almost 30% of patients with non-small cell lung cancer (NSCLC) present with 
resectable early-stage disease. [1] Unfortunately, recurrence rates after 
resection are high: up to 50% of patients present with lung cancer recurrence 
within 5 years, which underscores the need for effective (neo)adjuvant 
treatment strategies. [2] Currently, in most patients with completely resected 
stage II-IIIA disease adjuvant platinum-based chemotherapy is recommended. 
However, the 5-year survival benefit of adjuvant chemotherapy remains 
limited. [3] Therefore, certain therapies that have proven to be effective in the 
advanced setting, such as immunotherapy and tyrosine kinase inhibitors (TKI), 
are now also of interest for the adjuvant setting. For instance, the landmark 
ADAURA trial has recently led to the approval of osimertinib, a third generation 
TKI, as adjuvant treatment after complete resection in patients with stage IB-
IIIA NSCLC harboring EGFR exon 19 deletions or L858R substitution mutations. 
[4] 

Pathogenic mutations in the EGFR gene are one of the most common oncogene 
driver mutations in metastatic NSCLC. The incidence of EGFR mutations in 
advanced non-squamous NSCLC varies greatly, from around 10% in West-
European populations, to as high as 64% in the East Asian population. [5-11] 
The introduction of TKIs that inhibit the downstream pathways of EGFR, have 
greatly improved the outcome of patients with metastatic EGFR-mutated 
NSCLC. [12, 13] Osimertinib increased the median progression-free survival to 
18.9 months [12] and the overall survival to 38.6 months. [14] Recently, the 
ADAURA investigators also demonstrated a substantial clinical benefit of 
adjuvant osimertinib in patients with resected EGFR-mutated lung 
adenocarcinoma. The study was discontinued early due to a significant efficacy 
benefit shown at interim analysis: patients with stage IB-IIIA disease receiving 
adjuvant osimertinib had a 24-month disease-free survival of 89%, versus only 
52% in the placebo group (p<0.001), with a hazard ratio of 0.20 for disease 
recurrence and death. [15] However, currently the secondary endpoint of 
overall survival remains immature, and is hampered by the early unblinding of 
the study.  
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Until now, molecular screening for EGFR has only been routinely performed as 
part of standard care in stage IIIB and IV disease to select patients for 
treatment with osimertinib or other EGFR TKIs. [5, 6, 16] The expansion of 
routine molecular analysis to all early-stage lung adenocarcinomas to select 
patients for adjuvant treatment warrants a well-founded approach. To 
construct such an approach, several questions still need to be answered. There 
is a considerable amount of literature available on the prevalence of EGFR 
mutations in late-stage NSCLC and in the East Asian population. [17] However, 
as upfront EGFR testing in early-stage disease is not common practice, most 
reports on early-stage EGFR-mutated lung adenocarcinoma are from 
preselected cohorts, often enriched for EGFR mutations. [18] Therefore, it is 
still unclear how prevalent EGFR mutations are in early-stage EGFR-mutated 
lung adenocarcinomas in the Western population, and how to identify the 
patients who are at higher risk of recurrence and would therefore potentially 
have greater benefit of adjuvant treatment. These lacunae are essential to fill, 
as they could have implications for justified patient selection for adjuvant TKI 
treatment.  

In the Erasmus Medical Center in Rotterdam, the Netherlands, all lung 
adenocarcinomas are subject to targeted next generation sequencing (NGS) 
testing regardless of TNM stage, so-called ‘reflex-testing’. This provides a 
unique opportunity to investigate the real-world prevalence of EGFR mutations 
in early-stage NSCLC in a West-European patient population. Here we present 
our prospective unselected cohort of consecutive lung adenocarcinomas that 
were diagnosed in our center over the course of 6 years, using patients with 
KRAS-mutated NSCLC as a comparator for EGFR-mutated NSCLC. Additionally, 
we investigated the clinicopathological features, such as co-mutations and 
morphology, that are potentially associated with a higher risk for disease 
recurrence in early-stage EGFR-mutated NSCLC.  

2.4 Materials and methods 

2.4.1 Case collection and study setup 

All in-house lung adenocarcinoma core needle biopsies, cytology specimens or 
resection samples of the Erasmus Medical Center Rotterdam (EMC) that were 
submitted to the pathology department for routine diagnostic purposes 
between 01-01-2014 and 01-02-2020 were evaluated for inclusion. Cases had 
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to have been analyzed with targeted DNA NGS with a customized oncogene-
panel and have complete TNM staging for inclusion. In the case of multiple 
primary tumors per patient, each primary adenocarcinoma was eligible for 
inclusion if NGS had been performed. Both cytology and histology specimens 
were included, consisting of metastatic as well as primary tumor specimens. 
Only primary diagnostic specimens were allowed; liquid biopsy specimens and 
sequential biopsies after start of systemic treatment were excluded. Cases with 
insufficient tissue for DNA NGS or without complete TNM staging were 
excluded, which for example occurred if the patient opted to be referred to 
another medical center for staging, or if the patient was terminally ill with a 
concurrent disease.  

To investigate whether possible differences between early- and late-stage 
cases are EGFR-specific, we compared the EGFR cases to the KRAS-mutated 
cases of our cohort.   

2.4.2 DNA isolation 

Formalin-fixed paraffin-embedded (FFPE) tissue, including cytology cell blocks, 
was used for DNA isolation. The DNA was isolated as previously described. [19] 
The acquired DNA was stored at -20°C until analysis. 

2.4.3 DNA NGS  

For targeted DNA NGS, an IonTorrent custom targeted NGS panel was used, 
including the following genes: CDKN2A (coverage 98%), PTEN (coverage 94%), 
TP53 (coverage 100%) and mutation hotspots in AKT1 (exon 3), ALK (20, 22-25), 
APC (14), ARAF (7), BRAF (11, 15), CTNNB1 (3, 7, 8), EGFR (18-21), HER2 (19-21), 
EZH2 (16), FBWX7 (9, 10), FGFR1 (4, 7, 12), FGFR2 (7, 9, 12), FGFR3 (7, 9), FOXL2 (1), 
GNA11 (4, 5), GNAQ (4, 5), GNAS (8, 9), HRAS (2-4), IDH1 (4), IDH2 (4), KIT (8, 9, 11, 
13, 14, 17), KRAS (2-4), MAP2K1 (2, 3), MET (2, 14, 19), MYD88 (5), NOTCH1 (26, 27), 
NRAS (2-4), PDGFRA (12, 14, 18), PIK3CA (10, 21), POLD1 (12), POLE (9, 13), RAF1 
(7), RET (11, 16), RNF43 (3, 4, 9), ROS1 (38, 41), SMAD4 (3, 9, 12), STK11 (4, 5, 8) 
and TERT promotor, as previously described. [20] Copy number calling was 
performed with SNPitty. [21, 22] 

Genomic alterations were classified according to the ACMG/AMP consensus 
paper in 5 classes of ascending likelihood of pathogenicity. [23] For EGFR 
mutations, both class 4 or 5 pathogenic mutations and variants of unknown 
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significance (VUS) were included. We considered non-EGFR and non-KRAS 
mutations as co-mutations, including other driver mutations. Only class 4 and 
5 pathogenic mutations were included, VUS were not considered co-mutations. 
Pathogenicity was assessed with reference databases, including Alamut, 
ClinVar, IARC, CKB and cBioportal. KRAS mutations were classified in G12C, 
G12D, G12V, Q61H and other mutations. 

Additionally, we assessed the immunohistochemical expression pattern of p53 
in the EGFR-mutated cases if available.  

2.4.4 Clinical parameters 

For all cases, clinical data regarding age at diagnosis, TNM stage (7th edition) 
and sex were collected. For patients with EGFR-mutated adenocarcinoma, we 
collected additional data on the smoking history, recurrence-free survival (RFS) 
for early-stage cases, previous cytotoxic therapy for another malignancy, follow 
up time, symptoms at the time of diagnosis and prior lung cancer screening or 
monitoring. Stage 0-IIIA were considered early-stage disease, and stage IIIB and 
IV were considered late-stage disease. RFS was defined as time from date of 
diagnosis until disease recurrence.   

Patients were categorized as ‘current smokers’ if they smoked in the month 
before diagnosis. Patients were considered to be ‘former smokers’ if they quit 
smoking at least one month before diagnosis. Patients were considered to be 
‘never smokers’ if they had accumulated less than one pack year and had not 
smoked in the month before diagnosis.  

2.4.5 Morphology 

Growth patterns were assessed by one or multiple experienced thoracic 
pathologists, using a continuous score for each of the following categories: 
percentage lepidic, percentage acinar-papillary, percentage micropapillary-
solid. The continuous scores for each category were used to assess the ‘most 
prevalent growth pattern’ and the ‘worst growth pattern’. The ‘most prevalent 
growth pattern’ was the pattern which was most prevalent. If two patterns 
were equally prevalent, the worst growth pattern was used as the most 
prevalent growth pattern. 

Literature has previously suggested that the type of growth pattern has 
potential prognostic value, with micropapillary-solid having the worst 
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prognosis, followed by acinar-papillary, and a lepidic growth pattern having the 
most favorable prognosis. [24] We therefore also scored the cases according to 
the pattern with the assumed worst prognosis, i.e. the ‘worst growth pattern’, 
to evaluate whether the presence of a less favorable growth pattern indeed 
has prognostic value. Growth pattern assessment was only performed for 
cases in which tissue from the primary tumor was available. Cytology 
specimens and metastasis biopsies were not scored for growth pattern. 
Examples of these scoring systems are outlined in Supplementary Table 1.  

2.4.6 Statistics 

We used IBM SPSS Statistics software, version 25 for statistical analysis. 
Statistical significance was set at p < 0.05. Categorical data were compared 
using the Chi Square test or Fisher Exact test, as appropriate. For t-distributed 
stochastic neighbor embedding (t-SNE) data visualization, we adapted the 
dataset. We normalized all continuous and ordinal data, such as age and TNM 
stage to values between 0 and 1. We used one-hot-encoding for non-ordinal 
categorical data, including EGFR mutations and co-mutations. We performed 
Mean Imputation for missing values in normally distributed continuous data 
and binary data. We performed Median Imputation for missing non-normally 
distributed continuous data and categorical data. [25] T-SNE was created with 
Python 3.7, using scikit-learn and perplexity values of 4 and 12 to plot these t-
SNE figures. [26] The stage labels were excluded from the t-SNE data.  

2.4.7 Ethics 

This study was approved by the local medical ethical committee, registration 
number: MEC-2020-0732. Informed consent was not necessary and patient 
data were anonymized before processing.   

2.5 Results 

2.5.1 Case characteristics 
We included 486 new lung adenocarcinoma cases, 53 (11%) harbored an EGFR 
mutation and 129 (27%) harbored a KRAS mutation. Cases were spread 
unevenly across TNM stages, with fewer patients in stage 0 (in situ carcinoma) 
and II and more patients in stage I and IV (Table 1). 
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CASE 
CHARACTERISTICS 

ALL CASES 
(N = 486) 

EGFR-MUTATED  
(N = 53) 

KRAS-MUTATED  
(N = 129) 

STAGE 0 11 (2%) 3 (6%) 3 (2%) 
STAGE IA 114 (23%) 21 (40%) 31 (24%) 
STAGE IB 38 (8%) 4 (8%) 13 (10%) 
STAGE IIA 16 (3%) 2 (4%) 3 (2%) 
STAGE IIB 17 (3%) 0 5 (4%) 
STAGE IIIA 59 (12%) 3 (6%) 13 (10%) 
STAGE IIIB 25 (5%) 1 (2%) 7 (5%) 
STAGE IV 206 (42%) 19 (36%) 54 (42%) 
    
EARLY-STAGE (0-IIIA) 255 (52%) 33 (62%) 68 (53%) 
LATE-STAGE (IIIB-IV) 231 (48%) 20 (38%) 61 (47%) 

Table 1: Case overview per TNM stage (TNM 7th edition). 

2.5.2 Prevalence of EGFR mutations per TNM stage 

EGFR mutations were more prevalent in early-stage adenocarcinoma (13% of 
stage 0-IIIA patients harbored an EGFR mutation), compared to late-stage (9% 
of stage IIIB-IV patients harbored an EGFR mutation). The percentage of 
patients harboring EGFR mutations was especially high in stage 0 (27%) and 1A 
(18%), compared to the other stages (p = 0.03) (Figure 1). Of the 33 patients 
with early-stage EGFR-mutated NSCLC, 9 (27%) fit the ADAURA criteria (L858R 
mutation or exon 19 deletion, stage IB-IIIA). Since we included 130 stage IB-IIIA 
in our EMC cohort, the number of stage IB-IIIA cases needed to test in order to 
identify one patient eligible for adjuvant osimertinib following the ADAURA 
regimen, is 14.4.  

2.5.3 Characteristics of early versus late-stage EGFR-mutated adenocarcinoma 

We compared clinical, molecular and morphological parameters between the 
early-stage and the late-stage EGFR cases (Table 2), as well as between EGFR 
and KRAS cases (Figure 2). EGFR-mutated, early-stage cases harbored 
significantly more EGFR L858R mutations (45% vs 15%, p = 0.02), and were more 
likely to have a predominantly lepidic growth pattern (65% versus 0%, p = 
0.003) than the late-stage EGFR-mutated cases. Late-stage cases more often 
harbored EGFR exon 20 insertions (25% versus 6%, p = 0.048) and were 
enriched for TP53 co-mutations (65% versus 27%, p = 0.007). Within the TP53 
mutated cases, late-stage harbored more disruptive TP53 mutations than early-
stage cases (40% versus 0%, p < 0.001). The KRAS early- and late-stage cohorts 
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differed with regard to TP53 mutation prevalence (31% versus 52%, 
respectively, p = 0.02), with late-stage cases again harboring more disruptive 
TP53 mutations, though not significantly (15% versus 9%, p = 0.4).  

Figure 1: Mutation prevalence across stages. Prevalence of EGFR-mutated cases, 
KRAS-mutated cases and Other cases per TNM stage (TNM 7th edition). Blue: EGFR; 
Orange: KRAS; Green: other cases. KRAS is evenly distributed across stages, whereas 
EGFR prevalence differs across stages. 

Additionally, early- and late-stage EGFR-mutated cases differed significantly 
with regard to smoking history (p = 0.04). We did not identify differences in age, 
sex, and worst growth pattern between early- and late-stage disease. In 8 of 
the TP53 mutated cases p53 immunohistochemistry was performed: 7 showed 
strong nuclear expression for p53, whereas one had absent nuclear 
expression.  

Prior to diagnosis, 9 patients (27% of all early-stage EGFR-mutated cases) were 
monitored with computed tomography (CT) scans for a ‘ground glass’ lesion or 
pulmonary node, for an average time period of 3.1 years (range 1-7 years). Of 
these cases, 4 harbored a L858R mutation, 4 an exon 19 deletion, and one an 
exon 20 insertion. 4 cases harbored a non-disruptive TP53 mutation. 7 had a 
predominantly lepidic growth pattern, and the remaining 2 cases had acinar 
growth patterns. Two other patients were not monitored, but the tumor had in 
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retrospect been visible on previous imaging, 15 and 17 years prior to the 
diagnosis, respectively.  

From the 486 included cases, 129 were KRAS-mutated, including 68 early-stage 
and 61 late-stage cases. The characteristics for the KRAS cohort are outlined in 
Supplementary Table 2. The EGFR-mutated and KRAS-mutated cohorts differ 
with regard to smoking history and pre-diagnosis follow up, with more current 
smokers in the KRAS cohort (42% versus 11%, p<0.001), more never-smokers in 
the EGFR cohort (28% versus 2%, p<0.001) and more often pre-diagnosis 
follow-up in the EGFR cohort (17% versus 5%, p = 0.03). In contrast to the EGFR-
mutated cases, the KRAS-mutated cases were distributed more evenly across 
TNM stages (Figure 1). Also, EGFR early- and late-stage cases differed 
significantly with regard to mutation type, predominant growth pattern, and 
co-mutation prevalence, whereas this was not the case for the KRAS cohort.  

FEATURE 
N (%) 

EARLY-
STAGE 
EGFR 

(N = 33) 

LATE-
STAGE 
EGFR 

(N = 20) 

P-
VALUE 

EARLY-
STAGE 
KRAS  

(N = 68) 

LATE-
STAGE 
KRAS  

(N = 61) 

P-
VALUE 

EGFR L858R 15 (45%) 3 (15%) 0.02a N/A N/A N/A 
EGFR EXON 20 
INS 

2 (6%) 5 (25%) 0.048a N/A N/A N/A 

EGFR EXON 19 
DEL 

13 (39%) 9 (45%) 0.7 N/A N/A N/A 

OTHER EGFR 3* (9%) 3● (15%) 0.5a    
TP53  9 (27%) 13 (65%) 0.007a 21 (31%) 32 (52%) 0.02a 

TP53 
DISRUPTIVE  

0 8 (40%) <0.001a 6 (9%) 9 (15%) 0.4a 

       
MOST 
PREVALENT 
GROWTH 
PATTERN 

    0.003b   0.6b 

LEPIDIC 20 (65%) 0 (0%)  22 (38%) 6 (33%)  
ACINAR OR 
PAPILLARY 

9 (29%) 3 (15%)  31 (53%) 9 (50%)  

SOLID OR 
MICROPAPILL
ARY 

2 (6%) 3 (15%)  5 (9%) 3 (17%)  

NOT SCORED 2 (6%) 14 (70%)     
       
SMOKING 
STATUS 

  <0.001b   0.4b 
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NEVER 
SMOKER 

21 (64%) 1 (5%)  2 (3%) 0  

FORMER 
SMOKER 

10 (30%) 15 (75%)  34 (56%) 27 (48%)  

CURRENT 
SMOKER 

2 (6%) 4 (20%)  25 (41%) 29 (52%)  

UNKNOWN 0 0  7 (10%) 5 (8%)  
       
PRIOR TO 
DIAGNOSIS 

  0.02a   0.7a 

PRIOR 
FOLLOW-UP 

9 (27%) 0   5 (7%) 1 (2%)  

NO PRIOR 
FOLLOW-UP 

24 (73%) 19 (95%)  52 (76%) 26 (43%)  

UNKNOWN 0 1 (5%)  11 (16%) 34 (56%)  
Table 2: Significant differences between early-stage EGFR-mutated lung 
adenocarcinomas (n = 33) and late-stage EGFR-mutated lung adenocarcinomas (n 
= 20). Co-mutations were assessed only in cases with complete coverage of the 
panel, as described in the Methods. Predominant growth pattern was not available 
for cytology and metastasis specimens. P-values were calculated with (a) Fisher’s 
Exact test or (b) Chi-squared test. For categories ‘Smoking status’ and ‘Prior to 
diagnosis’, missing data was omitted from percentage calculations and statistic 
testing. * ‘Other’ EGFR mutations included p.G779F, p.G719A and p.L861R. ● ‘Other’ 
EGFR mutations included p.G719A, concomitant p.G719S and p.S768I, and p.V774L.  

2.5.4 Recurrence free survival (RFS) 

Within the early-stage EGFR cases (n = 33), 3 patients (9%) had presented with 
disease recurrence after 7, 48 and 60 months respectively, 12 patients (36%) 
were recurrence-free for at least 2 years after resection, and 18 (55%) patients 
had a follow-up duration of less than 2 years. Type of EGFR mutation, presence 
of TP53 mutations and clinical characteristics for the recurrence-free, 
recurrence and late-stage cases are summarized in Supplementary Figure 1. 
This illustrates that most late-stage cases harbor similar clinicopathological 
features (EGFR exon 20 insertions, presence of (TP53) co-mutations, growth 
pattern, previous or current tobacco smoke exposure), which can also partly 
be identified in the early-stage cases with recurrence although in a limited 
number of cases, and in some recurrence-free cases. With regard to the 
growth patterns, the recurrence-free cases were predominantly characterized 
by a lepidic growth pattern (67%), followed by an acinar growth pattern (10%). 
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Growth patterns differed in the 3 cases with recurrence: one case had a 
predominantly solid, one predominantly acinar and one predominantly lepidic 
growth pattern. The patient with the solid growth pattern had a RFS of 7 
months, versus 48 months in the patient with predominantly acinar growth 
pattern and 60 months in the patient with the lepidic growth pattern.  

 

Figure 2: Unsupervised clustering of EGFR- and KRAS-mutated cases. Unsupervised 
clustering, using t-distributed stochastic neighbor embedding (t-SNE). A: t-SNE of 
EGFR-mutated lung adenocarcinoma features, perplexity value 4. B: t-SNE of KRAS-
mutated lung adenocarcinoma features, perplexity value 12. Blue dots: early-stage 
(0-IIIA, TNM 7th edition); yellow dots: late-stage (IIIB-IV). Features used for this t-SNE 
include: smoking history, symptoms, prior follow-up, T-stage, sex, age, growth 
pattern, EGFR mutations, KRAS mutations and co-mutations.  

To illustrate these different growth patterns, figure 3A depicts the 
aforementioned case with a solid growth pattern and disease recurrence after 
7 months. This 64-year-old woman was referred to the pulmonologist with an 



44 

 

asymptomatic pulmonary nodule, discovered via a coincidental finding. She 
was a former smoker and had accumulated 22 pack years. A lung biopsy was 
taken (Figure 3A), and the patient was diagnosed with a lung adenocarcinoma 
with 100% solid growth pattern. Staging showed that the tumor is stage 
cT2aN0M0, and the patient is eligible for surgical resection. In the resection 
specimen, the tumor had infiltrated the visceral pleura (pT2aN0M0PL1) and 
harbored an EGFR L858R mutation. After 7 months, she was diagnosed with 
bone metastases, and treated with EGFR TKIs.  

Figure 3: Case descriptions. A: Case 1 biopsy. First image: 4x, close-up: 40x. B: Case 
2 biopsy. First image: 4x, close-up: 40x. 

In contrast, figure 3B illustrates a case with a lepidic growth pattern in which 
no disease recurrence occurred. This 65-year-old woman was referred to the 
pulmonologist with a pulmonary lesion on CT-scan, discovered via a 
coincidental finding. She had smoked in the past, but had accumulated less 
than 10 pack years. On CT, a ‘ground glass’ lesion was identified, not suspicious 
for invasive malignancy. She was followed every 6 months with a CT-scan. After 
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2 years, the lesion had grown a few millimeters, and now had a small solid 
component. A lung biopsy (Figure 3B) revealed a 100% lepidic lung 
adenocarcinoma (IASLC grade 1). The patient was diagnosed with a cT1aN0M0 
lung adenocarcinoma. Next-generation sequencing revealed an exon 19 
deletion in EGFR, and no co-mutations. After surgical resection of the tumor, 
the patient is now recurrence free for 6 years.  

2.6 Discussion 

In this study, we investigated the prevalence of EGFR mutations across TNM 
stages in an unselected West-European cohort of 486 lung adenocarcinomas in 
which NGS reflex testing was performed.  We found that EGFR mutations are 
unevenly spread over TNM stages, with a prevalence of 13% in early-stage, and 
9% in late-stage. The latter is in line with previously reported prevalence rates 
of EGFR mutations in metastatic NSCLC in the Netherlands. [9, 11] 9 out of 130 
(7%) stage IB-IIIA cases met the ADAURA inclusion criteria (L858R or exon 19 
deletion), [15] which indicates that the number of stage IB-IIIA tumors needed 
to test in order to identify one patient eligible for adjuvant osimertinib is 14.4. 
Of note, we found that 36% of early-stage EGFR-mutated cases had current or 
previous tobacco smoke exposure. This highlights that selection for molecular 
analysis in the early-stage setting should also not be guided by clinical 
characteristics such as smoking history. These real-world data provide a 
rationale for routine testing of early-stage lung cancers for EGFR mutations in 
the West-European population.  

Additionally, we provided a descriptive analysis of the characteristics of EGFR-
mutated NSCLC over disease stages. We found that early-stage EGFR-mutated 
cases differ from late-stage cases with respect to clinical, genomic, and 
morphological characteristics. The late-stage group harbors more exon 20 
insertions and fewer L858R mutations, more TP53 mutations, more patients 
with previous or current tobacco smoke exposure, and more high-grade 
growth patterns. Although the KRAS-mutated late-stage cases also had a higher 
prevalence of TP53 mutations than the early-stage cases, the KRAS-mutated 
cohort seemed more homogeneous over tumor stages. This could imply that 
the differences between early- and late-stage disease in the EGFR-mutated 
cohort are EGFR-specific.  
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In our EGFR-mutated early-stage cases, three patients presented with disease 
recurrence after an average of 3.2 years. This is longer than the average time 
to recurrence in NSCLC, as in most post-surgical NSCLC cases occult 
metastases present within 2 years after surgery. [27, 28] In addition, we found 
that 27% of all early-stage EGFR-mutated cases had been monitored prior to 
diagnosis because of ‘ground glass’ lesions. Recent data showed a 5-year 
overall survival rate of 100% in patients with surgically resected clinical stage 
1A EGFR-mutated lung adenocarcinoma with ground glass opacity component 
[29]. In the KRAS cohort significantly less patients were followed up prior to 
diagnosis. This could suggest that some EGFR-mutated tumors are ‘slow 
growers’, and occult metastases – if present – are only identified after a long 
follow-up. Therefore, further studies with long survival data could aid in 
optimizing the timing of resection and surveillance strategies of resected EGFR-
mutated carcinomas.  

In all, these results suggest that EGFR-mutated lung adenocarcinoma is not one 
homogeneous disease, but rather that there are subgroups that could be 
defined by their different phenotypes. Although we have a limited sample size, 
it seems that some patients with (high) tobacco exposure, high grade growth 
pattern, EGFR exon 20 insertion and TP53 mutation often present at a higher 
TNM stage and often progress to a higher stage. On the other hand, patients 
who have never smoked, with common EGFR mutations without co-mutations 
and with a low-grade growth pattern are rare in the high TNM stage group and 
the metastasis group. We should further investigate whether these findings 
truly indicate a ‘high risk’ and ‘low risk’ subtype in larger case series, as this 
could potentially help clinicians and pathologists identify patients who are at a 
higher risk of recurrence after surgery than others. It can be hypothesized that 
‘high risk’ patients could derive more benefit from adjuvant TKI treatment than 
patients who were already at a low risk of recurrence, which could have 
implications for the prevention of over- and undertreatment.  

The main limitation of our study is the sample size. While we screened a 
substantial number of cases (n = 486), 53 cases harbored an EGFR mutation. 
This is a limited dataset, especially in subset analyses. Consequently, our 
comparison between, for example, early-stage recurrence and recurrence free 
disease only included a small number of patients. Therefore, it is possible that 
our analysis lacked the power to detect smaller differences. However, this did 
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not limit our primary objective of determining EGFR prevalence rates across 
TNM stages.  

In conclusion, the prevalence of EGFR mutations in early-stage lung 
adenocarcinoma in our West-European patient population is 13%, and the 
prevalence of ADAURA-eligible EGFR mutations in stage IB-IIIA is 7%, which 
constitutes a substantial yield when combining this number with the 
demonstrated benefit of adjuvant osimertinib. [15] However, we must 
emphasize that screening for EGFR mutations in early-stage lung 
adenocarcinoma is only a first step. Our data adds to a growing body of 
evidence that suggests that EGFR-mutated lung cancer, although seemingly one 
homogeneous group, actually consists of several genomic and clinical 
subgroups, in which we can potentially start to define low-risk and high-risk 
phenotypes that are correlated to clinical disease behavior. This underlines the 
intrinsic heterogeneity in NSCLC and the importance of comprehensive tumor 
characterization in clinical practice, as well as in future research. It would be of 
interest to investigate potential differences in outcomes between patients with 
low and high-risk phenotypes receiving adjuvant TKIs such as osimertinib, in 
order to guide future therapy decisions.   
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3.2 Abstract 

3.2.1 Background 

Frequently, patients with locally advanced or metastatic NSCLC are screened 
for mutations and fusions. In most laboratories, molecular workup includes a 
multitude of tests: immunohistochemistry (ALK, ROS1, and programmed 
death-ligand 1 testing), DNA sequencing, in situ hybridization for fusion, and 
amplification detection. With the fast-emerging new drugs targeting specific 
fusions and exon-skipping events, this procedure harbors a growing risk of 
tissue exhaustion. 

3.2.2 Materials and methods 

In this study, we evaluated the benefit of anchored, multiplexed, polymerase 
chain reaction-based targeted RNA sequencing (RNA next-generation 
sequencing (NGS)) in the identification of gene fusions and exon-skipping 
events in patients, in which no pathogenic driver mutation was found by DNA-
based targeted cancer hotspot NGS (DNA NGS). We analyzed a cohort of stage 
IV NSCLC cases from both in-house and referral hospitals, consisting 38.5% 
cytology samples and 61.5% microdissected histology samples, mostly core 
needle biopsies. We compared molecular findings in a parallel workup (DNA 
NGS and RNA NGS, cohort 1, n = 198) with a sequential workup (DNA NGS 
followed by RNA NGS in selected cases, cohort 2, n = 192). We hypothesized 
the sequential workup to be the more efficient procedure. 

3.2.3 Results 

In both cohorts, a maximum of one oncogenic driver mutation was found per 
case. This is in concordance with large, whole-genome databases and suggests 
that it is safe to omit RNA NGS when a clear oncogenic driver is identified in 
DNA NGS. In addition, this reduced the number of necessary RNA NGS to only 
53% of all cases. The tumors of never smokers, however, were enriched for 
fusions and exon-skipping events (32% versus 4% in former and current 
smokers, p = 0.00), and therefore benefited more often from the shorter 
median turnaround time of the parallel approach (15 d versus only 9 d in the 
parallel workup). 
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3.2.4 Conclusion 

We conclude that sequentially combining DNA NGS and RNA NGS is the most 
efficient strategy for mutation and fusion detection in smoking-associated 
NSCLC, whereas for never smokers we recommend a parallel approach. This 
approach was shown to be feasible on small tissue samples including for 
cytology tests, can drastically reduce the complexity and cost of molecular 
workup, and also provides flexibility in the constantly evolving landscape of 
actionable targets in NSCLC. 

3.3 Introduction 

The incidence of lung cancer worldwide is high, with over 2 million new cases 
diagnosed in 2018 [1]. Most patients present with advanced-stage, 
unresectable disease. The 5-year survival rate in metastatic disease is only 
4.7%, making lung cancer the number one cause of cancer deaths globally [1, 
2]. 

In current practice, all patients with locally advanced or metastatic NSCLC 
(nonsquamous type) should be tested for pathogenic driver mutations in EGFR 
[3, 4], BRAF [5-7], ERBB2 [8, 9], KRAS [10, 11] and MET (including exon 14 
skipping) [12-15]; amplifications in EGFR [16, 17], ERBB2 and MET [12]; fusions 
in RET [18-20], ALK [21-23], NTRK [24, 25] and ROS1 [26, 27]; as well as for 
programmed death-ligand 1 (PD-L1) expression [28-31]. This is especially 
important in NSCLC in nonsmokers, which as a group is a distinct molecular 
entity, harboring different driver mutations. [32] In the past few years, targeted 
therapy aimed at specific driver mutations has become possible with 
increasing frequency, making personalized medicine universally accepted and 
greatly improving prognosis in advanced metastatic disease [33-39].  

To facilitate the accompanying need for more extensive molecular diagnostics, 
there have been major and rapid advances in the field of DNA sequencing. In 
recent years, next-generation sequencing (NGS) has become a typically used 
method of molecular diagnostics in daily clinical practice of pathology. 
Although it is now possible to analyze tumor DNA and RNA on the basis of 
cytology, histology, and even plasma samples, the limited amount of tissue for 
NSCLC diagnostics remains a common problem for molecular pathologists and 
requires a molecular workup that covers all potential targets, including 
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mutations, fusions, and exon-skipping events, while using as little tissue as 
possible. 

Although many laboratories have switched to DNA NGS for mutation detection, 
oncogenic fusion detection is most often performed by fluorescence in situ 
hybridization (FISH) or reverse transcription polymerase chain reaction (PCR), 
and is limited to one fusion site per amplicon or probe. This method often fails 
to provide useful information regarding the fusion partner and the breakpoint; 
in FISH, it is not possible to identify the fusion partner, and in reverse 
transcription PCR, only known partners can be found. [40, 41]. The 
identification of fusion partners is becoming increasingly important because 
the partners can influence treatment choices and can be of prognostic 
importance. [42-45] 

Archer Anchored Multiplex PCR (Archer) technology (RNA NGS) was previously 
found to efficiently find genomic aberrations, including novel partners, in 
routine diagnostics for sarcoma [40] and experimentally in 
cholangiocarcinoma, glioblastoma and thyroid carcinoma. [41] In addition, it 
was noted that RNA NGS was able to identify both known and novel fusion 
partners for ALK [46], ROS1 [41, 47], RET [21, 41] and NTRK [26, 41] and to 
identify MET exon 14 skipping [48] in small groups of NSCLC samples.  

In a recent study by Benayed et al., [49 it was shown that additional Archer-
based RNA NGS is required to detect targetable kinase fusions and exon-
skipping events that are otherwise missed in their large hybrid capture DNA 
NGS panel (MSK-IMPACT). This study illustrates that even in large hybrid 
capture panels, not all fusions and exon-skipping events can be identified 
owing to the length of introns and blind spots within the targeted areas. 
Combining hybrid capture DNA NGS with RNA NGS seems the ideal method; 
however, this procedure is both expensive and probably not feasible in a real-
world case-mix of ca. 30% to 40% small histology or cytology samples. Indeed, 
in this study by Benayed et al., [49] only 47% of cases had available tissue left 
for RNA extraction, suggesting the need for improvement.  

In addition, implementing NGS panels in daily practice can be quite expensive. 
In large-scale, cost-effectiveness analyses, it has been reported that the mean 
total cost of targeted DNA-based NGS is estimated to be around €607 per 
patient. [50] For RNA-based NGS, large-scale cost-effectiveness analysis has not 
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been performed yet, and we estimated our own costs at €500 to €700 per 
patient. 

We herewith present the route to our current molecular workup of advanced- 
stage and metastatic NSCLC, combining DNA-based targeted PCR-based NGS 
(DNA NGS) with Archer-based RNA NGS for the detection of mutations and 
genetic translocations in routine diagnostics for advanced NSCLC. Our case-
mix includes both in-house cases and cases from referral centers with both 
cytology samples and microdissected histology cases, mostly small core needle 
biopsies or transbronchial biopsies. 

3.4 Materials and methods  

3.4.1 Patients and samples 

For this study, we included all NSCLC samples from March 2018 until January 
2019 (n = 390) for which a molecular NSCLC workup was performed before 
first-line treatment at the Leiden University Medical Center. Cases originated 
from both in-house and referred patients. Cases referred with a different 
diagnostic goal (e.g., clonality with a second tumor or osimertinib resistance) 
were excluded. Both histology and cytology specimens were included. 
Squamous cell carcinoma and large cell neuroendocrine carcinoma were not 
included. In some cases, the workup could not be completed owing to tissue 
exhaustion. These cases were not excluded from this study but analyzed 
separately. 

The parallel workup was executed from March 2018 to September 2018 (n = 
192). For these cases, we performed both DNA NGS and RNA NGS in addition 
to immunohistochemical staining for ALK, ROS1, and PD-L1. After this 6-month 
period, we switched from this parallel approach to a sequential approach, 
performing RNA NGS only when no pathogenic driver mutation in KRAS, BRAF, 
EGFR, or ERBB2 (including ERBB2 amplification) or MET exon 14 skipping were 
found in DNA NGS. The sequential approach was performed from September 
2018 until January 2019 (n = 198). These cohorts will be henceforth referred to 
as cohort 1 (parallel approach) and cohort 2 (sequential approach) (Figure 1). 
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Figure 1: Study design and NSCLC diagnostic workup. Cohort 1 (left): DNA next-
generation sequencing (NGS) and RNA NGS in parallel. Cohort 2 (right): DNA NGS 
and RNA NGS only when no pathogenic mutations are found in KRAS, EGFR, BRAF, 
and ERBB2 and no MET exon 14 skipping is found (including ERBB2 and EGFR 
amplification). In both cohorts, immunohistochemical staining for ROS1, ALK, and 
programmed death-ligand 1 (PD-L1) was performed before molecular analyses. 
Both cytology and histology samples were eligible. Nucleic acid was isolated from 
blocks by microdissection or punching or from slides. 

All samples were isolated from material that had been formalin-fixed, paraffin 
embedded (FFPE) and preserved. For hematoxylin and eosin and 
immunohistochemistry (IHC) staining, 1- to 10-μm thick slides were cut using a 
Leica RM2255 Automated Microtome. Staining for ALK fusion (clone D5F3, 
laboratory-developed test), ROS1 (clone D4D6, laboratory-developed test), and 
PD-L1 (clone22C3, laboratory-developed test) was performed using a Dako 
Omnis immunostainer and Dako EnVision Flex+. 

The smoking status was extracted from patient records. Patients who had 
never smoked or had ceased smoking more than 1 month earlier and had 
accumulated fewer than 5 pack-years were included in the never-smoker 
category. If they had smoked in the month before diagnosis, they were 
included in the current-smoker category. The patients with more than 5 pack-
years who had not smoked in the month before diagnosis were included in the 
former-smoker category. 

The turnaround time was measured in molecular diagnostics time in workdays 
(MD time), MD-to-sign time, and received-to-sign time. MD time is the time 
from the start of molecular analysis until all the results from all molecular 
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analyses are returned to the pathologist. The MD-to-sign time is the time from 
the start of molecular analysis until the final report (stating all molecular 
testing results) is completed and becomes available for the clinician. The 
received-to-sign time is the time from the receipt of the tissue by the pathology 
department until the final report is completed. 

3.4.2RNA/DNA isolation 

To isolate RNA and DNA for NGS, we collected tumor cells from FFPE blocks by 
microdissection in cases of core needle biopsies and cytology cell blocks, or by 
punching resection material. Five 10-μm slides were used for the isolation of 
total nucleic acids from a single extraction process using a tissue preparation 
system robot (Siemens), as described previously in the literature. [51] The 
same total nucleic acid sample was used for both the DNA and RNA NGS 
assays, and in most cases, was sufficient to execute the parallel and sequential 
workflows without additional isolation. When no tissue block was available or 
when the tissue block did not contain enough tumor cells, tumor cells were 
scraped off cytology or hematoxylin and eosin slides. After total nucleic acid 
isolation, the nucleic acid solution was stored in a freezer at –20°C for use in 
DNA NGS and subsequent RNA NGS. Material that was no longer needed for 
molecular diagnostic testing was stored at –70°C for future use.  

3.4.3 DNA NGS 

DNA NGS was performed with a customized Cancer Hotspot Panel, covering 
hotspots in 75 genes, including ABL1, AKT1, ALK, APC, ARAF, ATM, BRAF, 
CARD11, CD79A, CD79B, CDH1, CDK4, CDKN2A, CIC, CSF1R, CTNNB1, EGFR, 
EIF1AX, ERBB2, ERBB3, ERBB4, EZH2, FAK (PTK2), FBXW7, FGFR1, FGFR2, FGFR3, 
FLT3, FOXL2, GNA11, GNAQ, GNAS, H3F3A, H3F3B, HNF1A, HRAS, IDH1, IDH2, 
JAK2, JAK3, KDR, KIT, KRAS, MAP2K1, MAP2K2, MAP2K4, MAP3K1, MDM2, 
MED12, MET, MLH1, MPL, MUTYH, MYC, MYD88, NOTCH1, NPM1, NRAS, 
PDGFRA, PDGFRB, PIK3CA, POLE, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, 
SMO, SRC, STK11, TP53, and VHL. DNA NGS required 15 ng of input DNA per 
reaction. 

The unaligned bam files generated by the Ion Torrent sequencer were mapped 
against the human reference genome (GRCh37/hg19) using the TMAP 5.0.7 
software with default parameters (https://github.com/iontorrent/TS). 
Subsequently, variant calling was done using the Ion Torrent specific caller, 
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Torrent Variant Caller (TVC)-5.0.2, using the recommended Variant Caller 
Parameter for Cancer Hotspot Panel version 2. 

Variant interpretation was done using Genetic Assistant, which assigns 
functional prediction, conservation scores, and disease-associated information 
to each variant (http://softgenetics.com/GeneticistAssistant_2.php). Once a 
pathogenicity classification is assigned to a variant, the same pathogenicity is 
automatically attributed the next time the variant is observed. Integrative 
Genomics Viewer was used for visually inspecting variants. [52] 

Chromosomal gains and losses (copy number changes) were also assessed. In 
short, the median base coverage per amplicon was calculated. The amplicon 
coverage was then normalized using the median value of all amplicons in that 
sample. Low quality samples and samples with a high coverage variability were 
removed. Then, systematic differences among amplicons were normalized. 
Copy number gains and losses were identified using 99% confidence intervals 
calculated per gene. The algorithm does not require normal samples to be 
included; but to obtain reliable results, multiple tumor samples should be 
included for a more robust and accurate normalization, and to make a better 
estimation of the 99% confidence intervals per gene. In addition, the algorithm 
assumes that each amplicon or gene is gained or deleted in a minority of the 
samples. Copy number analysis, visualization of results, loss of heterozygosity, 
and chromosomal imbalances were done using the Next-Generation 
Sequencing Expert shiny app (https://git.lumc.nl/druano/NGSE) 

The detection of copy number variation by DNA NGS was validated by 
comparing the data from in situ hybridization and IHC (Figure 2). Sample-to-
data time is 5 to 7 days.   

3.4.4 RNA NGS 

RNA NGS was performed with the Archer Comprehensive Thyroid and Lung 
panel. This method is capable of detecting fusions with a novel or unknown 
fusion partner using gene-specific primers in conjunction with molecular 
barcoded adapters. The RNA NGS panel produces NGS libraries targeting ALK, 
AXL, BRAF, CCND1, EGFR, FGFR1, FGFR2, FGFR3, MET, NTRK1, NTRK2, NTRK3, 
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Figure 2: Copy number variation analysis for ERBB2 and MET amplification. (A) 
ERBB2 staining using immunohistochemistry; (B) ERBB2 silver-stained in situ 
hybridization; (C) enlargement of (B). (D) MET fluorescence in situ hybridization: 
green, centromere SE7 probe on chromosome 7; red, MET probe showing high MET 
amplification with >10 signals per cluster per cell; (E) DNA next-generation 
sequencing read count of chromosome 13 to 21, with ERBB2 amplification on 
chromosome 17 (upper panel: logarithmic scale, each dot representing the median 
read count per amplicon, lower panel: normalized read counts); (F) DNA next-
generation sequencing read count of chromosome five to eight, with MET 
amplification on chromosome 7 and MYC amplification on chromosome 8 (upper 
panel: logarithmic scale, each dot representing the median read count per 
amplicon, lower panel: normalized read counts). 

NRG1, PPARG, RAF1, RET, ROS1, and THADA, including detection of MET exon 
14 skipping events. In addition, the RNA NGS panel can detect mutations in 
ALK, AKT1, BRAF, CTNNB1, DDR2, EGFR, ERBB2, FGFR1, GNAS, HRAS, IDH1, 
IDH2, KRAS, MAP2K1, NRAS, NTRK1, PIK3CA, RET, and ROS1. Moreover, 
imbalances in ALK, NTRK1, NTRK2, NTRK3, RET, and ROS1 can be identified. 
RNA NGS required 20 ng to 200 ng nucleic acid per reaction. Both fresh frozen 
and FFPE tissue were used. The generated libraries were sequenced using an 
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Ion Torrent platform and the produced reads were analyzed using the 
Comprehensive Thyroid and Lung Target Region File and the vendor supplied 
software (Archer Analysis, version 5.1.7). The sample-to-data time was 5 days. 

3.4.5 Statistical Analysis 

Statistical analysis was performed using IBM SPSS Statistics software, version 
25. We defined pathogenic driver mutations as class 4 or 5 pathogenic 
mutations in KRAS, EGFR, BRAF, ERBB2; high amplifications in ERBB2 and EGFR; 
fusions in ALK, ROS1, RET, NTRK1, 2, and 3, and FGFR1, 2, and 3; MET exon 14 
skipping and BRAF exon skipping. Class 3 mutations of unknown pathogenicity 
were not taken into account. 

3.4.6 Ethics 

Informed consent was obtained from the patients in the two illustrative cases. 
The rest of the data were obtained from routine diagnostic reports and were 
anonymized before processing. 

3.5 Results 

3.5.1 Case characteristics 

Cases from March 2018 until January 2019 were included. From March 2018 
until September 2018, 192 cases were enrolled in cohort 1 and were evaluated 
with the parallel approach (Figure 1). From September 2018 until January 2019, 
198 cases were enrolled in cohort 2 and were evaluated with the sequential 
approach. Both groups had similar characteristics as outlined in Table 1.   

CHARACTERISTIC COHORT 1: PARALLEL 
APPROACH (N=192) 

COHORT 2: SEQUENTIAL 
APPROACH (N=198) 

P-VALUE 

PATIENT 
CHARACTERISTICS 

   

AGE 67.3 (43-86) 67.5 (31-90) 0.83 
FEMALE 82 (43%) 99 (50%) 0.16 
MALE 110 (57%) 99 (50%) 0.16 
SMOKING STATUS   0.49 
NEVER SMOKER 22 (11%) 24 (12%)  
FORMER SMOKER 73 (38%) 89 (45%)  
CURRENT SMOKER 80 (42%) 71 (36%)  
UNKNOWN 17 (9%) 14 (7%)  
TUMOR TYPE   0.46 
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ADENOCARCINOM
A 

174 (91%) 182 (92%)  

NSCLC NOS 14 (7%) 11 (6%)  
ADENOSQUAMOU
S 

4 (2%) 3 (2%)  

PLEIOMORPHIC 0 2 (1%)  
TISSUE ORIGIN   0.61 
PRIMARY TUMOR 63 (33%) 70 (35%)  
LYMPH NODE 59 (31%) 68 (34%)  
PLEURAL FLUID 22 (11%) 17 (9%)  
DISTANT 
METASTASIS 

48 (25%) 43 (22%)  

SAMPLE TYPE   0.68 
CYTOLOGY 76 (40%) 74 (37%)  
HISTOLOGY 116 (60%) 124 (63%)  
PDL1 STATUS   0.37 
NEGATIVE (<1%) 88 (46%) 83 (42%)  
LOW POSITIVITY (1-
49%) 

33 (17%) 43 (22%)  

HIGH POSITIVITY 
(50-100%) 

47 (25%) 52 (26%)  

INSUFFICIENT 
TISSUE AVAILABLE 

6 (3%) 9 (5%)  

UNKNOWN 
(PERFORMED 
ELSEWHERE) 

18 (9%) 11 (6%)  

Table 1: Case characteristics. In cohort 1, both DNA NGS and RNA NGS were 
performed on all specimens. In cohort 2, DNA NGS was performed on all 
specimens, and when no pathogenic driver mutation in KRAS, BRAF, EGFR, or 
ERBB2; MET exon 14 skipping; or amplification in EGFR and ERBB2 was found, RNA 
NGS was performed. P-value for age was calculated with an unpaired T test, all 
other p-values were calculated with Pearson chi-square test.  

3.5.2 DNA Next-Generation Sequencing 

DNA NGS identified mutations in oncogenes in 241 of the 375 successfully 
screened cases (64.3%), as also outlined in Table 2, including: KRAS (33.3%), 
EGFR (11.2% mutation and 2.9% amplification), ERBB2 (2.1% mutation and 1.1% 
amplification), BRAF (5.1%), PIK3CA (2.9%), NRAS (1.6%), MAP2K1 (1.1%), MET 
(0.8% mutation, 1.1% amplification, and 0.3% exon 14 skipping).  

Genomic aberrations were also found in tumor suppressor genes, for example, 
in TP53 (48.8%), STK11 (8.3%), CDKN2A (4.0% mutation and 5.6% homozygous 
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deletion), CTNNB1 (2.1%), PTEN (1.9%), and RB1 (1.1% mutation and 0.5% 
deletion). 

CHARACTERISTIC NEVER-SMOKERS 
(N = 46) 

FORMER AND CURRENT 
SMOKERS (N = 313) 

P-VALUE 

PATIENT 
CHARACTERISTICS 

   

FEMALE 26 (61%) 138 (44%) 0.04 
MALE 18 (39%) 175 (56%) 0.04 
AGE 67.9 (31-89) 67.5 (43-90) 0.81 
DNA NGS   0.01 
DRIVER IDENTIFIED 26 (59%) 175 (58%)  
TUMOR SUPPRESSOR 
OR COPY NUMBER 
VARIANCE ONLY 

7 (16%) 95 (32%)  

NO MUTATIONS 11 (35%) 32 (11%)  
RNA NGS   0.00 
FUSION/EXON 
SKIPPING 

10 (32%) 7 (4%)  

NO FUSIONS 21 (68%) 182 (96%)  
Table 2: different characteristics and outcomes for never-smokers compared to 
former and current smokers. DNA NGS was performed successfully in never-
smokers in 44 cases and in former and current smokers in 302 cases. RNA NGS was 
performed successfully in never-smokers in 31 cases and in former and current 
smokers in 270 cases. 

MET exon 14 skipping was detected by DNA NGS in only one case. The ability to 
detect MET exon 14 skipping in DNA NGS depends on the location of the splice-
inducing mutation at the splice acceptor site in intron 13 or the splice donor 
site at intron 14. DNA NGS using the applied cancer hotspot panel does not 
cover the complete splice region involved in MET exon 14 skipping, explaining 
the four additional cases of MET exon 14 skipping identified with RNA NGS. 

When comparing our data with The Cancer Genome Atlas (TCGA) [53] and 
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Targets 
(MSK-IMPACT) [36] datasets, we found that our data were mostly concordant 
with data from these databases. The observed differences were most likely 
because of the inclusion in TCGA of a more limited range of TNM stages and, 
therefore, include fewer tumor progression-related mutations. TCGA and MSK-
IMPACT included tumors from patients with more diverse international origins, 
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whereas we received cases from hospitals in only the western part of the 
Netherlands. In addition, we excluded EGFR tyrosine kinase inhibitor (TKI)-
resistant cases, but the MSK-IMPACT database included tumors harboring 
EGFR T790M mutations, resulting in MSK-IMPACT having a higher percentage 
of EGFR mutations than our dataset. In Figure 3, we provide a chart showing 
the most frequently seen and the most therapeutic relevant pathogenic 
mutations.  

 

Figure 3: Comparison of mutation prevalence in the dataset from The Cancer 
Genome Atlas-NSCLC adenocarcinoma, Memorial Sloan Kettering-Integrated 
Mutation Profiling of Actionable Targets, and Leiden University Medical Centre 
(both cohorts combined). Y axis: percentage of all cases, x axis: oncogenic somatic 
mutation.  

3.5.3 RNA Next-Generation Sequencing 

In the sequential approach, additional RNA NGS was necessary in 105 of 198 
cases without a mutagenic driver (53%), whereas it was performed in all 192 
cases in the parallel approach. 
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In both cohorts combined, RNA NGS was performed in 297 cases. Fusions were 
found in 19 cases, representing 6.4% of all RNA NGS cases and 4.9% of the 
total cohort. ALK fusions were detected in eight cases, of which EML4 was the 
most common fusion partner (n = 6). In one case, ALK was fused to STRN3, and 
in another case to RPTOR. In all EML4 and STRN3 fusion cases, the ALK 
breakpoint was at exon 20. In the RPTOR fusion case, the breakpoint was at 
ALK exon 10 and the fusion protein was out of frame, which also explains the 
ALK-negative IHC. Because there was no other pathogenic mutation, this fusion 
was reported, but it is not certain if this is an oncogenic driver. Therefore, the 
patient has not been treated with TKIs and response data are not available. 
KIF5B-RET fusion occurred in two cases, FGFR3 fusion occurred in two cases 
(with TACC3 and WHSC1), MET exon 14 skipping occurred in four additional 
cases (one case already identified with DNA NGS), and CD74-ROS1 fusion 
occurred in one case (Figure 4). 

Figure 4: Fusions and exon-skipping events found through RNA next-generation 
sequencing (NGS) for cohorts 1 and 2. The total number of fusions and MET splicing 
events identified was 19 (5% of the total cohort). (A) RNA NGS findings; (B) DNA NGS 
findings; (C) immunohistochemistry findings; (D) smoking status: green: never 
smoker; yellow: former smoker; red: current smoker; white with “?”: unknown. *: 
event found through DNA NGS. 
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Fusion-positive cases were mutually exclusive with pathogenic driver 
mutations in both cohorts, as shown in Figure 4. We did, however, find co-
occurrence of ALK fusions with CDKN2A and NOTCH1 deletions and MDM2 and 
CDK4 amplifications. MET exon 14 skipping co-occurred with CDKN2A 
deletions, and TP53, APC, and PTEN mutations, RET fusion with TP53 
mutations, and FGFR3 fusion coincided with TP53 and STK11 mutations. BRAF 
exon skipping coincided with non-V600 BRAF mutations and STK11 mutations. 
However, the non-V600 BRAF mutation was a very low frequency variant and 
was only observed in RNA NGS.  

3.5.4 Never smoking status 

In this study, 22 never smokers were included in the parallel cohort and 24 in 
the sequential cohort. These patients had significantly different characteristics 
(more often female, p = 0.04) and demonstrated a different outcome from DNA 
NGS and RNA NGS, compared with former and current smokers (n = 313), as 
outlined in Table 2. Smoking history was unknown in 31 cases, which were not 
included in Table 2.  

Although a driver mutation was identified by DNA NGS equally often in never 
smokers, the types of driver mutations compared with former and current 
smokers were more often EGFR (41% in never smokers versus 7% in former- 
and current smokers, p = 0.00) and less often KRAS (9% in never smokers 
versus 37% in former- and current smokers, p = 0.00). Furthermore, a fusion 
was more often in never smokers (32%) versus former and current smokers 
(4%) (p = 0.00) (Figure 5).  

In never smokers, DNA NGS failed and a new biopsy was recommended in two 
cases. In the cases in which DNA NGS was successful, an oncogenic driver was 
identified in 26 cases (59%). In the 18 cases (41%) in which no oncogenic driver 
was found in DNA NGS, an oncogenic fusion was found in 10 of 13 successfully 
analyzed cases (77%). RNA NGS failed in five cases, and a new biopsy was 
recommended. 

In some of the patients included in the never-smoking group, we registered 
smoking-associated mutations, for example four KRAS mutations. One patient 
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Figure 5: Mutations found in smokers (blue) versus never smokers (orange). The 
difference is significant for KRAS (p = 0.00), EGFR (p = 0.00), and ALK (p = 0.00). Only 
successful next-generation sequencing (NGS) analyses were taken into account. For 
smokers n = 375 for DNA NGS targets and n = 270 for RNA NGS targets; for never 
smokers n = 44 for DNA NGS targets and n = 31 for RNA NGS targets. 

with KRAS mutation had never smoked, but it was mentioned in the file that 
this patient had had frequent exposure to second-hand smoke. This might also 
have been the case in other patients with KRAS mutations; but this was not 
always registered extensively in their case file. 

3.5.5 Turnaround time 

In molecular diagnostics for NSCLC, time is an important factor and a possible 
disadvantage for the sequential approach. We have outlined the turnaround 
times in Table 3. The median MD time (time from the start of molecular 
diagnostics until the results are issued to the pathologist) was equal in both 
cohorts: both had 9 working days.  

COHORT CHARACTERISTIC MD TIME MD TO SIGN 
TIME 

RECEIVED TO 
SIGN TIME 
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OVERALL 
(N = 390) 

Mean (range) 
Median 

1906 (2-364) 
9 

21.1 (2-365) 
10 

33.6 (7-2285) 
13 

PARALLEL 
COHORT 
(N = 192) 

Mean (range) 
Median 

14.3 (5-364) 
9 

15.7 (6-365) 
10 

19.7 (7-365) 
13 

SEQUENTIAL 
COHORT (N = 
198) 

Mean (range) 
Median 

24.7 (2-182) 
9 

26.3 (2-186) 
10 

47 (7-2285) 
14 

SEQUENTIAL 
COHORT 
WITHOUT RNA 
NGS (N = 90) 

Mean (range) 
Median 

7.2 (2-20) 
7 

9.1 (2-59) 
8 

16.1 (7-277) 
9 

SEQUENTIAL 
COHORT WITH 
RNA NGS (N = 
108) 

Mean (range) 
Median 

39.3 (6-182) 
15 

40-6 (6-186) 
15 

72.8 (7-2285) 
21 

Table 3: turnaround time for each cohort. MD time: amount of workdays from the 
request for DNA NGS or RNA NGS by the pathologist until all the data from 
molecular diagnostics was available. MD to sign time: amount of workdays from 
the request for DNA NGS or RNA NGS by the pathologist until the final report is sent 
to the clinician. Received to sign time: amount of workdays from the arrival of the 
tissue at the Pathology department until the final report is sent to the clinician. 
Outliers in the third category are mostly due to late metastasis cases. Outliers in the 
first and second column are mostly due to late additional RNA NGS in the startup 
phase of this study. 

However, in cases in which additional RNA NGS was required after DNA NGS, 
the median turnaround time was longer than in the cases in which only DNA 
NGS was required: 15 working days versus 7 working days. 

The never smokers were especially affected. Twenty-four never smokers were 
enrolled in the sequential approach. In 15 cases, RNA NGS was required, and in 
five cases, a fusion was identified, whereas RNA NGS failed in two cases. This 
resulted in a delay in the time-to-driver detection in five of the 24 never 
smokers (21%), whereas in former- and current smokers, this was the case in 
only four of 82 cases (4.9%). 

3.5.6 Immunohistochemistry 

When performing IHC, we encountered seven samples that were positive for 
ALK, four cases positive for ROS1, and one case positive for both ALK and ROS1 
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(Figure 4). In all cases, we performed RNA NGS to identify the fusion partner 
and the breakpoint, as these data can provide valuable information regarding 
the prognosis and resistance to crizotinib. We also aimed to confirm the IHC 
findings. 

ROS1 was strongly positive in one case, in which a ROS1 fusion was found in 
RNA NGS (Figure 4). Four cases reported ambiguous ROS1 staining, without a 
fusion detected in RNA NGS. In eight cases that were positive for ALK on the 
basis of IHC, a fusion was found in RNA NGS in six cases. In the two false-
positive IHC results, the staining was weakly positive, whereas the staining was 
always strongly positive in the true-positive cases. 

In the sequential approach, when ALK or ROS1 IHC was positive, RNA NGS was 
immediately started instead of waiting for the results of DNA NGS. When ALK 
IHC was strongly positive, the clinician was informed, even before the DNA NGS 
or RNA NGS results were confirmed to start crizotinib therapy without delay. 

In one case, insufficient material was available for IHC, but an ALK fusion was 
found in RNA NGS performed on cytology slides. In another case, ALK was 
negative in IHC, and a RPTOR-ALK fusion was found in RNA NGS. However, in 
this fusion, the ALK breakpoint was in exon 10 instead of in exon 20 or 19, as is 
usually seen. This fusion resulted in an inactive protein and therefore did not 
lead to ALK overexpression that can be detected by ALK IHC. 

3.5.7 NGS challenges and the failure to complete molecular workups 

The overall dropout rate of DNA NGS was lower (4%, n = 13) than the overall 
dropout rate of RNA NGS (18%, n = 54). Of these cases, a driver alteration had 
already been identified by DNA NGS in 18 cases (33%). Of the remaining cases 
in which no DNA NGS data with driver mutation and no RNA NGS data could be 
generated (n = 44 [67%, or 11% of the total cohort]), nine cases were eligible 
for immunotherapy on the basis of PD-L1 expression. An additional biopsy was 
recommended owing to RNA NGS failure in 35 cases (9% of the total cohort) 
(Figure 6).  
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Figure 6: Drivers found in the sequential and parallel approaches. The workup was 
incomplete in 9% of all cases, and a new biopsy was recommended. 

3.5.8 Cytology 

Among all cytology samples (n = 150), DNA NGS did not generate reliable data 
in nine samples (6%) . RNA NGS could not be executed in 45 samples (30%), 
mainly because of the limited number of tumor cells that were available in the 
specimen. RNA NGS requires 20 ng to 200 ng of nucleic acid, whereas DNA 
NGS only requires 15 ng. 

3.5.9 Decalcification 

RNA NGS failed in 10 cases (45%) of the decalcified tissues, and six cases (27%) 
were likewise not suitable for DNA NGS. This was most likely caused by the 
destruction of nucleic acid by conditions encountered during the 
decalcification procedure. Fusions detected in small cytology samples were 
illustrated by the following cases: 

3.5.10.1 Case 1 

A 70-year-old man presented at the emergency room with cardiac tamponade 
and pleural effusion. Pericardiocentesis was performed and the drained fluid 
was analyzed by a pathologist. A thyroid transcription factor-1-positive 
adenocarcinoma was discovered in the pericardial fluid and in the pleural fluid. 
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The adenocarcinoma proved to be ALK- and ROS1-negative; the PD-L1 tumor 
proportion score was 70%. DNA NGS revealed two pathogenic mutations in 
TP53 and CDKN2A. Subsequent RNA NGS analysis revealed the presence of a 
MET exon 14 skipping event. The patient was treated with pembrolizumab, 
initially establishing a progression-free period; but after a few months the 
disease progressed, and the patient was included in the Drug Rediscovery 
Protocol trial (NCT02925234) to receive targeted MET exon 14 therapy. Full 
molecular workup was successfully performed on cytology samples with 
relatively low tumor cell percentage in this case (Figure 7). 

 

Figure 7: Case 1, a 70-year-old man presenting with stage IV NSCLC with positive 
pleural and pericardial effusions. (A) Hematoxylin and eosin staining of 
hemorrhagic pericardial fluid with tumor islets that was used for DNA next-
generation sequencing (NGS) and RNA NGS; (B, C) enlarged sections of (A); (D) RNA 
NGS readout showing the MET exon 14 splicing event. 
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3.5.10.2 Case 2 

 

Figure 8: Case 2, a 60-year-old man who had never smoked, presenting with 
multiple nodal, osseous, ocular and subcutaneous metastases of a thyroid 
transcription factor-1-positive NSCLC. (A) Giemsa staining of a lymph node 
puncture that was used for the molecular workup, including DNA next-generation 
sequencing (NGS) and RNA NGS; (B) enlargement of (A); (C) cellblock with 
hematoxylin and eosin staining of a lymph node puncture that was used for 
immunohistochemistry; (D) enlargement of (C); (E) RNA NGS readout revealing a 
KIF5B-RET fusion. 

A 60-year-old man presented with loss of vision in his right eye. An ocular 
tumor of unknown origin was discovered. In the workup, a thoracic computed 
tomography was performed. Multiple masses in both lungs, the mediastinum,  
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the kidneys, and subcutis were seen. The patient had never smoked and had 
no symptoms except mild intermittent back pain. An endobronchial 
ultrasound-guided lymph node puncture was conducted, and an examination 
by the pathologist revealed a thyroid transcription factor-1-positive 
adenocarcinoma. ALK and ROS1 were negative, and PD-L1 was positive in 5% 
to 10% of the tumor cells. DNA NGS revealed no class 4 or class 5 pathogenic 
mutations. Fusion analysis by RNA NGS revealed a KIF5B-RET fusion, with the 
RET breakpoint at exon 12 and the KIF5B breakpoint at exon 15. Initial 
chemotherapeutic and immunotherapeutic regimens did not lead to stable 
disease or therapeutic response, and the patient was included in the Dutch 
Drug Rediscovery Protocol trial (NCT02925234) for RET-targeted treatment. Full 
molecular workup was successfully performed on a mediastinal lymph node 
fine-needle aspiration (FNA) sample (Figure 8). 

3.6 Discussion 

Successful testing for the complex array of molecular targets in metastatic 
NSCLC demands careful molecular workup and judicious use of diagnostic IHC. 
For many laboratories, finding a way to navigate the many diagnostic options 
while not exhausting the tumor tissue of small biopsies or cytology samples 
remains a challenging task. To be “lean and mean” in molecular diagnostics 
and to become future-proof, laboratories will have to reduce their number of 
diagnostic steps in this extensive workup. 

In this study, we present our in-house molecular workup for NSCLC that uses 
both DNA NGS and RNA NGS combined with IHC. To optimize our procedure, 
we compared a cohort in which we performed parallel DNA NGS and RNA NGS 
to a cohort in which DNA NGS was followed by RNA NGS only when no driver 
mutations were detected by DNA NGS in KRAS, BRAF, EGFR, or ERBB2 
(including EGFR and ERBB2 amplification), or MET exon 14 skipping. Our results 
revealed that RNA NGS is a valuable addition to detect fusions for all relevant 
target sites (ALK, ROS, RET, MET exon 14 skipping, BRAF exon skipping, NTRK, 
and FGFR), especially in never smokers. We also observed that RNA NGS is able 
to identify known fusion partners (e.g., EML4-ALK or KIF5B-RET) and novel or 
unusual partners (e.g., RPTOR-ALK and TACC3-FGFR3). 

Additional RNA NGS changed treatment options in 5% of all cases and in 22% 
for never smokers. These data were in line with the recent study of Benayed et 
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al. [49] who reported that even in large panels such as MSK-IMPACT, additional 
RNA NGS is required to identify all fusions and exon-skipping events, especially 
in cases without a clear driver and with a low tumor mutational burden. Their 
study reported that in 39.4% of all cases in which the MSK-IMPACT could not 
identify a driver mutation, sufficient quality and quantity material was left for 
RNA NGS. 

In concordance with the TCGA data, all detected fusions were mutually 
exclusive with pathogenic driver mutations in EGFR, BRAF, KRAS, MET, and 
ERBB2, supporting the sequential approach, as presented in Figure 1. [53] This 
sequential approach reduced the number of RNA NGS analyses by 47.0%. 

The sequential approach had a median sample-to-data time of 9 days, which 
was the same as the parallel approach. However, in cases in which additional 
RNA NGS was required, the median turnaround time in the sequential 
approach was 15 days, versus 7 working days in cases in which this was not 
required. In our laboratory, the alternative of without RNA NGS—that is, DNA 
NGS with additional FISH and PCR analysis—would take approximately 8 days 
to 12 days. 

When we take into account the cost of the parallel versus the sequential 
approach, the parallel approach is approximately twice as expensive. DNA NGS 
costs are estimated at €607, and RNA NGS costs at €500 to €700. Omitting RNA 
NGS in patients with a clear oncogenic driver in DNA NGS is possible in 47% of 
all cases, which considerably reduces the average costs of the molecular 
workup in NSCLC. However, the longer turnaround time is an important 
disadvantage of the sequential approach. 

Moreover, in former and current smokers, the yield of additional RNA NGS is 
quite low: only seven fusions were found in 313 patients (2%); and because of 
the IHC screening for ALK, the turnaround time can be reduced in ALK-positive 
cases. This combination of low RNA NGS yield, high costs, and limited 
extension of the turnaround time justifies a sequential approach in former and 
current smokers. 

In never smokers, 10 of 46 patients (22%) of all patients harbor a fusion, which 
can only be detected by RNA NGS. In addition, smokers only represent 12% of 
all patients presenting with advanced metastatic NSCLC. The higher yield of 
RNA NGS in this small group of patients asks for a parallel approach, and 
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greater cost is not a sufficient argument to defer to a sequential approach in 
these patients. We, therefore, suggest a separate, parallel approach for never 
smokers, which is outlined in Figure 9. 

Figure 9: Proposed diagnostic process coming from data presented in this article. 
Left: never smokers; Right: former or current smokers. 

More importantly, the combined DNA NGS and RNA NGS workup presented in 
this study is feasible on small tissue samples and cytology specimens. This is 
essential for daily clinical practice because in most laboratories, approximately 
30% of NSCLC is diagnosed with cytology FNA samples. Our data found that the 
overall dropout rate was 4% in DNA NGS and 18% in RNA NGS. Cytology 
samples revealed slightly higher failure rates, with 6% in DNA NGS and 30% in 
RNA NGS, owing to the higher nucleic acid input required in RNA NGS (20 ng–
200 ng) versus DNA NGS (only 15 ng). Overall, in 9% of cases, no driver 
mutation was found in DNA NGS and insufficient material was left for RNA 
NGS. In these cases, an additional biopsy was advised. 

When comparing our method to large hybrid capture platforms, such as 
Foundation One, MSK-IMPACT, and MSK-Fusion, our dropout rate is low, 
especially when taking into account the fact that we made extensive use of 
cytology samples. [49, 50] The advantages of large panels such as Foundation 
One can only be harvested for cases with extensive amounts of tissue 
available. With Foundation One, only 60.9% of all samples of histologic 
confirmed NSCLC passed the preanalytical quality control check and were 
evaluable by the NGS assay. [49] 

It is important to mention that this workup performs optimally and is most 
tissue sparing when working with total nucleic acid (isolated in one procedure), 
so that tissues have to be cut only once. We isolated total nucleic acid in a 
single procedure using the tissue preparation system Siemens robot. Separate 
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isolation of DNA and RNA would require more tumor material, possibly 
resulting in a higher dropout percentage. 

As saving tissue is very important in the workup of advanced NSCLC, we should 
consider omitting ROS1 IHC. This is mainly owing to the fact that the false-
positive rate of ROS1 IHC is so high that therapy can never be started without 
confirmation by RNA NGS. Thus, the only benefit would be that when ROS1 IHC 
is positive, RNA NGS is started without delay and the ROS1 cases are diagnosed 
more rapidly. However, the disadvantages are considerable, as the number 
needed to screen is very high, and in all these cases, valuable tissue is wasted. 

A possible disadvantage of our method could be the lower sensitivity of DNA 
NGS for the detection of copy number variance. Detection of amplifications can 
be problematic especially in specimens with low tumor cell percentages. This 
was probably illustrated in the lower number of amplifications compared with 
TCGA and MSK-IMPACT data, as outlined in Figure 3. In some selected cases, 
for example, in the workup of post-EGFR-TKI resistance (which was not 
included in this study), additional ERBB2 or MET FISH might be necessary if no 
resistance mutations (T790M and C797S) or other resistance mechanisms are 
detected. 

We foresee an increasing need for RNA NGS in the postosimertinib resistance 
setting, as a wide variety of resistance mechanisms have been described, 
including fusions. [45] The ability to work with small sample sizes in this clinical 
setting is even more important, as the diagnostic workup for EGFR-TKI 
resistance mechanisms is often based on small core needle biopsies or FNA 
samples of growing metastatic sites. Our method, in which DNA NGS and RNA 
NGS are combined, could be an ideal and a practical choice for many 
laboratories dealing with this growing patient category. 

In the future, we might further narrow the number of cases in which additional 
RNA NGS will be required, because tumors harboring pathogenic mutations in 
oncogenic driver genes such as PIK3CA, HRAS, MAP2K1, MAP2K4, FGFR1, 
GNAS, or NRAS, do not co-occur with fusion genes or MET exon 14 skipping, as 
reported in this cohort and the recent article by Benayed et al. [49] However, 
because both fusions and these somatic driver mutations are quite rare, more 
experience with molecular diagnostics in NSCLC is needed before we can be 
certain about the mutual exclusiveness of these rare driver mutations. 
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In conclusion, we have described our optimization procedure for the molecular 
workup of advanced-stage NSCLC through a sequential approach for former 
and current smokers using IHC and DNA NGS followed by RNA NGS in a 
selected subset of cases without detectable activating mutations in KRAS, 
BRAF, EGFR, ERBB2, or MET exon 14 skipping. 

Switching to a sequential approach drastically reduced the number of 
unnecessary diagnostic steps and the accompanying costs, as additional RNA 
NGS was necessary in only 53% of all cases. In never smokers (12% of all 
patients), we support a parallel approach, because RNA NGS has a much 
higher yield. More importantly, our method is feasible and successful for small 
samples, including that of cytologic material, making it an ideal solution for 
laboratories that want to step away from the classical workup for NSCLC, which 
combines NGS with multiple FISH analyses, but that do not work with the large 
sample sizes necessary for large (and more expensive) hybrid capture panels 
or whole-genome sequencing. In summary, the method presented in this 
article may drastically reduce the complexity and number of diagnostic steps 
and can also provide flexibility in the constantly evolving landscape of 
actionable targets in NSCLC.  



78 

 

References 
1. Bray F, Ferlay J, Soerjomataram I, et al., Global cancer statistics 2018: GLOBOCAN 

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin. 68:394–424.  

2. Howlader N, Noone AM, Krapcho M, et al., SEER Cancer Statistics Review, 1975-
2016, National Cancer Institute. Bethesda, MD, 
https://seer.cancer.gov/csr/1975_2016/, based on November 2018 SEER data 
submission, posted to the SEER web site, April 2019. 

3. Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with 
clinical response to gefitinib therapy. Science, 2004. 304:1497-1500.  

4. Lynch, TJ, Bell DW, Sordella R, et al., Activating mutations in the epidermal growth 
factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. 
N Engl J Med, 2004. 350:2129-2139.  

5. Cardarella S, Ogino A, Nishino M, et al., Clinical, pathologic, and biologic features 
associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res, 
2013. 19:4532-4540.  

6. Planchard D, Kim TM, Mazieres J, et al. Dabrafenib in patients with BRAF(V600E)-
positive advancec non-small-cell lung cancer: a single-arm, multicentre, open-label, 
phase 2 trial. Lancet, 2016. 17:642-650.  

7. Hyman DM, Puzanov I, Subbiah V, et al., Vemurafenib in multiple nonmelanoma 
cancers with BRAF V600 mutations. N Engl J Med, 2015. 373:726-736.  

8. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase 
mutations in tumours. Nature, 2004. 431:525-526.  

9. Mazières J, Peters S, Lepage B, et al. Lung cancer that harbors an HER2 mutation: 
epidemiologic characteristics and therapeutic perspectives. J Clin Oncol, 2013. 
31:1997-2003.  

10. Skoulidis F, Byers LA, Diao L, et al., Co-occuring genomic alterations define major 
subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune 
profiles, and therapeutic vulnerabilities. Cancer Discov, 2015. 5:860-877.  

11. Skoulidis F, Goldberg ME, Greenawalt DM, et al., STK11/LKB1 Mutations and PD-1 
Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov, 2018. 
8:822-835.  

12. Awad MM, Oxnard GR, Jackman DM, et al., MET exon 14 mutations in non-small-
cell lung cancer are associated with advanced age and stage-dependent MET 
genomic amplification and c-MET overexpression. J Clin Oncol, 2016. 34:721-730.  

13. Frampton GM, Ali SM, Rosenzweig M, et al., Activation of MET via Diverse Exon 14 
Splicing Alterations Occurs in Multiple Tumor Types and Confers Clinical Sensitivity 
to MET Inhibitors. Cancer Discov, 2015. 5:850-859.  

14. Heist RS, Shim HS, Gingipally S, et al., MET Exon 14 Skipping in Non-Small Cell 
Lung Cancer. Oncologist, 2016. 21:481-486.  

15. Paik PK, Drilon A, Fan PD, et al. Response to MET inhibitors in patients with stage 
IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. 
Cancer Discov, 2015. 5:842-849.  

16. Hirsch FR, Varella-Garcia M, McCoy J, et al., Increased epidermal growth factor 
receptor gene copy number detected by fluorescence in situ hybridization 



79 

 

associates with increased sensitivity to gefitinib in patients with bronchioloalveolar 
carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol, 2005. 
23:6838-6845. 

17. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in 
non-small-cell lung carcinomas: correlation between gene copy number and protein 
expression and impact on prognosis. J Clin Oncol, 2003. 21:3798-3807.  

18. Gautschi O, Milla J, Filleron T, et al., Targeting RET in patients with RET-rearranged 
lung cancers: results from the global, multicenter RET registry. J Clin Oncol, 2017. 
35:1403-1410.  

19. Kohno T, Ichikawa H, Totoki Y, et al., KIF5B-RET fusions in lung adenocarcinoma. 
Nat Med, 2012. 18:375-377.  

20. Sabari JK, Offin MD, Wu SL, et al., RET-rearranged lung cancers: 
Immunophenotype and response to immunotherapy. J Clin Oncol, 2018. 36:9034-
9034.  

21. Kwak EL, Bang YJ, Camidge DR, et al., Anaplastic lymphoma kinase inhibition in 
non-small-cell lung cancer. N Engl J Med, 2010. 363:1693-1703.  

22. Shaw AT, Kim DW, Nakagawa K, et al., Crizotinib versus chemotherapy in 
advanced ALK-positive lung cancer. N Engl J Med, 2013. 368:2385-2394.  

23. Soda M, Choi YL, Enomoto M, et al., Identification of the transforming EML4-ALK 
fusion gene in non-small-cell lung cancer. Nature, 2007. 448:561-566.  

24. Hyman DM, Laetsch TW, Kummar S, et al., The efficacy of larotrectinib (LOXO-
101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric 
TRK fusion cancers. J Clin Oncol, 2017. 35.  

25. Farago AF, Taylor MS, Doebele RC, et al., Clinicopathologic Features of Non-Small-
Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol, 2018.  

26. Bergethon K, Shaw AT, Ou SH, et al., ROS1 rearrangements define a unique 
molecular class of lung cancers. J Clin Oncol, 2012. 30:863-870.  

27. Shaw AT, Ou SH, Bang YJ, et al., Crizotinib in ROS1-rearranged non-small-cell lung 
cancer. N Engl J Med, 2014. 371:1963-1971.  

28. Garon EB, Rizvi NA, Rui R, et al., Pembrolizumab for the treatment of non-small-
cell lung cancer. N Engl J Med, 2015. 372:2018-2028.  

29. Reck M, Rodríguez-Abreu D, Robinson AG, et al., Pembrolizumab versus 
chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med, 2016. 
375:1823-1833.  

30. Borghaei H, Paz-Ares L, Horn L, et al., Nivolumab versus docetaxel in advanced 
nonsquamous non-small-cell lung cancer. N Engl J Med, 2015. 373:1627-1639.  

31. Brahmer J, Reckamp KL, Baas P, et al., Nivolumab versus docetaxel in advanced 
squamous-cell non-small-cell lung cancer. N Engl J Med, 2015. 373:123-135.  

32.  Smolle E and Pichler M. Non-smoking assiciated lung cancer: A distinct Entity in 
Terms of Tumor Biology, Patient Characteristics and Impact of Hereditary Cancer 
Predisposition. Cancers (Basel), 2019. 11(2).   

33. National Comprehensive Cancer Network, [Internet], NCCN Guidelines Version 
3.2019 Non-Small Cell Lung Cancer. 2019. [cited on 1 March 2019]. Available 
from:  https://www.nccn.org/professionals/physician_gls/default.aspx  

34. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-
small cell lung cancer. Nature, 2018. 553:446-454.  



80 

 

35. Sabari JK, Santini F, Bergagnini I. Changing the therapeutic landscape in non-small 
cell lung cancers: the evolution of comprehensive molecular profiling improves 
access to therapy. Curr Oncol Rep, 2017. 19:24.  

36. Jordan EJ, Kim HR, Arcilla ME, et al., Prospective comprehensive molecular 
characterization of lung adenocarcinomas for efficient patient matching to 
approved and emerging therapies. Cancer Discov, 2017. 7:596-609.  

37. Barlesi F, Mazieres J, Merlio JP, et al., Routine molecular profiling of patients with 
advanced non-small-cell lung cancer: results of a 1-year nationwide programme of 
the French Cooperative Thoracic Intergroup (IFCT). Lancet, 2016. 387:1415-1426.  

38. Sholl LM. Molecular diagnostics of lung cancer in the clinic. Transl Lung Cancer 
Res, 2017. 6:560-569.  

39. Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi-Institutional Oncogenic Driver 
Mutation Analysis in Lung Adenocarcinoma: The Lung Cancer Mutation Consortium 
Experience. J Thoracic Oncol, 2015. 10:768-777.  

40. Lam SW, Cleton-Jansen AM, Cleven AHG, et al., Molecular analysis of gene fusions 
in bone and soft tissue tumors by Anchored Multiplex PCR-based targeted next-
generation sequencing. J Mol Diagn, 2018. 20:653-663.  

41. Zheng Z, Liebers M, Zhelyazkova B, et al., Anchored multiplex PCR for targeted 
next-generation sequencing. Nat Med, 2014. 20:1479-1484.  

42. McLeer-Florin A, Duruisseaux M, Pinsolle J, et al., ALK fusion variants detection by 
targeted RNA-next generation sequencing and clinical responses to crizotinib in 
ALK-positive non-small cell lung cancer. Lung Cancer, 2018. 116:15-24.  

43. Yoh K, Seto T, Satouchi M, et al., Vandetanib in patients with previously treated 
RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, 
multicentre phase 2 trial. Lancet Respir Med, 2017. 5: p. 42-50.  

44. Drilon A, Fu S, Patel MR, et al., A Phase I/Ib Trial of the VEGFR-Sparing Multikinase 
RET Inhibitor RXDX-105. Cancer Discov, 2018.9:384-395.  

45. Oxnard GR, Hu Y, Mileham KF, et al., Assessment of Resistance Mechanisms and 
Clinical Implications in Patients With EGFR T790M-Positive Lung Cancer and 
Acquired Resistance to Osimertinib. JAMA Oncology, 2018. 4:1527-1534.  

46. Vendrell JA, Taviaux S, Béganton B, et al., Detection of known and novel ALK 
fusion transcripts in lung cancer patients using next-generation sequencing 
approaches. Sci Rep, 2017. 7:12510.  

47. Davies KD, Le AT, Sheren J, et al., Comparison of Molecular Testing Modalities for 
Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples. J 
Thorac Oncol, 2018. 13:1474-1482.  

48. Tafe LJ, de Abreu FB, Peterson JD, et al., MET Exon 14 Skipping Mutation in Non-
Small Cell Lung Cancer Identified by Anchored Multiplex PCR and Next-Generation 
Sequencing. J Cancer Epidemiol Prev, 2016, 1:1.  

49. Benayed R, Offin M, Mullaney K, et al., High yield of RNA sequencing for targetable 
kinase fusions in lung adenocarcinomas with no driver alteration detected by DNA 
sequencing and low tumor mutational burden. Clin Can Res, 2019. 25(15):4712-
4722.  

50. Marino P, Touzani R, Perrier L, et al., Cost of cancer diagnosis using next-
generation sequencing targeted gene panels in routine practice: a nationwide 
French study. Eur J Hum Genet, 2018. 26(3):314-323.  



81 

 

51. van Eijk R, Stevens L, Morreau H, et al., Assessment of a fully automated high-
throughput DNA extraction method from formalin-fixed, paraffin-embedded tissue 
for KRAS, and BRAF somatic mutation analysis. Exp Mol Pathol, 2013. 94:121-125.  

52.  Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): 
high-performance genomics data visualization and exploration. Briefings in 
bioinformatics, 2013. 14(2): 178-192.  

53.  Cancer Genome Atlas Research Network, Comprehensive molecular profiling of 
lung adenocarcinoma. Nature, 2014. 511:543-550.  



82 

 

  



83 

 

  CHAPTER 4 

 

PD-L1 ALGORITHM 



84 

 

Chapter 4: PD-L1 algorithm  

4.1 Title page 

Title: Development and validation of a supervised deep learning algorithm for 
automated whole-slide programmed death-ligand 1 tumour proportion score 
assessment in non-small cell lung cancer 

Short running title: PD-L1 algorithm for NSCLC 

Published: Histopathology, 2022. DOI: 10.1111/his.14571  

 

4.1.1 Authors  

LM Hondelink1, M Hüyük1, PE Postmus1, VTHBM Smit1, S Blom2, JH von der 
Thüsen3, D Cohen1 

 

4.1.2 Affiliations 

1. Department of Pathology and Department of Pulmonology, Leiden 
University Medical Centre, Leiden The Netherlands 

2. Aiforia Technologies Oy, Helsinki, Finland 
3. Department of Pathology, Erasmus Medical Centre, Rotterdam, The 

Netherlands 

 

4.1.4 Acknowledgements 

This study was enrolled in the aiForward project, so the aiForia create software 
was made available free of charge. 

 

4.1.5 Funding and disclosure  

S. Blom is an employee of Aiforia Technologies. 



85 

 

4.2 Abstract 

4.2.1 Aims 

Immunohistochemical programmed death-ligand 1 (PD-L1) staining to predict 
responsiveness to immunotherapy in patients with advanced non-small cell 
lung cancer (NSCLC) has several drawbacks: a robust gold standard is lacking, 
and there is substantial interobserver and intraobserver variance, with up to 
20% discordance around cutoff points. The aim of this study was to develop a 
new deep learning-based PD-L1 tumour proportion score (TPS) algorithm, 
trained and validated on a routine diagnostic dataset of digitised PD-L1 (22C3, 
laboratory-developed test)-stained samples.  

4.2.2 Methods and results 

We designed a fully supervised deep learning algorithm for whole-slide PD-L1 
assessment, consisting of four sequential convolutional neural networks 
(CNNs), using aiforia create software. We included 199 whole slide images 
(WSIs) of ‘routine diagnostic’ histology samples from stage IV NSCLC patients, 
and trained the algorithm by using a training set of 60 representative cases. 
We validated the algorithm by comparing the algorithm TPS with the reference 
score in a held-out validation set. The algorithm had similar concordance with 
the reference score (79%) as the pathologists had with one another (75%). The 
intraclass coefficient was 0.96 and Cohen’s κ coefficient was 0.69 for the 
algorithm. Around the 1% and 50% cutoff points, concordance was also similar 
between pathologists and the algorithm. 

4.2.3 Conclusions 

We designed a new, deep learning-based PD-L1 TPS algorithm that is similarly 
able to assess PD-L1 expression in daily routine diagnostic cases as 
pathologists. Successful validation on routine diagnostic WSIs and detailed 
visual feedback show that this algorithm meets the requirements for 
functioning as a ‘scoring assistant’. 

4.3 Introduction 

The 5-year survival rate of patients with stage IV non-small cell lung cancer 
(NSCLC) is poor, and this, combined with 2 million new patients annually, 
makes lung cancer the leading cause of cancer deaths in the world.[1,2] 
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Immune checkpoint therapy (immunotherapy) targeting the programmed cell 
death protein 1/programmed death-ligand 1 (PD-L1) pathway [3] has greatly 
improved survival for NSCLC patients. [4-6] However, response varies greatly 
between NSCLC patients. Therefore, immunohistochemical PD-L1 expression is 
currently used as a biomarker to select patients for immunotherapy. 

Pathologists measure PD-L1 expression by estimating the percentage of 
tumour cells with membranous PD-L1 positivity (the tumour proportion score 
(TPS); see also Formula 1 in Doc. S1). [7,8] The TPS is a continuous score 
between 0% and 100%, and patients are further divided into three classes, i.e. 
TPS of <1%, TPS of 1–49%, and TPS of >50%, as outlined in Figure 1. [5] These 
classes have different treatment options, provided that no targetable mutation 
(EGFR) or fusion (ALK; ROS1) is detected. [9] 

Figure 1: Categories of programmed death-ligand 1 (PD-L1) expression, measured 
as the tumour proportion score (TPS) (Formula 1 in Doc. S1). Blue staining: 
haematoxylin. Brown staining: PD-L1. A, TPS of 50–100%. B, TPS of 1–49%. C, TPS of 
<1%. 

Unfortunately, this PD-L1 expression scoring system has been proven to be 
imperfect. The study by Cooper et al. showed that problematic interobserver 
and intraobserver discordance exists, with disagreement between pathologists 
in 15.8% of cases around the 1% cutoff point (κ coefficient: 0.68) and 
disagreement between pathologists in 18.1% of cases around the 50% cutoff 
point (κ coefficient: 0.58). This study points out that individual pathologists 
change their assessment in 8–10% of cases and that 1 h of training does not 
help in improving concordance. [10] These data suggest that patients receive 
suboptimal treatment due to misclassification, possibly making them suffer 
from unnecessary side-effects [11, 12] or purposelessly increasing the already 
substantial costs of advanced NSCLC treatment. PD-L1 TPS assessment could 
therefore benefit from computational analysis, which eradicates intraobserver 
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variance and has the potential to eliminate some of the human factors that 
lead to the high rate of interobserver discordance. 

Three computational PD-L1 TPS scoring methods have been proposed in the 
literature so far, [13] all of which produce high rates of concordance with the 
reference scores and therefore constitute a relevant proof of concept that 
computer-aided PD-L1 scoring is possible. However, the proposed algorithms 
all have similar limitations hampering their performance (and therefore their 
implementation in clinical practice) beyond the research domain. The 
limitations include: the use of tissue microarrays (TMAs) [making them not 
applicable to whole slide images (WSIs) with benign tissue backgrounds], the 
use of trial material instead of clinical material (resulting in only easy-to-score 
material being present in the validation set), a limited number of observers for 
the ground truth score, a lack of precise predictions (undermining the 
algorithm’s explainability for clinicians), requiring manual annotations for each 
scoring area (resulting in a very labour-intensive process and potential 
sampling error), and being thresholding-dependent (making them not 
transferable to a clinical setting, in which staining intensity varies over time). 
For all of these algorithms, the question is whether they are reliable in a clinical 
setting. Detailed descriptions of the different study setups and potential 
limitations are included in Table S1. [14-16] 

4.4 Materials and methods 

To summarise, the perfect PD-L1 algorithm does not yet exist. A good, 
practically usable PD-L1 algorithm should be trained and validated on WSIs 
that originate from routine diagnostics. In order to correctly assess the PD-L1 
TPS within the wide variety of tissue contexts from which NSCLC (stage IV) 
biopsies originate (benign bronchial epithelium, lymph nodes, adrenal gland, 
bone and cartilage, skin, liver, kidney, etc.), and also to correctly neglect 
positive immune cells such as macrophages, a deep learning-based approach 
is required. Additionally, because of the high interobserver variance in PD-L1 
scoring that the algorithm is intended to overcome, the reference scores 
should be acquired from multiple observers rather than just one. Finally, the 
algorithm should provide visual feedback at a microscopic level, in order to 
make algorithm scores interpretable for pathologists and pulmonologists. 
These criteria are outlined in Table 1. In this article, we therefore present the 
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first fully supervised deep learning PD-L1 TPS algorithm, based on a cohort 
from routine diagnostics with robust reference scores generated by three 
experienced thoracic pathologists. 

STUDY SETUP 
FEATURE 

CRITERION FOR APPLICABILITY TO CLINICAL 
DIAGNOSTICS 

CASE SELECTION Routine diagnostic cases, including ‘difficult’ features, e.g. 
metastasis tissue background or artefacts 

GROUND TRUTH As robust as possible: multiple expert observers or 
response data 

VALIDATION Validation at the whole slide level 
ALGORITHM 
FEEDBACK 

Easily interpretable, detailed visual feedback 

Table 1: Criteria for algorithm applicability to clinical diagnostics 

4.4.1 Case selection 

One hundred and ninety-nine consecutive NSCLC specimens from routine 
diagnostics at the Leiden University Medical Centre, for which PD-L1 staining 
had been performed for routine diagnostics and the TPS was registered in the 
pathology report, were included. Cases were excluded if the patient (at the 
time of the biopsy) did not give permission for the use of leftover tissue for 
research purposes, if a small-cell or neuroendocrine morphology was 
described, or if the biopsy contained <100 tumour cells. 

The samples originated from both in-house and referral cases. Three cytology 
cases with large tumour islands resembling histology specimens were 
included; all other cytology cases (including all endobronchial ultrasound-
guided transbronchial needle aspiration specimens) were excluded. Patients 
with a second primary NSCLC on which PD-L1 staining had also been 
performed were included twice (both tumours once). Both metastasis biopsies 
and primary tumours were included. All samples were irreversibly anonymised 
after inclusion, by use of a unique four-digit random number.  

4.4.2 PD-L1 staining methods 

Slides were stained for routine diagnostics, over a period of several years. 
Formalin-fixed paraffin-embedded blocks were cut into 3-µm sections with a 
Leica RM2255 Automated Microtome (Leica Biosystems B.V., Amsterdam, the 
Netherlands). Sections were placed on microscope slides and dried at either 
60°C for 30 min to 16 h, or at 37°C for 72 h. After being dried, the slides were 
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deparaffinised, and antigen retrieval was performed in citrate buffer (Target 
Retrieval Solution, pH 6) for 40 min. Immunohistochemistry (IHC) was 
performed according to a laboratory-developed test protocol. Slides were 
stained with the Dako Omnis immunostainer and Dako EnVision Flex+ reagents 
and 1:20 dilution of PD-L1 clone 22C3 (Dako Omnis, Dako Agilent Technologies, 
Leuven, Belgium). The IHC slides were then counterstained with haematoxylin, 
and coverslips were applied. Tonsil and placental tissue were used as positive 
controls for PD-L1 expression. 

4.4.3 Scoring 

All of the 199 included samples were independently scored (TPS; Doc. S1, 
Formula 1) by three trained pulmonary pathologists (D.C., J.T., and V.S.). The 
pathologists were blinded to each other’s scores. The continuous TPS was 
divided into three categories (<1%, 1–49%, and 50–100%) for part of the 
analyses. The level of concordance between the pathologists was calculated by 
making 597 pairwise comparisons from the 199 scored cases. If the paired 
pathologists scored in the same category (<1%, 1–49%, and 50–100%), the case 
was considered to be ‘concordant’. For comparison with algorithm 
performance, we calculated the mean of the three pathologists’ continuous 
TPSs and used that as the reference score for the algorithm (Formula 2 in 
Doc. S1). 

4.4.4 Scanning 

We anonymised glass slides before scanning, by generating random barcodes 
for each slide. Digital WSIs were acquired with Nanozoomer 2.0-HT 
(Hamamatsu Photonics, Hamamatsu City, Japan) scanners at a resolution of 
0.23 µm/pixel. The WSI metadata did not contain any personal data. WSIs were 
uploaded to the Aiforia Hub platform (Aiforia Technologies, Helsinki, Finland) 
as .ndpi files without additional processing. 

4.4.5 Training and validation set  

A training set of 60 samples was selected from the 199 included cases. In the 
training set, there was variance in tumour type, biopsy site, tissue size (tumour 
resection or small core needle biopsy), and the TPS. We included extra lymph 
node biopsies and squamous cell carcinomas in the training set, because only 
a handful of these cases were included in the training set when we selected 
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randomly. All remaining samples were included in the validation set, which 
resulted in a held-out validation set of 139 cases. 

4.4.6 Algorithm setup 

The algorithm consists of four separate convolutional neural networks (CNNs) 
(Figure 2) and is programmed in C++. The first three CNNs are binary semantic 
segmentation models. The first CNN segments high-quality tissue versus 
background or low-quality tissue. The class ‘low-quality tissue’ includes white 
background, out-of-focus tissue, folding artefacts, air bubbles, glass edges, and 
other tissue that is of too low quality to be used for scoring. As the PD-L1 TPS 
score must score only tumour cells and neglect immune cells, such as 
macrophages, the second and third CNNs both segment neoplastic tissue 
versus all other high-quality tissues. Both CNNs use precisely the same 
annotations, but the second CNN utilises a larger tile size (200 µm)—which 
results in coarse segmentation—whereas the third model uses smaller tiles 
(50 µm) and is used to refine the predictions of the second CNN. This method 
of refining segmentation predictions enabled more precise prediction of 
neoplastic cells and islets, and has not been described before for pathology 
image analysis. The fourth CNN is an object detection model with two classes: 
PD-L1-positive cells and PD-L1-negative cells. Each CNN is used only within the 
segmented area of the previous CNN, which, for example, results in the 
ignoring of PD-L1-positive and PD-L1-negative immune cells outside of the 
neoplastic areas. The four-CNN setup was chosen in order to mimic human 
scoring, and to enhance explainability to clinicians and patients. 

4.4.7 Annotations 

All annotations were placed by the same trained annotator (L.H.), under the 
supervision of thoracic pathologists D.C. and J.T., in regions of interest (ROIs) in 
the training set (60 WSIs). Examples of annotations are shown in Figure 2 and  
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Figure 2: Algorithm setup and annotations. A, Schematic algorithm setup with four 
convolutional neural networks (CNNs) to calculate the programmed death-ligand 1 
(PD-L1) tumour proportion score (TPS). B, Annotations for high-quality tissue 
segmentation (CNN1). Green annotated: high-quality tissue that is in focus and 
does not contain artefacts. Black: annotated region of interest (ROI), and non-
annotated area within the ROI: the tissue is of low quality in this example, because 
of air bubbles. C, Annotations for tumour segmentation (CNN2 and CNN3). Red 
annotated: tumour. Black: annotated ROI, and non-annotated area within the ROI: 
non-neoplastic tissue. D,E, Annotations for tumour cell counting (CNN4). Green: 
annotated PD-L1-positive nuclei. Red: annotated PD-L1-negative nuclei. Black: 
annotated ROI. The TPS can be calculated from the number of PD-L1-positive 
tumour cells and the number of PD-L1-negative tumour cells (Formula 1 in Doc. S1). 
All annotations were placed in the training set (n = 60), which was withheld from 
validation. 

Figure S1. In order to speed up the last part of the annotation process, we used 
an adaptation of the human in the artificial intelligence (AI) loop (HAIL) method, 
as outlined in Figure 3. [17] In this method, the preliminary AI model proposes 
annotations that can be approved, edited or rejected by the annotator. This 
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process substantially speeds up annotating, as previously described in the 
literature, [17] and enables screening for ‘difficult’ features early in the 
algorithm development process. All annotations were placed in the training set 
(n = 60), which was not used for validation. 

 

Figure 3: Human in the artificial intelligence loop (HAIL) annotation method. Red: 
neoplastic tissue. Black: region of interest. The preliminary algorithm proposes 
annotations, which can be approved, edited or rejected by the annotator. This 
process speeds up annotating and enables screening for ‘difficult’ features early in 
the algorithm development process. In each HAIL cycle, multiple annotations are 
proposed, edited, and accepted. 

4.4.8 Algorithm training and validation  

Algorithm training and validation were performed with aiforia v4.6, as 
previously published. [18-19] The error against annotated training data was 
used as an evaluation metric for each CNN separately. The loss function for 
semantic segmentation networks was multiclass logistic regression. For the 
object detection network, a custom-built loss function was used within the 
aiforia panel. For each CNN, augmented tiles (the augmentation settings are 
outlined in Figure S2) were used: CNN1, 8 052 800 tiles; CNN2, 5 860 000 tiles; 
CNN3, 6 472 800 tiles; and CNN4, 58 201 600 tiles. 
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For validation, the algorithm was applied to all WSIs in the validation set. The 
algorithm TPS for each WSI was acquired and compared with the whole-slide 
reference score from the pathologists. Cases were considered to be 
‘concordant’ when the algorithm score and the reference score were in the 
same category: TPS of <1%, 1–49%, or ≥50%. Cases were considered to be ‘not 
scorable’ when the algorithm detected <100 neoplastic cells in the WSI. Cases 
were considered to be either ‘around the 1% cutoff point’ (reference score of 
<25%) or ‘around the 50% cutoff point’ (reference score of ≥25%). 

4.4.9 Ethics 

Cases were anonymised by use of a unique and anonymous research number. 
Specimens were handled according to the Code for Proper Secondary Use of 
Human Tissue in The Netherlands (Dutch Federation of Medical Scientific 
Societies). This study was approved by the local Medical Ethical Committee 
(B20.008). 

4.5 Results 

One hundred and ninety-nine NSCLC histology cases were included in the 
study. We compared our algorithm-derived PD-L1 TPS (algorithm score) with 
the mean of three scores of specialised pathologists (reference score). 

4.5.1 Patients and cases 

The characteristics of the training and validation set are shown in Table 2. The 
two groups are slightly different, which is a result of enriching the training set 
for lymph node biopsies and squamous cell carcinomas, as only a handful of 
those cases were included in the training set by random selection. 

CHARACTERISTIC TRAINING SET 
(N = 60) 

VALIDATION SET 
(N = 139) 

P-VALUE 

AGE (YEARS) (RANGE) 69 (45–86) 68 (48–90) 0.7* 

SEX, N (%)   1.0† 

  MALE 35 (58) 81 (58)  
  FEMALE 25 (42) 58 (42)  
TUMOUR TYPE, N (%)   0.03‡ 

  ADENOCARCINOMA 44 (73) 117 (84)  
  SQUAMOUS CELL 
CARCINOMA 

16 (27) 18 (13)  
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  ADENOSQUAMOUS 
CARCINOMA 

0 4 (3)  

BIOPSY SITE, N (%)   0.01‡ 

  LUNG 30 (50) 89 (64)  
  LYMPH NODE 14 (23) 11 (8)  
  DISTANT METASTASIS 16 (27) 39 (28)  
PD-L1 IN REPORT, N 
(%) 

  0.53‡ 

  NEGATIVE (<1%) 28 (47) 69 (50)  
  LOW POSITIVE (1–
49%) 

20 (33) 36 (26)  

  HIGH POSITIVE (50–
100%) 

12 (20) 34 (24)  

Table 2: Case characteristics. Significant difference are due to enriching the 
training set for lymph node biopsies and squamous cell morphology, as only a few 
of those were included when we selected the training set randomly. *Unpaired t-
test. †Fisher’s exact test. ‡Chi-squared test. 

4.5.2 Interobserver variability between pathologists 

The three pathologists were in complete agreement in 124 of 199 cases (62%). 
In pairwise comparisons (n = 597; Figure 4), the overall concordance between 
any two pathologists was 75%. Around the 1% cutoff (136 cases), all three 
pathologists agreed in 83 cases (61%). There were 408 pairwise comparisons 
around 1%, resulting in an overall concordance of 74%. Around the 50% cutoff 
(63 cases), all three pathologists agreed in 41 cases (65%). Between any two 
pathologists in the 189 pairwise comparisons around 50%, the concordance 
was 77%. The Fleiss κ coefficient was 0.61 overall (substantial agreement; 95% 
confidence interval 0.612–0.616). The mean absolute difference between the 
pathologists’ assessments was 8%. These data are similar to the concordance 
rates described in the literature. [10, 20-26] 

4.5.3 Algorithm training and metrics  

We trained the four CNNs separately. For each CNN, the training settings and 
output (tile size, amount of training data annotated, epochs trained, and error 
against training data) are summarised in Table 3. Error against training data 
was calculated with Formula 1 for semantic CNNs (CNN1, CNN2, and CNN3), 
and with Formula 2 for object detection CNN (CNN4). We used an early 
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Figure 4: Confusion matrix for interobserver variance between pathologists. The 
confusion matrix is based on three observers and 199 cases, constituting 597 
pairwise comparisons. One of the paired observers is plotted on the x-axis and the 
other observer is plotted on the y-axis. 

stopping mechanism, which ended the training after ⁓18 h when there was no 
progress in the loss function output over a set amount of epochs. 

𝑒𝑟𝑟𝑜𝑟 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 (𝑚𝑚2) + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 (𝑚𝑚2)

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑅𝑂𝐼) 𝑎𝑟𝑒𝑎 𝑡𝑜𝑡𝑎𝑙 (𝑚𝑚2)
 

Formula 1: Error formula for segmentation CNNs (CNN1, CNN2, and CNN3). 

𝑒𝑟𝑟𝑜𝑟 = 1 −
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑖𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎
 

Formula 2: Error formula for the object detection CNN (CNN4). 

4.5.4 Algorithm validation 

In the validation set, as outlined in Figure 5, the concordance between the 
reference score and the algorithm score was 79% overall, whereas any two 
pathologists agreed with each other in only 75% of the cases. The algorithm 
concordance was also 79% around the 1% and 50% cutoff points, whereas any 
two pathologists agreed with each other in 74% and 77% of the cases around 
these cutoff points. The average difference between any two pathologists was 
8%, and the average difference between the algorithm score and the reference 
score was 5%, which is significantly lower (P = 0.01, unpaired t-test). The 
intraclass coefficient (with a consistency definition) was 0.96 [95% confidence 
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interval (CI) 0.94–0.97], when the continuous algorithm score was compared 
with the continuous reference score. The algorithm identified 39 359 
neoplastic cells per slide on average (range, 188–749 558 cells). Cohen’s κ 
coefficient for the algorithm was 0.68. This is similar to the Fleiss κ coefficient 
calculated for the pathologists (0.61). 

CNN TILE 
SIZE 
(µM) 

RESO-
LUTION 

(µM/PIXEL) 

ANNO-
TATED 
DATA 

NO. OF 
CNN 

LAYERS 

EPOCHS 
TRAINED 

ERROR 
AGAINST 
TRAINING 
DATA (%) 

CNN1: HIGH-
QUALITY 
TISSUE 

50 1.61 517 mm2 8 5033 0.12 

CNN2: 
NEOPLASTIC 
TISSUE 
(COARSE) 

200 1.57 960 mm2 12 14 650 0.49 

CNN3: 
NEOPLASTIC 
TISSUE 
(REFINEMENT) 

50 0.39 960 mm2 12 16 182 0.15 

CNN4: CELL 
DETECTION 

86 0.44 5159 
objects 

6 18188 9.1 

Table 3: Training parameters per convolutional neural network (CNN). Training 
parameters for each CNN included tile size, resolution, the amount of annotated 
training data, the number of convolutional layers per CNN, epochs trained, and 
error against the training data. Error formulas are provided in Formulas 1 and 2. 

Nineteen cases were registered as ‘unscorable’ by the algorithm. In 11 cases, 
this was due to poor scanning quality and the WSI being out of focus (partly or 
completely). In five cases, there were severe artefacts, which had not been 
included in the training set and made the WSI difficult to score for the 
algorithm (Figure S3A) In both of the two remaining slides, the tumour was 
strongly discohesive, falling apart in such small parts that it resembled 
cytology, which was not included in the training set. In these cases, the 
algorithm did not correctly identify all of the tumour cells and counted <100 
tumour cells (Figure S3B). One hundred and twenty cases remained for 
algorithm validation. 
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Figure 5: Algorithm validation set results. A, Flowchart for the validation process. B, 
Scatterplot for the mean of the three pathologists’ continuous tumour proportion 
scores (TPSs): the reference score (Formula 2 in Doc. S1) is on the y-axis, and the 
continuous algorithm score is on the x-axis. C, Confusion matrix for categorical 
TPSs (<1%, 1–49%, and 50–100%): the reference score categories are on the y-axis, 
and the algorithm score categories are on the x-axis. 

For cases scored <0.5% by the algorithm (n = 32), the concordance with the 
reference score was 94%. For cases scored >60% by the algorithm (n = 20), the 
concordance with the reference score was 100%. The cases with scores of 
<0.5% and >60% constituted 43% of the validation set (n = 52). Examples of 
algorithm applicability for both the ‘difficult’ cases (TPS of 0.5–60%) and the 
‘easy’ cases are provided in Figure 7 and Figures S4–S6. 

4.5.5 Explaining discordance  

On closer examination of the cases that were misclassified by the algorithm 
(orange dots; Figure 5B), it is clear that, in 20 of 25 misclassified cases (80%), 
the pathologists were also in disagreement, meaning that one of the 
pathologists scored the case in a different treatment category. This occurred 
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significantly more frequently than in the cases that were correctly classified by 
the algorithm (27%, P = 0.000003, Fisher’s exact test), which suggests that these 
cases were more difficult to score for both human and machine. Common 
features in the misclassified cases included the following: 

1. The reference score was close to the 1% or 50% cutoff point. 
2. Neoplastic tissue was surrounded or infiltrated by PD-L1-positive 
immune cells (Figure 6A,D.) 
3. Neoplastic cells stained for PD-L1, but the staining was non-
membranous (Figure 6B). 
4. Neoplastic cells stained for PD-L1, but the entire membrane did not 

stain positively (incomplete staining) (Figure 6C). 
5. Neoplastic cells stained for PD-L1, but with low intensity (Figure 6C). 
6. There were severe artefacts, including anthracosis, folds, ink, 

degeneration, preservation-related issues, and scanning-related issues 
(Figure 6B). 

7. A small number (<250) of neoplastic cells were available for scoring. 

 

Figure 6: Difficult-to-score features. A, Neoplastic tissue surrounded by benign 
programmed death-ligand 1 (PD-L1)-positive cells. B, PD-L1 staining in neoplastic 
cells: partly nuclear, partly cytoplasmic, and partly membranous (anthracosis and 
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ink). C, Low-intensity PD-L1 staining. D, PD-L1-positive immune cells infiltrating 
neoplastic tissue. 

The misclassified cases were not significantly different from the correctly 
classified cases with regard to tumour type (P = 0.5, chi-squared test), biopsy 
site (P = 0.4, chi-squared test), or PD-L1 TPS category (P = 1.0, chi-squared test). 

4.5.6 Visual algorithm feedback  

The algorithm provides detailed visual feedback of predictions, at both the 
whole slide level and the microscopic level. The cell counting aspect of the 
algorithm enables exact approximation of the TPS, whereas, obviously, 
pathologists can only give a rough estimate. A case example is shown in 
Figure 7. Additional case examples are shown in Figures S4–S6. 

 

Figure 7: Case example algorithm scoring of a ‘difficult’ case close to the 50% 
cutoff. A, A programmed death-ligand 1 (PD-L1)-stained lobectomy slide overview of 
a squamous cell carcinoma. B, Prediction from convolutional neural network (CNN) 
3 (neoplastic area segmentation). Red: neoplastic tissue. C, Representative close-up. 
D, Prediction from CNN4 (cell detection). Red: PD-L1-negative cell. Green: PD-L1-
positive cell. In total, the algorithm counted 98 235 PD-L1-positive cells and 118 604 
PD-L1-negative cells in this whole slide image, resulting in a tumour proportion 
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score of 45.3%. The pathologists scored this case at 30%, 60%, and 45%, 
respectively. The reference score was therefore 45%. 

4.5.7 Segmentation refinement  

Our algorithm utilises two sequential segmentation CNNs for neoplastic tissue 
detection. The first CNN (coarse CNN) has a tile size of 200 µm, whereas the 
subsequent CNN (refinement CNN) has a tile size of 50 µm. An example of this 
setup is outlined in Figure 8. Adding the refinement CNN reduces the error 
against the training data from 0.49% to 0.15%, which constitutes a 3.3-fold 
decrease (Table 3). This approach therefore improves the predictions and 
decreases the required amount of annotations, as both segmentation CNNs 
utilise the same set of annotations. The added benefit of this approach was 
especially clear in cases with small patches of neoplastic tissue, as shown in 
Figure 8. 

 

Figure 8: Segmentation refinement examples. Left: programmed death-ligand 1 
(PD-L1)-stained tissue. Middle: overlay predictions (yellow) from the first neoplastic 
segmentation convolutional neural network (CNN) (coarse CNN). Right: overlay 
predictions from the first (yellow) and second (red) neoplastic segmentation CNNs 
(refinement CNNs). In case A (negative tumour cells with closely associated positive 
immune cells), use of only the coarse CNN would have resulted in falsely counting 
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more PD-L1-positive cells, and potentially a higher tumour proportion score (TPS) 
(false-positive). In case B (negative cells in negative stroma), using only the coarse 
CNN would have resulted in falsely counting more PD-L1-negative cells, and 
potentially a lower TPS (false-negative). 

4.6 Discussion 

The PD-L1 TPS is an established biomarker, with direct treatment 
consequences for late-stage NSCLC patients. However, PD-L1 as a biomarker 
for response to immunotherapy has several drawbacks, the most important 
being the high interobserver and intraobserver variance around rigid cutoff 
points (at 1% and 50%), and the fact that negative patients may also respond 
(and vice versa). Although a more definitive solution for a more accurate 
prediction of response to immunotherapy is still a subject of research, some of 
the human factors leading to high interobserver and intraobserver variance 
may be solved by the use of computational PD-L1 scoring. Several attempts 
have been made to create PD-L1 scoring algorithms, but all have specific 
limitations that hamper robust translation into clinical practice. 

We therefore developed and validated a fully supervised deep learning 
algorithm for computational PD-L1 scoring, which gives scores concordant with 
the reference score in 79% of cases, whereas any two pathologists agree with 
each other in 75% of cases. Cohen’s κ coefficient for the algorithm is 0.68 and 
the intraclass coefficient is 0.96; respectively, these constitute ‘substantial’ to 
‘almost perfect’ agreement, and are close to the agreement rates between the 
three experienced thoracic pathologists in this study. 

An additional strength of our algorithm is that it provides detailed visual whole-
slide predictions at a microscopic level, owing to the fully supervised setup of 
the model. This feedback increases interpretability and explainability, which is 
an important criterion for algorithms that will be used by pathologists in a 
clinical setting. 

We believe that—in order to be of value in daily clinical practice—any algorithm 
should be designed with cases derived from routine diagnostic WSIs, as 
opposed to ‘perfect’ trial material [14, 15] or TMAs. [16] Our algorithm is 
trained and validated on routine diagnostic whole slide histological material, 
including a wide range of metastatic sites and tissue artefacts. Because of its 
deep learning-based nature, the algorithm performs well in the highly 
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heterogeneous tissue backgrounds in WSIs (artefacts, lymph nodes, bronchial 
epithelium, adrenal gland, skin, brain, bone, kidney, etc.), which requires 
extensive annotations and is not easily achieved with simpler machine learning 
approaches. [16] For validation, algorithm scores were compared with the 
scores of multiple observers, which is essential because the reference score 
needs to be as robust as possible. It must be noted that our κ coefficient for 
pathologist agreement is relatively low as compared with those in some PD-L1 
interobserver studies using trial material or TMAs, [14. 15] but is in line with 
those in other studies with similar broad inclusion criteria. [10] 

Given the described accuracy and clinical applicability of our model, one may 
think of two different areas of usage: (i) PD-L1 scoring in a (case-by-case) 
diagnostic setting; and (ii) PD-L1 scoring of trial material and/or large series in a 
research environment. In a diagnostic setting, we see this algorithm as a 
potential ‘scoring assistant’ or second-opinion tool, aiding and saving time for 
pathologists, especially in difficult cases. In a situation in which scoring of large 
series or trial material is required, this algorithm may stand alone in the 
scoring of ‘easy’ cases with <0.5% or >60% PD-L1 positivity, as the algorithm 
reaches an accuracy of 96%. A pathologist could then focus on the subset of 
difficult cases with PD-L1 scores between 0.5% and 60%. A second observer 
pathologist may be replaced by our algorithm. Overall, our PD-L1 algorithm will 
function mostly as a scoring assistant or second observer, thereby saving time 
and human effort, while remaining equally accurate. 

Although the implementation of this and other algorithms in daily clinical 
practice is imminent, the applicability of this algorithm is likely to be hampered 
by domain divergence (different scanners, different antibodies, different 
stainers, etc.). When this algorithm is used in a new laboratory, or when 
laboratory circumstances change, ‘domain adaptation’ (adapting the algorithm 
to the same task but in a new dataset) is required. 

The difficulty of the domain adaption process and the choice of a method of 
adapting is heavily dependent on the domain relatedness (or the measure of 
domain divergence), which is a subject of ongoing research in the field of 
computer vision. Domain adaptation can be performed in many different ways 
(shallow adaptation, deep supervised adaptation, adversarial adaptation, 
semisupervised adaptation, domain matching, etc.). [27, 28] 
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Histopathology articles describing the process of domain adaptation in 
computational pathology are mostly lacking. We consider this to be a potential 
drawback. Clear guidelines for ‘domain adaptation’ and ‘post-implementation 
monitoring’ will need to be established in the near future. This issue will 
therefore be the subject of future research, in which we will use this PD-L1 
algorithm for a nationwide PD-L1 domain adaptation study. 

Another future research challenge for the field of PD-L1 assessment and digital 
pathology is its application in cytology. In cytology specimens, there is 
substantially less tissue context, and the task of PD-L1 TPS assessment is 
therefore different and perhaps more difficult. Despite these challenges, it is 
often necessary to use cytology material for PD-L1 analysis in clinical practice 
when no histology material is available, which is the case in up to 40% of 
cases.9 Our algorithm is not applicable to, and is not easily transferrable to, 
cytology specimens; a separate algorithm would have to be developed for this 
purpose. This algorithm would need to take the different cytological 
backgrounds and common cell types such as mesothelial cells, macrophages 
and (fragments of) lymphoid tissue into account. 

In conclusion, we have developed a deep learning PD-L1 TPS algorithm that is 
truly applicable to daily routine whole slide specimens. State-of-the-art 
computational techniques such as the double segmentation CNN and the HAIL 
annotations worked synergistically with the clinical perspective of highly 
experienced thoracic pathologists in this study, and resulted in the first PD-L1 
algorithm that is accurate on routine diagnostic material, in all tissue contexts, 
and on WSIs. In order to create smart pathology-based deep learning 
algorithms that are actually meaningful for the patients and clinicians of 
tomorrow, a true alliance of both clinical and computational experts is crucial.  
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5.2 Abstract 

5.2.1 Introduction 

Since the approval of neurotrophic tropomyosin receptor kinase (NTRK) 
tyrosine kinase inhibitors for fist-line advanced stage pan-cancer therapy, 
pathologists and molecular biologists have been facing a complex question: 
how should the large volume of specimens be screened for NTRK fusions? 
Immunohistochemistry is fast and cheap, but the sensitivity compared to RNA 
NGS is unclear. 

5.2.2 Methods 

We performed RNA-based next-generation sequencing on 1,329 cases and 
stained 24 NTRK-rearranged cases immunohistochemically with pan-TRK 
(ERP17341). Additionally, we performed a meta-analysis of the literature. After 
screening 580 studies, 200 additional NTRK-rearranged cases from 13 studies, 
analysed with sensitive molecular diagnostics as well as pan-TRK IHC, were 
included.  

5.2.3 Results 

In the included 224 NTRK-rearranged solid tumours, the sensitivity for pan-TRK 
IHC was 82% and the false-negative rate was 18%. NTRK3 fusions had more 
false negatives (27%) compared to NTRK1 (6%) and NTRK2 (14%) (p = 0.0006). 
Membranous, nuclear and peri-nuclear staining patterns strongly correlated 
with different fusion products, with membranous staining being more 
prevalent in NTRK1 and NTRK2, nuclear in NTRK3, and perinuclear in NTRK1.  

5.2.4 Conclusion 

Despite a reduction in the number of molecular analysis, using pan-TRK 
immunohistochemistry as a prescreening method to detect NTRK fusions in 
solid tumours will miss 18% of all NTRK-fused cases (especially involving 
NTRK3). Therefore, the most comprehensive and optimal option to detect 
NTRK fusions is to perform molecular testing on all eligible cases. However, in 
case of financial or logistical limitations, an immunohistochemistry-first 
approach is defensible in tumours with a low prevalence of NTRK fusions.  

 



112 

 

5.3 Introduction 

Neurotrophic tropomyosin receptor kinase (NTRK) fusions are powerful 
oncogenic drivers, which are common in rare tumour types, e.g., infantile 
fibrosarcoma and secretory breast cancer, but rare (with prevalence estimates 
below 1%) in some common tumours, e.g., lung adenocarcinoma and 
colorectal carcinoma. [1, 2] 

In recent clinical trials, a remarkable survival benefit of NTRK tyrosine kinase 
inhibitors (TKIs) was observed, with high response rates and durable, long-
term progression-free survival in patients with NTRK-rearranged cancers. [3-6] 
Therefore, NTRK TKIs have been approved for first-line treatment in all NTRK-
rearranged advanced stage cancers. This approval is independent of cancer 
type, making NTRK one of the first tumour-agnostic targets. [7, 8] 

In addition, several tumour types, such as Spitz tumours and secretory 
carcinoma, are (in part) characterised by the presence of NTRK fusions. 
Without the ability to sensitively detect NTRK fusions in diagnostics, patients 
with these tumour types could end up with the wrong diagnosis and – in 
selected cases – even suboptimal treatment. 

The gold standard for fusion detection is targeted RNA-based next-generation 
sequencing (RNA NGS) or whole genome sequencing (WGS), but these 
molecular techniques are expensive and time-consuming and have limited 
worldwide accessibility. [9] As an alternative, pan-TRK immunohistochemistry 
(IHC) with the ERP17341 antibody (Abcam) has been investigated as a potential 
screening tool, as it is much faster, has lower costs, and is more widely 
available than molecular diagnostics. [10] 

Several recent studies report that pan-TRK IHC screening is a reliable 
alternative for molecular analysis. [11-13] However, other studies report a 
problematic false-negative rate over 15%, [14-18] potentially leading to 
underdetection. However, due to the overall low prevalence of NTRK fusions in 
solid tumours, most studies included only a limited number of NTRK-
rearranged cases, which makes that robust recommendations for using pan-
TRK IHC as a screening method for the detection of NTRK fusions are lacking. 
[11-24] 
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In this study, we describe a cohort of 1329 solid tumours that were analysed 
for NTRK fusions with anchored multiplex PCR (AMP)-based targeted RNA NGS 
in routine diagnostics in our institution. In addition, we performed a meta-
analysis for studies comparing pan-TRK IHC with molecular analysis for the 
detection of NTRK fusions. The aim of our study was to robustly describe the 
sensitivity and false-negative rate of pan-TRK IHC, in order to make a well-
considered choice on the use of pan-TRK IHC as a screening tool for NTRK 
fusions in solid tumours in the clinical setting.  

5.4 Materials and methods 

5.4.1 Case selection 

We retrospectively analysed all solid tumours that routinely underwent 
anchored multiplex (AMP)-based targeted RNA NGS among others for NTRK1, 
NTRK2, and NTRK3 gene fusions in the Leiden University Medical Center 
(LUMC), Leiden, the Netherlands, between 2008 and 2021. All solid tumour 
types were eligible for inclusion, irrespective of malignant, borderline 
malignant, or benign diagnosis. Cases in which RNA NGS analyses were 
incomplete or failed, e.g., due to insufficient tissue, were excluded. There is an 
overrepresentation of radioactive iodine-insensitive thyroid carcinomas and 
driver-negative lung and colorectal carcinomas, since these cases were more 
frequently submitted for RNA NGS, due to a high quantity of referrals of these 
cancers to the LUMC. Cases were screened for therapeutic reasons (NTRK TKI 
treatment), diagnostic reasons (e.g. differential diagnosis of Spitz tumours with 
spitzoid melanoma), or both. 

The study was performed according to the Dutch FEDERA Code for Proper Use 
of Human Tissue. A waiver of consent was given by the Leiden-the Hague-Delft 
Medical Ethical Committee (B20.017). Cases were anonymised completely 
before processing, omitting the need to obtain informed consent from the 
included patients.  

5.4.2 Fusion analysis 

For NTRK fusion analysis, RNA was isolated from formalin-fixed paraffin-
embedded (FFPE) tissue by microdissection using five 10 μm slides and 
extracted using a tissue preparation system robot (Siemens). AMP-based-
targeted RNA NGS was performed with the ArcherDx assay, with either the 
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Comprehensive Thyroid and Lung panel, the Solid Tumors panel, or the 
Sarcoma v2 panel, which all cover the complete NTRK1, NTRK2, and NTRK3 
genes and are validated according to the NEN-EN-ISO15189 guidelines. This 
method is capable of detecting fusions with either a novel or unknown fusion 
partner by using gene-specific primers in conjunction with molecular barcoded 
adapters. The generated libraries were sequenced on the IonTorrent S5 
platform (Thermo Fisher Scientific, Canada). Analysis was performed using a 
local installation of the Archer Analysis software. Different versions (ranging 
from version 5.1.7 to version 6.2.3) were used. NGS library generation, analysis, 
and reporting were performed under ISO15189 accreditation in the molecular 
diagnostics section of the pathology department (LUMC).  

5.4.3 Immunohistochemistry 

For the purpose of this study, pan-TRK IHC was performed on cases with a 
confirmed NTRK fusion by RNA NGS. For IHC, 4-μm-thick slides were cut from 
the FFPE tissue blocks of histological biopsies or resection specimens and 
automatically stained with the pan-TRK monoclonal antibody clone EPR17341 
(Abcam, Cambridge, MA) on the Dako Omnis stainer, in a 1:50 dilution. [4] A 
subset of cases was stained manually, with the same antibody in a 1:150 
dilution. Cases with insufficient FFPE tissue were excluded. 

The pan-TRK IHC was independently scored by two pathologist (DC and AS) and 
discordant cases were discussed until consensus was reached. Cases were 
considered positive when staining of any pattern and intensity was seen in 
more than 1% of the tumour cells. In addition, for each positive case, the 
staining pattern was determined: cytoplasmatic, nuclear, membranous, or a 
combination of ≥2 patterns. In case of multiple staining patterns in the same 
slide, the case was included in both staining categories. 

5.4.4 Meta-analysis 

In addition, we performed a meta-analysis of the literature to evaluate the 
sensitivity and false-negative rate of pan-TRK IHC as a screening method for 
NTRK fusions, using the PRISMA criteria. [25] We searched PubMed on June 19, 
2021, with the search term included in Supplement 1. First selection existed of 
title and abstract screening by LH. Second selection existed of full text 
screening of the resulting articles by LH. 
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All studies comprising five or more unique cases of solid tumours that were 
evaluated with pan-TRK IHC with the monoclonal antibody clone EPR17341 as 
well as a molecular diagnostics test with high sensitivity for the detection of 
NTRK fusions were included in our analysis. Suitable molecular techniques 
included targeted RNA NGS, whole genome sequencing (WGS), DNA-based NGS 
panels with good coverage of the NTRK1, NTRK2, and NTRK3 introns and 
fluorescence in situ hybridisation (FISH) for the NTRK1, NTRK2, and NTRK3 
genes, as these molecular tests are known to have high sensitivity and 
specificity. [26, 27] Additionally, studies in which cases were prescreened with 
Nanostring and, when positive, confirmed with one of the aforementioned 
molecular techniques, were also included. Studies in which pan-TRK IHC was 
used as a screening tool to select cases for molecular analysis were excluded, 
as these studies might introduce a selection bias with regard to the sensitivity 
and false-negative rate. Studies written in another language than English and 
harmonisation studies were excluded. 

Based on the included studies, we constructed a database for each case listing 
the diagnosis, type of molecular analysis used, molecular analysis results, 
fused NTRK gene and breakpoint (when available), fusion partner and 
breakpoint (when available), and pan-TRK IHC result and staining pattern 
(when available). Our own cohort of NTRK-fused cases was added to this 
database.  

5.4.5 Statistics 

Statistical analysis was performed using IBM SPSS Statistical software, version 
26. Statistical significance was set at a P-value of <0.05. 

5.5 Results 

5.5.1 Case characteristics 

In total, we included 1329 cases on which RNA NGS was routinely performed. 
This cohort included 738 lung and thoracic tumours, 190 thyroid carcinomas, 
82 digestive tract tumours, 68 bone and soft tissue tumours, 65 carcinomas of 
unknown primary, 66 head and neck tumours, 52 central nerve system 
tumours, 32 melanocytic tumours, 18 urogenital tumours, nine breast cancers, 
and nine other lesions (Table 1). RNA NGS was performed for diagnostic 
purposes in 69 cases, therapeutic purposes in 960 cases, and for both 
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diagnostic and therapeutic purposes in 300 cases. In 751 cases that were 
analysed for therapeutic purposes, mainly colorectal carcinomas and lung 
adenocarcinomas, previous DNA NGS was performed without identification of 
a driver mutation. In 347 cases, a strong driver mutation, such as KRAS or 
EGFR, was identified in DNA NGS. In all other cases, DNA NGS was not 
performed.  

DIAGNOSIS 
GROUP OR 
TRACTUS 

INCLUDED 
CASES 

NTRK 
FUSIONS 

NTRK1 NTRK2 NTRK3 SENSITIVITY 

LUNG AND 
THORAX 

738 2 (0.3%) 0 0 2 50% 

THYROID 190 12 (6.3%) 2 0 10 75% 
DIGESTIVE 
TRACT 

82 2 (2.4%) 1 0 1 100% 

SARCOMA 68 2 (2.9%) 1 0 1 100% 
CARCINOMA OF 
UNKNOWN 
PRIMARY 

65 0 0 0 0 - 

HEAD AND 
NECK 

66 4 (6.1%) 0 0 4 100% 

CENTRAL NERVE 
SYSTEM 

52 0 0 0 0 - 

SKIN 32 4 (12.5%) 0 1 3 75% 
UROGENITAL 
TRACT 

18 0 0 0 0 - 

BREAST  9 1 (11.1%) 0 0 1 100% 
OTHER 9 0 0 0 0 - 
TOTAL 1329 27 (2.0%) 4 1 22 79% 

Table 1: Overview of all included solid tumor types including the NTRK-fusion 
prevalence.  

5.5.2 Fusion analysis 

Using RNA NGS, 27 of the 1329 (2%) cases demonstrated an NTRK gene fusion. 
These cases comprised the NTRK1 gene in four (15%) cases, the NTRK2 gene in 
one (4%) case, and the NTRK3 gene in 22 (81%) cases (Figure 1). NTRK1 was 
fused with TPM3 in three cases (mismatch repair deficient colorectal 
carcinoma, spindle cell sarcoma, and thyroid carcinoma) and with TPR in one 
case (thyroid carcinoma). The NTRK2 fusion occurred in a Spitz nevus with 
SQSTM1 as the fusion partner. The NTRK3 fusions most frequently involved 
ETV6 (17 cases: nine thyroid cancers, four secretory carcinomas, one breast 
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cancer NST, one inflammatory myofibroblastic tumour, one lung 
adenocarcinoma, and one Spitz nevus). Additionally, we observed two 
MYO5A:NTRK3 fusions (Spitz nevi), two EML4:NTRK3 fusions (mismatch repair 
proficient colorectal carcinoma and thyroid carcinoma), and one SYNJ1:NTRK3 
fusion (lung adenocarcinoma).  

Figure 1: Overview of all NTRK-fused cases in our cohort, arranged by diagnosis (A), 
fusion product including breakpoints (B), and pan-TRK immunohistochemical 
staining pattern (C). In three cases, immunohistochemistry was not performed due 
to tissue unavailability. Breast cancer NST: breast cancer no special type, IMT: 
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inflammatory myofibroblastic tumor, pap: papillary type, foll: follicular type, pd: 
poorly differentiated type. 

5.5.3 Immunohistochemistry  

In 24 of the 27 (89%) NTRK-fused cases, pan-TRK IHC was successfully 
performed. In three cases, insufficient tissue was available for pan-TRK IHC. 
Nineteen (79%) of the successfully stained cases scored positive. Positive 
staining consisted of cytoplasmatic staining in 12 (63%) cases, nuclear staining 
in two (11%) cases, membranous staining in one (5%) case, combined 
cytoplasmatic and nuclear staining in three (16%) cases, and combined 
cytoplasmatic and membranous staining in one (6%) case (Figure 2). The two 
observers were concordant in 100% of the cases. Benign neural tissue stained 
positive for pan-TRK as well as some macrophages. 

Five (21%) of the 24 NTRK-fused cases were completely negative with pan-TRK 
IHC (Figure 2). This false negativity was observed in 4 of 19 (21%) NTRK3-fused 
cases and in one of four (25%) NTRK1-fused cases. The negative cases included 
a lung carcinoma with a SYNJ1:NTRK3 fusion, a Spitz nevus with a 
MYO5A:NTRK3 fusion, and three thyroid carcinomas, two with ETV6:NTRK3 
fusions, and one with a TPR:NTRK1 fusion. Overall, the sensitivity of pan-TRK 
IHC in our cohort was 79%, and the false-negative rate was 21%. This indicates 
that when using pan-TRK IHC as a screening method, 21% of NTRK-fused cases 
in our cohort would have been missed.  

5.5.4 Meta-analysis 

A literature search in PubMed on June 19th 2021 (search strategy in 
Supplement 1) yielded 580 articles. After first selection, which included 
removal of duplicates and screening of the title and abstract, 54 articles 
remained. After second selection, which included assessment of the full-texts 
of the 54 potentially relevant articles, a total of 13 eligible studies were 
included in our analysis. [11-21, 23, 28] A flow chart of the selection process of 
the meta-analysis is presented in Figure 3. An overview of the characteristics of 
the included studies is provided in Supplement 2. The complete dataset is 
provided in Supplement 3.  
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Figure 2: Pan-TRK immunohistochemistry with positive (A, B, C) and negative 
staining (D, E, F). Membranous positivity in thyroid carcinoma with NTRK1 fusion 
(A), nuclear positivity in a secretory carcinoma in the parotid gland with NTRK3 
fusion (B), cytoplasmic positivity in a thyroid carcinoma with NTRK3 fusion (C), pan-
TRK negative thyroid carcinoma with NTRK3 fusion (D), pan-TRK negative lung 
adenocarcinoma with NTRK3 fusion (E), and pan-TRK negative thyroid carcinoma 
with NTRK1 fusion (F).  

The 13 included studies describe the NTRK fusion status of 6609 solid tumours. 
In 200 (3%) of these cases, an NTRK fusion was detected. When combining 
these 200 cases with our cohort, the total number of NTRK-fused cases is 224, 
including 83 (37%) NTRK1 fusions, 21 (9%) NTRK2 fusions, and 120 (54%) NTRK3 
fusions. Overall, pan-TRK IHC was positive in 184 of 224 (82%) cases, resulting 
in a sensitivity of pan-TRK IHC for the detection of NTRK fusions of 82% (Table 
2). In 40 of 224 (18%) of the NTRK-fused cases, however, pan-TRK IHC was false 
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negative. The highest percentage of false negativity with pan-TRK IHC was seen 
in NTRK3 fusions (27%) compared with NTRK1 (6%) and NTRK2 (14%), which is 
statistically significant (χ2 test, p-value <0.001). 

 

Figure 3: Meta-analysis workflow and results.  

In the meta-analysis and our own cohort, NTRK fusions did not co-occur with 
other driver mutations (such as BRAF V600E, KRAS G12C, etc.). The mutual 
exclusivity of driver mutations in TKI-treatment naive tumours is in line with 
the literature. [29] 

Regarding the staining patterns of pan-TRK IHC, membranous staining was 
significantly more common in NTRK2-fused cases (χ2 test, P-value <0.001), 
while nuclear staining was associated with NTRK3 fusions (χ2 test, P-value 
<0.001), and perinuclear staining was only seen in NTRK1 fusions (χ2 test, P-
value <0.001). An overview of the staining patterns is provided in Table 2.  
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 NTRK1 
FUSION 
(N = 83) 

NTRK2 
FUSION 
(N = 21) 

NTRK3 
FUSION 

(N = 120) 

P-VALUE ALL NTRK 
FUSIONS 
(N = 224) 

PAN-TRK IHC    0.0006  
NEGATIVE 5 (6%) 3 (14%) 32 (27%)  40 (18%) 
POSITIVE 78 (94%) 18 (86%) 88 (73%)  184 (82%) 
STAINING 
PATTERNS 

     

CYTOPLASMIC (N 
= 100) 

32 (80%) 5 (71%) 37 (70%) 0.53 74 (74%) 

MEMBRANOUS 
(N = 131) 

14 (29%) 4 (44%) 4 (5%) 0.0002 22 (17%) 

NUCLEAR (N = 
168) 

8 (12%) 1 (8%) 45 (51%) 0.0000004 54 (32%) 

PERINUCLEAR (N 
= 122) 

12 (24%) 0 0 0.0001 12 (10%) 

Table 2: Immunohistochemistry results versus molecular diagnostics for 224 NTRK-
rearranged cases. Pan-TRK IHC had an overall sensitivity of 82% and a false-
negative rate of 18%. Staining patterns were significantly different across NTRK 
genes. Studies that did not address the scoring patterns outlined in this table were 
excluded from part of this table. Some cases displayed multiple staining patterns in 
the same slide and were scored in both staining categories. P-values are calculated 
with χ2 test.  

5.6 Discussion 

This study describes the sensitivity and false-negative rate of pan-TRK IHC for 
the detection of NTRK fusions in solid tumours, based on our cohort of 24 
NTRK-fused cases combined with a meta-analysis of literature comprising 
another 200 NTRK-fused cases, in order to make a well-considered choice on 
the use of pan-TRK IHC as a screening tool for NTRK fusions in solid tumours 
the clinical setting. 

This study demonstrates a sensitivity of 82% and a false-negative rate of 18% 
for pan-TRK IHC with the monoclonal antibody clone EPR17341 (Abcam) to 
detect NTRK fusions in solid tumours. Therefore, using IHC as a screening 
method and confirming IHC-positive cases with molecular methods (the IHC-
first approach) will result in missing 18% of the NTRK-fused cases. In the 
authors opinion, a ‘miss rate’ of 18% is high, especially in the clinical setting of 
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NTRK as a therapeutic target, considering the substantial clinical benefit of 
treatment with NTRK TKIs. The molecular-only approach (omitting IHC) is more 
sensitive and comprehensive, but will result in a substantial logistical and 
financial burden for most laboratories, especially in tumour types with a low a 
priori chance of finding NTRK fusions. Pathologists and molecular biologists will 
need to consider the 18% miss rate and weigh it against the chance of finding 
an NTRK fusion and the burden of broad molecular testing in their specific 
laboratory circumstances, to come to the most optimal NTRK fusion testing for 
their patient population. The IHC-first approach does miss 18% of targetable 
fusions but might be a defensible alternative in specific circumstances. Testing 
is not useful for cases with a known driver mutation, such as KRAS G12C or 
BRAF V600E, as those are mutually exclusive with NTRK fusions. 

False negativity for pan-TRK IHC was correlated to the fused NTRK gene, as it 
was significantly more common in NTRK3-fused cases (27%) compared with 
NTRK1 (6%) and NTRK2 (14%) (χ2 test, P-value < 0.001). The reason for these 
significant differences between the NTRK genes is unknown and might be a 
subject for further research. In order to rule out false negativity in our cohort 
because of the pan-TRK antibody titration (1:150), we performed a titration 
experiment on one of the two false-negative ETV6:NTRK3-fused thyroid 
carcinomas. The neoplastic cells finally stained positive at a dilution of 1:10 but 
so did the surrounding normal tissue (Supplement 4). 

The clinical relevance of pan-TRK IHC-negative NTRK-fused solid tumours with 
regard to NTRK TKIs is currently unknown. Patients with NTRK-fused tumours 
who lack IHC expression might have a diminished response compared with 
IHC-positive patients as a result of limited NTRK gene expression. In our cohort 
and meta-analysis, follow-up and response data were not available. Therefore, 
this study is unable to determine whether IHC-negative patients have the same 
benefit of TKI treatment as IHC-positive patients and this should be a topic of 
future research. 

Despite the analysis of the world-wide literature, a limitation of this study is the 
relatively small number of confirmed NTRK-fused cases, reducing the power of 
the meta-analysis. In total, 224 of 7938 (3%) solid tumours with an NTRK fusion 
were identified in literature and our cohort, demonstrating the overall rarity of 
this genetic alteration in solid tumours. As several cohorts in this meta-
analysis, including our own, might be enriched for NTRK-fused cases, e.g. due 
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to selection of cases based on the absence of a driver mutation by DNA NGS, 
specific morphology of the tumour, or the inclusion of therapy-resistant 
tumours, our study might already overrepresent NTRK-fused cases. Another 
limitation is heterogeneity of the included studies for inclusion criteria and 
techniques used for pan-TRK IHC and molecular diagnostics for NTRK fusions. 
Despite the fact that all studies used a cut-off of 1% staining with pan-TRK IHC 
for a case to be considered positive, there was substantial variation in the 
dilution used for pan-TRK IHC. 

Currently, NTRK is the only pan-cancer treatment target, but this is likely to 
change in the near future. Novel therapies for alternative targets are 
discovered each year, and several of these treatments are already available in 
experimental settings, via early access, or compassionate use programs, 
greatly increasing the number of treatment options of late stage cancer 
patients. In addition, the diagnostic setting not only requires screening of the 
NTRK genes but also of other fusion genes, e.g. RET, ROS1, and ALK. Therefore, 
for both therapeutic and diagnostic purposes, a multi-target analysis of NTRK 
in combination with other genes of interest will become more and more 
clinically relevant, preferring comprehensive molecular analysis, such as RNA 
NGS and WGS, over single-target assays, such as IHC and FISH. [30]  

In conclusion, our study demonstrates a sensitivity of 82% and a false-negative 
rate of 18% for pan-TRK IHC as a screening method for the detection of NTRK 
fusions in solid tumours. These data should be considered when choosing a 
strategy to screen for NTRK fusions in the clinical setting. 
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6.2 Abstract 

6.2.1 Background 

With the approval of first-line osimertinib treatment in stage IV EGFR-mutated 
NSCLC, detection of resistance mechanisms will become increasingly 
important-and complex. Clear guidelines for analyses of these resistance 
mechanisms are currently lacking. Here, we provide our recommendations for 
optimal molecular diagnostics in the post-EGFR tyrosine kinase inhibitor (TKI) 
resistance setting. 

6.2.2 Methods 

We compared molecular workup strategies from three hospitals of 161 first- or 
second-generation EGFR TKI-treated cases and 159 osimertinib-treated cases. 
Laboratories used combinations of DNA next-generation sequencing (NGS), 
RNA NGS, in situ hybridization (ISH), and immunohistochemistry (IHC).  

6.2.3 Results 

Resistance mechanisms were identified in 72 first-generation TKI cases (51%) 
and 85 osimertinib cases (57%). RNA NGS, when performed, revealed fusions 
or exon-skipping events in 4% of early TKI cases and 10% of osimertinib cases. 
Of the 30 MET and HER2 amplifications, 10 were exclusively detected by ISH or 
IHC, and not detected by DNA NGS, mostly owing to low tumor cell percentage 
(<30%) and possibly tumor heterogeneity. 

6.2.4 Conclusions 

Our real-world data support a method for molecular diagnostics, consisting of 
a parallel combination of DNA NGS, RNA NGS, MET ISH, and either HER2 ISH or 
IHC. Combining RNA and DNA isolation into one step limits dropout rates. In 
case of financial or tissue limitations, a sequential approach is justifiable, in 
which RNA NGS is only performed in case no resistance mechanisms are 
identified. Yet, this is suboptimal as-although rare-multiple acquired resistance 
mechanisms may occur.  

6.3 Introduction 

Approximately 11% of all lung adenocarcinomas harbor a driver mutation in 
the EGFR gene. [1] Most of these EGFR mutations have been targeted with first- 
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and second-generation tyrosine kinase inhibitors (TKIs) for several years, 
resulting in a substantial improvement of both overall and progression-free 
survival for these patients. [2, 3] In 2017, osimertinib, a third-generation TKI, 
was approved by the Food and Drug Administration and European Medicines 
Agency as second line [4] and more recently as first line for the treatment of 
metastatic EGFR-mutated NSCLC, which further improved survival. 

Although targeted treatment with selective TKIs has been found to improve 
overall survival substantially, all tumors eventually acquire resistance, 
inevitably resulting in death. [5] In first- and second-generation TKI resistance 
(such as erlotinib, gefitinib, afatinib), acquired resistance mechanisms 
predominantly consist of on-target mutations in EGFR, mainly T790M, [6-9], but 
also D761Y [10], L747S [11], and T854A point mutations and EGFR 
amplification. [6-9], [12] Off-target resistance mechanisms include mutations in 
BRAF, PIK3CA, and KRAS, amplifications of HER2 and MET, oncogenic fusions in 
RET, FGFR3, ROS1, and NTRK, and MET- and EGFR-exon skipping and 
transformation into SCLC. [6-9, 13-18] Squamous transformation has so far 
only been described in case reports after first- and second-generation TKIs. 
[19] 

For osimertinib treatment (both first line and later lines), the most frequent on-
target resistance mutation is C797S, [20-22] although G724S, G796, L792, L718, 
G719, L844, and V834 have also been reported. In contrast to first- and second-
generation TKIs, off-target mechanisms occur more frequently and are more 
heterogeneous. Off-target resistance mechanisms after osimertinib include not 
only all resistance mechanisms after earlier TKIs but also amplifications of 
FGFR1 and transformation to a squamous phenotype. [20, 21, 23-25] Off-target 
resistance mechanisms are more prevalent after osimertinib compared with 
the first- and second-generation TKI–treated cases. [16]  

The volume of patients who are referred to a tertiary referral hospital for EGFR 
TKI resistance mechanism screening is increasing. This number will likely 
continue to rise even more in the years to come, owing to improved access to 
TKIs, sequential use of different TKIs, and adjuvant TKI treatment for earlier 
stages of NSCLC. Several of these acquired resistance mechanisms are 
currently or will soon become treatable [24, 26] through regular reimbursed 
treatment or in an experimental, off-label, early access, or compassionate-use 
setting, which makes adequate screening for acquired resistance essential.  
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Although single-assay screening (with whole-genome sequencing [WGS] or 
large hybrid capture panel) is the most elegant method of screening owing to 
its completeness, currently this is not yet feasible in most laboratories 
worldwide. Small biopsies and cytology specimens still are the mainstay of 
tissue procurement during EGFR TKI therapy, which limits the potential broad 
applicability of large panel strategies, for which larger amounts of tumor 
material are necessary. Moreover, even large hybrid capture panels sometimes 
miss exon-skipping events, oncogenic fusions, and copy number variation 
owing to the length of introns, blind spots within the targeted areas, and large 
deletions, which cannot be captured. 

In practice, a consensus on how to screen for these resistance mechanisms is 
currently lacking. This results in substantial differences between laboratories. 
This disagreement is largely explained by the broad spectrum of possible 
acquired resistance mechanisms, with potential co-occurrence, and the broad 
range of potential screening modalities, each with their own advantages and 
limitations. Thus, although DNA next-generation sequencing (NGS) panels 
detect point mutations, deletions, and insertions, they fail to detect most 
fusions and exon-skipping events and occasionally miss copy number variation 
as well, especially if the tumor cell percentage is low. In situ hybridization (ISH) 
or immunohistochemistry (IHC) for fusion targets and amplifications is a single-
target assay that constitutes a time- and tissue-consuming challenge. RNA NGS 
is the preferred technique to detect both exon-skipping events and fusions, 
including their fusion partners, but current RNA NGS panels do not detect all 
point mutations, deletions, and insertions that DNA NGS can detect. In 
conclusion, the multitude of potential resistance mechanisms combined with a 
multitude of potential techniques to detect them presents to both thoracic 
pathologists and molecular biologists the complex challenge of choosing the 
optimal workup for tumor biopsies from patients progressing on EGFR TKI 
therapy. 

This multicenter study therefore aims to provide recommendations on the 
most efficient and effective resistance analysis after EGFR TKI treatment, by 
evaluating the existing workflow in a retrospective “real world” cohort analysis 
that includes 320 routinely acquired resistance biopsy specimens analyzed in 
three specialized hospitals in The Netherlands. We aimed to address five 
“challenges” in effective screening after EGFR TKI resistance, which are as 
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follows: somatic mutation detection, fusion detection, amplification detection, 
tissue scarcity, and comparison to the pretreatment biopsy. By addressing 
these challenges step by step, we will propose a workup that takes into 
account the added value and effectivity of each test modality and is specifically 
tailored to deal with specific EGFR TKI resistance issues, such as (non)mutual 
exclusivity and tissue scarcity.  

6.4 Material and Methods 

6.4.1 Study setup 

We included 320 EGFR-mutated NSCLC biopsy specimens from 248 patients 
(317 adenocarcinomas and three squamous cell carcinomas) from three 
hospitals in The Netherlands, which were submitted to the pathology 
department for EGFR TKI resistance analysis between January 2018 and 
February 2020. The biopsy specimens were included in the early TKI group 
when the patient had acquired resistance to a first- or second-generation TKI, 
such as erlotinib, gefitinib, and afatinib. The biopsy specimens were included in 
the osimertinib group when the patient had acquired resistance to osimertinib. 

Tumors (n = 3) that originally presented with neuroendocrine differentiation 
were excluded, owing to the morphologic and molecular differences with 
NSCLC. Cytology and non-cytology materials were both included. Patients 
receiving first-line TKI treatment were included and later therapy lines. Patients 
harboring tumors that became resistant to multiple TKI lines were included 
twice: once in the early TKI group after the first resistance to the first- or 
second-generation TKI and once in the osimertinib group after resistance to 
osimertinib. Some patients were treated with first-line osimertinib, but most 
received multiple TKI lines (Supplementary Figure 1). In addition, in some 
patients, the first resistance biopsy specimen did not yield a resistance 
mechanism, so it was repeated. Those biopsy specimens were included as well. 
These “double inclusions” occurred in 60 patients and reflects the “real world” 
TKI resistance setting, in which pathologists are required to perform resistance 
analysis multiple times for the same patient. 

The laboratories performed RNA NGS, MET ISH, DNA NGS, HER2 IHC, or HER2 
ISH to varying degrees. The laboratories were all NEN-EN-ISO 15189 accredited, 
which includes regular evaluations, audits, and quality checks. Due to the 
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retrospective, anonymized nature of this study, informed consent was not 
required.  

6.4.2 DNA NGS 

DNA NGS was performed with laboratory-specific customized oncogene panels 
that cover hotspots in relevant genes, including EGFR, MET, HER2, KRAS, BRAF, 
PIK3CA, FGFR1, FGFR2, and FGFR3, and several other mutations. Copy number 
analysis was performed with the DNA NGS data by locally validated pipelines. 
Details on all other genes included in the customized NGS panels and copy 
number analysis pipelines are available in the Supplementary Methods. The 
panels vary slightly, but relevant resistance mechanisms, which are recited in 
the Introduction section, are covered in each panel.  

6.4.3 RNA NGS 

All laboratories used anchored multiplex polymerase chain reaction–based 
NGS (RNA NGS) technology from Archer DX. Either the FusionPlex 
Comprehensive Thyroid and Lung Panel or the FusionPlex Lung Panel was 
used. Reads were analyzed with vendor-supplied software on an IonTorrent 
platform. The panels used included fusions and exon-skipping events in ALK, 
BRAF, EGFR, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET, 
and ROS1. A comprehensive overview of the methods used for RNA NGS is 
included in the Supplementary Methods.  

6.4.4 RNA/DNA isolation 

All analyses were performed with formalin-fixed, paraffin-embedded (FFPE) 
tissue, including cell blocks from cytology specimens. DNA and RNA were 
isolated differently in each laboratory. At the Erasmus Medical Center, DNA 
was isolated with Chelex or Maxwell, as previously described, whereas RNA 
was isolated with the Qiagen method. At the Leiden University Medical Center, 
total nucleic acid was isolated with a Siemens tissue preparation robot and 
used for both DNA NGS and RNA NGS as previously described. [27] At the 
Netherlands Cancer Institute, DNA and RNA were isolated separately with a 
Qiagen FFPE preparation kit. 

If DNA and RNA were isolated separately, DNA was stored at −20°C and RNA at 

−80°C. If total nucleic acid was isolated, the isolate was stored at −20°C short 
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term and −70°C long term. A more detailed description of the RNA and DNA 

isolation process is supplied in the Supplementary Methods. Tumor cell 
percentage was considered “low” if it was below 30%. 

6.4.5 In situ hybridization (MET- and HER2 ISH) 

HER2 ISH was either performed with Ventana Dual ISH and stained on the 
Ventana Benchmark Ultra or with Dual SISH from Roche Diagnostics. MET ISH 
was performed with Dual Color MET-Cen7 probe either from Leica Kreatech, 
Zytolight Spec, or Roche Diagnostics. Additional information regarding the ISH 
is available in the Supplementary Methods.  

6.4.6 HER2 IHC  

Slides were either stained for HER2 with the Dako A0485 antibody on the Dako 
Omnis immunostainer using Dako EnVision Flex+ in a laboratory developed 
test with citrate and a 1:100 dilution or stained on the Benchmark Ultra with 
Ventana 4B5 antibody. A more comprehensive explanation on the protocol for 
IHC is in the Supplementary Methods.  

6.4.7 Morphologic examination and typing 

All cases were evaluated by one expert thoracic pathologist per center (DC, KM, 
JT) and classified according to the 2015 WHO classification. 
Immunohistochemical staining was used for typing when indicated. In case of 
suspected morphologic transformation to squamous or small-cell phenotype, 
this was confirmed by IHC (synaptophysin, CD56, and chromogranin for small-
cell, P40 for squamous).  

6.4.8 Molecular comparison to pre-treatment biopsy 

All molecular profiles of resistance biopsies were compared with the molecular 
profile of the pretreatment biopsy where possible. We considered a molecular 
alteration in the resistance biopsy an “acquired resistance mechanism” if (1) 
the alteration was absent in the pretreatment biopsy and (2) the molecular 
alteration was considered to be a class 4 or 5 pathogenic mutation, reported to 
be associated with an acquired EGFR TKI resistance phenotype in previous 
literature, such as EGFR T790M, KRAS G12C, and BRAF V600E. On the basis of 
the literature, we assumed that treatment naive, EGFR-mutated tumors do not 
harbor oncogenic fusions. Owing to this assumption, first-line TKI resistance 
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biopsy specimens could be compared with treatment-naive specimens without 
pretreatment RNA NGS. 

We considered molecular alterations “acquired driver mutations” if (1) the 
alteration was considered to be a class 4 or 5 pathogenic alteration, but not 
reported to be associated with an acquired EGFR TKI resistance phenotype, 
such as TP53, CDKN2A, and CTNNB1, and (2) the alteration was absent in the 
pretreatment biopsy. 

There were several situations in which molecular comparison of the resistance 
biopsy and the pretreatment biopsy was suboptimal or impossible, for 
instance in case of incomplete molecular workup of the pretreatment biopsy 
owing to scarce material, with liquid biopsy as the only pretreatment material. 
In the setting of suboptimal comparability of molecular profiles, cases were 
excluded from the analyses of resistance mechanism prevalence, as illustrated 
in Figure 1. We used the Alamut, CKB, OncoKB, Franlinn, and Cosmic databases 
for pathogenicity assessment. 

6.4.9 Amplifications 

Amplifications for all genes, except MET and HER2, were considered 
amplifications if the estimated copy number was 10 or more. For MET and 
HER2, an estimated copy number between six and 10 was considered “low 
amplification,” and an estimated copy number of more than 10 “high 
amplification,” as MET and HER2 amplifications with six to 10 copies can be 
clinically relevant. [28, 29]  

HER2 IHC scoring was performed by a customized scoring system. The 
percentage of tumor cells with “no staining,” “low intensity staining,” “moderate 
intensity staining,” and “high intensity staining” was estimated by 
histopathologic examination. Cases were considered to have a score of 0 if 
90% or more tumor cells had no or low-intensity staining. Cases were 
considered to have a score of 1+ if more than 50% but less than 90% of the 
tumor cells had low-intensity staining. Cases were considered to have a score 
of 2+ if more than 50% but less than 90% of the tumor cells had moderate- or 
high-intensity staining. Cases were considered to have a score of 3+ if 90% or 
more tumor cells had high-intensity staining. Staining was based on 
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membranous HER2 staining. Cells with incomplete membranous staining were 
considered positive.  

Figure 1: Performed DNA NGS, RNA NGS, ISH, and IHC in this study for each 
treatment group. Percentages for each test are based on successful analyses, and 
total percentage of resistance mechanisms (51% and 57%) is based on all 
attempted analyses that could be compared with the pre-TKI biopsy, including 

analyses which returned no result owing to insufficient tissue. IHC, 
immunohistochemistry; ISH, in situ hybridization; NGS, next-generation sequencing; 
TKI, tyrosine kinase inhibitor. 

6.4.10 Smoking 

Patients were considered to be never smokers if they did not smoke at least 1 
month before the NSCLC diagnosis and had accumulated fewer than two pack-
years in their lifetime. Patients were considered to be former smokers if they 
had stopped smoking more than 1 month before they were first diagnosed 
with NSCLC and had accumulated two pack-years or more. Patients were 
considered to be current smokers if they had smoked in the month before 
being diagnosed with NSCLC, regardless of pack-years.  
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6.4.11 Statistics 

Statistical analysis was performed using IBM SPSS Statistics software, version 
25. OncoPrints were visualized with cBioPortal version 3.5.4 OncoPrinter. [30, 
31] 

6.4.12 Ethics 

The data were obtained from routine diagnostic reports and anonymized 
before processing. This study was approved by the institutional review board 
at the Netherlands Cancer Institute.  

6.5 Results 

6.5.1 Specimen collection  

We included 320 biopsy specimens from 248 patients in this study. 
Characteristics are outlined in Table 1. Most of the patients were of female sex 
or never smoker (Table 1 and Supplementary Table 1), more frequent than has 
been described in the treatment-naive advanced-stage NSCLC population in 
The Netherlands. [32]  

The early TKI group included significantly more cytology specimens than the 
osimertinib group (p = 0.004, Fisher’s exact test). This is likely due to the more 
frequent use of endobronchial or endoesophageal ultrasound-guided lymph 
node aspiration in the referring hospitals. Several patients were included in 
both the early TKI group and the osimertinib group, reflecting use of second-
line osimertinib after resistance to the first- or second-generation TKI. The 
timeline of this patient group is outlined in Supplementary Figure 1. 

6.5.2 Challenge #1 Somatic mutation detection 

DNA NGS was used to screen for somatic mutations, including point mutations 
and small deletions and insertions. DNA NGS was performed in 319 of 320 
cases and was successful in 307 cases, as outlined in Figure 1. In the early TKI 
group, DNA NGS detected a resistance mechanism in 66 early TKI cases (49% of 
successful tests) and in 62 osimertinib cases (42% of successful tests). The 
identified somatic mutations are summarized in Figure 2A–C and are often, but 
not always, mutually exclusive with other resistance mechanisms. We used the 
definition for “acquired resistance mechanisms” as described in the Material 
and Methods section. 
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 FIRST AND SECOND 
GENERATION TKI 

RESISTANCE (N = 161) 

OSIMERTINIB 
RESISTANCE (N = 159) 

P-VALUE 

SEX   0.55a 

FEMALE 105 (65%) 109 (69%)  
MALE 56 (35%) 50 (31%)  
AGE 65 (31 – 89) 63 (32 – 86) 0.09b 

BIOPSY SITE   0.73c 

PRIMARY TUMOR 58 (36%) 53 (33%)  
LYMPH NODE 23 (14%) 20 (13%)  
DISTANT METASTASIS 80 (50%) 86 (54%)  
TUMOR TYPE   0.12a 

ADENOCARCINOMA 161 (100%) 156 (98%)  
SQUAMOUS CELL 
CARCINOMA 

0 3 (2%)  

SPECIMEN TYPE   0.004a 

CYTOLOGY 64 (40%) 39 (25%)  
HISTOLOGY 97 (60%) 120 (75%)  

Table 1: specimen characteristics for each treatment group, registered per 
specimen (n = 320). P-values were calculated with Fisher’s exact test (a), unpaired t-
test (b) or Pearson’s chi square test (c).   

Mutual exclusivity is outlined in Figure 3A–C, where we reveal that in 23 cases 
overall (7% of all cases), multiple new resistance mechanisms are present in 
the resistance biopsy. In the early TKI group, multiple resistance mechanisms 
were detected in 14 cases (9% of all early TKI cases), and in the osimertinib 
group in nine cases (6% of all osimertinib cases). The prevalence of co-
occurring mutations in resistance biopsies is substantial, especially considering 
not all biopsies underwent RNA NGS and ISH, as found in Figure 1. 
Nevertheless, when we look closer at which resistance mechanisms co-occur, 
we observe that it is frequently (in 16 of 23 cases, 70%) PIK3CA or EGFR 
amplification in concurrence with another mutation. Co-occurrence of “strong” 
resistance mechanisms, such as T790M, HER2 amp, KRAS, or MET amp, is rare 
and occurs only in seven cases in this cohort (2%).  

Acquired resistance EGFR mutations in the early TKI group include the 
following: A298V, I706T (variant of unknown significance), K754E, S768I, T790M, 
C797S, and EGFR-exon skipping (exons 21–27 or exons 2–7). EGFR mutations in 
the osimertinib group include the following: L62R, A298T, L718Q (variant of 
unknown significance), G724S, I744M, G796S, C797S, L972H, and EGFR-exon 
skipping. We conclude that the identified on-target and off-target resistance 
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mechanisms are similar to those identified in the literature, for both treatment 
groups.  

Figure 2: (A) OncoPrint for the first- and second-generation TKI resistance cohort 
(early TKI group). EGFR mutations include the following: A298V, I706T (VUS), K754E, 
S768I, T790M, C797S, and exon skipping. (B) OncoPrint for the third-generation TKI 
resistance cohort (osimertinib group). EGFR mutations include the following: L62R, 
A298T, L718Q (VUS), G724S, I744M, G796S, C797S, L972H, and exon skipping. (C) 
Legends. All listed mutations are pathogenic driver mutations, which were not 
present in the pretreatment biopsy. This includes the listed EGFR mutations: the 
original EGFR mutation is not included in this figure. F, female; M, male; TKI, 
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tyrosine kinase inhibitor; VUS, variant of unknown significance. 

 

Figure 3: Cases harboring multiple resistance mechanisms. (A) First- and second-
generation TKI resistance cohort (early TKI group). (B) Third-generation TKI 
resistance cohort (osimertinib group). (C) Legend. Mutations marked with ∗ are 
present in only part of the tumor cells, indicating clonal heterogeneity. amp, 
amplification; del, deletion; MT, mutant; TKI, tyrosine kinase inhibitor; WT, wild-
type. 

6.5.3 Challenge #2 Fusion and exon skipping detection 

RNA NGS was performed in 134 cases. It was successful in 110 cases (82%), 
whereas in 24 cases (18%), insufficient RNA was available for the analysis. In 
eight cases overall (7% of all successful analyses), an exon-skipping or fusion 
event was found by RNA NGS, all of which are visualized in Figure 4. These 
events occurred twice in the early TKI group (4% of successfully tested cases) 
and six times in the osimertinib group (10%, p = 0.46, Fisher’s exact test). The 
identified fusions and exon-skipping events were not mutually exclusive with 
other resistance mechanisms, as outlined in Figures 2 and 3; instead they co-
occurred with other resistance mechanisms in four cases. In the early TKI 
group, both rearrangements co-occurred with other resistance mechanisms, 
being PIK3CA mutation and EGFR amplification, respectively. In the osimertinib 
group, two of six fusions or exon-skipping events overlapped with other 
mechanism (33%), both with an EGFR amplification. This is in line with the 
literature, where co-occurrence of a fusion or exon-skipping event with a 
stronger resistance mechanism, such as BRAF, KRAS, EGFR T790M, or MET 
amplification, has not been found often.  
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Figure 4: Fusions and exon-skipping events identified in RNA NGS. del, deletion; ex, 
exon; NGS, next-generation sequencing. 

Several of the identified fusions and exon-skipping events (FGFR3, BRAF, RET) 
are potentially treatable by clinical trials or early access, off-label, or 
compassionate-use programs. Excluding RNA NGS from the standard EGFR TKI 
resistance workup completely will therefore result in missing potentially 
treatable resistance mechanisms in 4% of patients in the early TKI group and 
10% of osimertinib patients, 8% overall. This percentage may be even higher in 
patients treated with first-line osimertinib because fusions have been found to 
be more prevalent in that group. [16]  

6.5.4 Challenge #3 Amplification detection 

In this study, we screened for relevant amplifications with MET ISH and HER2 
ISH and IHC, including DNA NGS copy number variation. MET ISH was 
performed in 282 cases, 88% of all cases overall. In 22 cases (7%), there was 
not enough tissue to complete the analysis, and in four cases (1%), the result 
was invalid. In the remaining 256 cases, MET amplification was identified in six 
cases (5%) in the early TKI group and in 17 cases (12%) in the osimertinib 
group. HER2 ISH was performed in 196 cases overall (62%). In 11 cases (3%), 
there was not enough tissue available and twice the ISH result was invalid (1%). 
In the 183 other cases, HER2 amplification was identified six times (8% of 
successful analyses) in the early TKI group and five times (5% of successful 
analyses) in the osimertinib group. ISH results for both MET and HER2 are 
summarized in Table 2.  
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MET ISH EARLY-TKI 
GROUP  

(N = 114) 

OSIMERTINIB 
GROUP  

(N = 142) 

P-VALUE 

NOT AMPLIFIED 108 (95%) 125 (88%) 0.12 
LOW AMPLIFICATION (6-10 COPIES) 1 (1%) 2 (1%)  
HIGH AMPLIFICATION (>10 COPIES) 4 (4%) 11 (8%)  
HIGH AMPLIFICATION IN PART OF 
THE TUMOR CELLS (CLONAL 
HETEROGENEITY) 

1 (1%) 4 (3%)  

HER2 ISH EARLY-TKI 
GROUP  
(N = 76) 

OSIMERTINIB 
GROUP  

(N = 142) 

P-VALUE 

NOT AMPLIFIED 70 (92%) 102 (95%) 0.53 
LOW AMPLIFICATION (6-10 COPIES) 1 (1%) 3 (3%)  
HIGH AMPLIFICATION (>10 COPIES) 5 (7%) 2 (2%)  
HIGH AMPLIFICATION IN PART OF 
THE TUMOR CELLS (CLONAL 
HETEROGENEITY) 

0 0  

Table 2: MET and HER2 in situ hybridization results per TKI treatment group. P-
values are calculated by pooling all amplified cases and performing Fisher’s exact 
test. Cases in which MET or HER2 ISH was not performed or was unsuccessful, were 
not included in this table.  

Most MET and HER2 amplifications were identified with both ISH and DNA 
NGS. Nevertheless, several amplifications were exclusively detected with ISH. 
The results from cases that underwent both DNA NGS and ISH are outlined in 
Table 3. In the three cases in which DNA NGS detected copy number variation 
for MET, but ISH reported no amplifications, these were all due to polysomy, 
which was described in the MET ISH report. In the eight cases in which MET 
amplification was detected by ISH but missed in DNA NGS, this was due to one 
of the following four reasons: (1) the amplification was present only in part of 
the tumor cells (an example of which is provided in Fig. 5A–C) in three cases; (2) 
low tumor cell percentage or low DNA input in three cases; (3) low 
amplification (5–10 copies) in one case; and (4) decreased accuracy of the copy 
number analysis owing to a very high amplification in another gene in one 
case. Omitting MET ISH from the EGFR resistance workup would therefore have 
resulted in misdiagnosing (missing and overdiagnosing) MET amplifications in 
4% of resistance biopsies.  

MET ISH DNA NGS: NO 
AMPLIFICATION 

DNA NGS: 
AMPLIFICATION 



143 

 

NO AMPLIFICATION 224 3 
AMPLIFICATION 8 13 
HER2 ISH DNA NGS: NO 

AMPLIFICATION 
DNA NGS: 

AMPLIFICATION 
NO AMPLIFICATION 167 0 
AMPLIFICATION 2 7 

Table 3: ISH and DNA NGS copy number analysis comparison. Several 
amplifications, both in HER2 and MET were exclusively identified via ISH, usually 
due to low tumor cell percentage, low amplification (fewer copies) or the 
amplification being present only in part of the tumor cells (clonal heterogeneity). 
Only cases with sufficient tissue for DNA NGS and MET ISH were included.  

 

Figure 5: MET amplification ISH, cytology specimen. Red dots: MET probes; green 
dots: centromere 7 probes. In several tumor cells, the MET:centromere 7 ratio is 
greater than 10, but in other tumor cells, this ratio is 1. Overall, the MET-amplified 
tumor cells were a minority in this slide (approximately 25% of tumor cells), and the 
MET amplification was therefore not detected with NGS. (A) ISH overview. (B) Tumor 
cell without MET amplification, close-up. (C) Tumor cell with high (>10 copies) MET 
amplification, close-up. ISH, in situ hybridization; NGS, next-generation sequencing. 

For HER2, all amplifications detected with DNA NGS were also detected with 
ISH, but two amplifications (22%) were exclusively found by ISH. In both cases, 
a low amplification (6–10 copies) was identified in ISH, which was missed in 
DNA NGS, even though the tumor cell percentage was adequate (50% and 
80%). Omitting HER2 ISH from the EGFR resistance workup would therefore 
have resulted in missing HER2 amplification in 1% of the cases, which 
constitutes 22% of all HER2 amplifications. 
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Several amplifications, both in HER2 and MET, were exclusively identified by 
ISH, usually owing to low tumor cell percentage, low amplification (fewer 
copies), or the amplification being present only in part of the tumor cells 
(clonal heterogeneity). Only cases with sufficient tissue for DNA NGS and MET 
ISH were included. 

HER2 IHC and HER2 ISH were both performed in 180 cases. The results for 
these cases are outlined in Table 4. All cases in which ISH identified an 
amplification had high HER2 expression (3+). Omitting either HER2 ISH or HER2 
IHC therefore would not have resulted in misdiagnosing any HER2 
amplifications.  

 IHC: 0 IHC: 1+ IHC: 2+ IHC: 3+ 
ISH: 0-5 COPIES 105 52 13 0 
ISH: 6-10 
COPIES 

0 0 0 4 

ISH: >10 
COPIES 

0 0 0 6 

Table 4: HER2 in situ hybridization (ISH) versus HER2 immunohistochemistry (IHC).  

6.5.5 Challenge #4 Tissue scarcity 

In DNA NGS, 12 cases were of insufficient quality for a complete analysis (4%). 
This was true for 24 cases (18%) of all attempted RNA NGS analyses. MET ISH 
was not possible in 26 cases (9% of all attempts); for HER2 ISH, this was 13 
cases (7% of all attempted HER2 ISH); and for HER2 IHC, seven cases (3% of all 
attempts). This is a relatively low dropout, compared with the results from 
hybrid capture NSCLC studies in literature [33] or WGS. There was no clear 
correlation between dropout and specimen type or biopsy site.  

6.5.6 Challenge #5 Comparison with pre-treatment biopsy 

All resistance biopsies underwent morphologic examination by pulmonary 
pathologists. In several cases, transformation to another morphologic 
phenotype was observed. In the early TKI group, small-cell transformation was 
observed twice (1%) and squamous transformation once (1%). In the 
osimertinib group, five cases transformed to a small-cell phenotype (3%) and 
two to a squamous phenotype (1%). 

In 28 cases (9%), molecular comparison to the pretreatment biopsy was not 
optimal. This was often due to the use of small (circulating tumor)DNA NGS 
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panels on the pretreatment biopsy, which do not cover amplifications and 
fusions. In this setting, it is difficult to determine which molecular alterations 
were novel compared with the pretreatment biopsy, especially in second-line 
osimertinib cases. These 28 cases were therefore excluded from the mutation 
prevalence analyses in this study.  

6.5.7 Loss of T790M after osimertinib 

A total of 84 cases harbored a T790M mutation on start of osimertinib 
treatment. In 47 of those cases, the T790M mutation was not identified 
anymore in the post-osimertinib resistance biopsy (54%). The T790M mutation 
was lost significantly more often (p = 0.045) in cases without a new resistance 
mechanism, as illustrated in Table 5.  

 LOSS OF T790M T790M NOT 
LOST 

P-VALUE 

TREATMENT TIME 452 595 0.07b 

AGE 66 59 0.002b 

SMOKING PACKYEARS 5.5 3.5 0.43b 

SMOKING HISTORY   0.11a 
NEVER-SMOKER 27 28 

 

EVER-SMOKER 20 9  
NEW RESISTANCE 
MECHANISM 

  0.045a 

NO RESISTANCE 
MECHANISM 

25 11  

NEW RESISTANCE 
MECHANISM 

22 26  

Table 5: loss of T790M and detection of new resistance mechanisms. P-values were 
calculated with Fisher’s exact test (a) and independent t-test (b).  

6.5.8 Acquired driver mutations 

In 110 cases (36% of successful analyses), new driver mutations (which were 
not present in the pre-TKI biopsy) were discovered in the resistance biopsy, 
whereas in 14 cases (5%), a previously present driver mutation was not 
identified anymore. The meaning of this remains unknown. Patients with new 
driver mutations were not different in age, treatment time, smoking status, 
pack-years, or TKI treatment group.  
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6.6 Discussion 

In this study, we analyzed the molecular findings of 320 biopsy specimens 
submitted for EGFR TKI resistance in three different hospitals. Acquired 
resistance mechanisms were identified in 54% of all cases by DNA NGS, RNA 
NGS, MET ISH, HER2 ISH, and HER2 IHC. Each additional molecular test had a 
substantial yield: omitting RNA NGS would lead to misdiagnosis in 8% of cases, 
MET ISH in 4%, and HER2 ISH and IHC in 1%. 

By comparing the results from these assays, we illustrated how clonal 
heterogeneity can decrease the sensitivity of DNA NGS, especially for 
amplifications and in cases with a low tumor cell percentage. We revealed that 
clonal heterogeneity frequently occurs in EGFR TKI-resistant NSCLC, and that it 
may lead to problematic discrepancies between DNA NGS and ISH. 
Furthermore, we proved that acquired resistance mechanisms for EGFR TKIs 
are not always mutually exclusive, both in the early TKI group (co-occurring 
mechanisms in 9%) and in the osimertinib group (co-occurring mechanisms in 
6%). 

Owing to clonal heterogeneity and the co-occurrence of acquired resistance 
mechanisms, performing a parallel workup that includes DNA NGS, RNA NGS, 
MET ISH, and HER2 ISH or IHC is the most sensitive and most comprehensive 
option for molecular diagnostics in the setting of a routine EGFR TKI resistance 
biopsy (Figure 6A). Nevertheless, the added benefit of RNA NGS is limited for 
cases in which a “strong” resistance mechanism has already been identified 
with DNA NGS, MET ISH, and HER2 ISH or IHC: in this study, 0 case harbored an 
additional fusion or exon-skipping event, and observations in the literature are 
limited. In practice, however, there are several arguments that favor a parallel 
approach. First, with different types of tissue (FFPE blocks, cytology smears, 
cytology blocks, and combinations thereof) that are presented, logistics are 
challenging not only for requesting pathologists but also for the laboratory. 
Second, a parallel workup is tissue efficient, and third, when the tumor 
progresses, you can compare results of the analysis of that biopsy with a full 
analysis. Nevertheless, if substantial concerns exist with regard to tissue 
exhaustion (when DNA and RNA are isolated in separate steps), financial 
feasibility, or lack of capacity to perform the tests, it is justifiable to opt for a 
sequential approach, in which DNA NGS, MET ISH, HER2 ISH, or IHC is 
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performed, and additional RNA NGS is performed in case no resistance 
mechanisms or only PIK3CA or EGFR amplification is identified (Figure 6B). 
Nevertheless, it should be noted that this sequential approach takes longer, 
which can be problematic for patients, and the risk of missing relevant 
fusions—however small—is likely not 0%, as resistance mechanisms may co-
occur.   

Figure 6: Summary of recommendations for EGFR TKI resistance screening. (A) 
Parallel approach, safest option. (B) Sequential approach, preferred when limited 
tissue or financial feasibility is an issue. amp, amplification; IHC, 
immunohistochemistry; ISH, in situ hybridization; NGS, next-generation sequencing; 
TKI, tyrosine kinase inhibitor. 

Either HER2 ISH or IHC can be used; they are equally accurate for detecting 
HER2 amplifications. The dropout of this approach is relatively low, especially 
compared with large hybrid capture panels33 and WGS, which might become 
the preferred method in the future, when technological advancements reduce 
the dropout rates, which are especially high when using small biopsies and 
cytology material. The low dropout rate in this study is in part due to the 
isolation method: isolating total nucleic acid and splitting in RNA and DNA later 
is a meaningful step in the EGFR resistance workup, as described. [32] 

A potential limitation of this study, owing to the retrospective and “real world” 
nature, is that most patients in the osimertinib group were treated with 
osimertinib as a second, third, or even fourth treatment line. Nevertheless, 
because osimertinib is now approved for first-line treatment, most patients in 
the future will present with first-line osimertinib resistance. Literature suggests 
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that the mutations found in first-line osimertinib resistance are comparable 
with those in second-line osimertinib resistance, but with more fusions and 
exon-skipping events. [20] If that is true, our recommendations for a diagnostic 
sequence will still be applicable, and the yield of RNA NGS will even be higher. 
In addition, owing to the “real world” nature of our research, our cohort is 
different from previously described registration-trial cohorts with regard to 
inclusion criteria and resistance mechanism prevalence. [4, 34] 

Another potential limitation is the variation between laboratories. Although 
each laboratory in this study had a similar NEN-EN-ISO 15189 accreditation and 
approach, and panels overlapped substantially, there might still have been 
subtle differences. We believe that a more uniform approach could benefit 
future patients with cancer and streamline communication between 
laboratories. 

Owing to the retrospective nature of this study and currently lacking of robust 
recommendations for molecular diagnostics after EGFR TKI resistance, not all 
molecular tests were performed for all cases in this study. Especially the 
number of cases tested for RNA NGS was limited. 

Another caveat is the clinical benefit of screening for acquired resistance 
mechanisms after EGFR TKI resistance. Robust proof that screening for these 
mutations actually improves survival is still lacking. Nevertheless, owing to the 
rapidly changing landscape of targeted treatment options and swift 
accessibility by trials, compassionate-use, and early access programs, we 
assume that screening for these acquired resistance mechanisms will become 
an important requirement. In our cohort, patients were frequently included in 
a clinical trial when a resistance mechanism was identified. 

Many biopsy specimens in this study revealed a loss of T790M or had acquired 
a new driver mutation during the TKI treatment. The clinical consequences of 
these findings are unknown and should be investigated further. Ultimately, we 
like to discover whether this is a sign of tumor dedifferentiation or therapy-
induced selection and has any (progression-free) survival consequences. 

The aim of this study was to recommend the most optimal molecular 
diagnostic sequence for the EGFR TKI resistance setting. In 54% of all EGFR 
resistance biopsies, we were able to identify a resistance mechanism with our 
molecular diagnostics sequence. Although mechanisms of acquired resistance 
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might be discovered in the future, our approach (combining DNA NGS, RNA 
NGS, MET ISH, HER2 ISH, or HER2 IHC) is currently the most comprehensive 
and safest option for patients with acquired resistance to EGFR TKIs.   
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Chapter 7: Discussion, summary and future 
challenges 

7.1 A typical NSCLC patient journey 

In the Introduction, a case was described, in which a patient presents with an 
asymptomatic pulmonary node. (Figure 1) What we can draw from this case is 
that lung cancer, even in relatively low stages, can have a detrimental and 
malignant course. Pathologists are prominently involved in the diagnostics and 
management of NSCLC, as they provide the crucial information in the key 
treatment decision-making moments.  

Figure 1: Key decision making moments for pathologists in the NSCLC patient 
journey. 

7.2 The optimal diagnostic work-up at key decision-making moments in NSCLC: 
a pathologists’ dilemma 

If one thing has become clear from both this thesis and the literature on 
NSCLC, it’s that NSCLC is an incredibly heterogeneous, many-faced and deadly 
disease. No two lung tumors are exactly the same, which is no small feat, as 
the volume of NSCLC patients is so enormous. A wide variance exists with 
regard to age, smoking history, tumor grade, TNM-stage, oncogenic driver 



157 

 

mutation, co-mutations, PD-L1 score, anti-tumor immune response, resistance 
mechanisms, metastatic behavior, treatment response and prognosis. This 
makes personalizing the diagnosis and management of lung cancer crucial – 
but also highly complex.   

In this thesis, we investigated three key decision-making moments for 
pathologists in NSCLC: early stage diagnosis (1), late stage diagnosis (2) and 
acquired EGFR TKI resistance (3). We provide a rationale for molecular and 
immunohistochemical testing sequences at each instance, while taking into 
account the challenges: tissue scarcity, time constraints, costs of testing and 
comprehensiveness. Below, we address each of these key decision-making 
moments, including the specific challenges that a modern day pathologist 
needs to balance carefully.  

7.2.1 Key decision making moment 1: Early stage diagnosis 

The workup for early stage NSCLC initially did not typically include NGS or IHC. 
However, with (neo-)adjuvant immunotherapy and adjuvant Osimertinib 
around the corner, that limited workup is about to change. Additionally, the 
number of early stage patients will rise in the years to come, due to the 
imminent implementation of targeted population screening for NSCLC, 
following data from the NELSON-trial. [1] 

With the transition of targeted and immunotherapeutic therapies to the (neo-
)adjuvant setting, early stage NSCLC diagnostics will thus become more similar 
to the treatment-naïve stage IV workup. While this transition to (neo-)adjuvant 
treatment is ongoing, it’s important to take note of how frequent targets occur 
in early stage tumors, and how these patients and tumors differ from the late 
stage variants. In Chapter 2, we identified EGFR mutations in 13% of tumors in 
stage IIIA or lower, whereas this was 9% in stage IIIB and IV. Especially the 
earliest stages (stage 0 and stage IA) were enriched for EGFR mutations (27% 
and 18% respectively).  

Additionally, as illustrated in Chapter 2, there are substantial differences 
between early stage EGFR-mutated and late stage EGFR-mutated cancers, 
including type of EGFR mutation, co-mutations, growth pattern and smoking 
history. This underlines the complex heterogeneity of lung adenocarcinoma, 
and is an argument in favor of developing comprehensive multi-factorial risk 
assessment tools instead of current ‘one size fits all’ protocols.  
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7.2.2 Key decision making moment 2: Late stage diagnosis 

In the treatment-naïve stage IV setting, patients need to be screened for PD-L1 
expression and targetable mutations. However, with the growing list of 
targetable mutations, multiple challenges arise: choosing the correct molecular 
panel, the role of immunohistochemistry for fusion detection, and PD-L1 
expression scoring. Each is discussed separately below.  

7.2.2.1 Molecular diagnostics in stage IV NSCLC 

All relevant targets need to be covered by the molecular workup. This seems 
simple, but in the past years, the number of actionable targets has risen 
constantly, and will continue to do so. A small targeted panel which only 
includes targetable alterations, will need to be adjusted with every new target, 
and is therefore not future-proof. In addition, there are many targets for which 
an experimental TKI is available via clinical trials, compassionate use or early 
access programs. Those targets are not officially ‘actionable’, but finding them 
can still be worthwhile for individual patients. In addition, selected co-
mutations (such as TP53 and STK11 – as discussed in Chapter 2 and Chapter 6) 
are relevant to identify as well, as they can be indicative of the malignant 
potential and therapy resistance.  

The molecular screening in stage IV should thus at least cover (1) the eight 
currently targetable targets: EGFR, BRAF, HER2, ALK, ROS1, RET, NTRK and MET; (2) 
targets for which clinical trials exist, such as KRAS G12C and NRG1; (3) clinically 
relevant co-mutations, such as STK11 and TP53. In practice, this means that 
each specimen should be tested for point mutations, deletions, insertions, 
amplifications, exon skipping and fusions. Most of these alterations can be 
detected with small, targeted DNA NGS panels, but for exon skipping and 
fusion detection, broad DNA NGS panels (such as WGS) or targeted RNA NGS is 
required.  

A major issue with choosing the optimal molecular diagnostics sequence in 
stage IV is tissue scarcity. In 30% of the treatment-naïve stage IV patients, as 
discussed in Chapter 3, the entire workup needs to be performed on a (small) 
cytology specimen, often acquired via endoscopic lymph node fine needle 
aspiration, with a limited number of tumor cells. With broader panels, a higher 
DNA input is required, which can thus be challenging in these small biopsies 
and cytology. Taking a new biopsy, with risk of co-morbidity, causes substantial 
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diagnostic delay, and must be prevented as much as possible. Based on the 
Chapter 3 data, we therefore recommend performing targeted DNA NGS first, 
followed by RNA NGS when no driver is identified. In never-smokers, fusions 
are far more prevalent (32% of cases, Chapter 3) compared to current and 
former smokers (4% of cases). Therefore, RNA NGS is more relevant for never-
smokers, and it should be performed immediately, not only after DNA NGS is 
driver-negative. (Figure 2) Both of these workups proved relatively tissue-
efficient, while covering all required targets.  

Figure 2: Stage IV NSCLC workup, separate for never-smokers and smokers. 
(Chapter 3) 

7.2.2.2 Immunohistochemistry for fusion detection 

An exception to the multi-target approach in the molecular stage IV workup is 
ALK. Since ALK immunohistochemistry is highly sensitive and specific for ALK 
fusions, fast pre-screening with ALK IHC is defensible, and sometimes reduces 
the turnaround time with several days.   

The same exception that can be made for ALK immunohistochemistry is not 
applicable to NTRK and ROS1. Whereas ALK IHC is highly sensitive and specific, 
ROS1 IHC has problematic false-positivity (as demonstrated in Chapter 3) and 
NTRK IHC – as described in Chapter 5 – false-negativity and false-positivity. A 
sequential approach, with pan-TRK immunohistochemistry first and confirming 
positive cases with RNA NGS, would result in missing 18% of actionable NTRK 
fusions.  

7.2.2.3 PD-L1 immunohistochemistry 

Being the companion biomarker for immunotherapy, the 
immunohistochemical PD-L1 expression score is mandated in all stage IV 
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NSCLC workups. However, pathologists should recognize the flaws that this 
biomarker intrinsically harbors. There is substantial inter- and intraobserver 
variance around the cutoff point, and PD-L1 expression does not predict 
response to immunotherapy perfectly – some PD-L1-high patients fail to 
respond and vice versa. Unfortunately, the search for alternative, more reliable 
biomarkers has not yet been successful.  

Part of the current scientific effort is directed at improving PD-L1 as a 
biomarker, by reducing interobserver variability and overcoming human 
scoring bias. In Chapter 4, it was demonstrated that automated deep learning 
algorithms can be reliable, and potentially valuable as a scoring assistant in 
difficult cases around the 50% cutoff point. As inter- and intraobserver 
variance is an issue for pathologists in several tasks (Ki67, nuclear grade, 
Gleason score, ER-expression, etc.), automated, computer-mediated scoring, 
comparable to PD-L1 scoring as described in Chapter 4, could very well be 
implemented more widely in the near future.  

7.2.3 Key decision making moment 3: Acquired TKI resistance 

With the recent introduction of TKIs into routine NSCLC treatment regimens, 
pathologists were confronted with a new problem: how to find the resistance 
mechanism in acquired resistance biopsies? Resistance biopsies – like stage IV 
biopsies – generally don’t contain a an abundance of tumor cells, but need to 
be tested for a wide range of targets. Known resistance mechanisms include: 
small cell transformation, squamous transformation, EGFR, HER2, MET, KRAS, 
BRAF, PIK3CA, ALK, RET, FGFR, ROS1, NTRK and MET. The landscape of genomic 
alterations after TKI resistance thus bears some similarity to the treatment-
naïve workup. An important difference however is the clonal heterogeneity in 
resistance biopsies, which leads to non-mutual exclusivity of resistance 
mechanisms and impaired amplification detection.  

Whereas oncogenic driver mutations such as BRAF and EGFR are mutually 
exclusive in treatment-naïve tumors, resistance mechanisms co-occur in 
resistance biopsies, in at least 7% of cases. A sequential approach, with RNA 
NGS only when no driver is identified in DNA NGS, as recommended in the 
treatment-naïve setting, is therefore not comprehensive in resistance biopsies, 
as resistance mechanisms may co-occur. However, it must be noted that co-
occurrence of fusions and exon skipping events with other resistance 
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mechanisms (except EGFR amplification and PIK3CA) is rare, so omitting RNA 
NGS in selected cases could be defensible in case of logistical, tissue-quantity 
or financial constraints.  

Due to clonal heterogeneity, amplification detection with DNA NGS is impaired, 
as DNA NGS is heavily dependent on the tumor cell percentage for copy 
number analysis. When not all tumor cells harbor the amplification or the 
tumor cell percentage is low, the copy number can be underestimated, leading 
to the missing of amplifications. MET and HER2 amplifications are among the 
most frequently occurring and (experimentally) targetable resistance 
mechanisms, so missing those amplifications is not optimal. Our data in 
Chapter 6 shows that up to 30% of HER2 and MET amplifications are missed by 
DNA NGS in the acquired resistance setting. It’s therefore important to use 
additional MET and HER2 testing in resistance biopsies, with MET ISH and HER2 
IHC or ISH.  

The complete EGFR TKI workup therefore includes: morphologic examination, 
DNA NGS, RNA NGS, HER2 ISH of IHC and MET ISH. (Figure 3) 

7.3 Future challenges 

Although the recommendations throughout this thesis are helpful for choosing 
the optimal workup in the current NSCLC landscape at key decision-making 
moments, there is still room for improvement in the treatment and 
management of future NSCLC patients. Even with the combined research effort 
of the past decades, most NSCLC patients still die and we still have insufficient 
knowledge on the biologic mechanisms underlying disease behavior. There are 
important scientific lacunae that we will need to cover in  the coming years, 
including a different approach to patient risk stratification, improving 
molecular methods and prevention.  

7.3.1 Improved risk stratification   

Currently, up to 50% of patients who undergo ‘curative’ surgical resection die 
of lung cancer, including the patient in our case at the beginning of this 
Chapter. This is likely due to the presence of micro-metastases at the time of 
surgery, which are not detected during routine staging. Current risk 
assessment in the clinic is based solely on TNM-stage, which is shown to be a 
relatively poor predictor. A large number of potential biomarkers for 
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metastasis after surgery have been described already, for example histological 
differentiation, pleural invasion and specific mutations. [2] However, none of 
these biomarkers provide a perfect prognostication, and the search for novel 
and more integrated biomarkers is still ongoing.  

 

Figure 3: Recommended workup for EGFR TKI resistance biopsy testing. (Chapter 6) 
A: Recommended, comprehensive workup. B: Alternative workup in case of 
logistical, tissue-quantity or financial constraints.   

Another main challenge that will hopefully be solved in the near future is the 
selection of patients for immunotherapy. Although some patients respond 
excellent to immunotherapy, other patients respond barely, or only for a short 
amount of time. PD-L1 and tumor mutational burden (TMB) are established 
biomarkers for response, but imperfect ones – some patients with a low PD-L1 
and TMB respond remarkably well, and vice versa. Additionally, there is 
substantial variability between pathologists in PD-L1 assessment and between 
laboratories in the TMB assessment. An urgent need for novel, better 
biomarkers for immunotherapy response therefore exists. In recent years, 
several promising biomarkers have emerged, for example CD8+ tumor 
infiltrating T-cells, or the presence of tertiary lymphoid structures, [3, 4] but 
real treatment implications for NSCLC patients are still far away.  

In the TKI-treated NSCLC patients, specifically Osimertinib, there is a wide 
variety in progression-free survival between patients. If we would know in 
advance what the expected time to resistance would be, treatment and follow-
up regimens could be specifically tailored to suit individual patients. This could 
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potentially reduce the burden of regular screening, give rise to novel treatment 
innovations, and improve quality of care.  

What all these risk stratification problems all have in common is their complex, 
multi-factorial nature. If we can draw any conclusions from the past decades of 
cancer research, it’s that lung cancer is an incredibly complex, many-faced, 
capricious disease. Current-day biomarkers such as TNM attempt to simplify all 
of these biological factors into one biomarker. This approach, although 
ambitious and hopeful, neglects the incredible complexity and heterogeneity 
of the biochemical processes that make up the tumor behavior. Any single 
biomarker is thus by definition a poor representation and it’s naïve to expect 
an accurate response prediction from it.  

As illustrated by the problems discussed above, there is an urgent clinical need 
for more comprehensive, multi-factor biomarkers and prediction models. 
These problems – prediction problems with a large number of potential risk 
factors – are difficult to solve with plain statistics, but ideal for machine 
learning. While humans have great difficulty to comprehend ‘big data’, deep 
learning models are well-suited for it. In the past several years, there has been 
an almost exponential increase in the number of biomedical studies utilizing 
artificial intelligence (AI). There is some hope that this line of research will 
unlock the problem of risk stratification in NSCLC.  

However, although AI is a promising tool, its place in the routine Pathology 
diagnostics is still only beginning to be established. Although some 
laboratories are now using fast-throughput scanners for a large portion of the 
diagnostic load, routine computer-aided diagnostics is still a distant dot on the 
horizon. The current digital infrastructure in virtually all laboratories is not able 
to accommodate AI-models yet, which will need to change in years to come. 
Additionally, the digitalization of laboratories will need to be paralleled with an 
increase in pathologist’s digital awareness. In order to assess the benefit of AI-
models, one needs to understand how AI-models work and be aware of the 
pitfalls. Currently however, AI has no place in the curriculum of pathologists-in-
training.  

Another challenge in the field of digital pathology and machine learning is 
domain adaptation. (Figure 4) It’s well known that the performance of AI-
models is often domain-specific, and models don’t generalize well to other 
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laboratories. Small differences in cutting technique, scanner settings or 
staining methods (domain differences) can have substantial consequences for 
model performance. This will become an issue in long-term model use as well, 
as most laboratories purchase new laboratory equipment every few years. 
Data scientists need to come up with easy-to-implement domain adaptation 
models, and should work together with pathologists to determine a 
standardized, periodic quality assessment protocol for AI-tools.  

 

Figure 4: Domain adaptation example. A: PD-L1 slide from LUMC, using 22C3 
antibody. B: PD-L1 slide from Erasmus MC, using SP263 antibody and a different 
immunostainer. C: Predictions from LUMC-trained PD-L1 algorithm on Erasmus MC 
slide, failing to correctly detect most cells due to domain differences.  

7.3.2 Towards whole genome sequencing for all? 

In the near future, whole genome sequencing (WGS) and liquid biopsy will be 
used more often. Whereas WGS is now inefficient for lung cancer biopsies and 
cytology due to tissue scarcity, the techniques involving WGS are becoming 
more tissue-efficient. Tissue scarcity is therefore unlikely to remain a limitation 
for long. In addition, WGS is becoming less expensive each year, which 
promotes the availability worldwide. Eventually, we will perform WGS on more 
often, regardless TNM stage.  

In addition, liquid biopsy is now used only in selected cases. Although liquid 
biopsy still has some problematic limitations, such as the inability to detect 
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fusions, exon skipping and copy number alterations, it could be useful in 
selected cases, such as the TKI resistance setting. In Chapter 6, we 
demonstrated that EGFR TKI resistance cases have substantial intratumor 
genomic heterogeneity. In the 43-49% of resistance cases, no mechanism is 
identified, which could be caused by sampling error and potentially solved by 
liquid biopsy. For patients with acquired resistance to Osimertinib, liquid 
biopsy could thus become a meaningful addition.  

7.3.3 Smoking eradication 

Although future research will undoubtedly improve lung cancer diagnostics 
and mortality by using the most novel, cutting-edge techniques, their 
combined benefits are insignificant compared to what we would win when 
tobacco would be eradicated. Smoking is the main cause of lung cancer, and 
up to 90% of lung adenocarcinomas occur in former or current smokers. 
(Chapter 3) However, as discussed in Chapter 1, smoking prevalence is only 
slowly decreasing, and still rising in some countries.  

The first anti-tobacco campaign originated from 1604, when King James I of 
England argumented that smoking was “A custome lothsome to the eye, 
hatefull to the Nose, harmefull to the braine, dangerous to the Lungs, and in 
the blacke stinking fume thereof, neerest resembling the horrible Stigian 
smoke of the pit that is bottomelesse”. [5] 

Statistical evidence for the detrimental effects of smoking was first reported to 
the public much later, in 1950, when epidemiologists Doll and Hill indisputably 
demonstrated a causal relation between smoking and lung cancer, first with 
their study in the London oncology wards, and later with their British Doctors 
Study. In their initial study, they proved that smoking was 25 times more 
prevalent in lung cancer patients compared to patients in the non-oncology 
ward. [6] They followed up their study with a prospective questionnaire study 
amongst British doctors, and demonstrated a much higher lung cancer related 
death rate in heavy smoking doctors. [7] The link between second-hand smoke 
and lung cancer was demonstrated in the 1980s, [8, 9] and the harmful effects 
of third-hand smoke are currently becoming more clear. [10, 11] 

Since the poetic allegations of King James I and the thorough epidemiologic 
research of Doll and Hill, smoking prevention measures have increased in both 
quantity and quality. Currently, there are multiple evidence-based smoking 
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cessation interventions for individuals, including nicotine replacement, 
pharmacological treatment with buproprion and varenicline and behavioral 
interventions. These measures combined yield a 24% success rate 1 year after 
smoking cessation attempt, which is much better than the 3-5% when patients 
try to stop themselves, but still disappointingly low. [12] 

Currently, there are many evidence-based population-level public health 
interventions, including: heavy taxes on tobacco products, [13] advertisement 
bans, [14] increasing the minimum age for legal access, [15, 16] reducing 
tobacco retailer density, [17] prohibiting smoking in public [18, 19] and 
awareness campaigns. [20] The main aim of these interventions is to reduce 
the number of people – especially children and young adults – who initiate 
smoking.  

Historically, all (plans for) smoking prevention interventions are met with 
strong opposition from the tobacco industry, by means of misinformation and 
manipulation. When Doll and Hill first published about the causal relation 
between lung cancer and tobacco smoking in 1950, [6] their findings – 
although epidemiologically sound – were disputed by the tobacco industry, 
who fabricated contradictory studies and flooded the media with enlisted 
doctors claiming that Doll and Hills’ research was controversial and lacked 
proof. [21] It wasn’t until 1954, after Doll and Hill had repeated their study 
prospectively, on an even larger scale and with the same results, [7] that the 
link was finally acknowledged. Jeffrey Wigand, former vice-president of 
research and development at Brown & Williamson and one of the most 
influential whistleblowers in history, exposed that ‘big tobacco’ had, in fact, 
known about the detrimental health effects of smoking for decennia and was 
actively working towards making smoking even more addictive. He received 
several death threats and lawsuits.  

In the Netherlands and the European Union, there is still evidence, today, that 
the tobacco industry influences politicians to delay or adjust plans for smoking 
prevention, [22] and routinely bypasses advertisement bans, for example via 
the use of social media influencers. [23]  

However, it’s still possible for decades-long traditions to change. New Zealand 
was recently internationally commended for announcing a comprehensive 
package of smoking prevention interventions at once. Their plan is to 
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completely eradicate smoking, in order to make their current 14-year-olds 
unable to ever buy tobacco products in their lifetime, and the first of a truly 
smoke-free generation. However promising, New Zealand is still the only 
country to make such far-reaching policy changes. Other countries – including 
the Netherlands – sluggishly struggle politically with the tobacco lobby, the 
idea of limiting people’s ‘free choice’ to smoke, and losing substantial income 
from tobacco taxes. Although a complete ban on smoking reduces healthcare 
costs substantially in the long run, it’s a painful financial choice in the short 
term.  

Bradford Hill, confronted with the limited acknowledgement following their 
first paper in 1950, argumented to Richard Doll that “the researchers’ job is to 
report, not campaign”, but this viewpoint has shifted significantly since the 
1950s. CanMEDS roles ‘Maatschappelijk handelen’ and 
‘Gezondheidsbevorderaar’ are now included in the Dutch medical curriculum 
as important capacities of a modern doctor, with an emphasis on prevention, 
[24] and doctors have become increasingly active in the media, backing anti-
tobacco activists. This is a crucial development in the long run, as the best 
treatment for cancer patients is obviously to keep them from becoming sick in 
the first place.  

7.4 Conclusion 

At the end of this thesis, we are a small step closer to optimizing and 
personalizing the diagnosis and treatment of NSCLC, by providing a rationale 
for each of the three key decision-making moments in NSCLC management. 
For lung cancer pathologists however, the journey toward precision medicine 
is far from over. The discovery of novel treatments, interventions and 
biomarkers are following each other up more rapidly than ever before, by 
which the scientific beast that is our collective academic knowledge has slowly 
begun to move NSCLC towards the categories of ‘preventable’, ‘curable’ and 
‘manageable’. The lung cancer pathologist thus has a crucial and central role to 
play in the next decades: navigating new diagnostic challenges, learning to 
work with novel and unexpected innovations, and working together more 
intensively than ever before with molecular biologists, clinicians and 
radiologists. These new circumstances might ask more of lung cancer 
pathologists than ever before in history, but their effort – although enormous – 
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could just make it possible to provide a brighter future for the cancer patients 
of tomorrow.  
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Nederlandse samenvatting 
Voor niet-kleincellig longcarcinoom (NSCLC) zijn er meer 
behandelmogelijkheden dan ooit tevoren, wat ervoor zorgt dat het kiezen voor 
de juiste behandeling steeds complexer wordt. Longpathologen zijn 
verantwoordelijk voor het testen van NSCLC-patiënten voor een groot aantal 
moleculaire veranderingen en het voorspellen van immunotherapie-
gevoeligheid. Hiervoor gebruiken ze een aantal testmethoden: 
immuunhistochemie (IHC), in situ hybridisatie (ISH), DNA sequencing (DNA 
NGS) en RNA sequencing (RNA NGS). Echter, in het constant veranderende veld 
van moleculair onderzoek en onco-immunologie is het niet altijd duidelijk wat 
de beste testmethode is. Er wordt steeds gezocht naar een balans tussen 
weefsel-efficiëntie, tijd, kosten en uitgebreidheid van verschillende tests.  

Het doel van dit proefschrift is daarom om retrospectief de huidige 
testmogelijkheden te onderzoeken, en de optimale testmogelijkheden te 
selecteren voor NSCLC-patiënten, specifiek op 3 cruciale diagnostische 
momenten:  

1. Vroeg-stadium NSCLC (zonder uitzaaiingen) 
2. Laat-stadium NSCLC, dat nog niet behandeld is  
3. Laat-stadium NSCLC, na resistentie voor behandeling.  

Hoofdstuk 2 beschrijft de opbrengsten van moleculair onderzoek bij vroeg-
stadium NSCLC. Hoofdstuk 3 beschrijft de beste moleculaire work-up bij laat-
stadium onbehandelde NSCLC. Hoofdstuk 4 beschrijft de rol van kunstmatige 
intelligentie (AI) bij programmed death ligand 1 immunoscoring. Hoofdstuk 5 
beschrijft de sensitiviteit van NTRK immuunhistochemie, en of dat gebruikt zou 
moeten worden in de routine diagnostiek. Hoofdstuk 6 beschrijft de 
moleculaire work-up na resistentie voor EGFR-remmers.  
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Stellingen behorende bij het proefschrift getiteld ‘Diagnostic challenges of 
today's lung cancer pathology: Personalizing therapy by 
immunohistochemical and molecular biomarkers’ 

1 Programmed death ligand 1 immunohistochemistry is a problematic 
biomarker for immunotherapy response. (this thesis) 

2 Lung cancer in never smokers should be seen as a distinct entity, and a 
different molecular testing sequence should be used for never-
smokers. (this thesis) 

3 There is no place for pan-TRK and ROS1 immunohistochemistry in the 
NSCLC workup. (this thesis) 

4 Targeted hotspot DNA NGS can never stand alone to identify HER2 and 
MET amplifications in the EGFR TKI acquired resistance setting. (this 
thesis) 

5 Cell free DNA sequencing can replace part of the molecular diagnostics 
for NSCLC.  

6 In treatment resistance management and prediction, the model of 
tumor evolution should be the central hypothesis.  

7 Novel methods, including artificial intelligence, methylation, tumor-
immune microenvironment profiling and RNA expression are promising 
potential new biomarkers for both prognostication and therapy 
selection in NSCLC.  

8 Similar to the pan-cancer treatment indication for NTRK-rearranged 
stage IV tumors, a target-specific approach should be considered for 
other mutations.  

9 The best treatment for NSCLC is prevention; more (societal and 
scientific) effort should go into smoking eradication and prevention.  

10 Similar to the tobacco industry, scientists and universities should cut 
ties with the fossil fuel industry.  

 


