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Abstract
Traditional anomaly detection methods aim to identify objects that deviate from most 
other objects by treating all features equally. In contrast, contextual anomaly detec-
tion methods aim to detect objects that deviate from other objects within a context of 
similar objects by dividing the features into contextual features and behavioral fea-
tures. In this paper, we develop connections between dependency-based traditional 
anomaly detection methods and contextual anomaly detection methods. Based on 
resulting insights, we propose a novel approach to inherently interpretable contex-
tual anomaly detection that uses Quantile Regression Forests to model dependencies 
between features. Extensive experiments on various synthetic and real-world datasets 
demonstrate that our method outperforms state-of-the-art anomaly detection methods 
in identifying contextual anomalies in terms of accuracy and interpretability.
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1 Introduction

According to the well-known definition of Hawkins (1980), an anomaly1 is an 
object that is notably different from most remaining objects. Chandola et  al. 
(2009) subdivided anomalies into three types: point anomalies (an object is con-
sidered anomalous when compared against the rest of objects), contextual anoma-
lies (an object is anomalous in a specific context), and collective anomalies (a 
collection of objects is anomalous with respect to the entire dataset). The analy-
sis of anomalies has a wide range of applications, such as in network security 
(Ahmed et al. 2016a), bioinformatics (Spinosa and Carvalho 2005), fraud detec-
tion (Ahmed et al. 2016b), and fault detection and isolation (Hwang et al. 2009).

Anomaly analysis consists of two equally important tasks: anomaly detection 
and anomaly explanation. A wealth of ‘shallow’ machine learning based methods, 
i.e., not based on deep learning, have been proposed to detect anomalies (Chan-
dola et  al. 2009). More recently, many deep learning based anomaly detection 
methods have also been developed (Pang et  al. 2021). However, deep learning 
based anomaly detection methods are notoriously known as not being interpret-
able, in the sense that generally both the model itself is non-transparent and the 
resulting anomaly scores are challenging to interpret without the use of a post-
hoc explainer. In this paper it is especially the latter that we consider to be prob-
lematic, as post-hoc explanations often rely not only on the model but also on the 
specific explainer used. In addition, deep learning methods typically require large 
amounts of data and training the models is a time-consuming process. In many 
real-world applications, however, ‘native’ interpretability (i.e., without post-
hoc explainer) may be required, and limited data and/or computation time may 
be available. For these reasons, in this paper we restrict our focus to ‘shallow’ 
machine learning based methods. In correspondence with this choice, we focus 
on settings where the amount of data is smaller than is typically required to learn 
accurate deep models. Most existing shallow methods only consider point anom-
aly detection, largely ignoring contextual anomaly detection. Moreover, anomaly 
explanation has received very limited attention. In this paper, we address both 
the problem of contextual anomaly detection and that of anomaly explanation, 
for small to moderately sized tabular data having categorical and/or quantitative 
features.

Shallow anomaly detectors are typically categorised into distance-based, den-
sity-based, and distribution-based approaches (Wang et al. 2019). Distance-based 
and density-based methods use knowledge about the spatial proximity of objects 
to identify anomalies, while distribution-based methods use knowledge about 
the distribution of the data to detect anomalies. These methods work under the 
assumption that objects having a large distance or different density from their 
spatial neighbours are anomalous or objects that take rare values under a mar-
ginal or joint distribution of features are anomalous, respectively. Using either of 

1 Given the fact that “outlier" is often used as a synonym for “anomaly" in the anomaly detection litera-
ture, we will use them interchangeably in this paper.
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these assumptions may lead to false positives though. For example, as shown in 
Fig. 1a, these methods will mistakenly identify object B as an anomaly if the aim 
is to detect people that are over- or underweight.

As this is often undesirable, we aim to define and detect anomalies from another 
perspective, that is, we assume that objects that violate a dependency, i.e., a rela-
tionship between features, are anomalous. This is the idea behind dependency-based 
anomaly detection (Lu et al. 2020a), which is not new but has received limited atten-
tion compared to other types of anomalies. It leverages the intrinsic structure and 
properties of the data to find potentially more relevant anomalies. For example, 
Fig. 1b shows that this approach will identify object B as normal by modelling the 
dependency between height and weight.

Traditional anomaly detection techniques—including distance-, density-, and 
dependency-based methods—treat all features equally when identifying anomalies. 
However, in domains such as healthcare, sensor networks, and environment protec-
tion, some features should never be used directly to quantify anomalousness. For 
instance, forest fire detection systems should not treat ‘deviating’ values of latitude, 
longitude, date, and time as an indication of an anomaly. We should not simply 
discard these features either though, as they may contain relevant information. For 
example, the ‘normal’ temperature may be higher for certain regions than for others. 
This motivates us to investigate contextual anomaly detection, which can take such 
extra features into account.

Contextual anomaly detection assumes that an object is anomalous if it strongly 
deviates from objects within its ‘context’ of similar objects. The apparent contradic-
tion in this assumption is explained by the division of the features into two disjoint 
subsets, i.e., contextual features and behavioral features. The contextual features are 
only used to define the contexts, using some similarity measure, while the behavio-
ral features are only used to determine whether an object deviates from other objects 
within its context. Domain knowledge often leads to a natural division between con-
textual and behavioral features.

We observe that both contextual and dependency-based anomaly detection meth-
ods identify anomalies by explicitly or implicitly exploring dependencies between 
features. Concretely, dependency-based anomaly detection methods model depend-
ency relationships between all features explicitly, while contextual anomaly detec-
tion methods model dependency relationships between behavioral and contextual 
features implicitly or explicitly. As far as we know this connection has not yet been 
pointed out in the literature.

1.1  Approach and contributions

In this paper, we introduce an approach for contextual anomaly detection and expla-
nation that integrates the core principle of dependency-based anomaly detection into 
contextual anomaly detection to obtain a very accurate approach. As is common, we 
use regression analysis to model dependencies. Existing methods for dependency-
based and contextual anomaly detection that use regression, however, typically only 
estimate the conditional mean of the response variable and directly interpret that as 
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‘normal’ value. This strongly limits how well anomalies can be detected, as the con-
ditional mean provides very limited information about the conditional distribution. 
We therefore use quantile regression, which can model a conditional distribution in 
much more detail by estimating conditional quantiles. Figure 1c shows how condi-
tional quantiles provide more information about the relationship between weight and 
height than a conditional mean could.

More specifically, a subset of the features, dubbed contextual features, are used 
to define the context of an object, while the remaining features, dubbed behavioral 
features, are used for detecting deviations within a context. In this paper we assume 
that the contextual features can be mixed but all behavioral features are numerical. 
Given this context and our aims, we use Quantile Regression Forests (Meinshausen 
2006) to perform predictions for each behavioral feature and obtain corresponding 
uncertainty quantifications. By summing the quantified uncertainties (with a wider 
quantile interval representing a higher level of uncertainty) for all individual behav-
ioral features, we obtain the anomaly score for a data instance. By attributing parts 
of the anomaly score to individual behavioral features, the approach intrinsically 
provides explanations in the sense that it can convey to which extent which features 
contributed to making the instance an anomaly. This offers advantages to post-hoc 
explanation methods such as SHAP (Lundberg and Lee 2017), which we do not 
consider ‘attributable’ for the following two reasons. First, the post-hoc explanation 
may not match the information/rationale used by the model to detect an anomaly (Li 
et al. 2022). Second, it has recently been shown (Fokkema et al. 2022) that attribute-
based explanations cannot be both recourse sensitive and robust, which is a good 

Fig. 1  Different types of anomaly detection. a Distance- and density-based methods both consider object 
B to be abnormal, because it is far away from other objects and in a low-density region. b Dependency-
based methods model the relationship between height and weight, and consequently consider object B to 
be normal. c Conditional quantiles provide more information about the conditional distribution than just 
the mean, and d can be used to visualise—using beanplots (or, rather, a variation of a beanplot combined 
with boxplots, see Sect. 5.2 for details)—why a certain object is considered (ab)normal
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reason to avoid such explainers when possible and use a ‘native’ attribution-based 
method instead.

As far as we are aware, we are the first to use quantile regression for dependency-
based or contextual anomaly detection. Specifically, we choose to employ Quantile 
Regression Forests for three reasons. First, it can model both linear and non-linear 
dependency between features. Second, in the paper that introduced the method it 
was empirically shown to outperform other conditional quantile estimators in most 
cases. Figure  1d shows how the estimated conditional quantiles can be used to 
approximate the conditional probability density at different locations, which we can 
use to accurately detect anomalies. Moreover, the quantiles are helpful to explain 
why an object is considered an anomaly without having to explicitly refer to other 
objects.

The main contributions of our work can be summarized as follows: (1) We iden-
tify a connection between dependency-based traditional anomaly detection methods 
and contextual anomaly detection methods, and exploit this observation to introduce 
a novel high-level approach to contextual anomaly detection and explanation; (2) 
We instantiate this generic approach using quantile regression (and Quantile Regres-
sion Forests specifically) for anomaly detection and a beanplot-based visualization 
for anomaly explanation; and (3) We perform extensive experiments on synthetic 
and real-world datasets to empirically demonstrate the effectiveness, and interpret-
ability of the proposed method when compared to state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 discusses related 
work, both in contextual and traditional anomaly detection. Section  3 introduces 
notation, formalizes the problem, and presents the high-level approach that we pro-
pose. Section 4 then describes some technical preliminaries, most notably Quantile 
Regression Forests. Section 5 introduces QCAD, our proposed method for Quantile-
based Contextual Anomaly Detection and Explanation that instantiates the high-
level approach. Section 6 empirically compares QCAD to its competitors, and pro-
vides a case study that investigates the use of QCAD to find exceptional football 
players from data. Section 7 concludes the paper.

2  Related work

We first discuss related work on contextual anomaly detection and explanation, and 
then proceed with the two most closely related types of traditional anomaly detec-
tion: dependency-based and subspace-based anomaly detection.

2.1  Contextual anomaly detection and explanation

Contextual anomaly detection has received particular attention in spatial data (Cai 
et al. 2013), temporal data (Salvador et al. 2004), and spatio-temporal data (Smets 
et  al. 2009), where spatial and/or temporal features are used to define contexts. 
These methods are not directly applicable to other domains, where the contexts 
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are defined by other types of features; ‘generic’ contextual anomaly detection has 
received limited attention in the community.

CAD (Song et  al. 2007) is a seminal work that introduced generic contextual 
anomaly detection. It assumes a user-specified partition of features into contex-
tual (called ‘environmental’) and behavioral (called ‘indicator’) features, and uses 
Gaussian Mixture Models to fit the distributions of the contextual and behavioral 
feature spaces. Dependencies between contextual features and behavioral features 
are then learned by means of ‘mapping functions’, and an object is considered anom-
alous if it violates the learned functions. For this to work CAD assumes that both 
the contextual and behavioral features consist of an unknown number of multiple 
Gaussian components, which may be a strong assumption in practice. Further, CAD 
can only handle numerical features and is computationally very expensive. Our pro-
posed method makes no assumptions about the distribution of the features, can deal 
with mixed contextual features and numerical behavioral features, and we will show 
empirically that it is computationally more efficient than CAD while achieving a 
higher detection accuracy.

ROCOD (Liang and Parthasarathy 2016) is also closely related, and uses local 
and global models of expected behavior to describe the dependencies between con-
textual and behavioral features. Concretely, standard regression models such as 
CART are used to learn global patterns, with contextual features as predictor vari-
ables and behavioral features as response variables. Local patterns are computed 
based on the means of behavioral feature values of an object’s neighbours. An 
object’s actual value is compared to the local and global pattern, and the weighted 
average of these differences forms the anomaly score. As the conditional mean 
describes only one aspect of a conditional distribution, and is not necessarily the 
point with the highest probability of occurrence (i.e., the mode). To address this, 
our method employs quantile regression analysis to estimate conditional quantiles, 
which provide a much more complete description of the conditional distribution. As 
a result, our method empirically outperforms ROCOD in terms of accuracy.

With the increasing use of anomaly detection algorithms in safety-critical 
domains, such as healthcare and manufacturing, the ethical and regulatory obliga-
tions to provide explanations for the high-stakes decisions made by these algorithms 
has become more pronounced (Li et al. 2022). Existing contextual anomaly detec-
tion do not provide such explanations though, and non-trivial modifications would 
be needed for them to do so. Specifically, CAD (Song et  al. 2007) computes the 
anomaly score of a data instance by measuring its deviation from the mapping func-
tions that are learned from the majority of data instances. This approach poses a 
challenge in generating intrinsic explanations, as it does not allow for the attribution 
of the anomaly score to individual features. Further, ROCOD (Liang and Parthasar-
athy 2016), the other known method for contextual anomaly detection, calculates 
the weighted average of an instance’s differences to the learned local and global pat-
terns as its anomaly score. The local pattern is obtained using its neighbours, while 
the global pattern is learned using all instances, making it difficult to associate the 
anomaly score with individual features.

Despite the existence of numerous methods for explaining anomalies, such as 
those outlined in recent (survey) papers (Panjei et al. 2022; Li et al. 2022; Xu et al. 
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2021), there has been very limited research on contextual anomaly explanation. 
Particularly, COIN (Liu et al. 2018) explains outliers by reporting their outlierness 
score, the features that contribute to its abnormality, and a contextual description 
of its neighbourhoods. COIN treats all features equally though, while our method 
divides features into contextual and behavioral features. Further, we develop a visu-
alisation that helps explain contextual anomalies in addition to reporting the overall 
anomaly score, feature importance, contextual neighbours, and individual anomaly 
score for each behavioral feature.

The following methods are less relevant because they consider slightly different 
problems. Valko et  al. (2011) construct a non-parametric graph-based method for 
conditional anomaly detection, which only addresses the problem of a single cat-
egorical behavioral feature. Hayes and Capretz (2014) first identify anomalies on 
behavioral features, and then refine the detected anomalies by clustering all objects 
on contextual features. Tang et al. (2015) detect group anomalies from multidimen-
sional categorical data. Hong and Hauskrecht (2015) present a contextual anomaly 
detection framework dedicated to categorical behavioral features which also con-
siders the dependencies between behavioral features. Moreover, Zheng et al. (2017) 
apply robust metric learning on contextual features to find more meaningful contex-
tual neighbours and then leverage k-NN kernel regression to predict the behavioral 
feature values. Meghanath et al. (2018) develop ConOut to automatically find and 
incorporate multiple contexts to identify and interpret outliers.

2.2  Traditional anomaly detection

Although traditional anomaly detection considers a problem that is different from 
contextual anomaly detection, dependency-based and subspace-based anomaly 
detection leverage techniques that are related to our method.

2.2.1  Dependency‑based anomaly detection

Dependency-based anomaly detection aims to identify anomalies by exploring 
dependencies between features. Teng (1999) explores the dependency between non-
target and target features to identify and correct possible noisy data points. To detect 
networking intrusions, Huang et al. (2003) present Cross-Feature Analysis to capture 
the dependency patterns between features in normal networking traffic. To detect 
disease outbreaks, Wong et al. (2003) propose to explore the dependency between 
features using a Bayesian network. Noto et al. (2010) propose to detect anomalies by 
using an ensemble of models, with each model exploring the dependency between a 
response feature and other features. Babbar and Chawla (2012) use Linear Gaussian 
Bayesian networks to detect anomalies that violate causal relationships.

LoPAD (Lu et al. 2020b) first uses a Bayesian network to find the Markov Blan-
kets of each feature. Then, a predictive model (e.g., CART) is learnt for each indi-
vidual feature as response variable, with its Markov Blankets as predictor variables. 
Given an object, LoPAD computes the Euclidean distance between its actual value 
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and predicted value (i.e., conditional mean) as its anomaly score, for each feature. 
The resulting anomaly scores are normalized and summed to obtain the final anom-
aly score for an object. The method does not distinguish contextual and behavioral 
features and—like ROCOD—uses conditional means to represent the conditional 
distribution. Consequently, LoPAD cannot (accurately) detect contextual anomalies.

2.2.2  Subspace‑based anomaly detection

Subspace-based anomaly detection seeks to find anomalies in part of the feature 
space. Specifically, Kriegel et al. (2009) propose SOD to identify outliers in vary-
ing subspaces. Concretely, they construct axis-parallel subspaces spanned by the 
neighbours of a given object. On this basis, they investigate whether this object 
deviates significantly from its neighbours on any of these subspaces. Further-
more, Kriegel et  al. (2012) extend this work to determine whether an object is 
anomalous on arbitrarily oriented subspaces spanned by its neighbours. Nguyen 
et al. (2013) propose to find subspaces with strong mutual correlations and then 
identify anomalies on these subspaces. Finally, Cabero et al. (2021) use archetype 
analysis to project the feature space into various subspaces with linear correla-
tions based on nearest neighbours. On this basis, they explore outliers by ensem-
bling the results obtained on relevant subspaces. Overall, these methods pursue 
to identify anomalies in a subset of features, but treat all features equally and are 
thus not suitable to identify contextual anomalies.

3  Contextual anomaly detection and explanation

We first introduce the necessary terminology and notations, and illustrate this 
with the running example depicted in Table 1. A dataset X = {x1,… , xi,… , xN} 
contains N instances (or data points) over the set of features (a.k.a. attributes 
or variables) denoted by F = {f1,… , fj,… , fD} . xj

i
 denotes the value of the i-th 

object, xi , for the j-th feature, fj . In the running example, we have N = 16 , D = 6 , 
F = {Latitude, Longitude, Season, Temperature,Rain,Wind} , and xRain

1
= 69.

We assume that feature set F is divided into two disjoint feature sets (typi-
cally using domain knowledge): a contextual feature set C = {c1,… , cp,… , cP} 
and a behavioral feature set B = {b1,… ,bq,… ,bQ} , such that D = P + Q , 
F = C ∪ B , and C ∩ B = � . Without loss of generality, we can rear-
range the features of an object xi = (x1

i
,… , x

j

i
,… , xD

i
) and represent it as 

xi = (x1i ,… , xPi , x
P+1
i ,… , xP+Qi ) = (c1i ,… , cpi ,… , cPi , b

1
i ,… , bqi ,… , bQi ) = (ci, bi), so that 

ci and bi denote its contextual and behavioral feature values, respectively. 
Accordingly, we refer to the space spanned by C as contextual space, i.e., 
C = c1 ×⋯ × cp ×⋯ × cP , and to the space spanned by B as behavioral space, 
i.e., B = b

1 ×⋯ × b
q ×⋯ × b

Q.
Finally, let Pow denote the powerset, i.e., Pow (X) = {X ⊆ X}.
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3.1  Problem statement

In contextual anomaly detection, contextual features are used to determine the 
so-called context of an object. An object’s context is used to estimate whether 
it is anomalous. The latter is achieved by comparing the object’s values for the 
behavioral features to what is ‘normal’ within the object’s context—if the object’s 
behavioral values strongly deviate, it is flagged as an anomaly.

For contextual anomaly detection to be meaningful, we must assume that there 
exist dependencies between the contextual and behavioral data. If such a relation-
ship does not exist, there is no need to use contextual anomaly detection; one could 
simply remove the contextual features and reduce the problem to a traditional anom-
aly detection problem.

We illustrate this using the running example in Table 1. We can detect anoma-
lous weather taking into account different regions and seasons by specifying con-
textual feature set C = {Latitude, Longitude, Season} and behavioral feature set 
B = {Temperature,Rain,Wind} . Each city is now only compared to cities with a 
similar latitude, longitude, and season, i.e., its context. If a city has values for tem-
perature, rain, and/or wind that strongly deviate from those of the cities in its con-
text, it is marked as anomalous.

For example, Amsterdam and Rotterdam could form the context of Leiden; they 
are both nearby and we have measurements for the same season. Temperature and 
wind are similar for all three cities, but there was substantially more rain in Leiden 
than in Amsterdam and Rotterdam. Hence, for that reason Leiden could be flagged 
as an anomaly.

To formalise the problem, we introduce a generic ‘context function’ that maps 
each possible data point to a subset of the dataset, i.e., its context, based on the data 
point’s contextual features.

Problem  1: Contextual anomaly detection Given a dataset X with a fea-
ture set F = (C,B) , a context function Context ∶ C → Pow (X) , an anomaly 
detector Anomaly ∶ B × Pow (X) → ℝ

+ , and a threshold � , find all data points 
for which the anomaly scores exceed � and are thereby flagged as anoma-
lous—based on the behavioral features—within their individual contexts, i.e., 
{(c, b) ∈ X ∣ Anomaly(b,Context(c)) ≥ �}.

Note that the context is determined based only on contextual feature values, and 
that the anomaly detector may only use the behavioral feature values of the data 
points in the given context when establishing if the given data point is anomalous or 
not.

In practice, analysts are not only interested in identifying anomalies, but also 
need to know the underlying reasons for why a specific object is reported as anom-
aly. This leads to the second problem that we consider.

Problem 2: Contextual anomaly explanation Given an anomalous object x ∈ X 
and the context function Context and anomaly detector Anomaly that were used to 
detect it, find the behavioral features �′ ⊆ B for which x = (c, b) substantially devi-
ates from Context(c).
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3.2  Overall approach

The problem statement in the previous section suggests a three-pronged approach 
based on (1) context generation, (2) anomaly detection, and (3) anomaly explana-
tion. In this subsection we explain and illustrate the overall approach that we pro-
pose, using the running example from Table 1.

Phase 1: Reference group generation Many choices are possible for the con-
text function; in this manuscript we choose to use an object’s k nearest neighbours, 
which we refer to as reference group. The most important reasons for this choice 
are that (1) once a global contextual distance matrix has been computed the near-
est neighbours of any object can be found relatively quickly; (2) this approach only 
requires a distance metric to be chosen, which can be defined for any type of data 
and be adapted to the problem at hand; and (3) it is generic enough to allow for dif-
ferent uses of the resulting contexts.

Given a dataset X with contextual feature set C , we first compute the distance 
matrix M between all objects using only the contextual features. Second, for any 
object x ∈ X , we find its k nearest neighbours in contextual space based on M . As 
a result, the k nearest neighbours of x form a reference group, denoted as R(x, k) , 
which serves as context in Problems 1 and 2.

Table 1  Running example: fictional climate data for Dutch cities. Temperature is measured in degrees 
Celsius, rain in mm, and wind in miles per hour. The city is not used for anomaly detection. Latitude, 
Longitude and Season are treated as contextual features, while Temperature, Rain and Wind are con-
sidered the behavioral features

City Latitude Longitude Season Temperature Rain Wind

Leiden 52.16 4.49 Winter 3.0 69 16
Amsterdam 52.37 4.89 Winter 2.9 55 17
Rotterdam 51.92 4.46 Winter 2.7 60 15
Oss 51.45 5.31 Winter 1.1 58 25
Eindhoven 51.44 5.46 Autumn 16.6 62 25
Delft 52.00 4.21 Autumn 16.1 45 19
Utrecht 52.09 5.10 Autumn 18.3 42 20
The Hague 52.07 4.28 Autumn 18.5 49 18
Tilburg 51.33 5.52 Summer 22.1 39 22
Middelburg 51.49 3.61 Summer 20.3 41 23
Arnhem 51.98 5.89 Summer 19.6 48 17
Venlo 51.37 6.17 Summer 21.8 43 35
Emmen 52.46 6.55 Spring 8.3 80 10
Meppel 52.69 6.19 Spring 7.1 27 13
Groningen 53.13 6.34 Spring 4.2 17 19
Leeuwarden 53.10 5.80 Spring 7.2 17 19
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For instance, as shown in Fig.  2a, given {Latitude, Longitude, Season} as the 
contextual feature set, we first calculate the distance matrix in the contextual space 
Latitude × Longitude × Season . Second, based on the distance matrix, we can find 
the three nearest neighbours of any object as its reference group.2 Concretely, the 
three nearest neighbours for x1 are {x2, x3, x4} , which forms a reference group for x1 , 
denoted as R(x1, 3).

Phase 2: Anomaly detection Given an object x ∈ X with its reference group 
R(x, k) , we apply an anomaly detector Anomaly to obtain an anomaly score based 
only on the behavioral attribute values. We repeat the above process for all objects, 
leading to N anomaly scores S = {s1, s2,… , sN} . We sort S and use threshold � to 
obtain a ranked list of contextual anomalies A = {a1,… , am,… , aM} , with M ≪ N.

For example, we can apply an anomaly detector on the behavioral space 
Temperature × Rain ×Wind of x1 and its reference group R(x1, 3) = {x2, x3, x4} . 
As a result, we obtain anomaly score s1 for x1 . Accordingly, repeating this process 
leads to a set of anomaly scores S = {s1,… , s16} . In our running example we find 
{x4, x12, x13} as contextual anomalies, as they behave differently in the behavioral 
space Temperature × Rain ×Wind when compared to their corresponding neigh-
bours defined in the contextual space Latitude × Longitude × Season . For example, 
Oss ( x4 ) has relatively stronger winds in winter when compared to its nearest cities 
Leiden, Amsterdam and Rotterdam.

We require anomaly detectors to be attributable, meaning that an anomaly score 
s generated by an anomaly detector must be decomposable into individual contribu-
tions towards anomalousness for each behavioral feature using the anomaly detec-
tor’s native structure.

Phase 3: Anomaly explanation For each anomalous object am , we first report 
its reference group R(am, k) using the distance matrix obtained in Phase 1. Second, 
we report its anomaly score sm , as obtained in Phase 2. Moreover, we decompose 
sm into individual contributions from each behavioral feature bq ∈ B , resulting in a 
list of raw anomaly scores sm = {sm1,… , smq,… , smQ} . This is possible because sm 
is attributable. Next, we report the top-h raw anomaly scores in sm with their cor-
responding behavioral features, where h can be specified by the analyst. The top-h 
behavioral features and raw scores enable analysts to better understand why a spe-
cific object is flagged as a contextual anomaly.

For example, Fig. 2b reports object x12 as an anomaly. To explain why, we first 
inspect its reference group R(x12, 3) = {x10, x11, x12} , which contains the three 
objects most similar to x12 . Second, we report its anomaly score, i.e., 90. Next, we 
decompose the score and report the behavioral features with the highest deviations, 
e.g., Wind. We can interpret the result as: x12 deviates substantially in Wind when 
compared to {x10, x11, x12} , which are all similar in terms of Latitude, Longitude and 
Season.

2 We use k = 3 for illustrative purposes; in practice, we would have a dataset with far more than 16 
records and k would also be much larger.
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4  Preliminaries

We first define the conditional mean and conditional quantiles, which we use to 
motivate the use of conditional quantiles for anomaly detection. Next, we detail 
quantile regression forests, a model class that can robustly estimate conditional 
quantiles. Readers familiar with these concepts can skip this section.

4.1  From conditional mean to conditional quantiles

Given a real-valued variable V and a set of variables U , regression analysis aims 
to model the distribution of V conditioned on U . Specifically, it takes V as the 
response variable and U as the predictor variables to construct a model that can 
be used to predict V based on U . Standard regression uses training data 
{(U1,V1),… , (Un,Vn)} to learn a model that estimates the conditional mean 
E(V ∣ U = u) and uses that as prediction for V when U = u is given. For example, 
Least Squares Regression fits a model �̂� by minimising the expected squared error 
loss, namely �̂� = argmin

𝜃

E{(V − V̂(𝜃))2) ∣ U = u}.

The conditional mean, however, is only a single statistic of the conditional 
distribution and is thereby limited in what it can capture. For example, if the 
conditional distribution is a multi-modal distribution, the mean is insufficient to 
describe it (regardless of whether we also consider the standard deviation).

To allow for more comprehensive descriptions of conditional distribu-
tions, Koenker and Hallock (2001) proposed to estimate conditional quan-
tiles. As usual, quantiles are splitting points that divide the range of the prob-
ability distribution into consecutive intervals having equal probability. Given 
a continuous variable V, its conditional �-quantile given U = u is defined by 
Q�(u) = inf{v ∶ F(v ∣ U = u) ≥ �} , where F(v ∣ U = u) = P(V ≤ v ∣ U = u) is 

Fig. 2  Reference Group Generation and Anomaly Explanation. The Reference Group Generation phase 
computes the distance matrix using only the contextual features, and finds a reference group for each 
object on this basis. The Anomaly Explanation phase produces an explanation for each identified anom-
aly by reporting its contextual neighbours, final anomaly score, and raw anomaly scores in each behavio-
ral feature
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the cumulative distribution function. Conditional quantiles have the potential to 
describe the full conditional distribution of response variable V.

Existing regression-based anomaly detection methods typically estimate the 
conditional mean of V by its expected value v̂ , and then use the Euclidean dis-
tance between its actual value and the expected value, i.e., dist(v, v̂) , as anomaly 
score. It is hard to interpret this distance though, as the shape and range of the 
conditional distribution are unknown. In this paper we address this by estimating 
conditional quantiles instead. In particular, we will show that we can use condi-
tional quantiles to approximate the probability of observing a certain data point 
in its context, which is then used for the anomaly score.

4.2  Quantile regression forests

Tree-based regression approaches—such as CART, M5, and Random Forests—are 
often used to learn both linear and non-linear dependencies. Meinshausen (2006) 
extended the Random Forest to Quantile Regression Forest, which estimates and pre-
dicts conditional quantiles instead of means.

Specifically, a quantile regression forest (QRF) is constructed by building an 
ensemble of K independent decision trees to estimate the full conditional cumula-
tive distribution function of V given U = u , based on n independent observations 
{(U1,V1),… , (Ui,Vi),… , (Un,Vn)} . Each Ui consists of d dimensions. The estimated 
full conditional distribution can be written as

where �i(u) denotes the weight assigned to observation (Ui,Vi).
The decision trees that make up a quantile regression forest are constructed simi-

larly to how a random forest is learned, i.e., for each individual tree m ≤ n data points 
are sampled (with replacement), d′

≪ d features are randomly selected, and a criterion 
such as information gain is used to recursively split the data and tree. Each leaf node 
keeps all its observations though. K decision trees, namely T1(�),… , TK(�) , are inde-
pendently grown to form a forest.

Once the forest has been constructed, for a given U = u each decision tree Tj(�) is 
traversed to find the leaf node that u resides in. A weight �i(u, Tj(�)) is then computed 
for each observation Ui , with i ∈ {1,… , n} : if observation Ui and u reside in the same 
leaf node, then �i(u, Tj(�)) is defined as 1 divided by the number of samples residing in 
the leaf node. Otherwise, �i(u, Tj(�)) is 0. Next, it takes the average of �i(u, Tj(�)) over 
all decision trees, i.e.,

(1)F̂(v|U = u) = P̂(V ≤ v|U = u) = Ê(�(V ≤ v)|U = u) =

n∑
i=1

𝜔i(u)�(Vi ≤ v),

(2)�i(u) =
1

K

K∑
j=1

�i(u, Tj(�)),
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which is the weight assigned to an observation Ui . Finally, condi-
tional quantile Q�(u) = inf{v ∶ F(v ∣ U = u) ≥ �} can be estimated by 
Q̂𝛼(u) = inf{v ∶ F̂(v ∣ U = u) ≥ 𝛼} . Under reasonable assumptions, Meinshausen 
(2006) proved quantile regression forests to be consistent, i.e.,

holds pointwise for every u.

5  Quantile‑based contextual anomaly detection and explanation

We present an instance of the generic approach for contextual anomaly detection 
presented in Sect. 3.2 that is based on quantile regression forests.

The main idea of our method is to estimate the deviation of an object’s behavioral 
values within a given context using uncertainty quantification around predictions, 
where the predictions are assumed to capture ‘normal’ behavior. Then, a higher 
uncertainty implies a higher deviation within the context and thus a higher degree of 
anomalousness. To this end several approaches could be explored. For example, one 
might use multi-target regression models—such as Multivariate Random Forests 
(Segal and Xiao 2011)—on all behavioral features, or single-target regression mod-
els—such as Random Forests (Breiman 2001)—on individual behavioral features 
followed by aggregation and conformal inference (Lei et al. 2018). In this paper we 
instead opt to use Quantile Regression Forests (Meinshausen 2006), a single-target 
regression model, because it is (relatively) simple, offering advantages with regard 
to interpretability, and directly provides uncertainty quantifications. More con-
cretely, we derive intervals for the behavioral features from the underlying quantile 
regression forests as inherent uncertainty quantifications around predictions, result-
ing in statistically sound and interpretable measures of degree of anomaly.

In the first phase, we generate reference groups using a distance matrix computed 
on the contextual space of all data points. Specifically, we use Gower’s distance 
(Gower 1971) (see Sect. 6.1.1 for more detail), to be able to deal with both quantita-
tive and categorical features, and select the k objects having the smallest distances to 
an object x as its reference group R(x, k).

Next, in the second phase, an anomaly score is computed for each individual data 
point, based on the values in the behavioral space of the data point and its reference 
group. The algorithm is dubbed QCAD—for Quantile-based Contextual Anomaly 
Detection—and forms the core of our approach; it is introduced in Sect. 5.1. Finally, 
Sect.  5.2 describes how the found anomalies are explained by decomposing the 
anomaly score in the third phase.

(3)
|||F̂(v|U = u) − F(v|U = u)

|||
p

⟶0, with n ⟶ ∞
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5.1  Detecting anomalies with quantile regression forests

Algorithm 1 outlines the QCAD algorithm, which takes a dataset and a number of 
hyperparameters as input and outputs a list of all data points together with their ref-
erence groups and computed anomaly scores. Specifically, we assume that the con-
textual features can be mixed but all behavioral features are numerical. We will first 
describe the overall algorithm, and then go into the specifics of the score computation.

5.1.1  Algorithm

After initializing the empty score list (Line 2), the algorithm iter-
ates over all data points in dataset X (Ln 3–11). For each object x =
x = (c1,… , cp,… , cP, b1,… , bq,… bQ) = (c, b) we first obtain the reference group 
that was computed in the first phase (Ln 4). We then iterate over all features in behavioral 
feature set X in order to compute a partial anomaly score for each behavioral feature (Ln 
5–8). These partial anomaly scores are summed to obtain the anomaly score for x (Ln 
9), i.e., we assume the behavioral features to all have equal potential to contribute to the 
overall anomaly score. After this, the data point, its reference group, and its anomaly score 
are appended to the anomaly score list (Ln 10). Finally, the anomaly score list is returned 
as output (Ln 12).

Within the inner for loop, we first learn a quantile regression forest using behav-
ioral feature bq as response variable and the data point’s reference group R(x, k) as 
training data (Ln 6). All contextual features C are used as predictor variables for 
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every constructed QRF. We then use the learned quantile regression forest, the fea-
tures, and the data point to compute the raw partial anomaly score (Ln 7), which we 
will motivate and explain in detail next.

5.1.2  QRF‑based anomaly score

As argued in the Introduction and Sect. 4.1, taking the distance between a data point 
and a conditional mean as basis for a contextual anomaly score may be too limiting: 
this only works if all ‘normal’ data points reside close to the mean. Instead, we aim 
to—conceptually—consider the entire conditional probability density function and 
use the local density of a given data point as a proxy for anomalousness: the lower 
the density, the higher the anomaly score. Directly accurately estimating the density 
function is hard though, especially in areas of low density, which are of particular 
importance to us.

This is where the quantile regression forests come in: given sufficient training 
data, they accurately learn the conditional cumulative distribution function, which 
can be queried in inverse form, i.e., through conditional quantiles. When querying 
a quantile regression forest, this can be done at different granularities. For example, 
Fig. 3a shows that conditional quantiles {Q0.1,Q0.2,… ,Q0.9} may very well be insuf-
ficient to accurately describe a conditional distribution as they overly smooth the 
underlying distribution and thus fail to capture the nuances accurately, while Fig. 3b 
show that conditional percentiles, i.e., {Q0.01,Q0.02,… ,Q0.99} , are much more likely 
to provide sufficient detail.

We use conditional percentiles for our anomaly score, because they provide a 
high level of granularity while not requiring very large amounts of data to be esti-
mated accurately. As additional benefit, the difference between each two consecutive 
percentiles is always assessed by a weighted combination of a comparable number 
of training data points, i.e., at the cost of some smoothing we do not suffer from 
extremely poor local density estimates in low density areas.

To formally develop our anomaly score, we first define �i to be the ith percentile, 
i.e., �i = Qi∕100,∀i ∈ [0, 100] . For any percentile interval, i.e., an interval [�i, �i+1] 
defined by two consecutive percentiles i and i + 1 , we have by definition that it 
spans exactly 0.01 probability (see Fig. 3b). We could estimate the local density of 
a percentile interval and use that for our anomaly score, but we aim for a score that 
becomes larger when a data point is deemed to be more anomalousness.

To this end we define percentile interval width wi as the difference between 
two consecutive percentiles i and i + 1 , i.e., �i+1 − �i . As such, interval width can 
be regarded as ‘inverse density’, meaning that width will increase as the local den-
sity decreases. For example, in Fig.  3b we have �46 = 0.5 and �47 = 0.513 , which 
gives w46 = 0.013 . Data points that fall in percentile intervals having relatively large 
widths are more likely to be contextual anomalies, as they reside in low-density 
areas of the conditional distribution.

The basic idea is thus to define the anomaly score for an object x and behavioral 
feature bq as w(x|bq) , i.e., the width of the (QRF-predicted) percentile interval in 
which the behavioral value of the data point falls. We need to consider a special 
case though: the actual behavioral feature value bq may be less than the smallest 
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estimated conditional quantile, i.e., �q
0
 , or greater than the largest estimated condi-

tional quantile, i.e., �q
100

 . That is, the actual value may not fall in any estimated con-
ditional percentile interval. To address this we extrapolate beyond �q

0
 and �q

100
 , lead-

ing to intermediate anomaly score

where max(w(x|bq)) represents the maximum interval width of all conditional per-
centile intervals for the behavioral feature bq.

Unfortunately, directly using Eq.  (4) as partial anomaly score would make our 
approach prone to the so-called dictator effect: summing such partial scores for 
a data point that strongly deviates in only a few behavioral features would lead to 
a larger anomaly score than anomalous data points deviating moderately in many 
behavioral features. As a result, data points with few, strong deviations would ‘dic-
tate’ highest scores; this is undesirable.

To avoid the dictator effect, we truncate the partial anomaly scores to a prede-
fined maximum and arrive at the final partial anomaly score as

where � is a hyperparameter. The rationale for � is as follows: if the conditional dis-
tribution is uniformly distributed and the behavioral feature has range [0, 1], then 

(4)is(x�bq) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
1 +

𝜏
q

0
− bq

𝜏
q

75
− 𝜏

q

25

�
max(w(x�bq)), if bq < 𝜏

q

0
;

�
1 +

bq − 𝜏
q

100

𝜏
q

75
− 𝜏

q

25

�
max(w(x�bq)), if bq > 𝜏

q

100
,

w(x�bq), otherwise,

(5)s(x�bq) =
⎧⎪⎨⎪⎩

𝜂

100
, if is (x�bq) > 𝜂

100
;

is(x�bq), otherwise,

(b)(a)

Fig. 3  a Estimated conditional quantiles {Q
0.1
,Q

0.2
,… ,Q

0.9
} for a behavioral feature conditioned on 

contextual features. b Zooming in on the area between Q
0.40

 and Q
0.50

 , we see that percentiles are more 
likely to be sufficiently detailed than the quantiles in (a)
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the expected width of any percentile interval width is 0.01 and � can be interpreted 
as the maximum number of expected percentile interval widths. In the experiments 
we use � = 10 because of its strong empirical performance (also shown in the abla-
tion study in Appendix D).

By scaling the behavioral features to [0, 1] before anomaly detection, e.g., using 
min-max normalization, the estimated conditional percentiles should also lie in 
this interval and the interval widths obtained for the individual behavioral features 
should thus be comparable. In turn, this implies they can be summed to obtain the 
final anomaly score for a data point (Algorithm 1, Line 9).

5.2  Explaining anomalies with anomaly beanplots

In the third phase, we provide explanations for the reported anomalies. From the 
definition of our anomaly score it is clear that it is attributable: the overall score can 
be decomposed into partial scores for individual behavioral features.

For each identified anomaly a , we report its contextual neighbours R(a) and the 
final anomaly score as computed on Line 9 of Algorithm 1. Further, we report the 
partial anomaly scores corresponding to the behavioral features, i.e., we report 
s(x|bq) for all q, ranked from highest to lowest to indicate in which behavioral fea-
tures the anomaly deviates most.

Since visualisation often helps to quickly provide valuable insight, we propose 
the anomaly beanplot, a variant of the beanplot by Kampstra (2008). Figure 4 shows 
an example, visually depicting the learned conditional percentiles, their interval 
widths, and the probability densities that can be estimated from those, all for a par-
ticular data point and behavioral feature. (Remember that a quantile regression for-
est is learned on the reference group of a data point, hence the anomaly beanplot for 
each data point may be different.)

By including the actual value of the data point in the beanplot (as a horizontal 
black line), the analyst can easily see how its behavioral feature value is positioned 
relative to those of its reference group, and why and to what extent it contributes to 
the its anomalousness.

6  Experiments

To demonstrate the effectiveness of our overall approach and proposed method 
QCAD, we conduct experiments on a wide range of synthetic and real-world data-
sets. We will first explain the choices regarding datasets, baseline algorithms, and 
evaluation criteria, after which we present both quantitative results and a case study 
that investigates interpretability and practical utility.

In addition, we demonstrate the robustness of QCAD with regard to the ‘number 
of nearest neighbours’ hyperparameter by means of a sensitivity analysis, and con-
duct several ablation studies to investigate the impact of the hyperparameters. For 
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reasons of space and brevity, the sensitivity analysis and ablation studies are given 
in Appendices C and D.

6.1  Data

It is challenging to evaluate unsupervised anomaly detection algorithms due to the 
lack of commonly agreed-upon benchmark data, and down-sampling classification 
datasets has been criticized for its variation in the nature of the resulting outliers 
(Färber et al. 2010; Campos et al. 2016).

When evaluating unsupervised contextual anomaly detection algorithms, this 
problem is further compounded by the requirement to have both contextual and 
behavioral features, and—more importantly—treating those differently (Liang and 
Parthasarathy 2016). Consequently, a generally accepted approach is to artificially 
inject contextual anomalies into existing datasets using a perturbation scheme.

6.1.1  Data preprocessing

To make the datasets suitable to all anomaly detection methods, we need to preproc-
ess them before injecting contextual anomalies. First, we leverage Label Encoding 
(Seger 2018) to transform categorical contextual features to numerical form. Sec-
ond, we employ Min-Max normalisation to scale all behavioral features to [0,  1]. 
Min-Max normalization is routinely used in many anomaly detection and generally 
improves performance (Kandanaarachchi et al. 2020).

Fig. 4  Anomaly beanplot giving insight in what the quantile regression forest learned for a particular 
data point and behavioral feature, and why the data point is (not) considered an anomaly. The short blue 
lines indicate the conditional percentiles �

0
, �

1
,… , �

100
 as learned by the QRF (top to bottom), for the 

given data point and behavioral feature. As in a box plot, the (cyan) box indicates first quartile ( �
25

 ), 
median ( �

50
 ), and third quartile ( �

75
 ). The wider red area represents probability densities as estimated 

based on the conditional percentiles. Finally, the black line indicates the actual value that the data point 
has (Color figure online)
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Gower’s distance To be able to calculate the similarity between two data points 
containing both categorical and numerical features, we can utilise Gower’s distance 
(Gower 1971). Specifically, the Gower’s distance between data points 
ci = (c1

i
,… , c

p

i
,… cP

i
) and cj = (c1

j
,… , c

p

j
,… cP

j
) is defined as 1 − 1

P

∑P

p=1
ps

p

ij
 , where 

ps
p

ij
 represents the partial similarity between data instances ci and cj in the p-th 

dimension. For a numerical feature, psp
ij
= 1 −

|cp
i
−c

p

j
|

max(cp)−min(cp)
 , with max(cp) and 

min(cp) denoting the maximum and minimum value of all data points for the p-th 
feature, respectively. For a categorical feature, psp

ij
= �(c

p

i
− c

p

j
 ), where �(⋅) represents 

the indicator function. Consequently, Gower’s distance between two data points is 
always in [0, 1], with a lower value indicating a larger similarity.

6.1.2  Perturbation scheme for outlier injection

Song et al. (2007) proposed a perturbation scheme to inject contextual anomalies in 
datasets without ground-truth anomalies, which has become a de-facto standard for 
the evaluation of contextual anomaly detection  (Song et  al. 2007; Liang and Par-
thasarathy 2016; Zheng et al. 2017; Calikus et al. 2021).

This perturbation scheme, however, has also been criticised for two reasons (Song 
et al. 2007; Kuo et al. 2018). First, the objects obtained by simply swapping the fea-
ture values are still likely to be contextually normal. Second, some very common 
types of anomalies cannot be yielded through this perturbation scheme. For exam-
ple, one cannot obtain extreme values by swapping features values in a clean dataset, 
whereas most anomaly detection methods assume the training dataset is uncontami-
nated. To avoid these problems, Kuo et al. (2018) introduced another perturbation 
scheme to inject anomalies. We develop a new perturbation scheme by refining this 
scheme, as follows.

Given a dataset X containing N data instances with contextual feature set 
C = {c1,… , cP} and behavioral feature set B = {b1,… ,bQ} , we first use Min-
Max normalization to scale the behavioral features of all objects to [0,  1] (keep-
ing the contextual features intact), resulting in a new dataset X̃ . Second, to inject 
m anomalies into X̃ , with 0 < m ≪ N , we select m objects x1,… , xm uniformly at 
random from X̃ . For each x = (c, b) in X̃ , c represents the contextual feature val-
ues and b denotes the behavioral feature values. Third, for a selected object 
xi = (ci, bi) = (c1

i
,… , c

p

i
,… , cP

i
, b1

i
,… , b

q

i
,… , b

Q

i
) and behavioral feature bq , we 

sample a number uniformly at random from [−0.5,−0.1]
⋃
[0.1, 0.5] , and then add 

this random number to the behavioral feature value of xi , namely bq
i
 , resulting in b̂q

i
 . 

In the same manner, we repeat this process for each behavioral feature, resulting in 
(b̂1

i
,… , b̂

Q

i
) , or b̂i . Accordingly, we generate a new object x̃ = (c, b̂) as contextual 

anomaly. Fourth, we repeat the third step for each selected object, leading to m per-
turbed objects. Fifth and final, we replace the selected objects in the original dataset 
with their corresponding perturbed objects. To allow extreme values to be injected, 
we deliberately do not truncate the values outside [0, 1] after adding a random num-
ber in each behavioral feature.
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Our perturbation scheme has the following advantages. When compared to the 
swapping perturbation scheme proposed by Song et al. (2007), the objects obtained 
by our perturbation scheme are very unlikely to remain contextually normal. In 
addition, our perturbation scheme can—but does not always—lead to extreme val-
ues. Note that we do not strictly follow the perturbation scheme proposed by Kuo 
et al. (2018) because their method only adds a non-negative number to the behav-
ioral features. On the one hand, sometimes this non-negative number is zero, lead-
ing to injecting a normal object as ‘anomaly’. On the other hand, sometimes this 
non-negative number is huge, which makes the injected object (too) easy to detect. 
Our perturbation scheme avoids these problems by firstly normalising the behavio-
ral feature values, and then setting more reasonable lower and upper bounds for the 
perturbation.

6.1.3  Datasets

To evaluate and compare our method on a diverse range of datasets, we generate 10 
synthetic datasets and select 20 real-world datasets; their properties are summarised 
in Tables 2 and 3 respectively.

We first discuss the synthetic data. To be able to produce data with various forms 
and degrees of dependencies between behavioral and contextual features, we pro-
pose the following generation schemes. For q ∈ {1,… ,Q} , we have 

 (S1) b
q =

∑Q

p=1

�
�qp ⋅ c

p
�
+ �;

 (S2) b
q =

∑Q

p=1

�
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 (S5) b
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�qp ⋅ c

p + �qp ⋅ (c
p)3 + �qp ⋅ sin(c
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where �qp, �qp, �qp, �qp
i.i.d.
∼ U(0, 1) and are replaced by zero with a probability of 1/3. 

Further, � = (�1,… , �n,… , �N)
T , with �n

i.i.d.
∼ U(0, 0.05).

In addition, for p ∈ {1,… ,P} , cp is generated from a Gaussian mixture model 
with five clusters. If it is numerical, each of the Gaussian centroids is sampled uni-
formly at random from [0, 1] and the diagonal element of the covariance matrix is 
fixed at 1/4 of the average pairwise distance between the centroids in each behav-
ioral feature. Otherwise, the centroids are sampled uniformly at random from 
{0, 1,… , 10} with the same covariance setting. Moreover, every generated number 
is rounded to an integer to ensure that it is categorical. On this basis, we generate a 
wide collection of synthetic datasets by varying the generation scheme and the num-
ber of contextual features and behavioral features. Sample size is always set to 2000, 
and the rate of injected anomalies is fixed at 2.5% . See Table 2 for an overview.

Next, we employ the above-mentioned perturbation scheme to inject contex-
tual anomalies into 20 real-world datasets. We use these datasets because they are 
representative of the potential application areas of our QCAD framework. That 
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Table 2  Summary of synthetic 
datasets

#Num, #Cat, #C and #B represent the number of numerical features, 
the number of categorical/nominal features, the number of contex-
tual features, and the number of behavioral features, respectively. 
All behavioral features are numerical, the contextual features can be 
mixed

Dataset Scheme #Num #Cat #C #B

Syn1 S1 8 2 5 5
Syn2 S2 8 2 5 5
Syn3 S3 8 2 5 5
Syn4 S4 8 2 5 5
Syn5 S5 8 2 5 5
Syn6 S1 19 6 20 5
Syn7 S2 19 6 20 5
Syn8 S3 19 6 20 5
Syn9 S4 19 6 20 5
Syn10 S5 19 6 20 5

Table 3  Summary of real-world datasets

#Num, #Cat, #C and #B represent the number of numerical features, the number of categorical/nomi-
nal features, the number of contextual features, and the number of behavioral features, respectively. All 
behavioral features are numerical, the contextual features can be mixed

Dataset #Num #Cat #Samples #Anomalies (Ratio) #C #B

Abalone 8 1 4177 100 (2.4%) 4 5
AirFoil 6 0 1503 70 (4.7%) 5 1
BodyFat 15 0 252 20 (7.9%) 13 2
Boston 12 2 506 40 (7.9%) 13 1
Concrete 9 0 1030 50 (4.8%) 8 1
ElNino 3 8 20,000 200 (1%) 6 5
Energy 10 0 768 50 (6.5%) 8 2
FishWeight 6 1 157 15 (9.5%) 6 1
ForestFires 11 2 517 50 (9.7%) 4 9
GasEmission 11 0 7384 100 (1.4%) 8 3
HeartFailure 7 5 299 30 (10%) 6 6
Hepatitis 11 2 615 30 (4.9%) 3 10
LiverPatient 9 2 579 30 (5.2%) 3 8
Maintenance 18 0 11,934 100 (0.8%) 15 3
Parkinson 21 1 5875 100 (1.7%) 20 2
PowerPlant 5 0 9568 100 (1%) 4 1
QSRanking 12 1 475 40 (8.4%) 7 6
SynMachine 5 0 557 50 (8.9%) 4 1
Toxicity 7 0 908 50 (5.5%) 6 1
Yacht 7 0 308 30 (9.7%) 6 1
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is, they stem from healthcare & life sciences (e.g., Bodyfat, Heart Failure, Indian 
River Patient, Hepatitis, Parkinson Telemonitoring, Abalone, Fish Weight, QSAR 
Fish Toxicity), social sciences (e.g., Boston House Price, University Ranking), envi-
ronmental-protection area (e.g., El Nino, Forest Fires), and engineering (e.g., Gas 
Turbine CO and NOx Emission, Yacht Hydrodynamics, Condition Based Mainte-
nance of Naval Propulsion Plants, Synchronous Machine, Airfoil Self-Noise, Con-
crete Compressive Strength, Combined Cycle Power Plant). A summary is given in 
Table 3; each dataset is described in more detail in Appendix B.

6.2  Baseline algorithms and implementations

We empirically compare our method to state-of-the-art algorithms, including tra-
ditional anomaly detection methods (distance-based, density-based, dependency-
based, etc.) and contextual anomaly detection methods. For a fair comparison, we 
select the following anomaly detectors, which all return an anomaly score—rather 
than a binary outcome—for each data instance.

• Local Prediction Approach to Anomaly Detection (LoPAD) by Lu et  al. 
(2020b), which is the state-of-the-art dependency-based traditional anomaly 
detector;

• Conditional Outlier Detection (CAD) by Song et  al. (2007), which was the 
first anomaly detector dedicated to identify contextual anomalies;

• Robust Contextual Outlier Detection (ROCOD) by Liang and Parthasarathy 
(2016), which is the state-of-the-art contextual anomaly detector;

• Isolation Forest (IForest) by Liu et al. (2008), which is one of the state-of-the-
art isolation-based traditional anomaly detectors;

• Local Outlier Factor (LOF) by Breunig et al. (2000), which is one of the state-
of-the-art density-based traditional anomaly detectors;

• k-NN anomaly detector by Angiulli and Pizzuti (2002), which is one of the 
state-of-the-art distance-based traditional anomaly detectors;

• Anomaly detector using axis-parallel subspaces (SOD) by Kriegel et  al. 
(2009), which is one of the state-of-the-art subspace-based traditional anom-
aly detectors; and

• Histogram-Based Outlier Score (HBOS) by Goldstein and Dengel (2012), 
which is one of the state-of-the-art histogram-based traditional anomaly detec-
tors.

We implemented and ran all algorithms in Python 3.8 on a computer with Apple M1 
chip 8-core CPU and 8GB unified memory. For classical algorithms such as IFor-
est, LOF, k-NN, SOD, and HBOS, we use their publicly available implementations 
in PyOD (Zhao et al. 2019) with their default settings. Unfortunately, for LoPAD, 
CAD and ROCOD no implementation was publicly available. For LoPAD, we first 
use the ‘bnlearn’ package (Scutari et  al. 2019) in R to find the Markov Blankets 
of each dataset based on Fast-IAMB (Yaramakala and Margaritis 2005). Next, we 
implement the LoPAD algorithm in Python using CART (Breiman et al. 2017) as 
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the prediction model with bagging size 200. For CAD, we implement the CAD-
GMM-Full algorithm as recommended by Song et al. (2007), with default settings 
except for parameter ‘number of Gaussian component’; if this parameter would be 
set to its default 30, it would take more than one month to finish all the experiments 
on our computer. In addition, preliminary experiments show that the difference in 
results when this parameter is set to 30 and 5 respectively is negligible for most 
datasets. We therefore set this parameter to 5 in all experiments. We implemented 
ROCOD in Python with its default settings. One important parameter, namely the 
distance threshold used to find neighbours, is not discussed in Liang and Parthasar-
athy (2016) though. For different datasets and distance metrics, it is hard to obtain 
a single best value for this parameter and preliminary experiments revealed that 
ROCOD is sensitive to this parameter. Nevertheless, we also observed that it often 
achieves relatively good results when the distance threshold used to find neighbours 
is set to 0.9; hence, we decided to set this parameter to 0.9 by default.

6.2.1  QCAD parameters setting

As summarised in Table 4, the QCAD algorithm also requires several parameters 
to be set. First, in our contextual anomaly framework, we need to set the number 
of nearest neighbours (k) used to generate reference group. Second, when creat-
ing quantile regression forests, we need to specify the following parameters: the 
number of trees, the number of maximal features used to construct a tree, and 
the number of minimal sample size to split in a node of tree. Third, we need to 
specify the number of conditional quantiles (l) to estimate for an object in each 
behavioral feature. Last, we also need to set the number of features (h) used to 
generate explanations. We set these parameters as follows.

• The number of nearest neighbours (k): the sensitivity analysis (see appen-
dix) indicates that our approach is robust with respect to this parameter as 
long as its value is not overly small. By default, we set this parameter to 
min(N∕2, 500) , where N is the sample size.

• The number of conditional quantiles to estimate ( nq ): theoretically, an increase 
in this number will result in better performance in terms of accuracy, at the 
expense of a larger running time. However, preliminary experiments show that 
increasing this number beyond 100 will only produce slightly better results. 
Therefore, we set it to 100 by default.

• The number of trees used to construct a quantile regression forest ( nt ): in 
theory, a larger number of trees will produce better performance in terms of 
accuracy, but at the cost of a larger running time. We empirically found that 
100 trees usually gives good results and further increasing the number of trees 
leads to negligible improvement. Due to time constraints, we set this number 
to 10 in all experiments in this paper.

• The number of maximal features used to construct a tree in a quantile regres-
sion forest ( nf  ): Meinshausen (2006) demonstrated the stability of quantile 
regression forest on this parameter, and set this parameter to 1/3 of the num-
ber of variables in their experiments. However, in our experiments, sometimes 
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the number of contextual features is less than 3. To render quantile regression 
forests applicable on various datasets, we set this parameter to the number of 
all variables by default.

• The minimal sample size for the node of a tree to be split ( ns ): as indicated in 
Meinshausen (2006), different values of this parameter do not seem to have 
much effect on the results, and our preliminary experiments are also in line 
with this statement. Therefore, we set this number to 10 by default, as also 
used in Meinshausen (2006).

• The number of features used to generate explanations (h): This parameter is 
set to min(|B|, 3) by default. However, the end-users can set this parameter 
according to their preferences as long as its value is between 0 and |B| , where 
|B| represents the number of behavioral features.

For reproducibility, we make all code and datasets publicly available.3

6.3  Evaluation criteria

PRC AUC (Liang and Parthasarathy 2016; Kuo et al. 2018), ROC AUC (Micenková 
et al. 2014, 2015; Pasillas-Díaz and Ratté 2016), and Precision@n (Aggarwal and 
Sathe 2017) are widely used for the evaluation and comparison of anomaly detec-
tion methods that generate a full list of anomaly scores for all observations. They are 
defined as follows:

• Receiver Operating Characteristic (ROC), which is obtained by plotting the true 
positive rate (y-axis) versus the false positive rate (x-axis) at various threshold 
settings. The area under this curve, namely ROC AUC, is a threshold-agnostic 
performance measure widely used in anomaly detection;

• Precision-Recall Curve (PRC), which is created by plotting precision (y-axis) 
against recall (x-axis) at various threshold settings. The area under this curve, 
namely PRC AUC, is another widely-used, threshold-agnostic performance 
measure, and is also called Average Precision;

Table 4  Summary of parameters involved in QCAD

Particularly, Value represents the values that we recommend to use in experiments

Symbol Meaning Value

k Number of nearest neighbours min(N∕2, 500)

nq Number of conditional quantiles to estimate 100
nt Number of trees used to construct a QRF 100 or 10
nf Number of maximal features used to construct a tree |C|
ns Minimum number of samples to split a node 10
h Number of features used to generate explanations min(|B|, 3)

3 https:// github. com/ Zhong LIFR/ QCAD.

https://github.com/ZhongLIFR/QCAD
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• Precision at n, or P@n, is defined as the precision of the observations ranked 
among the top-n, where n ∈ {1, 2,… ,N} . In our experiments, we set n to the 
number of injected contextual anomalies.

For completeness: precision is defined as #{Real anomalies}∩{Reported anomalies}

#{Reported anomalies}
 , while 

recall is defined as #{Real anomalies}∩{Reported anomalies}

#{Real anomalies}
 . We perform ten independent tri-

als of injecting contextual anomalies on each dataset and report the means and 
standard deviations of each of the three evaluation criteria.

6.4  Anomaly detection performance

Results on 10 synthetic datasets and 20 real-world datasets are presented in Tables 5 
and 6, where the first table concerns synthetic data, and the latter two tables concern 
real-world data.

From Table  5, we observe that QCAD generally dominates other methods in 
terms of anomaly detection accuracy according to the average ranks. More specifi-
cally, QCAD achieved the best results on 9 out of 10 synthetic datasets in terms of 
PRC AUC and ROC AUC, and on all datasets in terms of Precision@n. On Syn8, 
QCAD is on par with its best competitor (i.e., CAD) in terms of ROC AUC, whereas 
QCAD is slightly worse than CAD and ROCOD in terms of PRC AUC. This dem-
onstrates the effectiveness of QCAD in identifying contextual anomalies for differ-
ent forms and degrees of dependencies between the behavioral features and con-
textual features. More importantly, the poor performance of LoPAD indicates the 
importance of distinguishing behavioral features from contextual features. Addition-
ally, other traditional anomaly detectors—including IForest, LOF, k-NN, SOD, and 
HBOS—perform poorly on most datasets because they treat all features equally.

Another important observation is that QCAD is generally superior to other meth-
ods in terms of robustness. That is, QCAD attains high PRC AUC, ROC AUC, and 
Precision@n values with small standard deviations on Syn1, Syn2, Syn3, Syn4 
and Syn5, indicating that it is robust to different forms and degrees of dependency 
relationships, including linearity and non-linearity. In contrast, its strongest con-
tender, CAD, has high standard deviations on Syn1 and Syn6. One possible reason 
is that CAD gets trapped in a bad local minimum when using expectation-maximi-
zation algorithm to learn parameters. Despite being a contextual anomaly detector, 
ROCOD performs poorly on datasets Syn2 and Syn5 in terms of PRC AUC and 
Precision@n. From the results on Syn6, Syn7, Syn8, Syn9 and Syn10, it appears 
that a larger number of contextual features does not substantially affect the perfor-
mance of QCAD. Compared to other contextual anomaly detectors, and specifically 
CAD, QCAD does not perform particularly better on these synthetic datasets.

The results on real-world datasets presented in Table  6 show that QCAD per-
forms best overall when compared to its contenders, as witnessed by its average 
ranking results. Concretely, QCAD outperforms the other methods on 13 out of 20 
real-world datasets in terms of PRC AUC and ROC AUC, and on 11 out of 20 data-
sets in terms of P@n. On most of the remaining datasets, QCAD is on par with its 
strongest competitors. For instance, HBOS achieves the best performance on Forest 
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Fires, Heart Failures, Hepatitis, and Indian Liver Patient; QCAD’s performance on 
these datasets is comparable. The number of contextual features in these datasets is 
often substantially less than the number of behavioral features, reducing the contex-
tual anomaly detection problem to a traditional anomaly detection problem. QCAD 
is only slightly worse than ROCOD on Power Plant and Toxicity in terms of PRC 
AUC. Note that CAD produces surprisingly good results on the Bodyfat dataset, 
and surpasses other methods including QCAD. One possible explanation is that the 
contexts and behaviors are both composed of well-separated Gaussian components, 
and that the association between contextual and behavioral components is strong 
(Fig. 5).

We also observe that QCAD performs well on datasets with varying sample size, 
dimensionality, and rate of injected anomalies. Specifically, QCAD achieved a high 
ROC AUC ( ≥ 0.85 ) on all datasets. This is much better than the ROC AUC val-
ues close to 0.50 obtained by ROCOD, CAD, HBOS, and IForest on some datasets, 
implying they are random guessing. In addition, QCAD attained high PRC AUC 
( ≥ 0.8 ) and Precision@n values ( ≥ 0.7 ) on most datasets. The lowest PRC AUC and 
Precision@n value are is 0.46 and 0.49, respectively, both obtained on the Toxic-
ity dataset. Possible reasons for QCAD’s moderate performance on Airfoil, Body-
Fat, Power plant, and Toxicity are: the dependency relationship between behavio-
ral features and contextual features is not strong, or the dependency relationship is 
too complex for the Quantile Regression Forests to capture. ROCOD, COD, HBOS, 
and IForest, however, obtain PRC AUC values less than 0.70 and Precision@n val-
ues less than 0.60 on most datasets. Moreover, HBOS and IForest sometimes attain 
PRC AUC and Precision@n lower than 0.10, which is extremely poor. This implies 
that traditional anomaly detection methods are not suitable for identifying contex-
tual anomalies, as they treat all features equally. Furthermore, the relatively poor 
performance of ROCOD and CAD—compared to our method—demonstrates the 
importance of modelling more properties of the conditional distribution than just the 
mean.

6.5  Runtime analysis

To investigate the scalability and efficiency of QCAD, we perform a runtime analy-
sis by varying the sample size, the number of contextual features, and the number of 
behavioral features. As shown in Fig. 6, we can empirically observe that the runtime 
of QCAD scales linearly with respect to the sample size, the number of contextual 
features, and the number of behavioral features on small and medium datasets. In 
contrast, CAD is computationally prohibitively expensive even on small datasets. To 
further understand the complexity of QCAD, we perform a time complexity analy-
sis in Appendix A. The theoretical analysis is in line with our empirical results and 
analysis.
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6.6  Using QCAD to find promising football players

In this section, we illustrate the capability of QCAD on identifying potentially 
meaningful contextual anomalies and providing intuitive and understandable expla-
nations for reported anomalies when applied to a real-world problem.

As use case, we consider the problem of finding exceptional players in the 
English Premier League. The dataset4 describes the background information and 
performance statistics of 532 football players from 2020 to 2021. We use the vari-
ables Position1,Position2 (positions for which the player plays), Age (age of the 
player), Matches (number of matches played), Starts (number of matches that the 
player was in the starting lineup), and Mins (number of minutes the player played 
overall) as contextual features. Two performance statistics, Goals (number of 
goals scored by the player) and Assists (number of assists given by player), are 
regarded as behavioral features.

Figure  7 depicts the distribution of all data objects in behavioral space 
Goals × Assists . Without considering contextual information, traditional anomaly 

Fig. 5  Critical difference diagram showing statistical difference comparisons between QCAD and its 
contenders in terms of PRC AUC, ROC AUC and Precision@n. To achieve this, we use Friedman tests 
(Friedman 1937) followed by Nemenyi post hoc analysis (Nemenyi 1963) with a significance level of 
0.05. The post-hoc Nemenyi test indicates there are no significant differences within QCAD, CAD and 
ROCOD in terms of PRC AUC; there are no significant differences within QCAD, ROCOD, HBOS and 
IForest in terms of ROC AUC; there are no significant differences within QCAD, ROCOD, HBOS and 
CAD in terms of Precision@n. However, one can see that QCAD consistently outperforms its contenders 
by a large margin in three metrics

Fig. 6  Runtime analysis by varying the sample size, the number of contextual features ( #C ), and the 
number of behavioral features ( #B ). The results are obtained with 5 independent trials. The data was syn-
thesized using scheme S1. Note the varying y-axis scales

4 https:// www. kaggle. com/ rajat rc1705/ engli sh- premi er- leagu e2020 21.

https://www.kaggle.com/rajatrc1705/english-premier-league202021
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detectors such as HBOS, LOF, IForest will treat objects in dense areas (i.e., 
objects residing inside the red curves) as normal objects. In contrast, our contex-
tual anomaly detector QCAD can detect anomalies in dense areas by considering 
contextual information (i.e., green objects residing inside the red curves). Con-
cretely, Fig.  7 also presents the anomaly scores given by QCAD (with default 
settings). For example, player Matheus Pereira—who achieved 11 goals and 6 
assists—is reported as an ‘anomaly’ (i.e., as having a relatively high anomaly 

Fig. 7  Distribution of all players in the behavioral space Assists × Goals , and their corresponding anom-
aly scores given by QCAD. The red curves represent the estimated densities of the joint distribution at 
different levels, the histograms indicate the marginal distributions. A larger and darker green dot repre-
sents a larger anomaly score as given by QCAD (Color figure online)

Fig. 8  Explanations for the identified anomalous player Matheus Pereira based on his reference group. 
Shown are the values for Matheus Pereira (red bins) relative to the distribution of his contextual neigh-
bours for each contextual feature
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score) by QCAD but as ‘normal’ by traditional anomaly detectors. Conversely, 
QCAD considers Patrick Bamford, a player with 17 goals and 7 assists (in a 
sparse area), to be normal, while traditional anomaly detectors consider him to be 
an anomaly.

In addition to giving an anomaly score for each data object, QCAD can also pro-
vide an explanation. For instance, for Matheus Pereira (Position1 = "MF", Position2 
= "FW", Age=24, Matches=33, Starts=30, Mins=2577), Fig. 8 shows the distribu-
tion of the values of each contextual feature for all players in his contextual neigh-
bourhood (i.e., similar players). It can be seen that most of these players are Mid-
fielder (MF) and/or Forward(FW), aged from 22 to 28, playing matches more than 
25 times, etc. The anomaly score is 65.8, which puts this player in the top-10 of 
most anomalous players. This score can be decomposed according to the behavioral 
features to give the behavioral feature(s) that contribute the most to the obtained 
anomaly score; Goals, in this case. Moreover, Fig. 9 shows how the beanplot-like 
visualisation can help to give insight in how the behavioral feature values deviate 
from those in the player’s contextual neighbourhood. From these plots we can see 
that Matheus Pereira has been exceptionally good at scoring goals and slightly better 
than expected with regard to giving assists.

These results can be interpreted as: Matheus Pereira performed surprisingly well 
in terms of goals and slightly better than expected in terms of assists when com-
pared to other midfielders and/or forwards aged 22–28 who played more than 25 
games and played more than 2000 min. Although we are not football experts, we 
expect the automated detection and interpretable score explanation of such ‘anoma-
lies’ to be meaningful and possibly useful to football coaches and scouts.

Fig. 9  Explaining why Matheus Pereira is considered an anomaly: exceptionally many goals compared 
to contextually similar players, and relatively many assists. The beanplot shows the estimated conditional 
distribution of each behavioral feature, with a wider red area representing a higher probability of occur-
rence. The horizontal black lines represent the values reported for the player being investigated
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7  Conclusions

In this paper, we for the first time explicitly establish a connection between depend-
ency-based traditional anomaly detection methods and contextual anomaly detection 
methods. On this basis, we propose a novel approach to contextual anomaly detec-
tion and explanation. Specifically, we use Quantile Regression Forests to develop a 
accurate and interpretable anomaly detection method, QCAD, that explores depend-
encies between features. QCAD can handle tabular datasets with mixed contextual 
features and numerical behavioral features. Extensive experiment results on various 
synthetic and real-world datasets demonstrate that QCAD outperforms state-of-the-
art anomaly detection methods in identifying contextual anomalies in terms of accu-
racy and interpretability.

From the case study on football player data, we conclude that QCAD can detect 
potentially meaningful and useful contextual anomalies that are directly interpret-
able by a domain expert. The beanplot-based visualisations help to explain why a 
certain object is (not) considered an anomaly within its context. This is important 
because anomaly detection is an unsupervised problem and the explanations can 
help analysts and domain experts to verify the results. It also opens up opportunities 
for human-guided anomaly detection, where feedback from the analyst can be used 
to guide the analysis.

In the future, given that QCAD can only handle static features, we plan to extend 
QCAD to streaming settings.

Appendix A: Complexity analysis

The computational overhead of our QCAD framework mainly comes from two parts: 
the calculation of Gower’s Distance matrix using contextual features, and the calcu-
lation of anomaly score using all features based on Quantile Regression Forests.

The time complexity of calculating Gower’s Distance matrix is O(N2Dcnt) , 
where N represents the sample size and Dcnt denotes the number of contex-
tual features. In addition, the time complexity of constructing a random forest is 
O(ntree ⋅ nfeature ⋅ klog(k)) and using it for prediction is O(ntree ⋅ nfeature) (Buczak 
and Guven 2015), where ntree is the number of trees used to form a random for-
est, nfeature denotes the number of dimensions (i.e., Dcnt at most) and k indicates 
the number of samples used to construct the forest (i.e., the number of nearest 
neighbours in our case). Hence, the time complexity of constructing N quantile 
regression forests in Dbhv behavioral features is O(ntree ⋅ Dcnt ⋅ klog(k) ⋅ N ⋅ Dbhv) . 
Moreover, we have to estimate 100 different quantiles using each quantile regres-
sion forest, resulting in O((ntree ⋅ Dcnt ⋅ klog(k) + ntree ⋅ Dcnt ⋅ 100) ⋅ N ⋅ Dbhv) . 
Therefore, using our default setting leads to 
O((100 ⋅ Dcnt ⋅min(500,

N

2
) ⋅ log(min(500,

N

2
)) + 100 ⋅ Dcnt ⋅ 100) ⋅ N ⋅ Dbhv) . In the 

worst case, it is O(105NDcntDbhv).

Overall, the time complexity of our method is O(105NDcntDbhv + N2Dcnt) in 
the worst case. Particularly, the time complexity becomes O(105NDcntDbhv) when 
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N < 105 (i.e., for small and medium datasets). Besides, the construction of quantile 
regression forests for each object in each behavioral feature can easily be performed 
in a parallel way, thus reducing the time complexity to O(105NDcnt + N2Dcnt) in the 
worst case.

Appendix B: Dataset description

Abalone The dataset contains 4177 abalone physical measurement records. Specifi-
cally, we use the features Sex, Length, Diameter and Height as contextual features. 
Accordingly, we use the features Whole Weight, Shucked Weight, Viscera Weight, 
Shell Weight and Rings as behavioral features. This dataset is downloaded from 
UCI,5 containing no missing values.

Airfoil Self-Noise This dataset contains 1503 records from a series of aerody-
namic and acoustic tests of airfoil blade sections. Specifically, we use the features 
describing the frequency, the angle of attack, the chord length, the free-stream 
velocity and the suction side displacement thickness (e.g., f, alpha, c, U_infinity and 
delta) as contextual features. Meanwhile, the feature describing the scaled sound 
pressure level (e.g., SSPL) as behavioral feature. This dataset is downloaded from 
UCI,6 containing no missing values.

Bodyfat This dataset contains the estimates of body density and the percentage 
of body fat (used as behavioral features), which are determined by various body 
circumference measurements, such as, Age, Weight, Height, Neck circumference, 
Chest circumference, Abdomen 2 circumference, Hip circumference, Thigh circum-
ference, Knee circumference, Ankle circumference, Biceps (extended) circumfer-
ence, Forearm circumference, and Wrist circumference (used as contextual features) 
for 252 men. The raw dataset includes no categorical features and 0 missing values, 
downloaded from the CMU statlib.7

Boston House Price This dataset contains 583 records of the Boston house price. 
We use the features describing the properties of the house and its surroundings, 
i.e., CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, 
LSTAT as contextual features, and the median value of owner-occupied homes, i.e., 
MED, as behavioral feature. This dataset is released by Harrison Jr and Rubinfeld 
(1978) and downloaded from the CMU statlib.8 It remains 506 records after drop-
ping rows containing missing values.

Concrete Compressive Strength  This dataset contains 1030 records about the 
compressive strength of concrete. We use the features describing the age and dif-
ferent ingredients as contextual features, including C1, C2, C3, C4, C5, C6, C7 and 

5 https:// archi ve. ics. uci. edu/ ml/ datas ets/ abalo ne.
6 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Airfo il+ Self- Noise.
7 http:// lib. stat. cmu. edu/ datas ets/ bodyf at.
8 http:// lib. stat. cmu. edu/ datas ets.

https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
http://lib.stat.cmu.edu/datasets/bodyfat
http://lib.stat.cmu.edu/datasets
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Age. In addition, we use the feature Strength as behavioral feature. This dataset is 
downloaded from UCI,9 containing no missing values.

El Nino This dataset contains 178,080 records of the oceanographic and surface 
meteorological readings, which are taken from buoys located throughout the equato-
rial Pacific. We use the temporal and spatial features, i.e., Year, Month, Day, Date, 
Latitude, Longitude as contextual features, and other features, i.e., Zonal_Winds, 
Meridional_Winds, Humidity, Air_Temp, Sea_Surface_Temp as behavioral fea-
tures. This dataset is downloaded from the UCI machine learning repository.10 It 
remains 93,935 records after dropping rows containing missing values. However, in 
order for all algorithms to complete the experiment on this dataset within 12 h, we 
randomly downsample the original dataset to 20,000 records.

Energy efficiency This dataset contains 768 records about a study which assesses 
the energy efficiency as a function of building parameters. Accordingly, the building 
parameters such as X1, X2, X3, X4, X5, X6, X7 and X8 are regarded as contextual 
features, and the heating load and cooling load (namely Y1 and Y2) are treated as 
behavioral features. This dataset is downloaded from UCI,11 containing no missing 
values.

Fish Weight  This dataset contains 157 records about the features of common 
species of fish in the market. Accordingly, we use the features including Species, 
Length1, Length2, Length3, Height, Width as contextual features, and Weight as 
behavioral feature. This dataset is downloaded from Kaggle,12 containing no miss-
ing values.

Forest fires This dataset contains 517 records concerning meteorological and 
spatiotemporal information about forest fires in the northeast region of Portugal. We 
use the spatiotemporal features such as X, Y, month, day as contextual features, and 
the rest features, i.e., FFMC, DMC, DC, ISI, temp, RH, wind, rain, area as behavio-
ral features. It is downloaded from the UCI machine learning repository,13 contain-
ing no missing values.

Gas turbine CO and NOx emission The original dataset includes 36,733 records 
of sensor measures data, which is collected from a gas turbine in Turkey from 2011 
to 2015. The dataset is collected from the same power plant to study flue gas emis-
sions and predict the hourly net energy yield. Consequently, we use the features 
describing the turbine parameters (e.g., AT, AP, AH, AFDP, GTEP, TIT, TAT and 
CDP) as contextual features. The variables characterizing the turbine energy yield 
and emissions of gas (e.g., TEY, CO and NOX) are used as behavioral features. 
However, for all algorithms to complete the experiments within 12 h, we only use 
the 7383 records in 2015. This dataset is downloaded from UCI,14 containing no 
missing values.

12 https:// www. kaggle. com/ aungp yaeap/ fish- market.
13 https:// archi ve. ics. uci. edu/ ml/ datas ets/ forest+ fires.
14 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Gas+ Turbi ne+ CO+ and+ NOx+ Emiss ion+ Data+ Set.

11 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Energy+ effic iency.

9 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Concr ete+ Compr essive+ Stren gth.
10 https:// archi ve. ics. uci. edu/ ml/ datas ets/ El+ Nino.

https://www.kaggle.com/aungpyaeap/fish-market
https://archive.ics.uci.edu/ml/datasets/forest+fires
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/El+Nino
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Heart failure This dataset contains heart failure clinical records of 299 patients 
suffering from heart failure. It contains 13 clinical features, of which we use age, sex, 
smoking, diabetes, high_blood_pressure, and anaemia as contextual features, and 
creatinine_phosphokinase, ejection_fraction, platelets, serum_creatinine, serum_
sodium, time as behavioral features. Besides, the death_event feature is removed and 
there is no missing value in this dataset. The original dataset is released by Ahmad 
et al. (2017) and we download it from the UCI machine learning repository.15

Hepatitis This dataset contains 615 records concerning the laboratory values of 
blood donors and Hepatitis C patients. We use the demographic features such as sex 
and age, and Category of donors as contextual features, and the rest of features, i.e., 
ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT and PROT as behavioral 
features. The original dataset is downloaded from the UCI machine learning Reposi-
tory.16 26 records contain missing values and therefore are removed.

Indian Liver Patient This dataset contains the medical records of 583 Indian liver 
patients, 4 of which contain missing values and are therefore deleted from further 
analysis. We treat Age, Gender and Selector as contextual features, and Total_Bili-
rubin, Direct_Bilirubin, Alkaline_Phosphotase, Alamine_Aminotransferase, Aspar-
tate_Aminotransferase, Total_Protiens, Albumin, Albumin_and_Globulin_Ratio 
as behavioral features. This dataset is downloaded from the UCI machine learning 
repository.17

Maintenance of Naval Propulsion Plants  The data set contains 11,934 experi-
mental records, which were performed by a numerical simulator of a naval vessel 
featuring a gas turbine propulsion plant. We use the features describing the gas tur-
bine measures of the physical asset as contextual features, including LeverPosition, 
GTT, GTn, GGn, Ts, Tp, T48, T1, T2, P48, P1, P2, Pexh, TIC, mf. Meanwhile, we 
use the features containing the ship speed and the performance decay over time of 
gas turbine components, e.g., ShipSpeed, CompressorDecay and TurbineDecay, as 
behavioral features. This dataset is downloaded from UCI,18 containing no missing 
values.

Parkinsons Telemonitoring The data set contains 5875 records of a series of 
biomedical voice measurements from 42 early-stage Parkinson’s disease patients. 
There people were recruited into a six-month trial of remote monitoring equipment 
for remote symptom progression monitoring. The features such as subject, age, sex, 
test_time, Jitter, Jitter_Abs, Jitter_RAP, Jitter_PPQ5, Jitter_DDP, Shimmer, Shim-
mer_dB, Shimmer_APQ3, Shimmer_APQ5, Shimmer_APQ11, Shimmer_DDA, 
NHR, HNR, RPDE, DFA, PPE descirbe the background information, and thus are 
used as contextual features. Meanwhile, the corresponding scores motor_UPDRS 

15 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Heart+ failu re+ clini cal+ recor ds.
16 https:// archi ve. ics. uci. edu/ ml/ datas ets/ HCV+ data.
17 https:// archi ve. ics. uci. edu/ ml/ datas ets/ ILPD+ (Indian+ Liver+ Patie nt+ Datas et).
18 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Condi tion+ Based+ Maint enance+ of+ Naval+ Propu lsion+ 
Plants.

https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records
https://archive.ics.uci.edu/ml/datasets/HCV+data
https://archive.ics.uci.edu/ml/datasets/ILPD+%28Indian+Liver+Patient+Dataset)
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
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and total_UPDRS are used as behavioral features. This dataset is downloaded from 
UCI,19 containing no missing values.

Power plant This dataset contains 9568 records from a combined cycle power 
plant which worked with full load from 2006 to 2011. Features such as hourly aver-
age ambient variables temperature, ambient pressure, relative humidity and exhaust 
vacuum (e.g., T, AP, RH and EP) are considered as contextual features, while the net 
hourly electrical energy output (EP) is regarded as behavioral feature. This dataset is 
downloaded from UCI,20 containing no missing values.

QS university ranking This dataset contains the QS rankings of the world uni-
versities from 2018 to 2020. We consider the wolrd rankings, national rankings 
and location of each university from 2018 to 2020, i.e., World2018, National2018, 
World2019, National2019,World2020, National2020, Country as contextual fea-
tures. We use six features that are considered for the ranking (i.e., Academic Rep-
utation, Employer Reputation, Faculty to Student Ratio, Number of citations per 
faculty, International Faculty, International Students) as behavioral features. The 
original data is crawled from the QS website,21 containing 475 records after drop-
ping missing values.

QSAR Fish Toxicity This dataset contains 908 records about the fish Pimephales 
promelas. Specifically, the six features describing the molecular of 908 chemicals 
will be used as contextual features, and the corresponding acute aquatic toxicity 
measure will be used as behavioral feature. This dataset is downloaded from UCI,22 
containing no missing values.

Synchronous machine This dataset contains 557 records from a real experimen-
tal set. This experiment aims to construct a model to estimate the excitation current 
of synchronous motors. Specifically, we use the features describing the load current, 
power factor, power factor error and changing of excitation current (e.g., Iy, PF, e 
and dIf) as contextual features. Accordingly, the feature which describes the excita-
tion current of synchronous machine (namely If ) is used as behavioral feature. This 
dataset is downloaded from UCI,23 containing no missing values.

Yacht Hydrodynamics  This dataset contains 308 records about the features of 
sailing yachts. We use the features describing the dimensions, velocity and hydrody-
namic performance of yachts, namely Longitudinal_position, Prismatic_coefficient, 
Length_displacement_ratio, Beam_draught_ratio, Length_beam_ratio, Froude_
number as contextual features, and the feature concerning the residuary resistance 
per unit weight of displacement, namely resistance, as behavioral feature. This data-
set is downloaded from the UCI machine learning repository,24 containing no miss-
ing values.

23 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Synch ronous+ Machi ne+ Data+ Set.
24 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Yacht+ Hydro dynam ics.

21 https:// www. topun ivers ities. com/ qs- world- unive rsity- ranki ngs.
22 https:// archi ve. ics. uci. edu/ ml/ datas ets/ QSAR+ fish+ toxic ity.

19 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Parki nsons+ Telem onito ring.
20 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Combi ned+ Cycle+ Power+ Plant.

https://archive.ics.uci.edu/ml/datasets/Synchronous+Machine+Data+Set
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://www.topuniversities.com/qs-world-university-rankings
https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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Appendix C: Parameter sensitivity analysis

The parameter k directly affects the effectiveness and efficiency of anomaly detec-
tor in anomaly detection phase. If our dataset is labelled, we can use techniques 
like grid-search and cross-validation to set an optimal k for a specific dataset. How-
ever, anomaly detection is usually an unsupervised learning problem, which makes 
it impossible to set an optimal k. Hence, we can only empirically give some rules 
of thumb to set k according to the properties of specific dataset (i.e., sample size, 
dimensionality and estimated rate of anomaly). Therefore, we perform intensive 
experiments on synthetic and real-world datasets with a wide range of sample sizes, 
dimensionalities and rates of injected anomalies to investigate the sensitivity of our 
algorithm on this parameter.

As shown in Fig.  10, increasing the number of neighbours, i.e., k, will lead to 
a better performance in terms of PRC AUC, ROC AUC and Precision@n when k 
is small (about N/10 for most datasets). However, the performance gain gradually 
slows down as k increases, and the performance finally reaches a plateau with an 
increase of k. After that, further increasing k yields only a negligible performance 
gain, at the cost of runtime. Therefore, we set k to N/2 for small dataset and 500 
for medium dataset after taking a trade-off between the accuracy and runtime cost. 
Overall, different from other k-NN based anomaly detectors which are sensitive to 
this parameter, our method QCAD is stable on parameter k as long as its value is not 
too small.

Fig. 10  Sensitivity analysis on parameter k, where lines represent the mean values and the shaded areas 
indicate the corresponding standard deviations of each metric on 10 independent trials. Increasing the 
number of neighbours will first largely improve the performance in terms of PRC AUC (green line with 
asterisks), ROC AUC (red line with squares) and Precision@n (blue line with diamonds), and then yields 
negligible performance gains (Color figure online)
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Appendix D: Ablation study

D.1 Scaling conditional quantile interval length

In our method section, we have defined a matched conditional quantile interval 
length for an observation bq when bq > 𝜏

q

100
 or bq < 𝜏

q

0
 as in Equation (4). We define 

the matched interval length for bq based on max(w(x|bq)) and further scale it by con-
sidering its distance to �q

100
 or �q

0
 . Alternatively, we can simply define the matched 

interval length as max(w(x|bq)) without scaling it. In other words, we could treat all 
observations residing outside [�q

0
, �

q

100
] equally. However, as shown in Fig. 11, this 

will lead to a large performance degradation in terms of PRC AUC and Precision@n 
for most datasets.

Concretely, Fig.  11 shows the difference of performance metrics, i.e., PRC 
ROC, ROC AUC and Precision@n between scaling max(w(x|bq)) with consider-
ing the distance to �q

100
 or �q

0
 , and not scaling max(w(x|bq)) . For all datasets, the 

differences are positive. Particularly, these differences are significantly large in 
terms of PRC AUC and Precision@n for most datasets such as Energy, Hepati-
tis, Indian Liver Patient, Synthetic 5 and Synthetic 10. Therefore, it is pivotal to 
define the matched interval length by considering the distance from bq to �q

100
 or 

�
q

0
 when bq > 𝜏

q

100
 or bq < 𝜏

q

0
 , respectively.

D.2 Clipping conditional quantile interval length

To mitigate dictator effect, we have proposed to clip large matched conditional 
quantile interval lengths with an upper bound, which is set to �

100
 . More con-

cretely, we set � = 10 . To demonstrate the efficacy of this strategy on various 
datasets, we compute the performance metrics of QCAD by varying the hyper-
parameter � ∈ {0.1, 0.2, 0.5, 1, 2, 3,… , 11, 12, 15, 20, 30, 40,None} , where None 
means no clipping is performed.

As shown in Fig. 12, increasing � will lead to higher PRC AUC, ROC AUC 
and Precision@n values when � is small (i.e., less than 1 for most datasets). Next, 

Fig. 11  Effects of scaling matched conditional quantile interval length. For each dataset, the results are 
obtained by performing 5 independent trials of injecting contextual anomalies. For each trial, which is 
represented by the y-axis (namely num_data ), the results are the difference (in terms of PRC AUC, ROC 
AUC, Precision@n, respectively) of methods with or without scaling the matched conditional quantile 
interval length. The large differences on most datasets imply the critical importance of scaling matched 
conditional quantile interval length
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on the one hand, the ROC AUC stays stable as � increases, even without clipping 
(i.e. � = None ). In other words, the clipping strategy does not affect ROC AUC 
metric. On the other hand, the PRC AUC and Precision@n gradually climb to 
a plateau as � increases. After a certain period, the PRC AUC and Precision@n 
start decreasing with an increase of � . Overall, on most datasets, PRC AUC and 

Fig. 12  Effects of clipping matched conditional quantile interval length. For each dataset, the results are 
obtained by performing 5 independent trials (represented by 5 different curves) of injecting contextual 
anomalies. Then we compute the performance metrics (i.e., PRC AUC, ROC AUC, and Precision@n) 
of QCAD by varying the hyper-parameter � in {0.1, 0.2, 0.5, 1, 2, 3,… , 11, 12, 15, 20, 30, 40,None} , 
where None means no clipping is performed. On most datasets, the best performances are achieved when 
3 < 𝜂 < 10 , as shown by the two vertical red lines
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Precision@n generally achieve higher values with 3 ≤ � ≤ 10 than those without 
clipping. Therefore, the dictator effects indeed exist and they mainly reduce the 
performance of QCAD in terms of PRC AUC and Precision@n. Moreover, our 
proposed clipping strategy can effectively overcome this problem.
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