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Chapter 1 

  



 

 

 

 

General introduction and outline of 
the thesis 
  



1. Endothelium: a key regulator in inflammation and Coagulation 

The biological systems of coagulation and inflammation are intricately intertwined and 

delicately balanced, with a great deal of crosstalk between each other. Whereby 

inflammation not only leads to coagulation activation, but coagulation also considerably 

affects inflammatory activity. When any one component is out of balance, the entire 

balance is thrown off, resulting in a wide range of disorders with varying degrees of excess 

inflammation and thrombosis. 

The endothelium is the fundamental regulator in both systems. Quiescent endothelial cells 

reveal an anti-coagulant surface phenotype by repressing tissue factor (TF) expression and 

releasing anti-thrombogenic factors (e.g, TF pathway inhibitor). Endothelial cells become 

activated and rapidly shift in response to inflammation in either acute illnesses such as 

sepsis and COVID-19 or chronic inflammatory states such as diabetes and obesity, 

disrupting the hemostatic balance which could lead to a procoagulant state [1]. TF plays a 

critical role in procoagulant phenotype switching and endothelial dysfunction. In 

experimental in vitro situations, a wide range of inflammatory cytokines, including tumor 

necrosis factor (TNF)-α, IL-1, and IFN-I beta, together with C-reactive protein (CRP) and 

lipopolysaccharides (LPS) have been shown to increase TF expression in endothelial cells 

[2-5]. Such an increase in TF initiates the extrinsic coagulation pathway which allows 

complex forming with circulating factor VIIa, enhancing the catalytic activity of the latter 

and triggering coagulation by activating coagulation factor X [6, 7] and participating in the 

prothrombinase complex (FVa: FXa). The prothrombinase complex (FVa: FXa) activates 

prothrombin (PT) to thrombin. Once the generated thrombin concentration exceeds a 

threshold beyond physiological conditions, it leads to a pro-inflammatory state and 

triggers a wide spectrum of endothelial responses [8]. This includes the induction of 

adhesion molecules that facilitate leukocyte binding and transmigration, such as E-

selectin, P-selectin, intracellular cell adhesion molecule-1 (ICAM-1), and vascular cell 

adhesion molecule-1 (VCAM-1), as well as the disruption of the endothelial barrier 

function, the release of proinflammatory cytokines and complement activation [9-13]. 



Additionally, previous studies showed that the TF-FVIIa complex could stimulate 

proteinase-activated receptor (PAR) signaling, which induces the release of inflammatory 

cytokines and chemokines [14]. 

Endothelial cells of all blood vessels are covered with an endothelial glycocalyx, a tight 

matrix of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS) 

anchored in the cell membrane by a protein backbone, together as proteoglycans, and 

intertwined with hyaluronan (HA), a glycosaminoglycan not covalently linked [15, 16]. The 

endothelial glycocalyx together with associated proteins, such as lipase, growth factors, 

and chemokines, forming a bioactive surface layer [17], and plays a critical role in 

maintaining vascular integrity and homeostasis, regulating endothelial 

mechanotransduction, vascular permeability, coagulation, and inflammation [18, 19].  

Under physiological conditions, the endothelial glycocalyx composition inhibits blood 

coagulation. For example, 3-O sulfate modification of HS inhibits Factor Xa activity, and 

further blocks thrombin generation [20]; besides, other components such as syndecan-1 

and hyaluronic acid also interfere with clot formation (inhibits both intrinsic and extrinsic 

pathway) and affect fibrin polymerization [21]. Tissue factor pathway inhibitor (TFPI) in 

turn, binds to endothelial cells via HS and as such prevents initiation of coagulation by 

blocking the actions of the FVIIa-TF complex. HS binding and sequestering protein anti-

thrombin III (ATIII) to the cell surface is capable of inhibiting thrombin activity produced by 

the coagulation cascade, whereas thrombomodulin (TM), also bound to HS binds 

thrombin, inhibiting fibrin generation. Subsequently, thrombin-TM complexes activate 

protein C, and activated protein C (APC) inactivates coagulation factors Va and VIIIa, 

thereby inhibiting further thrombin generation [22]. Intracellular Weibel-Palade bodies 

(WPB) in endothelial cells store von Willebrand factor (vWF), a protein enhancing the 

interaction with platelets. HS chains are reported to act as a relevant binding factor for 

vWF fibers at the endothelial cell surface [23]. In addition to its anti-coagulation function, 

the endothelial glycocalyx is involved in inflammation. As HS compositional changes can 

induce binding and signaling in inflammatory conditions, numerous studies have shown 



that HS, via its protein-binding properties, regulates inflammatory responses [24-27]. For 

example, CCL2 is a well-known proinflammatory chemokine, playing a critical role in 

macrophage recruitment and polarization during inflammation [28]. HS, particularly 3-O-

sulfated HS domains, can interact with C-C Motif Chemokine Ligand 2 (CCL2), which 

further regulates vascular integrity and homeostasis through the CCL2/CCR2 signaling 

pathway [29, 30]. Also, N- and 6-O-sulfated HS domains were remarkably increased on 

glomerular endothelium under inflammatory conditions, enhancing leukocyte adhesion in 

vitro [31]. Finally, loss of HA could lead to impaired microvascular perfusion and 

endothelial stability via disturbed angiopoietin1- TEK receptor tyrosine kinase (TIE2) 

signaling, stabilizing VE-cadherin cell-cell interactions [32]. 

Impairment of the endothelial glycocalyx during various pathological conditions, 

therefore, can result in the initiation of both the inflammation and coagulation system 

which results in thromboinflammation. Thromboinflammation, the activating interplay of 

thrombosis and inflammation not only drives cardiovascular disease but also induces 

acute severe illness, such as sepsis, acute respiratory distress syndrome (ARDS), and 

disseminated intravascular coagulation (DIC). In the current thesis, I specifically will 

discuss the role of thromboinflammation in the participants of the Netherlands 

Epidemiology of Obesity (NEO) study and high-risk patient populations during the COVID-

19 pandemic and South-Asian Surinamese participants with type 2 diabetes mellitus 

(T2DM). 

 

2. Thromboinflammation and gender 

Accumulating evidence shows that sex-specific pathophysiological mechanisms play a 

growing role in the development of cardiovascular disease (CVD). Thromboinflammation, 

as one of the risk factors for CVD, also exhibits certain sex differences. 



C-reaction protein (CRP), the most studied inflammatory marker, is primarily released 

from the liver following cytokine stimulation [33]. CRP has been shown to predict 

cardiovascular events in both men and women independently [34, 35]. However, various 

groups have reported remarkable sex differences in CRP, in which the CRP concentration 

in women is much higher than in men [36-42].  The well-documented sex differences in 

body fat distribution and sex hormone concentrations might be key determinants in sex 

dimorphism [43, 44]. For instance, CRP concentration was found to be higher in 

premenopausal women than in men, owing to the increasing effect of estrogens [36]. 

Meanwhile, the use of oral contraceptive drugs and postmenopausal hormone 

replacement therapy was also able to raise CRP levels [45, 46]. CRP is tightly correlated 

with both subcutaneous and visceral adipose tissue. Postmenopausal and perimenopausal 

women have more ectopic fat accumulation (i.e., visceral adipose tissue) than 

premenopausal women, and women have more subcutaneous fat than men, which 

contributes to higher CRP concentrations in women [47]. 

Women not only appear to have higher plasma levels of inflammatory factors, but they 

also have higher fibrinogen plasma levels than men of the same age and ethnic group [48], 

pushing the balance from fibrinolysis to clotting [49]. Plasma fibrinogen was reported to 

be associated with morbidity and mortality in coronary heart disease (CHD) patients [50-

52] and to the extent of coronary atherosclerosis [53]. Besides, the levels of coagulation 

factors II, VII, X, IX, XI, and XII are higher in women than in men [54]. These elevated 

coagulation factors have been associated with an increased risk of CHD in multiple studies 

[55, 56]. 

Sex differences in presence of inflammatory- and coagulation factors therefore might lead 

to differences in microvascular health and contribute to a different clinical presentation 

and outcome of CVD. In previous decades, men were thought to be more susceptible to 

coronary heart disease (CHD) than women [57]. However, the risk of CHD in women is 

frequently underestimated due to the under-recognition of CHD and distinct clinical 

presentations, which eventually when discovered resulted in a poor prognosis [58]. 



Therefore, it is important to study the significance of microvascular dysfunction in the 

pathophysiology of CHD and how this may differ by sex. 

 

3. Thromboinflammation and diabetes 

T2DM is characterized by insulin resistance and insufficient compensatory insulin 

secretion, the mechanism of which varies by ethnicity.  

Thromboinflammation is commonly observed in patients with diabetes [59]. A previous 

epidemiological study in the general population demonstrated that increased levels of 

fasting glucose, HbA1c, and postprandial glucose response were associated with higher 

activity of FVIII, FIX, and FXI, and to some extent also with increased concentration of 

fibrinogen, which provided some evidence between hyperglycemia and coagulation [60]. 

Another study revealed that platelets of patients with diabetes had an increased capacity 

of mediating microvascular thrombosis and inflammation during ischemia-reperfusion 

injury [61].  

Several mechanisms might be involved in the diabetes-associated thromboinflammation 

process. One mechanism is associated with platelet aggregation/activation, such as 

platelet-derived chemokine C-X- C motif ligand 14 (CXCL14). CXCL14 is one of the potential 

players in the development of thromboinflammation in diabetes expressing 

proinflammatory properties through its involvement in thrombus formation, platelet 

migration, and monocyte migration [62, 63]. Besides, platelets can interact with 

inflammatory cells by regulating lipids in a paracrine manner [64]. A recent study showed 

that the platelet atypical chemokine receptor 3 (ACKR3)/ CXC-chemokine receptor 7 

(CXCR7) interaction is capable of favoring antiplatelet lipids over an atherothrombotic 

lipidome and regulating thromboinflammation [65]. 



Another mechanism at play in diabetes involves the endothelial glycocalyx in platelet 

adhesion to the endothelium of damaged vessels [66]. Our previous study showed that 

loss of endothelial hyaluronan, a key component of the extracellular matrix, could lead to 

disturbed glomerular endothelial stabilization [18]. Besides, the endothelial glycocalyx is 

perturbed upon treatment with human diabetic serum [67]. The impaired endothelial 

glycocalyx could lead to increased ICAM1 and decreased eNOS expression [68], which 

might contribute to platelet activation [69, 70], thus forming a procoagulant cell surface 

and further promoting thromboinflammation.  

Increasing studies investigate the biological functions of high-density lipoproteins (HDL) in 

pathophysiological conditions including cholesterol efflux mediation, capacity of anti-

oxidation, anti-inflammation, and anti-thrombosis [71, 72]. Given the causal relationship 

between HDL function and diabetes [73-76], it may yet be another novel mechanism 

causing thromboinflammation in subjects with diabetes. Numerous epidemiological 

studies have shown that low levels of plasma HDL cholesterol (HDL-C) were associated 

with an elevated risk of T2DM and cardiovascular disease [77-79]. Also, the function of 

HDL was associated with incidence of cardiovascular disease and prognosis of heart failure 

[80-82]. Interestingly, accumulation of symmetric dimethylarginine, a marker associated 

with diabetes, could lead to HDL dysfunction, switching to an endothelial-damaging 

phenotype, and then mediating glycocalyx breakdown [83]. 

 

4. Thromboinflammation and COVID-19 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection caused the 

coronavirus disease 2019 (COVID-19), and its worldwide spreading led to a global 

pandemic since late 2019 [84]. Although the majority of COVID-19 patients are 

asymptomatic or only showed mild symptoms [85], it is worth noting that part of the 

patients suffered from respiratory illness in the early disease stage, and rapidly progressed 



into respiratory failure [86, 87]. Additionally, there was an increased incidence of 

thromboembolism events during hospitalization in the intensive care unit (ICU) [88]. ARDS 

and coagulopathy are major contributors to the mortality of COVID-19 [89], while 

endothelial dysfunction is reported to participate in both ARDS and coagulopathy [90, 91].  

Severe pulmonary endothelial damage was observed in autopsy of COVID-19 non-

survivors [92], therefore, COVID-19 could be regarded as an endothelial disease. 

Endothelial dysfunction with subsequent COVID-19-related thromboinflammation might 

play a vital role in the pathogenesis of ARDS and coagulopathy.  

Hyperinflammation is involved in the severe illness of COVID-19 resulting in a cytokine 

storm regarding to increased levels of pro-inflammatory cytokines [85, 93-97]. Although 

the observed cytokine storm in COVID-19 patients was lower than those with non-COVID-

19 severe cases with ARDS, sepsis, and influenza virus infection [98, 99], COVID-19 

patients exhibited decreased innate antiviral defenses accompanied by exploded 

inflammatory cytokine production [100]. NLR family pyrin domain containing 3 (NLRP3) 

inflammasome was activated by SARS-CoV-2 in the lungs of patients who died from 

COVID-19-associated ARDS. In vitro studies on primary human monocytes revealed that 

SARS-CoV-2 infection activated the NLRP3 inflammasome [101, 102]. Furthermore, IL-1 

and IL-18, products of NLRP3 inflammasome, are elevated in the COVID-19 patients with 

critical illness and are associated with poor clinical outcomes [102]. 

In addition to the hyperinflammation, SARS-CoV-2 infection could also lead to a 

prothrombotic state. Patients with severe COVID-19 were associated with endogenous 

activation of coagulation and fibrinolysis; but different from sepsis-induced 

hypercoagulant status, patients with COVID-19 showed a loss of coagulation-initiating 

mechanisms [103]. Moreover, emerging evidence demonstrated that the complement 

system had a role in the maladaptive immune response that promotes hyperinflammation 

and thrombotic microangiopathy, increasing COVID-19 mortality [104]. SARS-CoV-2 was 

found to trigger complement-mediated endothelial damage, cause deregulations of the 

coagulation cascade, and further result in adverse clinical presentations [105-107]. Despite 



the indirect effect of the complement activation, COVID-19-associated coagulopathy is 

also suggested to be caused by endothelial dysfunction. Endothelial activation markers 

such as von Willebrand factor (vWF) and Angiopoietin 2 (ANG2) were elevated in patients 

with SARS-CoV-2 infection and associated with disease severity [108, 109]. In COVID-19 

patients, elevated circulating ANG2 levels have been linked to decreased respiratory 

function, hypercoagulable status, acute kidney injury, and increased mortality [109-112]. 

ANG2 also was shown to mediate the endothelial glycocalyx breakdown [113], and the 

MYSTIC study revealed that glycocalyx health, as measured by perfused boundary region 

(PBR), an inversed reflection of endothelial glycocalyx layer, was a prognostic predictor for 

COVID-19 and disease severity [109]. 

Early studies of lipid metabolism in patients revealed a role for high-density lipoproteins 

(HDL) protective factors in a variety of endothelial functions such as antioxidant, anti-

inflammatory, anti-thrombotic, and even anti-infectious properties [114, 115]. 

Thromboinflammation in COVID-19 might be also induced by HDL dysregulation. Recently, 

it was observed that the metabolic lipid profile in COVID-19 patients in the ICU was 

different when compared to healthy controls or patients with cardiogenic shock in ICU 

[116]. It is worth noting that increasing evidence suggested that low serum HDL-

cholesterol (HDL-C) levels at hospital admission are associated with disease severity and 

mortality in COVID-19 [117, 118]. However, other studies revealed that the HDL lipidome 

and proteome rather than quantitative HDL-C concentration play a more representative 

role in HDL function during disease [80, 119]. In addition to HDL-C concentrations in 

COVID-19, several studies showed significant inflammatory remodeling of the HDL 

proteome, associated with COVID-19 disease severity in both adult and pediatric COVID-

19 patients [119-121].  



Outline of this thesis 

In this thesis, we address the role of thromboinflammation in different high-risk 

populations, such as women versus men in the general Dutch population, type 2 diabetes 

mellitus, and COVID-19 patients. 

Recent research reveals that microvascular dysfunction more commonly in women is a 

growing determinant of sex difference in coronary heart disease. In Chapter 2, we 

examined the sex differences in the relationship between microvascular health and 

coagulation parameters in a middle-aged Dutch population and revealed a hitherto 

unreported sex-specific association between microcirculatory health and procoagulant 

status, which suggests considering microvascular health in the early development of 

coronary heart disease in women. 

HDL particles exhibit large heterogeneity in size, density, and composition. The 

composition of HDL can partly affect various functions including mediating cholesterol 

efflux, anti-oxidation, anti-inflammation, and anti-thrombotic processes, which is 

becoming an important determinant in the development of microvascular complications 

in T2DM. In Chapter 3, we used 1H nuclear magnetic resonance (NMR) spectroscopy and 

Bruker IVDr Lipoprotein Subclass Analysis (B.I.LISATM) software to determine the changes 

in plasma HDL (both particle size and lipid composition) in healthy individuals (Dutch white 

Caucasian [DwC], Dutch South Asian [DSA]) and individuals with T2DM. We also 

investigated the role of HDL in anti-thrombotic capacity, determined as the ability to 

suppress TNF-α induced thrombin generation in endothelial cells in vitro.  

Lipids play an essential role in both the intrinsic and extrinsic pathways of prothrombin 

activation and dyslipidemia is one of the hallmarks of T2DM. Oxidized lipids could 

contribute to thrombus initiation and growth in oxidative stress-induced cardiovascular 

diseases. Following the previous study, in Chapter 4, we used the LC/MS-based LipidyzerTM 

platform to measure the same participants mentioned above to study the biological 



mechanisms underlying the link between dyslipidemia and T2DM in different ethnic 

groups. 

Evidence of pulmonary microvascular thrombosis and inflammation were found on 

autopsy of COVID-19 non-survivors, leading to the increasing concern on 

thromboinflammation in the disease pathogenesis. In Chapter 5, we explored how serum 

factors affect vascular integrity in patients with severe COVID-19 (glycocalyx function, 

barrier function, and anti-coagulation capacity). Serum from COVID-19 patients in the ICU 

could induce endothelial dysfunction, characterized by endothelial glycocalyx degradation, 

endothelial barrier failure, and hypercoagulable status, which could be targeted earlier in 

the disease by supplementation of heparin sulfate mimetics. As HDL has both anti-

inflammatory and anti-thrombotic capacity regarding thromboinflammation, therefore, in 

Chapter 6, we measured blood HDL subclasses and lipid content concentrations in 

longitudinally collected serum samples from ICU and non-ICU, together with age-matched 

healthy controls using 1H NMR spectroscopy and the validated B.I.LISATM software to 

identify HDL composition concerning disease progression, and endothelial function, and 

investigate whether specific HDL compositional changes could lead to different outcomes 

in the course of the disease. 

In Chapter 7, we summarize and discuss the observations in this thesis, as well as future 

perspectives. 
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