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English Summary
Sewer pipes are an essential infrastructure in modern society and their proper operation is
important for public health. To keep sewer pipes operational as much as possible, periodical
inspections for defects are performed. Instead of repairing sewer pipes when a problem
becomes critical, such inspections allow municipalities to plan maintenance. This means
the disruptions of the service can be planned for by users of the pipe in question, and there
is less chance that a problem slips by unnoticed.

Sewer pipe inspections are generally performed visually with the aid of a pipe inspection
gadget, or PIG. The PIG is a remote-controlled vehicle equipped with cameras and possibly
other sensors. The PIG is lowered into a manhole to inspect a stretch of pipe, after which it
is returned to the surface. A trained human operator inspects the footage recorded by the
cameras, often while controlling the PIG from a vehicle at ground level.

Inspection reports are made according to a European classification norm. This norm
groups defects of a similar nature together and has guidelines for what constitutes ratings
from 1 (“no intervention necessary”) to 5 (“immediate intervention necessary”). Problemat-
ically, these guidelines consider defects in a vacuum. Take a fissure in the wall of a pipe for
example, the guideline assigns a rating 1 to 5 to different ranges of fissure sizes. The actual
consequences depend on many more factors, such as whether the pipe is above or below
the groundwater level, the zoning district the pipe is located in, etc. As a result, operators
have learned to assign ratings not according to the guidelines, but according to an intuitive
assessment of severity. This, in turn, means that severity ratings can vary wildly between
operators, and even between inspections by the same operator.

This makes sewer pipe inspections an attractive target for automation. While a potential
improvement in terms of assessment quality and processing efficiency is generally promised
by automation, in this case we would also decrease the variability which is a current problem.
Besides the reasons for automating, the methods for automating are also attractive: a lot of
(visual) data has been gathered over the past decades which may be used to train algorithms.

This thesis compiles the results of five years of research into the possible automation
of sewer pipe inspections with the tools of machine learning and computer vision. In this
thesis, three distinct, yet complementary approaches to automating sewer pipe inspections
are described.

Chapter 3, Image-Based Unsupervised Anomaly Detection, describes an approach based on
anomaly detection of the contents of the images. At this stage, the data that was available
to us consisted of images from inspections performed in two Dutch municipalities. The
inspection reports themselves were not available at that time, meaning it was unclear which
images were showing defects and which were not. While more complete data became
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available at a later date, at this stage we decided to leverage the image data that we did have.
The structure of the different images is very similar: the pipes were photographed with

the same equipment, and the pipes from the same municipality were often installed in
the same year, from the same manufacturer, and had seen similar use. This resulted in a
delineation of two image sets, one of images of pipes made of smooth concrete, one of
images of pipes made of granulate. Within either of the image sets, the images look mostly
uniform, meaning that anomalies—both expected (such as pipe joints) and unexpected
(such as defects)—stand out.

We applied principal component analysis to the images and extracted features from the
images, to detect the most common elements in an image set. Then, when we express an
image in those most common elements, we obtain a faithful reconstruction for the images
that do not contain any anomalies, and a less perfect reconstruction for the images that do
contain anomalies. Leveraging this reconstruction error, we compare the reconstruction to
the original image to estimate how likely it is to contain an anomaly.

In addition, we trained a convolutional autoencoder, a type of artificial neural network,
to perform a function similar to the principal component analysis, without enforcing a
linear relation of the common elements.

The results of these experiments were promising for the images of pipes made from
smooth concrete, but less so for the images of pipes made from the rougher granulate.

Chapter 4, Convolutional Neural Network Classification, describes an approach based
on supervised classification with a convolutional neural network. Convolutional neural
networks are artificial neural networks that are particularly suited to handle images, audio
and video. We were provided with sewer pipe images like the ones used in chapter 3, but a
much larger volume and including machine-readable classifications as assigned by human
operators. A total of 2.2 million images were available and the classification data allowed us
to estimate what defects should be visible in any given image. A single neural network was
trained to detect the twelve most common defect types in the dataset.

The problem of sewer pipe defect detection a strongly unbalanced one: only approxi-
mately 1 % of images actually contain defects. Most of the existing literature at the time was
assessing the performance of their models in terms of accuracy, the fraction of correctly
classified images, both as having, or not having, a defect. On a realistic dataset, an accuracy
of 99 % is then to be expected if we classify every image as not having any defects, which
is clearly not the intention of defect detection. To counter this, many works rebalanced
the dataset to contain about 50 % images with defects. While this is not per se a bad idea,
nearly every one of them also rebalanced the test set that was used to assess the performance
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of the model, making the assessed performance not at all indicative of actual, real-world
performance. Many also treated false positive and false negative detections identically, while
these have very different results in a realistic scenario: the former costs time, the latter might
pose a public health hazard.

Many earlier works randomly divide images of pipes into training and test set, meaning
that images of the same pipe at locations close to one another might end up in both training
and test set. This introduces a danger of data leakage: a high performance on the test set
might not necessarily mean that the defects themselves are being detected, but could rather
mean that the pipe is being detected.

To have any real-world meaning, we asserted that the test set used to assess the model
must be as realistic as possible, including having a realistic ratio of images with and without
defects, and only containing pipes that were not also used to train the model. We also
approach the problem from a more context-sensitive perspective, noting that accuracy
is not a useful metric in realistic situations, and introducing metrics that can be more
meaningfully interpreted by a human, as well as translate more directly to operational
impact.

Chapter 5, Stereovision and Geometry Reconstruction, extends beyond the current sewer
pipe inspection process and investigates the added value of a second camera, allowing us
to reconstruct the three-dimensional geometry of the sewer pipe. Much like how human
beings perceive depth only with both eyes open, a second camera allows us to estimate the
positions of objects in relation to the viewpoint.

In collaboration with Eindhoven University of Technology, we photographed 26 sewer
pipes in various conditions with a set of two side-by-side cameras. We built upon existing
stereovision techniques and adapted them for this unique use case to reconstruct a three-
dimensional point cloud of the pipe’s inner surface.

A pipe surface model is constructed under the assumption that the cameras are aligned
approximately along the pipe center. The model is powerful enough to capture the geometry
of any of the pipes we have used, but also based on human understanding of the shape of a
pipe, making it very interpretable.

The model is fit to the point cloud to estimate the original pipe geometry, without taking
into account minor deviations that are visible in the pipes after years of use. This allows
us to easily detect the portions of the pipe where the surface wall is deviating from the
expected shape. The detected deviating portions of the surface correlate with the presence
of actual defects in this small-scale experiment. The end result is an interpretable computer
vision technique that can be used to assist human-guided inspections.


