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4 Convolutional
Neural Network

Classification

The process of CCTV sewer pipe inspections is both labour-
intensive and error-prone. Other researchers have suggested
machine learning techniques to (partially) automate the
human review of this footage, but the automated classifiers
are often validated in artifial testing setups, leading to biased
results that do not translate well to practice.

In this chapter, we design a convolutional neural net-
work (CNN) and apply this validation methodology to au-
tomatically detect the twelve most common defect types in
a dataset of over 2 million CCTV images. We also discuss
suitable evaluation metrics for this specific classification task
— most notably ‘specificity at sensitivity’ and ‘precision at
recall’ — and the importance of using a validation setup that
includes a realistic ratio of images with defects to images
without defects, and a sufficiently large dataset. We also in-
troduce ‘leave-two-inspections-out’ cross validation, designed
to eliminate a data leakage bias that would otherwise cause
an overestimation of classifier performance.

With this dataset and our validation methodology, our
CNN outperforms the state-of-the-art. Classification per-
formance was highest for intruding and defective connec-
tions and lowest for porous pipes. While the CNN is not
capable of fully automated classification at sufficient perfor-
mance levels, we determined that if we augment the human
operator with the CNN, this may reduce the required hu-
man labour by up to 60.5%.
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4.1 Introduction

In this chapter a possible method to automate the inspection
process is demonstrated and shown to be viable. While the
performance of the method is noteworthy, we consider the
most important contribution of this chapter not to be this
method itself, but rather the methodology used to validate
these results and assess their impact if used in practice.

4.1.1 Image Classification

Image classification is the primary way in which we attempt
to address the automation of the inspection process. This
classification assumes that we have training data, consist-
ing of a set of images of CCTV footage, each of which has
an assigned label, which indicates whether specific types of
defects are present and visible in the image. The classifier
infers a statistical relation between the images and the la-
bels, which allows it to make predictions about the labels
of images that we do not know the true labels for, such as
recently recorded images that still require assessment.

Traditionally, the automated classification of images is
done with extracted image features 1, which are known to 1 Szeliski, R. 2010. Computer Vi-

sion: Algorithms and Applications, 1st
ed. Springer-Verlag, Berlin, Heidelberg

capture information that is less visible in raw pixel values.
Recently, this approach has been mostly replaced by con-
volutional neural networks 2 (CNNs, explained in more 2 Russakovsky, O., Deng, J., Su,

H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M. S., Berg, A. C.,
and Li, F. 2014. Imagenet large
scale visual recognition challenge.
CoRR abs/1409.0575

detail in section 2.3). CNNs employ end-to-end learning:
the original pixel values are used as inputs, and the CNN
learns the feature extractions as well as how these features
relate to the labels. This allows for extracted image features
that are more specialised to the classification task. There is
one main downside to this approach: there are a lot more
parameters to fit, as the extracted features also need to be
inferred from the image data. Two resulting limitations are
that a lot more data is required to fit all these parameters,
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and hyperparameter optimization becomes more difficult
as the hyperparameter search space (how many filters and
of what shape) increases drastically compared to traditional
methods.

The impact of the data availability problem can be less-
ened with transfer learning, by using a network that has
been pre-trained on a different set of images 3, but then

3 Hoo-Chang, S., Roth, H. R.,
Gao, M., Lu, L., Xu, Z., Nogues,
I., Yao, J., Mollura, D., and Sum-
mers, R. M. 2016. Deep convolutional
neural networks for computer-aided
detection: Cnn architectures, dataset
characteristics and transfer learning.
IEEE transactions on medical imag-
ing 35, 5, 1285

we may also reduce the benefit that the CNN may have in
training the convolutional filters specifically to the data and
the task at hand. Still, this approach is often favored over
a random initialization of the network parameters to save
time 4.4 Oquab, M., Bottou, L., Laptev,

I., and Sivic, J. 2014. Learning and
transferring mid-level image represen-
tations using convolutional neural net-
works. In Proceedings of the IEEE con-
ference on computer vision and pattern
recognition. 1717–1724

4.1.2 Classification Result
Validation

To assess the performance of a trained classifier, we need a
test set that is independent of the training set. To use (part
of) the same training set as the test set introduces a bias,
which means we are not measuring how well the classifier
performs, but only how well it can recognise before-seen
data. Since two independent data sets may be difficult to
come by, often a portion of the training set is set apart to
be used as the test set. 5 The training and test set are not5 Bishop, C. M. 2006. Pattern

Recognition and Machine Learning
(Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg

independent in such a scenario and likely contain the same
sampling bias, but it is often the best we can do.

To assess the performance accurately, some variance in
the samples in the test set is required, which means many
samples are required, and a significant portion of the train-
ing set may have to be set apart. A significant reduction in
size of the training set could itself impact the performance
negatively, leading us to underestimate the actual perfor-
mance of the classifier due to lack of training data. An often
used technique to circumvent this problem is k-fold cross
validation, as outlined in section 2.1.3.
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Besides a test set, the performance metrics have to be
defined. The most common performance metric used for
classification is the accuracy, the percentage of correctly clas-
sified samples. However, the performance metric should
be chosen based on the task at hand, and accuracy is not a
good choice for unbalanced classification problems, such
as this particular problem, as it favors correct classification
of the majority class. 6 Most performance metrics can be 6 further discussion on this can be

found in section 2.1.4thought of as some function of the false positive rate (FPR)
and the false negative rate (FNR). A classifier can often be
tuned after it has been trained, making it essentially a family
of classifiers. In such cases the performance may change as a
function of this tuning, and it can be worthwhile to use per-
formance metrics that are independent of which member of
the family of classifiers is used. Examples of such metrics are
the receiver operating characteristic, or the Pareto-boundary
of any combination of metrics 7. 7 Bishop, C. M. 2006. Pattern

Recognition and Machine Learning
(Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg

4.1.3 Related Work

Researchers have already applied machine learning tech-
niques to the task of automating sewer inspections. But
realistic validation of such methods is often of less note in
such articles. As actual defect rates are often very low, in the
order of magnitude of 1% of images captured by CCTV —
in our dataset we found 0.8% images with defects — it is
curious that many authors test their methods on artificial
test sets that contain 50% defects. We feel that such a result
might be interesting in a vacuum, but gives no indication of
the actual ‘real-world performance’ of a classifier. A relevant
selection of research is discussed in this section.

Chae and Abraham 8 use a (non-convolutional) neural 8 Chae, M. J. and Abraham, D. M.
2001. Neuro-fuzzy approaches for san-
itary sewer pipeline condition assess-
ment. Journal of Computing in Civil
engineering 15, 1, 4–14

network to learn various attributes in relation to the exis-
tence and severity of cracks from images of the inner surface
of sewer pipes. Their neural network is trained on 20 images



62 Convolutional Neural Network Classification

and tested on 13 images, so the actual applicability remains
unclear.

Yang and Su 9 compare two SVM approaches and a neu-9 Yang, M.-D. and Su, T.-C. 2008.
Automated diagnosis of sewer pipe de-
fects based on machine learning ap-
proaches. Expert Systems with Applica-
tions 35, 3, 1327–1337

ral network, trained on wavelet filter responses of images.
The classifiers were only applied to images containing de-
fects, and subsequently used to classify what defect was
present in the image. This means no information is avail-
able regarding the false detections in images without defects.

Guo et al. 10 use image registration (alignment of pixel10 Guo, W., Soibelman, L., and
Garrett Jr, J. 2009. Automated de-
fect detection for sewer pipeline inspec-
tion and condition assessment. Au-
tomation in Construction 18, 5, 587–596

locations) and the absolute pixelwise difference between im-
ages to classify image regions as defective or healthy. The
method is tested on a dataset consisting of 51 images of de-
fective pipes and 52 images of healthy pipes, with reported
accuracy and false alarm rates.

Halfawy and Hengmeechai 11 present an algorithm for11 Halfawy, M. R. and Heng-
meechai, J. 2013. Efficient algorithm
for crack detection in sewer images
from closed-circuit television
inspections. Journal of Infrastructure
Systems 20, 2, 04013014

crack detection in CCTV inspections, based on a Sobel
filter and morphological operations. As the model is par-
tially based on expert knowledge, it does not require a large
dataset to train, and it was tested on a dataset with 50 images
containing cracks and 50 images not containing cracks.

Halfawy and Hengmeechai 12 improve on their previ-12 Halfawy, M. R. and Heng-
meechai, J. 2014. Automated defect
detection in sewer closed circuit tele-
vision images using histograms of ori-
ented gradients and support vector ma-
chine. Automation in Construction 38,
1–13

ous work, now training an SVM with varying kernels with
HOG features extracted from CCTV images, and report
more meaningful performance metrics such as precision
and AUROC. The experiments are still performed on a test
set that consists of 50% images with defects, so it still tells us
very little about real-world performance.

Kumar et al. 13 are one of the first to use convolutional13 Kumar, S. S., Abraham, D. M., Ja-
hanshahi, M. R., Iseley, T., and
Starr, J. 2018. Automated defect clas-
sification in sewer closed circuit televi-
sion inspections using deep convolu-
tional neural networks. Automation
in Construction 91, 273–283

neural networks to exploit end-to-end learning in sewer
CCTV defect detection. They focus on three different de-
fect types and train the network three times, once for each
defect. They also report the precision as one of their perfor-
mance metrics and use a training set consisting of 12,000
images, but their test sets also consist of 50% images with
defects, again limiting their obtained results to such an ar-
tificial scenario. In our work, we reimplemented their sug-
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gested convolutional neural network and performed tests on
our dataset, which more accurately represents a real-world
scenario.

Myrans et al. 14 train an SVM and a random forest on 14 Myrans, J., Everson, R., and
Kapelan, Z. 2018. Automated detec-
tion of faults in sewers using cctv image
sequences. Automation in Construc-
tion 95, 64–71

extracted GIST features from CCTV images. They use
25-fold cross validation and provide the ROC curve along
with the misclassification rates for various defect types, but
unfortunately work with a dataset that consists of approxi-
mately 37% images with defects, which is not representative
of a realistic scenario.

In later work, Myrans et al. 15 combine both the SVM 15 Myrans, J., Kapelan, Z., and Ev-
erson, R. 2018a. Combining clas-
sifiers to detect faults in wastewater
networks. Water Science and Technol-
ogy 77, 9, 2184–2189

and the random forest on a dataset in which ‘approximately
half’ the images contained defects, and obtain results su-
perior to either individual classifier. Again, unfortunately
the validation results are not representative of a real-world
scenario because of the high prevalence of defects in the test
set.

4.2 Data Exploration

A dataset has been kindly provided to us by Dutch sewer
inspection company vandervalk+degroot. The data has two
components: the images themselves, and the accompanying
inspection reports. The data encompasses 30 inspections
from 11 Dutch municipalities, for a total of 2,202,582 im-
ages from 3,350 different concrete pipes ranging in diameter
between 300 mm and 1000 mm.

4.2.1 Image data

The images have been collected with the RapidView IBAK
Panoramo® pipeline inspection system 16. While the Panoramo

16 IBAK Helmut Hunger GmbH
& Co. KG. 2015. Panoramo®
3d optical pipeline scanner.
http://www.rapidview.com/

panoramo_pipeline.html.
Accessed: 2018-12-05

software can be used to inspect the pipe in a virtual 3D envi-
ronment, for this study we merely used the 2D images used

http://www.rapidview.com/panoramo_pipeline.html
http://www.rapidview.com/panoramo_pipeline.html
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to create these 3D environments as input. The Panoramo
system does not record video, but still images with a strobe
light, spaced 50 mm apart. This allows for improved image
quality, without the need to stop the inspection vehicle from
moving. The system is equipped with a front-facing and
back-facing camera, each with a 185° wide angle lens. The
images from the back-facing camera are slightly occluded by
parts of the inspection vehicle and the chain that lowered it
into the pipe, so our dataset contains only the images from
the front-facing camera.

The images are in 24-bit RGB format, 1040×1040 pixels,
JPEG images. No information was given about the com-
pression level, but the images range from 19 KiB to 447 KiB.
Four randomly selected sample images are shown in Figure
4.1.

An important feature of the images recorded by the Panoramo
system is that the images are spatially aligned. After the de-
vice is lowered into the sewer pipe, the operator aligns the
camera with the centre of the pipe before starting the record-
ing. This allows the Panoramo software to stitch the images
together into a three-dimensional, virtual environment, but
it also allows us to consider the images to be of the same
modality, allowing a 1-on-1 comparison between two images.

As the images from the Panoramo system are meant for
offline processing, the operator does not pan, rotate, or
zoom the camera during the recording, as they might with
other CCTV feeds. This is a very important distinction,
because being able to automatically classify images where a
human operator has already isolated, centred, and zoomed
in on the defects, as is apparently the case in some previous
studies, does not achieve much in terms of “automating clas-
sification”. To take steps towards fully automated inspec-
tion, we should aim to classify images that were recorded
without human intervention, other than starting the sys-
tem.
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Figure 4.1: Randomly selected sample
images from the dataset.

4.2.2 Inspection Reports

Besides the images, each of the 30 inspections is accompa-
nied by an inspection report, containing all points of interest
along the pipes referenced according to the European stan-
dard coding norm EN 13508-2 17, as annotated from visual 17 European Committee for Stan-

dardization. 2003. En 13508-2: Con-
dition of drain and sewer systems out-
side buildings, part 2: Visual inspec-
tion coding system, european norms

review by human operators. An example of an entry from
the tabular datafile that generated this report could be

38.40m BBAC2 @Blick=38.38;91;72;90;0;

This indicates that at 38.40 meters from the start of the
pipe, a defect was found with main code BBA (roots), char-
acterization C (complex mass of roots), and quantification
2 (pipe diameter reduced by ≤ 10%)

From these entries, we can assign contextual labels to
the images. We have selected the twelve most commonly
occurring defects (that are not simply expected landmarks
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Table 4.1: Defect types and occurrences Pipes Images

Defect Type
Total: 3,350 2,202,582

Fissure 586 1,442
Surface Damage 1,242 2,507
Intruding Connection 375 1,004
Defective Connection 506 838
Intruding Sealing Material 74 173
Displaced Joint 1,509 4,988
Porous Pipe 117 187
Roots 273 629
Attached Deposits 183 338
Settled Deposits 164 219
Ingress of Soil 536 1,249
Infiltration 1,353 7,565

such as pipe joints, an overview is shown in table 4.1) and
matched these to specific images, using the location of the
entries. Because we know the Panoramo system’s images are
spaced exactly 50 mm apart, it is a relatively simple task to de-
termine which entries in the report should be visible in each
image. It is important to note that the best performance we
can reasonably expect to achieve on such a dataset, is to label
the images as well as (and no better than) a human operator
would.

The @Blick entry is added by the Panoramo software
and can be used to recreate the exact view in the virtual
environment the operator was looking at when this defect
was recorded.18 In this research, the @Blick entry was not18 These parameters are: the location

along the pipe wall, the azimuthal an-
gle, the polar angle, the field of view
angle, and the rotation of the virtual
camera with respect to the water level.

used.
In the end, we have a set of roughly 2.2 million images,

and for each image a list of twelve Boolean values, telling
us whether or not specific defects are present in the image.
Table 4.1 gives an impression of how common these defects
are in the dataset. In the next section, we will go into detail
on how this data is modelled.
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4.3 Methodology

The classifier used in this research is a convolutional neural
network, and the model is approximated through backprop-
agation. This processs is explained in more detail in section
2.3.

4.3.1 Loss Function for Multi-Label
Classification

In a standard classification setting, we differentiate between
different classes. Each entry in the dataset is assigned to a
single class. In the case of defect detection in sewers, this
leads to a problem: several defects often co-occur. Infiltra-
tion, for example, almost always has a cause that is defined
as a separate defect, such as a fissure. This co-occurrence can
be a result of the definitions used in the EN13508–2 guide-
lines 19, or it might be an effect of cascading failures 20. In our 19 European Committee for Stan-

dardization. 2003. En 13508-2: Con-
dition of drain and sewer systems out-
side buildings, part 2: Visual inspec-
tion coding system, european norms
20 Sitzenfrei, R., Mair, M.,
Möderl, M., and Rauch, W. 2011.
Cascade vulnerability for risk analysis
of water infrastructure. Water Science
and Technology 64, 9, 1885–1891

dataset there are 17,662 out of 2,202,582 images (0.802%)
that contain defects, totalling 21,139 different defects, but
6,494 of these (30.7%) co-occur with another defect in the
same image. When considering entire pipes, 2,512 out of
3,350 pipes (75.0%) contain defects, 6,918 defects are found
in total, and 6,171 (89.2%) of these defect types are found
co-occurring with other defect types in the same pipe.

As a result of this multi-label problem,21 we have decided 21 We distinguish multi-label classifica-
tion (multiple classes per object), as
opposed to multi-class classification,
which might also refer to a non-binary
classification case, i.e. an object has a
single class, but there are more than
two classes.

to label the images with a Boolean vector, each consisting of
twelve Boolean values, representing the presence or absence
of a particular defect. This means that images that do not
contain a defect at all will have a vector of all negatives.

Not all misclassifications should be treated equally. If we
correctly classify the presence or absence of eleven defects,
but misclassify the presence or absence of the last defect,
this is less severe than misclassifying multiple defects.



68 Convolutional Neural Network Classification

For each of the twelve defects we calculate an individual
loss function, namely the cross entropy 22 between the ac-22 Shore, J. and Johnson, R. 1980.

Axiomatic derivation of the princi-
ple of maximum entropy and the
principle of minimum cross-entropy.
IEEE Transactions on information the-
ory 26, 1, 26–37

tual value for a defect, yc (0 for absence, 1 for presence), and
the predicted value output by the network for that defect,
ŷc (a real value in the interval [0, 1]):

L(y, ŷ) = −
12∑︁
c=1

yc log ŷc (4.1)

As written, only false negatives contribute to the cross
entropy loss, as yc is zero for false positives. This means that
we penalise the classifier for not detecting a defect, but not
for seeing a defect where there is none. To make sure that
the network does not simply output 1 for all defects, ŷ is
commonly normalised so that

∑
c ŷc = 1, which is called

soft-max normalization. 23 Alternatively, it is also possible23 Goodfellow, I., Bengio, Y., and
Courville, A. 2016. Deep learning.
Vol. 1. MIT press Cambridge

to account for false positives by adding contributions both
for yc and its complement:

L(y, ŷ) = −
12∑︁
c=1

yc log ŷc + (1 − yc) log(1 − ŷc) (4.2)

This is what we will use, as normalizing ŷ does not make
much sense when we expect defects to co-occur.

4.3.2 Class Imbalance and
Oversampling

Our dataset consists of 3,350 pipes with a total of 2,202,582
images. While every pipe contains at least one defect of some
type in one of its images, only 17,663 images, 24 roughly24 This number is not equal to the sum

of the numbers in the rightmost col-
umn of table 4.1 because defects often
co-occur in the same image, and some
images are counted multiple times if
we sum the column.

0.8% of all images contain one or more defects. It should
also be noted that the percentage of pipes that contain a
specific defect is not the same as the percentage of images
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that contain that defect, as a pipe is said to contain a defect
if at least one image from that pipe contains the defect.

The extreme class imbalance of images with and with-
out defects in our dataset means that if we train a classifier
without accounting for the imbalance, it will err on the
side of false negatives, as these are simply more likely. If we
make some number of misclassifications, we expect these
to be distributed the same as the prior probabilities of the
classes, simply put: our set has about 1% defects and 99%
non-defects, so of the errors, that a naive classifier will make,
1% will be a false positive and 99% will be a false negative.
It can be safely assumed that a false negative is more costly
than a false positive (the latter costs labour hours, the for-
mer might pose a health hazard or incur additional costs e.g.
through property damage or disruption of traffic). This has
some important implications for the quality assessment of a
classifier as well, which have been discussed in section 2.1.4.

As noted in section 4.1.3, a lot of previous work com-
pletely disregards the class imbalance when training and
testing their classifier, and instead opts for a more manage-
able 50% split. This approach has a major issue: the test
results are not representative of a real-world scenario, and
only indicative of the quality of the classifier in a general
case, not for this specific classification scenario. Instead, we
require the test set to have a realistic ratio of images with
defects to images without defects, as this means our results
translate more directly to the results we would obtain when
applying our classifier on newly obtained data.

While the area-under-the-curve for an ROC-curve or a
PR-curve provide a metric independent of hyperparame-
ter selection, they still take all levels of recall into account,
whereas we are likely interested only in higher levels of recall,
as we have assumed that a false negative is far more costly
than a false positive.

To this end, we introduce two more metrics: specificity
at recall and precision at recall. Neither of these metrics
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require us to manually choose a value for τ 25. Instead they25 as defined in equation (2.19)

dictate τ to be chosen such that recall is at a certain level,
and report the specificity (TNR) or precision at this τ. This
is the same as taking a point on the ROC and PR curves
that corresponds to a particular value on the recall axis, and
reading the point it corresponds to on the other axis.

We feel that especially the specificity at recall and pre-
cision at recall metrics are useful to put the results into
real-world context: for public health reasons we might be
restricted to a minimum value for recall (as a lower value
would allow too many defects to slip by unnoticed and in-
crease the risk), and we simply want to know how efficient
the system is at least at that level. For both of these metrics,
we evaluate at the recall levels {0.90; 0.95; 0.99}, as we are
mostly interested in high recall. An overview of the perfor-
mance metrics we are using is given in table 4.2.

4.4 Aggregating
performance on pipe level

The previous section outlined performance metrics for clas-
sifying single images, but it is not an uncommon scenario
to classify entire pipes as a whole for a certain defect, as the

Table 4.2: An overview of the perfor-
mance metrics used

Metric Description
AUROC Area under the ROC curve
AUPR Area under the PR curve

Specificity at
Recall

Percentage of non-defects detected as de-
fects when we require a minimum per-
centage of defects to be detected

Precision at
Recall

Percentage of detected defects that are
actually non-defects when we require a
minimum percentage of defects to be
detected
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decision to intervene with repair or replacement is made on
a larger scale. To achieve this, we aggregate the real and pre-
dicted labels on the images with some aggregation rule, and
calculate the same metrics from table 4.2 on the aggregated
labels.

An obvious choice for an aggregation rule is the maxi-
mum: This would be analogous to determining whether
any of the images is labeled as a defect, compared to whether
any of the images actually contains a defect. Importantly,
this aggregation rule does not depend on the size of the pipe,
like the average value would. A downside to this rule is that
we might actually be detecting a defect in an image where
there is none and missing a defect that is in another image,
but we still count this as a true positive, because we only
care to know if we found the defect in the correct pipe.

Maximum aggregation performance metrics on pipe level
will be reported alongside performance metrics for single
images.

4.5
Leave-two-inspections-out
Cross Validation

To accurately assess performance of a classifier on a dataset,
we might use k-fold cross validation 26, as outlined in Sec- 26 Bishop, C. M. 2006. Pattern

Recognition and Machine Learning
(Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg

tion 2.1.3. The folds are often divided either randomly or
stratified, meaning that the classes are divided as equally as
possible among the folds. Because of how our dataset was
sampled, we expect a large overlap in construction mate-
rial and age within an inspection, which is often performed
within a single geographical neighbourhood. In this case a
random or stratified split might lead to data leakage, infor-
mation from outside the training set being implicitly part of
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the training set: two points in a single pipe might exhibit the
same defect, as they are subject to the same conditions, are
of the same build material, and have the same age. But these
factors also mean that the pipes themselves might appear
very similar. As a result, it might be that our classifier is sim-
ply classifying the appearance of a pipe, and not the defects
themselves. If we then use random or stratified splitting, we
might overestimate the actual performance.

Instead, we introduce leave-two-inspections-out cross val-
idation. This is inspired by leave-one-subject-out cross vali-
dation, used in the medical field. Since the data is already
categorised into 30 inspections, we use these same inspec-
tions as folds for cross validation. We take 28 folds as the
training set, 1 fold as the testing set, and 1 fold as a validation
set, to prevent overfitting on the training set. These folds
are rotated 30 times, until each fold has been used as the
training set once, and we have a prediction for each image.
This provides a more realistic scenario, where the classifier
would be used to predict the presence of defects in a pipe it
has never seen before.

A possible downside of this method is that for any given
fold, we might not have every defect present in both the test
and validation sets. Since there is no defect that appears in
fewer than three inspections, at the very least every training
set will contain every defect.

4.5.1 Overfitting

Overfitting is what happens when a model is trained on
the training set so well that it loses generalisability on other
datasets. All data that has been sampled from real world
measurements (such as photographs in our case) is expected
to have some amount of noise in it. This means that any
model that can describe this data to a 100% accuracy has
incorporated this noise in its model. The model’s perfor-
mance on a different dataset (with different noise, perhaps
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from different measuring instruments) will be worse than
that of a model which has learnt to model the data, but not
the included noise.

The risk of overfitting is exacerbated when the noise in
the training set is systemic, for example through a sampling
bias, as this becomes another pattern the model might detect
and learn, when it is in fact noise that will not be present
in future datasets. Neural networks are also more prone
to overfitting than a lot of other models, because of the
large number of parameters that are subject to change when
learning from the training data. 27 To prevent overfitting, 27 Hinton, G. E., Srivastava, N.,

Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. 2012.
Improving neural networks by pre-
venting co-adaptation of feature detec-
tors

we employ two methods: the use of a validation set and
dropout.

The use of a validation set is the more general approach of
the two. Instead of training on all the data in the training set,
we keep a subset of the training set apart, which is not used to
train on. Periodically during the training phase, we calculate
the loss function on this validation set. At some point the
classifier will start overfitting, meaning the loss function on
the training set will keep decreasing, but the loss function on
the validation will either stagnate or start increasing. At this
point we choose to stop the training and take the classifier
as trained up to that point as the final classifier. We have
chosen to calculate the loss on the validation set after every
epoch and stop early if the loss on the validation increased
significantly, or hasn’t decreased for several epochs in a row.

Dropout is another way to prevent overfitting specifi-
cally for neural networks. 28 The idea is that to prevent a 28 Srivastava, N., Hinton, G.,

Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. 2014.
Dropout: a simple way to prevent
neural networks from overfitting.
The Journal of Machine Learning
Research 15, 1, 1929–1958

network that is too specifically catered to the input data, we
should assure some stability with regards to small changes
in the network structure. If the correct classification of a
sample depends on a single specific path through the net-
work, that classification would not be stable, as only one
of the neurons in that path has to change some weights for
the classification result to change. To force the network to
not rely on a single path through the network, we randomly
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disable neurons in the dense layers during the training step,
setting their output to zero. This forces the network to cre-
ate a path to the correct classification result with the still
enabled neurons. Since a different set of neurons will be
deactivated for every batch of data, this increases the overall
stability of the network by ensuring the correct result can be
reached through different paths. As the dropout is disabled
after training is complete, all the paths that lead to correct
classification will work together, and small changes in any
one of these paths should not change the end result.

4.5.2 Averaging performance
metrics across folds

While the leave-two-inspections-out cross validation should
prevent data leakage and give a more accurate performance
indication, it also means we are training 30 different CNNs,
and combining the performance results of these into a single
metric is not straightforward. There is no guarantee that
the trained networks have at all similar weights at any given
point or that the outputs of the networks is similar. As noted
in the previous section, the distribution of defects among
folds can also be skewed, with some inspections containing
a lot more or fewer defects than others.

As such, it does not make sense to average the metrics as
calculated on the folds. We could set a single threshold τ
for each defect and fold, but since the outputs of the differ-
ent networks could behave very differently, this is also not
desirable.

As we have argued that it is not unlikely for defect detec-
tion systems to be tuned to achieve some minimum recall,
we have decided to construct the ROC and PR curves for
each fold and each defect individually, and combine the
curves for different folds by equating the recall axis, and
combining the values on the complimentary axis. For the
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ROC curve, this is called horizontal averaging 29, for the 29 Millard, L. A. C., Kull, M., and
Flach, P. A. 2014. Rate-oriented
point-wise confidence bounds for roc
curves. In Machine Learning and
Knowledge Discovery in Databases,
T. Calders, F. Esposito, E. Hüllermeier,
and R. Meo, Eds. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 404–421

PR curve, we might call it vertical averaging, as the recall
axis is the horizontal axis, but there is no previous use of
this term in literature that we know of.

It should also be noted that the averages for the specificity
and precision are not calculated identically. Both are calcu-
lated with a weighted average, but the results for specificity
in each fold should be weighted such that the combined re-
sult represents the specificity of the entire set, and the results
for precision should be weighted such that the combined
result represents the precision of the entire set. In practice,
this means that the results are weighted with the relevant
denominator from equation (2.16) or (2.20). As a result,
a fold with no occurrences of a particular defect will have
no impact on the combined specificity of that defect, and a
fold with no predicted occurrences of a particular defect will
have no impact on the combined precision of that defect.

4.5.3 Class Imbalance

Two choices have been made to adjust the classifier and make
it more able to handle this imbalance: oversampling and a
class-weighted loss function.

Oversampling is done from a more practical perspective:
to train the CNN we have to load a batch of input images
into memory and the backpropagation step happens for
all images in the batch at once. Because of computational
limitations, we found that our experimental setup could
handle batches of about 50 images at a time. This means
that it is extremely likely for a batch not to contain any
defects at all. The gradient of such a batch can not be used
to accurately estimate the gradient of the entire training set
30. To remedy this, each image with a defect in the dataset is 30 Bengio, Y. 2012. Practical recom-

mendations for gradient-based train-
ing of deep architectures. In Neural
networks: Tricks of the trade. Springer,
437–478

added not once but five times to the training set, to increase
the odds of having at least one defect in every batch.
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As oversampling the defects by a factor five raises the im-
balance from 0.8% to about 4% of the images in the training
set containing a defect, we should still be wary of training
a network with such an imbalance. To shift the error that
the network makes more towards false positives than false
negatives, we weight the cross entropy loss function from
equation (4.2) as follows:

L(y, ŷ) = −
12∑︁
c=1

W · yc log ŷc + (1 − yc) log(1 − ŷc) (4.3)

where W is a weight that represents how much more im-
portant false negatives are compared to false positives. If we
consider a false negative to be 100 times more costly than a
false positive, we should set W to 100.

4.6 Implementation Details

We have implemented two different CNNs, one designed
by us for this task, and one reimplementation of the net-
work used by Kumat et al. 31, which was the state-of-the-art

31 Kumar, S. S., Abraham, D. M., Ja-
hanshahi, M. R., Iseley, T., and
Starr, J. 2018. Automated defect clas-
sification in sewer closed circuit televi-
sion inspections using deep convolu-
tional neural networks. Automation
in Construction 91, 273–283

at the time of writing (with the first layer adapted to our
image sizes). This is of course not an entirely fair compar-
ison, as we failed to reproduce their entire pipeline, but
instead only replicated the network itself, but it does put
the performance into context.

Figure 4.2: Network structure of our
proposed CNN.
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The network topologies are shown in figures 4.2 and
4.3. The network topology of our proposed CNN was de-
signed through experimentation with different layer sizes,
filter sizes, and numbers of layers on a smaller subset of the
dataset.

The CNNs were built and run with TensorFlow (ver-
sion 1.8.0) and Python (version 3.4.8), running on a Linux
system with sixteen NVIDIA Tesla K80 GPUs and CUDA
(version 9.2.148). Each network was trained using a single
GPU, with several networks (one for each validation fold)
being trained simultaneously on multiple GPUs. Training a
single network took on average roughly five hours (per fold).
Testing the different networks with each different testing
fold took on average roughly 1 hour (for all 30 folds).

Each of the networks was trained with a batch size of 50
images. After every 500 batches, the performance on the
validation fold was assessed. The network stopped training
when the AUROC on the validation fold had not increased
for 25 consecutive assessments, or when the AUROC on the
validation fold decreased by more than 1%, with a minimum
of 1,000 batches processed.

Figure 4.3: Network structure of the
CNN proposed in Kumar et al.
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4.7 Results

In this section, we present the results achieved by our pro-
posed CNN, as well as our reimplementation of the CNN
proposed by Kumar et al.,32 on the performance metrics32 Kumar, S. S., Abraham, D. M., Ja-

hanshahi, M. R., Iseley, T., and
Starr, J. 2018. Automated defect clas-
sification in sewer closed circuit televi-
sion inspections using deep convolu-
tional neural networks. Automation
in Construction 91, 273–283

outlined in section 4.3.2.
Tables 4.3, 4.4, 4.5, and 4.6 show the specificity (TNR)

and precision at recall (TPR) values of 0.90, 0.95, and 0.99,
for our proposed CNN and our reimplementation of the
CNN proposed by Kumar et al. The better result for each
scenario is displayed in bold when it is significantly better,
determined by a paired sample t-test (at a significance level
of α = 0.05) across the validation folds.

Figures 4.8.1, 4.8.1, 4.8.1, and 4.8.1 show the ROC and PR
curves for our proposed CNN for classification in images
and entire pipes.

4.8 Discussion

Looking at tables 4.3, 4.4, 4.5, and 4.6, we see that in each
of the shown scenarios, our proposed CNN either outper-
forms Kumar et al.,33 or it does not perform significantly33 Kumar, S. S., Abraham, D. M., Ja-

hanshahi, M. R., Iseley, T., and
Starr, J. 2018. Automated defect clas-
sification in sewer closed circuit televi-
sion inspections using deep convolu-
tional neural networks. Automation
in Construction 91, 273–283

worse. Out of 144 scenarios, our proposed network wins
significantly 81 times. Additionally, it wins 44 times, but
not by a significant margin, and looses 19 times, but never
significantly.

4.8.1 Classifying individual images

When we take a closer look at the ROC and PR curves for
the classification of individual images in figures 4.8.1 and
4.8.1, there are a few observations to be made.

The ROC curves in figure 4.8.1 generally look quite good,
with the exception of those for porous pipes, and to a lesser
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degree attached deposits and settled deposits. The class
imbalance is quite important here: the AUROC does not
take into account that a false positive and false negative are
not comparable in this context. As noted earlier, we are
mostly interested in the scenario with high recall (TPR), as
these are a requirement for any kind of automated sewer
inspection, which means the top portion of each plot is
more important than the bottom portion. It must also be
noted that while both axes go from 0 to 1, the horizontal
axis represents many more images than the vertical axis does,
because of the class imbalance. One interesting feature of
these curves, is that they seem to have a ‘plateau’ near the
top. This indicates that a specific threshold exists where it is
no longer advantageous to further increase the threshold, as
this will only increase the false positive rate, but not the true
positive rate. The false positive rate at this interval (which is
approximately equal to 1 minus the specificity at 99% recall,
as noted in table 4.3) can be regarded as the best specificity
we can achieve for a certain defect.

The PR curves in figure 4.8.1 paint a different picture: the
PR curves are mostly below an F1-score of 0.2, seeming very
unimpressive. Similar to the ROC curves, we are mostly
interested in high recall, i.e. the rightmost portion of each
plot. In this case, the precision seems to be quite low, but
unlike the specificity, the precision axis is scaled with the
prior probability of the defects. We will go into more detail
on how to interpret these precision scores in the next section,
but it should be noted that a small precision is expected
when we have small prior probabilities.

4.8.2 Classifying entire pipes

When we observe the ROC and PR curves for classification
of pipes in figures 4.8.1 and 4.8.1, they paint a rather dif-
ferent image. The ROC curves in figure 4.8.1 do not look
very good, but it should be noted that the ‘plateaus’ are
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Table 4.3: Specificity at recall val-
ues when classifying single images.
Numbers displayed in bold indicate
that performance is significantly bet-
ter than the performance achieved by
the other network, as determined by a
paired sample t-test at significance level
α = 0.05.
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Table 4.5: Specificity at recall values
when classifying entire pipes. Num-
bers displayed in bold indicate that per-
formance is significantly better than
the performance achieved by the other
network, as determined by a paired
sample t-test at significance level α =

0.05.
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Figure 4.4: ROC Curves for the proposed CNN when classifying single images.
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Figure 4.5: Precision-Recall Curves for the proposed CNN when classifying single images.
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Figure 4.6: ROC Curves for the proposed CNN when classifying entire pipes.
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Figure 4.7: Precision-Recall Curves for the proposed CNN when classifying entire pipes.
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again present in a lot of the curves, which again indicates
that there are some pipes of which we are confidently sure
they do not contain defects. Rather interestingly, among
the better ROC curves are those that underperformed on
single-image classification: porous pipes, attached deposits,
and settled deposits. This might indicate that some labels
were missing in our dataset: if a pipe has these defects at
multiple locations but only a few locations were marked
in the inspection report, we would overestimate the false
positives our classifier finds in single-image classification,
but we can be more sure when deciding whether a pipe has
or does not have this defect.

The PR curves for the classification of pipes in figure
4.8.1 looks a lot better than that of single images. This is
because the class imbalance is much less present on pipe-
level. Still the worst results are obtained for classes that have
a low prior on pipe-level (intruding sealing material, porous
pipe, roots, attached deposits, settled deposits), as expected
for the precision.

4.8.3 Result Interpretation

To put our findings into context, we will take a closer look
at their impact on the day-to-day operation of sewer inspec-
tions aided by our automated system. When looking at
our results superficially, they are easily misinterpreted. It is
important to keep in mind that we are dealing with a very
imbalanced dataset, which makes the precision the more
interesting of these metrics (as described in section 4.3.2).
Let’s consider the class Fissure in more detail. From table 4.1
we can tell that approximately 0.065% of the images (1,442
out of 2,202,582 images in total) contain a fissure, which
makes for a very imbalanced target. For fissures at 0.90 recall
we achieve a specificity of 0.754 and a precision of 0.036
(see tables 4.3 and 4.4, top left cell). 34

34 It should be noted that these num-
bers do not add up perfectly to the
1,442 fissures out of 2,202,582 images,
as the specificity and precision are ag-
gregated over 30 different folds, each
with its own specificity and precision.
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The specificity of 75.4% indicates that, of all the images
that do not contain fissures, we identify 75.4% as such, and
the remaining 24.6% are suspected of containing fissures,
meaning they still have to be inspected by an operator. The
precision indicates that of all fissure detections, 3.6% are
true positives, while the remaining 96.4% are false alarms.

If we assume that fissures are randomly distributed, an
unsupported operator would have to inspect 90% of all im-
ages (0.9 × 2,202,582 = 1,982,324 images) to find 90% of the
fissures. Our proposed classifier detects 90% of all images
with fissures with a specificity of 75.4%.

To detect 90% of all fissures, an operator would have to
inspect all detections the system made: 0.246 × (2,202,582
- 1,442) + 0.9 × 1,442 = 542,778 images. In comparison to
the situation without a classification system, this is equal
to a reduction of 72.6%. In an ideal situation, this means
that the time an operator spends on inspecting fissures is
reduced by almost a factor 4. Table 4.7 lists these reduction
numbers (derived from tables 4.3 and 4.4) for all defect types
considered. The reduction of 72.6% for Fissure appears as
the top-left cell. The highest reduction (at 0.90 recall) is
attained for Intruding Connection, with a 90.7% reduction
(a factor 10). Not surprisingly, this defect type scores well
both in the ROC as in the PR plots. It ranks 6th in terms
of frequency of defect type, with 1,004 observed cases.

We can perform the same calculations with the results
from classification on entire pipes, but the interpretation is a
little less clear, as we cannot assume different pipes take the
same amount of time for review; especially pipes with a lot of
defects will be more labour-intensive to inspect. From table
4.1 we can tell that approximately 17.5% of pipes contain
fissures (586 out of 3,350 pipes). Let us for this case assume
99% of all pipes containing fissures need to be detected, this
means 0.99 × 3,350 = 3,317 pipes have to be inspected for
fissures. Our classifier achieves 99% recall with a specificity
of 30.6% (table 4.5) and a precision of 36.6% (table 4.6). By
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Table 4.7: Reduction of images that
need to be reviewed by a human af-
ter inspection with our classifier, ex-
pressed in percentage compared to im-
ages that would need to be inspected
without our classifier.

Recall
Defect Type 0.90 0.95 0.99
Fissure 72.6% 66.6% 54.5%
Surface Damage 66.8% 52.4% 28.3%
Intruding Connection 90.7% 79.8% 73.8%
Defective Connection 89.0% 80.1% 70.0%
Intruding Sealing Material 75.5% 71.7% 70.3%
Displaced Joint 65.5% 50.7% 25.4%
Porous Pipe 27.7% 28.7% 30.0%
Roots 69.8% 61.4% 55.6%
Attached Deposits 32.0% 27.7% 27.4%
Settled Deposits 45.5% 43.1% 43.7%
Ingress of Soil 73.5% 65.3% 52.7%
Infiltration 57.8% 45.8% 24.4%

the same calculations as before, this means we now have to
inspect 0.694× (3,350 - 586)+ 0.99× 586= 2499 pipes. This
is a reduction of 24.7%. Table 4.8 shows similar reductions
for all the defect types, for pipes.

In table 4.7 we see that intruding and defective connec-
tions are best classified by our CNN and have the largest
reduction rate in images or pipes that still require human
review, while porous pipes are the more difficult to classify
and these have the lowest reduction rates.

Realistically, the defects are not randomly distributed
throughout the image set and operators would not inspect
single images, but rather a sequence of images with a clear
spatial relationship (a 5 cm shift). This means that the reduc-
tion by a factor of 4 is almost certainly an overestimation.
On the other hand, we know defects can often co-occur 35

35 Sitzenfrei, R., Mair, M.,
Möderl, M., and Rauch, W. 2011.
Cascade vulnerability for risk analysis
of water infrastructure. Water Science
and Technology 64, 9, 1885–1891 and this estimation was only for fissures, which has one

of the higher prior probabilities of the defects we consider.
For defects with a lower prior probability, there is a larger
potential for improvement.

It should also be noted that with the reported false nega-
tive probability of about 25%36 in the labels of our data set,

36 Dirksen, J., Clemens, F., Korv-
ing, H., Cherqui, F., Le Gauffre,
P., Ertl, T., Plihal, H., Müller,
K., and Snaterse, C. 2013. The con-
sistency of visual sewer inspection data.
Structure and Infrastructure Engineer-
ing 9, 3, 214–228
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Recall
Defect Type 0.90 0.95 0.99
Fissure 30.1% 27.4% 24.7%
Surface Damage 10.5% 9.5% 7.5%
Intruding Connection 31.0% 30.0% 30.9%
Defective Connection 12.2% 12.1% 13.9%
Intruding Sealing Material 33.8% 37.2% 39.7%
Displaced Joint 11.9% 9.8% 6.3%
Porous Pipe 28.3% 30.1% 32.6%
Roots 30.9% 27.8% 28.5%
Attached Deposits 43.9% 44.3% 45.4%
Settled Deposits 30.3% 31.5% 33.9%
Ingress of Soil 17.2% 16.5% 16.9%
Infiltration 12.2% 10.5% 7.9%

Table 4.8: Reduction of pipes that need
to be reviewed by a human after in-
spection with our classifier, expressed
in percentage compared to pipes that
would need to be inspected without
our classifier.

the actual precision and specificity are likely higher than we
report. For any given defect, there is approximately a 1 in 4
chance that the operator missed it and it was labeled in our
dataset as not being a defect (whereas the probability of a
false positive was estimated “in the order of a few percent”).
The 1,442 images that are labeled as fissures, are possibly
only 75% of all images labeled containing fissures, meaning
there would be approximately 480 images among the images
not labeled as fissures.

4.8.4 Combining Defect Outputs

Because of the co-occurrence of defects, it can be interesting
to combine the classifier outputs for different defects into a
single decision: “Does this image/pipe need further (human)
review?”

As discussed in section 4.3, in our dataset30.7%of defects
in images co-occur with other defects in the same image and
89.2% of defects in pipes co-occur with other defects in the
same pipe. To treat the problem as a binary classification
problem, we simply take the maximum value of the true



92 Convolutional Neural Network Classification

Table 4.9: Specificity and precision at
recall values for binary classification on
either single images or entire pipes.

Metric and Recall
Classification type 0.90 0.95 0.99
Specificity for Images 0.649 0.452 0.180
Specificity for Pipes 0.372 0.284 0.113
Precision for Images 0.021 0.014 0.009
Precision for Pipes 0.717 0.703 0.668

label over the classes (a 1 if at least one defect is present, a 0
if no defects are present), and the average of the predicted
labels over the classes (a real-valued number between 0 and
1). This gives us the curves as shown in figure 4.8.

For classification on images, reducing this problem to
a binary classification case does not improve things much.
The overall result is approximately equal to the average of
the classification results on individual classes. This is not
unexpected, as the co-occurrence of defects in individual
images is rare.

For classification on pipe level though, the results are

Figure 4.8: ROC and PR curves ob-
tained when treating the problem as a
binary classification problem, for im-
age level or pipe level.
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Recall
Classification Type 0.90 0.95 0.99
Images 60.5% 42.0% 17.0%
Pipes 7.6% 6.2% 2.6%

Table 4.10: Reduction of images or
pipes that need to be inspected with
our combined binary classifier, ex-
pressed in percentage compared to
pipes that would need to be inspected
without our combined binary classi-
fier.

more interesting than a simple averaging. The PR curve
is strictly better than the PR curves of individual defects.
The ROC curve at high recall is slightly worse than some
individual defects, but the overall AUROC is higher.

Table 4.9 shows the specificity and precision at specific
recall values, for comparison with the multi-label classifica-
tion results in tables 4.3, 4.4, 4.5, and 4.6. Using these values
we can again calculate the reduction in images or pipes that
require review to achieve a certain recall, as shown in table
4.10.

The reductions on pipe level are quite low, this is because
the transition to a binary classification scenario results in the
class imbalance disappearing on pipe-level: 75.0% of pipes
contain at least one defect, and fall into the positive class.
This means a high precision is required, and while precision
had increased by combining the defect types, the reduction
has decreased.

4.9 Conclusion

In this chapter, we have approached the task of automated
defect detection in sewer image sets as a supervised classifica-
tion task. The focus has been on the validation methodology
used to interpret the results achieved by a classifier. While
we feel that there is a lot of potential for future improvement
of classifiers trained for this task, with the data and com-
putational resources available, the proposed convolutional
neural network performed reasonably well.

While our proposed classifier does not perform well enough
for fully autonomous classification, it can be used to signif-
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icantly reduce the amount of images that require human
review by eliminating images which are highly unlikely to
contain defects according to the classifier. We estimate the
amount of images that require human review can be re-
duced by 60.5%, given that detecting 90% of all defects is
sufficient.

We compared the results of our proposed classifier to that
of Kumar et al.,37 and our proposed classifier outperforms37 Kumar, S. S., Abraham, D. M., Ja-

hanshahi, M. R., Iseley, T., and
Starr, J. 2018. Automated defect clas-
sification in sewer closed circuit televi-
sion inspections using deep convolu-
tional neural networks. Automation
in Construction 91, 273–283

their proposed classifier, but we did not implement their
classification pipeline beyond the network structure, such as
for example, the oversampling outlined in their work. Our
dataset also differs significantly from theirs. As noted in
section 4.2, no human inspector has changed the camera
settings during the inspection, as is common with other
CCTV inspection datasets.

A major topic of this chapter was the validation method-
ology. We have discussed our reasons for choosing the “speci-
ficity at recall” and “precision at recall” metrics for this spe-
cific task in section 4.3.2: these give us easily interpretable
measures of the possible improved efficiency at realistic sce-
narios. We have also explained why “leave-two-inspections-
out cross validation” is an appropriate way to prevent data
leakage, and applied this technique in our experiments. These
methods provide us with less biased and more easily inter-
pretable results.

4.9.1 Future Work

Not all information in the inspection reports was used to its
full potential and we feel that using the information pertain-
ing to where in an image a defect is visible (with a classifier
capable of processing this information of course) could lead
to further performance improvement. Additionally, the use
of other types of sensors, either already present on or easily
added to the pipe inspection vehicle, may prove to be useful
for further improvement.
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Since we know there are likely undetected defects in our
dataset,38 it would be an interesting experiment to see if 38 Dirksen, J., Clemens, F., Korv-

ing, H., Cherqui, F., Le Gauffre,
P., Ertl, T., Plihal, H., Müller,
K., and Snaterse, C. 2013. The con-
sistency of visual sewer inspection data.
Structure and Infrastructure Engineer-
ing 9, 3, 214–228

a classifier trained on data where these are unlabeled, is
still able to find these defects in its own training set. To
achieve this, the false positive detections would have to be
re-classified by a human operator. Hopefully, this would
indicate that the classifier detected defects that we thought
were false positives, but were in fact true positives. Unfortu-
nately, this is beyond the scope of this thesis.


