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3 Image-Based
Unsupervised

Anomaly Detection

In this chapter, we propose a three-part framework to de-
tect anomalies in aligned image sets, such as static camera
video or photographs, or registered images. The framework
is based on principal component decomposition and par-
tial reconstruction, but accounts for the fact that not all
common elements in image sets can be accounted for by a
linear model (such as PCA is) by first extracting possibly
non-linear features from the image sets. We also foray into
the field of deep learning and investigate the possibility of
using convolutional autoencoders (CAEs) to fill the role of
several parts of the framework.

We would like to emphasise that while this framework
originated from the need to automatically process sewer
pipe images, no assumptions are made specific to this prob-
lem. The only requirement is that the images in a set are
aligned, so other possible applications include video surveil-
lance, autonomous vehicles and medical image processing.

3.1 Framework

We propose a simple three-part framework to detect local
anomalies in aligned image sets and videos, as shown in fig-
ure 3.1 and described in more detail in algorithm 1. The three
parts are: (i) feature descriptors, (ii) PCA decomposition
and partial reconstruction, (iii) a dissimilarity function to
compare the PCA reconstructed feature to the extracted
features.

Input: Image set

Feature Descriptors

Principal Component Analysis

Decomposition

Partial Reconstruction

Dissimilarity Function

Output: Anomaly score

Figure 3.1: The proposed three-part
anomaly detection framework.
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Algorithm 1: Anomaly Detection Framework
Input : Image set {I1, . . . , IN }
Input : Feature descriptors F : I ↦→ Rd

Input : Number of principal components to use in reconstruction: θ
Input : Dissimilarity function D :

{
Rd,Rd

}
↦→ R

Initialise : FeaturespaceX = {x1, . . . , xN } with xi ∈ Rd ∀i ∈ [1, N ]
Initialise : FeaturespaceP =

{
p1, . . . , pN

}
with pi ∈ Rd ∀i ∈ [1, N ]

Initialise : FeaturespaceX̂ = {x̂1, . . . , x̂N } with x̂i ∈ Rd ∀i ∈ [1, N ]
1 xi ← F(Ii) ∀i ∈ [1, N ] // Extract per-image features

2 P← PCA(X) // Decompose X into PCs

3 [pi] j ← 0 ∀i ∈ [1, N ] ∀j ∈ (θ, d] // Discard low variance PCs

4 X̂← PCA−1(P) // Reconstruct to orig. space

5 Ai ← D (xi , x̂i) ∀i ∈ [1, N ] // Calculate anomaly scores

Output : Anomaly scores {A1, . . . , An}

3.1.1 PCA Decomposition and Partial
Reconstruction

The core of this approach is PCA decomposition and partial
reconstruction. The rationale is as follows: Common struc-
ture within the image set will account for a large amount
of the variance present in the set. By decomposing the fea-
ture vectors into principal components and discarding com-
ponents that represent less common variations before per-
forming partial reconstruction, we are using PCA akin to a
trained image smoother, which keeps common and discards
uncommon structure.

This step requires a parameter θ, the number of principal
components used for reconstruction. This parameter cor-
responds roughly to a bias/variance trade-off. A very high
θ might mean the difference between original and recon-
structed feature vectors mostly constitutes noise. A very low
θ means the method relies more on low-order deviations



42 Image-Based Unsupervised Anomaly Detection

from the mean feature vector, and less on the specific devia-
tions it might learn from the entire set. It is also possible to
replace this abstract parameter θ with a more interpretable
concept by choosing a percentage of explained variance that
the model should learn, and setting θ to the lowest number
of principal components that explain at least that amount
of variance, or even a specific fraction of d.

3.1.2 Feature Descriptors

The choice of feature descriptor depends on the type of
anomaly that has to be detected in the images. For example,
to detect abnormal texture, we might use a feature that is
known to work well in texture classification such as wavelet
responses 1. Or to detect motion in otherwise static camera1 Unser, M. 1995. Texture classifica-

tion and segmentation using wavelet
frames. IEEE Transactions on image
processing 4, 11, 1549–1560

images, we might calculate the difference between a frame
and the previous frame at each position and use these as
features. The simplest choice is an identity function, i.e. the
features are the original pixel values in the image.

The reason for using feature descriptors instead of simply
the images themselves stems from the fact that PCA is a
linear model, and the resulting principal components will be
combined linearly to reconstruct each image. The problem
is that images are not like typical feature vectors, in the sense
that (for example) translating an image by a single pixel
will result in an almost identical image to the human eye,
but a very different feature vector. Moreover, images with
texture may look similar to the human eye, but the pixel
values are hardly comparable. Extracted features, unlike the
images they were extracted from, may have invariances to
transformations that makes them more suited to compare
images of a certain type than the original pixel values would.

A feature can be used to describe an entire image, a spe-
cific location, or portions of an image, depending on the de-
scriptor used. This determines how ‘localised’ the anomaly
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detection is. For example, we might calculate a locally win-
dowed greyscale histogram, resulting in as many feature
vectors as we have windows for each image in the set. We
might want to detect entire images as being anomalous, or
we might want to focus on specific regions within the im-
age. When using localised features, we have the option to
either treat all resulting feature vectors as if they came from
the different images (treating each window location as an
image in itself) or perform the framework for each window
location individually.

3.1.3 Dissimilarity Function

To determine whether something is or isn’t an outlier, the
decomposed and reconstructed feature vector is compared
to the feature vector before decomposition by means of
some dissimilarity function. This might be Euclidean dis-
tance, one minus a normalised Pearson correlation, or how-
ever the chosen feature descriptors are usually matched
in other applications 2. It can be any function D(f1, f2) 2 It should be noted that PCA min-

imises the mean squared reconstruc-
tion error, so this is also minimised for
the anomalies we want to detect.

that compares two feature vectors f1 and f2, with the re-
strictions that D(f, f ) = 0, the dissimilarity of any vector
to itself is zero, D ≥ 0 for all inputs, and the function
is symmetric: D(f1, f2) = D(f2, f1). Triangle inequality,
D(f1, f3) ≤ D(f1, f2)+D(f2, f3), is a property that we might
want a dissimilarity function to have, but is not required.
If a dissimilarity function does satisfy triangle inequality, it
may also be called a distance function or metric.

We call the dissimilarity of the feature vector to its par-
tial reconstruction the anomaly score. This anomaly score
can then be thresholded to determine whether each feature
vector represents an anomalous image or region.

Because the optimal value for thresholding will vary de-
pending on feature descriptor, dissimilarity function and
number of principal components used to reconstruct, we
will evaluate an AUROC of a manually labeled test set to
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Figure 3.2: A sample of each digit from
the MNIST dataset.

Figure 3.3: The mean values (left) and
first 9 principal components of the
MNIST dataset. (Greyscale ranges
have been rescaled for maximum vis-
ibility.)

assess the quality of this method. The ROC curve itself is
also a useful chart to have, as in the case of defect detection
for industrial processes (such as sewer inspections) we often
have a higher tolerance for false positives than we do for false
negatives.

3.2 Proof of Concept

To illustrate our method, we look at the MNIST reference
dataset 3, consisting of 70,000 handwritten digits in greyscale3 LeCun, Y., Cortes, C., and

Burges, C. J. 1998. The MNIST
database of handwritten digits

images of dimensions [28 × 28], see figure 3.2 for some ex-
amples. We use the identity function as feature descriptor,
so that the feature vector is identical to the pixel vector. This
means our feature matrix is shaped [70000 × 784]. When
we apply PCA to the MNIST dataset, we obtain 784 prin-
cipal components, which we can reshape into [28 × 28]
images for visual inspection (also known as eigenimages), as
shown in figure 3.3 for the first 9 principal components.

Now when we project an image onto the basis spanned
by the principal components, we express the image as a lin-
ear combination of the eigenimages. Since the eigenimages
are sorted in order of decreasing explained variance, an im-
age that is similar to the images in the set (in this case also a
handwritten digit, for example) is expected to have a larger
(absolute) projected component (or eigenvalue) onto earlier
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Figure 3.4: 10 sample digits from the
MNIST dataset (top row) are recon-
structed with the first 50 principal com-
ponents (middle row) and the differ-
ence images between the original and
the reconstructions (bottom row).

principal components, than onto later principal compo-
nents.

The goal when PCA is employed is often dimensionality
reduction: we project onto the first 2 or 3 principal compo-
nents for inspection, or we use it to reduce the dimension-
ality by one or more orders of magnitude, while reducing
the variance by only a fraction. (To illustrate: 90% of the
variance in the MNIST dataset is in the first 87 principal
components, a dimensionality reduction of about 89%.)

When we project an observation onto all principal com-
ponents, we can perfectly recreate the original observation
by inverting the projection matrix and adding the mean
values, but we also know that principal components with
lower eigenvalues are expected to be less important, because
less of the variance present in the dataset is explained by
these components. This leads to the following experiment:
an observation is projected onto the first θ principal com-
ponents, and this projection is augmented with zeroes for
all less significant principal components we did not project
onto. This augmented projection is then projected back.
What we get is an approximation of the original observa-
tion, as can be seen in figure 3.4 for the MNIST dataset and
θ = 50 (a dimensionality reduction of over 95%).

As we can see, the approximations with only 50 principal
components are very close to the original images. This is
because the PCA was trained on these types of images, and
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0.063 0.032 0.079 0.059 0.094 0.189 0.098 0.168 0.115 0.117

Figure 3.5: Sample images from the
MNIST and CIFAR-10 datasets (top
row) are reconstructed with the first
50 principal components after PCA
was performed on 70,000 MNIST im-
ages and 1,000 CIFAR-10 images (mid-
dle row) and the difference images be-
tween the original and the reconstruc-
tions (bottom row). Below each differ-
ence image is the mean absolute value,
which is used as the anomaly score.

the digits in the example are similar to the rest of the dataset.
Now what happens when our dataset contains anoma-

lies? To illustrate, we add the first 1,000 images of the CIFAR-
10 dataset of natural images 4 to the MNIST dataset 5. These

4 Krizhevsky, A. and Hinton,
G. 2009. Learning multiple layers
of features from tiny images.
https://www.cs.toronto.

edu/~kriz/cifar.html
5 The images from CIFAR-10 are con-
verted to greyscale and cropped to
[28 × 28] pixels to conform to the im-
ages in the MNIST set.

images are very different from the digits in the MNIST set,
and since there are so few of them compared to the total
size of the dataset, they can be considered anomalies. We
perform PCA on the combined dataset and then recreate
all images using only the first 50 principal components. We
show the reconstruction of some sample images in figure
3.5.

It can be seen that the images from the CIFAR-10 set
reconstruct poorly at the edges, which makes sense as 98.5%
of the images are from the MNIST dataset, which does not
contain any structure on the edges of the images. As a result,
the difference images contain more structure at the edges
and the CIFAR-10 images will be easier to distinguish from
the MNIST images with our dissimilarity function.

As dissimilarity function, we take the mean absolute
value of the pixels in the difference images, which gives us an
anomaly score for each image in the set. This is going to be
categorically higher for images from the CIFAR-10 dataset
than images from the MNIST dataset (see for example the
anomaly scores of the example images in figure 3.5). We can
now predict which images are anomalies by thresholding

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3.6: Comparison of the abso-
lute reconstruction error of the 70,000
digits in the MNIST dataset and the
first 1,000 images of the CIFAR-10
dataset, using the first 50 principal
components to recreate the images.

the anomaly score. Figure 3.6 shows the spread of the re-
construction errors for different digits and images from the
CIFAR-10 set. As can be seen, the error of the CIFAR-10
images tends to be significantly larger.

This illustrates the basic principle of the framework: the
reconstruction error with a limited number of principal
components can find anomalies in an image set of otherwise
similar appearance. Although no feature descriptors were
used for this simple example, the need for this will become
clear in the next section.

3.3 Application in Sewer Pipe
Images

Dutch urban drainage inspection company vandervalk+degroot
has provided us with a dataset of images from a front-facing
camera on a PIG (pipe inspection gadget), from ten different
streets within different municipalities in the Netherlands.
These images are already spatially aligned, as the inspector
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Figure 3.7: Sample images from the
two labeled datasets: on the left the
more smooth concrete pipe, on the
right the more roughly textured gran-
ulate.

has aligned the camera to the centre of the pipe before start-
ing the recording.

The two subsets correspond to two different types of
pipe: (1) smooth concrete and (2) more rough and textured
granulate, exposed over time. Figure 3.7 shows an example
of each. Henceforth, we will refer to these two image sets as
‘smooth’ and ‘coarse’. The image sets contain 684 and 698
images respectively. Each individual image is composed of
[1080 × 1080] RGB pixels.

The images are processed by the framework on a per-
street basis. The reason for this is that the material used
varies for different municipalities and date of installation,
as will the effects of age. When using images from a single
street, we can be reasonably certain that all images in such
a set are of similar manufacturing and age, which means
that anomalies are more easily detected, because we do not
have to account for a possible multimodal distribution in
appearance.

The images are divided into 676 non-overlapping patches
of [40 × 40] pixels, and we select 324 of such patches per
image, corresponding to the regiosn of the images that are
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in focus. Different patch locations are processed separately,
this allows us to compare the portions of the images that
are spatially aligned while high anomaly scores can still be
pinpointed to a specific image patch, rather than an entire
image.

The images are not accompanied by labels or annotations,
so a method of verifying that the unsupervised method
correctly finds anomalies is required. To this end, we se-
lected two different subsets that are somewhat representa-
tive of all the sewer pipes from the different municipalities
present in the datasets and hand-labeled 22 images from
these sets. Each patch in the 22 validation images was la-
beled as ‘anomaly’ or ‘normal’, in the context of the rest
of the pipe. This includes both actual defects, such as dis-
colouration as a result of leakage, as well as physical features
that are simply less common than others, such as pipe joints
and refuse.

The images in the labeled subsets sets are divided into the
same 324 patches as the labeled images, and for each patch
location features are extracted and PCA is applied to the
feature vectors at a specific location. This means the frame-
work is applied 324 times and each patch location across the
images is treated as a separate image set. We construct an
ROC curve by thresholding the anomaly scores at various
levels and obtaining true and false positive rates for our la-
beled validation images. We report the area under the ROC
curve (AUROC) as a measure of how well the resulting
anomaly score performs.

The parameter θ, the cutoff value for the number of
principal components to use in reconstruction, was chosen
to maximise the AUROC. In our experiments, we found
that the optimal value for θ corresponds to approximately
99% explained variance for the smooth image set and 95%
explained variance for the coarse image set.

The AUROC allows us to compare the performance of
different methods regardless of what costs or restrictions we
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Figure 3.8: ROC curves we obtain
from the anomaly detection frame-
work on our manually labeled vali-
dation set, using pixels as features to
be analysed by PCA. On the left the
smooth dataset, on the right the coarse
dataset.
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assign to types of misclassification. It should also be noted
that since this anomaly detection step might be followed by
a classification into a taxonomy of defect classes, a high false
positive rate might be salvaged by the later classification.

When using pixels as features and the mean absolute
difference as a dissimilarity measure, we obtain results as
shown in figure 3.8. The AUROC for the smooth set is
0.942, the AUROC for the coarse set is 0.774.

3.3.1 Feature Extraction

A possible reason that the framework performs less well
on the coarse set when using pixels as features, is the tex-
ture present in the surface of the pipe in those images. The
variance between pixel values is far greater than it is in the
smooth set, where the entire pipe is more or less a single
colour, and as a result the image are difficult to capture in a
linear model such as PCA.

To alleviate this issue, we extract features that are more
robust to textured images. The feature vectors are then de-
composed, reconstructed and compared in the same way
that the images would be, as shown in the framework in
figure 3.1. In this section, we propose five higher-level fea-
tures. An overview of each feature’s invariances is given in
table 3.1. The performances of each can be easily compared
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Feature Invariances
Pixel Values None
Colour Histogram Translation, rotation, scaling
Fourier Transform Translation 6

Histogram of Oriented Gradients None
Local Binary Patterns Translation, rotation
Homogeneous Texture Descriptor Translation, rotation

Table 3.1: Overview of feature extrac-
tors invariances

in table 3.2.

Colour Histograms
A simplistic but quite useful feature is a colour histogram of
the pixel values. The 1600 values in each colour channel of a
patch are binned into 20 equally sized bins per colour chan-
nel and concatenated to form a feature vector of length 60.
These (in comparison) small vectors are decomposed into
principal components and reconstructed with fewer than
60 principal components. The histogram is compared to the
reconstructed histogram again by mean absolute difference.
We see a slight improvement when using the histograms on
the coarse set, an AUROC of 0.790, whereas performance
on the smooth set is similar with an AUROC of 0.942.

6 After discarding phase component

Fourier Transform
We perform a two-dimensional Fourier transform on the
[40 × 40] image patches, obtaining the frequency repre-
sentation of the image patches. We discard the phase com-
ponent by taking the absolute value and discard half the
frequency plane because of symmetry. Again we decompose
and try to reconstruct the feature vector, using the mean
absolute difference as dissimilarity measure. The Fourier
transform does not provide an improvement over using
the pixel values, as we obtain an AUROC of 0.928 on the
smooth set and 0.715 on the coarse set.

Histogram of Oriented Gradients
Often abbreviated as HOG, histograms of oriented gradi-
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ents 7 describe an image by determining gradient directions7 Dalal, N. and Triggs, B. 2005.
Histograms of oriented gradients for
human detection. In Computer Vision
and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Confer-
ence on. Vol. 1. IEEE, 886–893

at each pixel location, and binning these locally into his-
tograms over a patch of specified size. It seems that this
feature does not suit our purpose too well, as the AUROC
for the smooth set becomes 0.886 and for the coarse set be-
comes 0.588. This might be explained by the fact that this
feature is meant for object detection, and our image patches
contain mostly texture.

Local Binary Patterns
Local binary patterns are a feature used to describe points
as being edges or corners 8. Each pixel is compared to its8 Ojala, T., Pietikäinen, M., and

Harwood, D. 1996. A comparative
study of texture measures with classifi-
cation based on featured distributions.
Pattern recognition 29, 1, 51–59

neighbouring n pixels (usually n = 8) and for each of these
neighbours, it assigns a 1 or 0 depending on whether the
pixel has a higher greyscale value than that particular neigh-
bour. The resulting 8-bit numbers are locally binned to
summarise the texture of a cell as containing corners, edges,
or otherwise. The concatenated histograms are used as a
feature vector. We obtain AUROCs of 0.865 for the smooth
set and 0.705 for the coarse set.

Homogeneous Texture Descriptor
Part of the MPEG-7 multimedia description standard, ho-
mogeneous texture descriptors are shown to perform well
on image retrieval tasks, especially for images with much
texture 9. The HTD features are comprised of logarithmi-9 Ro, Y. M., Kim, M., Kang, H. K.,

Manjunath, B., and Kim, J. 2001.
MPEG-7 homogeneous texture de-
scriptor. ETRI journal 23, 2, 41–51

cally scaled mean values and standard deviations of Gabor
wavelet responses. We obtain AUROCs of 0.941 for the
smooth set and 0.785 for the coarse set.

3.3.2 Concatenating Feature
Vectors

One of the strengths of the framework is that we can con-
catenate multiple feature vectors and the framework will
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and the high-level features described
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Fourier transform) combined as fea-
tures to be analysed by PCA.

still function identically. This allows us to combine the
strengths of multiple feature types, and even combine these
with the raw pixel values if we wish to do so.

After examining every possible permutation of the fea-
tures previously described, we found that excluding only
the HOG and Fourier transform from the feature vector
gave the best result on both image sets. Figure 3.9 shows
the resulting ROC curves when we use the other high-level
features described in this section, as well as the raw pixel
values, giving us the highest AUROCs so far, 0.950 for the
smooth set and 0.818 for the coarse set. The ROC curves
are shown in figure 3.9.

Leaving out the HOG features seems reasonable, as these
performed worse than most other features individually. As
both PCA and the Fourier transform are linear operations,
performing PCA on the Fourier transform would provide
identical results to performing PCA on the pixels (excluding
an arbitrary phase shift). We discarded the phase component
of the Fourier transform before performing PCA, so the
result is not identical, but this might explain why including
it when already using the pixel values does not improve the
AUROC.
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3.4 Convolutional
Autoencoder

Principal component analysis is not the only available method
for this task. We compare the performance of this method
when using a convolutional autoencoder as a drop-in re-
placement.

An autoencoder is a neural network that tries to learn
the identity function 10, and a convolutional autoencoder10 Baldi, P. and Hornik, K. 1989.

Neural networks and principal com-
ponent analysis: Learning from exam-
ples without local minima. Neural net-
works 2, 1, 53–58

combines this with image filter learning 11. Analogous to

11 Chen, M., Shi, X., Zhang, Y., Wu,
D., and Guizani, M. 2017. Deep fea-
tures learning for medical image anal-
ysis with convolutional autoencoder
neural network. IEEE Transactions on
Big Data

our framework, this means we can learn the feature rep-
resentation, perform non-linear dimensionality reduction
(replacing the PCA) and reconstruct the input images. As
we train this network on an image set, we should be similarly
able to use it to detect anomalous regions by inspecting the
difference image.

We designed a convolutional autoencoder consisting of:

^ Input layer: [1040 × 1040] resolution

^ Convolutional layer 1: 10 [20 × 20] filters, stride [10 × 10]

^ Pooling layer 1: [2 × 2] max pooling, stride [2 × 2]

^ Convolutional layer 2: 10 [20 × 20] filters, stride [10 × 10]

^ Pooling layer 2: [2 × 2] max pooling, stride [2 × 2]

^ Autoencoder: 1690→ 845→ 422→ 845→ 1690 units

^ Unpooling layer 1: uniform, [2 × 2]

^ Deconvolutional layer 1: Weights shared Conv. layer 2

^ Unpooling layer 2: uniform, [2 × 2]

^ Deconvolutional layer 2: Weights shared Conv. layer 1

^ Output layer: [1040 × 1040] resolution
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Figure 3.10: Schematic overview of the
convolutional autoencoder used. Con-
volutional and deconvolutional layers
are shown in blue, pooling and unpool-
ing layers are shown in orange.

A schematic overview of the network can be found in fig-
ure 3.10.

Using this network, trained on the same image sets, we
obtained the following results: an AUROC of 0.946 on the
smooth set and 0.714 on the coarse set, figure 3.11 shows the
ROC curves. The results on the smooth set are rather similar
to those obtained by the PCA framework, the AUROC
results on the coarse set are noticeably worse, as can be seen
when comparing with the PCA-based method in table 3.2.

Still, urban drainage inspections might be an application
where the convolutional autoencoder could outperform the
PCA-based method, when we cannot afford to miss any
potential defects. We can see from comparing the ROC
curves that the convolutional autoencoder reaches a true
positive rate of 1.0 at a lower false positive rate than the PCA-
based method. Overall performance is still expected to be
worse, as indicated by the AUROC.

We expect that the reason for this reduced performance
is the reconstruction of the full images. In the PCA frame-
work, we are extracting features, decomposing and recon-
struction these features, and comparing the reconstruction
to the extracted features. In the convolutional autoencoder,
we try to reconstruct the image itself out of necessity, as we
do not know what the features should be. But this means
that the reconstructed images are compared to the original
images, instead of the reconstructed features to the original
features.

The fact that the convolutional autoencoder has to re-
construct the original image, means it can’t learn features
we might describe as ‘texture descriptors,’ as these are inher-
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Figure 3.11: ROC curves from convo-
lutional autoencoder.
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Table 3.2: Results for the methods and
datasets described in this work.

AUROC
Feature type smooth coarse
Pixels 0.942 0.774
Colour Histogram 0.942 0.790
Fourier Transform 0.928 0.715
Histogram of Oriented Gradients 0.886 0.588
Local Binary Patterns 0.865 0.705
Homogeneous Texture Descriptor 0.941 0.785
Pixels + Histogram + LBP + HTD 0.950 0.818
Convolutional Autoencoder 0.946 0.714

ently rotation and translation independent, so reconstruct-
ing the original pixel values from such features would be
impossible for patches containing a lot of texture. But these
are the types of features we expect (and confirmed for the
PCA-based approach) to perform well, so the comparison
is not entirely fair.

To make the systems more similar, we could try to discard
the unpooling and deconvolutional layers, and compare the
output of the fully connected autoencoder to the input
of the fully connected autoencoder (after the network was
trained with the unpooling and deconvolutional layers), but
this is beyond the scope of our current research.

It should also be noted that the network’s many hyper-
parameters are more difficult to optimise than the singular
parameter θ our framework relies on, and a network better
optimised for this specific task may perform better 12.

12 Sun, Y., Xue, B., Zhang, M., and
Yen, G. G. 2018. An experimental
study on hyper-parameter optimiza-
tion for stacked auto-encoders. In 2018
IEEE Congress on Evolutionary Com-
putation (CEC). 1–8
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3.5 Summary

We have proposed a framework for unsupervised anomaly
detection in aligned image sets, relying on feature extrac-
tion, PCA decomposition and partial reconstruction, and
classification of the reconstruction error, and tested this
framework on sewer pipe images. Table 3.2 summarises the
results obtained by the different feature types. We see that
while raw pixel values perform quite well on the ‘smooth’
dataset, improvement can be made by combining different
feature descriptors. For the ‘coarse’ dataset, the difference
is larger: drastic improvements are made by combining fea-
tures, as is expected when we consider that the images are
more defined by texture than by individual pixel values.

We conclude that our PCA-based approach, which could
be considered a more ‘traditional’ statistical approach to
computer vision using combinations of hand-crafted fea-
tures, outperforms the more ‘modern’ convolutional au-
toencoder in this setting, but we must also admit that the
comparison is not entirely fair as we are in one case recon-
structing high-level features and in the other case pixel val-
ues.


