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Probing cluster magnetism

with embedded and
background radio sources in

Planck clusters

Magnetic fields remain an enigmatic part of the non-thermal content of galaxy clusters.
Faraday rotation and depolarisation of extragalactic radio sources are useful probes, but the
limited availability of polarised radio sources necessitates the stacking of clusters to study
average magnetic field profiles and correlation scales. In this study, we combine the information
from depolarisation with the observed rotation measure (RM) and present an investigation
into the average magnetic field properties of the most massive Planck clusters at low redshift
(𝑧 < 0.35), using both background sources and sources embedded in clusters. As expected for
randomly oriented magnetic fields, we find an average RM consistent with zero as a function
of projected radius, but observe a significant increase in the RM scatter, 𝜎RM, closer to the
cluster centres. Averaging all 124 clusters, we find a scatter within 𝑅500 of 𝜎RM = 241±44 rad
m−2. In the simple assumption of a uniform magnetic field with a single fluctuation scale
Λ𝑐 , this translates to an average magnetic field strength of 3(Λ𝑐/10kpc)

−0.5
𝜇G. Because the

highest RM sources near the centre of clusters are depolarised, the radial profile of 𝜎RM puts
a lower limit on the scaling between the magnetic field and thermal gas density of 𝜂 > 0.15.
Combining depolarisation and RM in a full forward model, we find that the observations best
agree with a magnetic field that fluctuates on a maximum scale Λmax > 300 kpc and follows a
power spectrum with exponent 𝑛 = 3 to 𝑛 = 4, consistent with Kolmogorov turbulence injected
on large scales. The best-fit average magnetic field profile is equal to 𝐵0 = 5𝜇G in the centre,
declining with radius as 𝐵(𝑟) ∝ 𝑛𝑒(𝑟)

0.5.

Based on Osinga et al. (2023b): E. Osinga, R. J. van Weeren, L. Rudnick, F. Andrade-Santos, A. Bonafede, T. Clarke,
K. Duncan, S. Giacintucci, Tony Mroczkowski, H. J. A. Röttgering, A&A to be subm.
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6.1 Introduction
Galaxy clusters, the largest gravitationally bound structures in the Universe, harbour a rich
variety of physical phenomena. Radio observations have revealed that clusters often show
diffuse synchrotron emission that can span Mpc-sized regions, such as ‘radio halos’ (e.g.
Bonafede et al., 2022) or ‘mega-halos’ (Cuciti et al., 2022), implying that clusters are filled
with ultra-relativistic electrons and magnetic fields. The influence of the magnetic fields
extends to particle acceleration models, radio synchrotron age estimates, the dynamics
of the intracluster medium (ICM) and the transport of cosmic rays. Understanding the
properties and origins of magnetic fields in clusters thus has broad importance (see Carilli
& Taylor, 2002; Govoni & Feretti, 2004; Donnert et al., 2018, for reviews on magnetic fields
in galaxy clusters).

The most promising tool to study magnetic fields is radio polarisation observations
of Faraday rotation and depolarisation. A magnetised plasma such as the ICM causes a
wavelength-dependent rotation of the polarisation angle. In general, the Faraday depth of
a source is defined as (Burn, 1966; Brentjens & de Bruyn, 2005)

𝜙(r) = 812
∫

𝑛𝑒B ⋅ 𝑑r radm−2
, (6.1)

where 𝑛𝑒 is the electron density in parts per cm−3, B is the magnetic field in 𝜇Gauss and
dr the infinitesimal path length increment along the line of sight in kpc, and we define
𝜙(r) > 0 for the magnetic field pointing towards the observer. In the simple case of just
one radio-emitting source along the line of sight, the Faraday depth is equal to the rotation
measure (RM). With a combination of radio and X-ray observations, it is thus possible to
study the magnetic field properties of galaxy clusters.

Such studies are best done at low redshifts, due to the rarity of polarised radio sources
(e.g. Rudnick & Owen, 2014). The most detailed analyses have been of the Coma Cluster
(Bonafede et al., 2010) and Abell 2345 (Stuardi et al., 2021), where seven radio sources
were detected per cluster. The Coma Cluster magnetic field was found to agree with a
Kolmogorov power spectrum with a central strength of 5 𝜇G and a scaling of magnetic
field energy density linearly proportional to the thermal gas density (𝐵2

∝ 𝑛𝑒). The central
magnetic field strength in Abell 2345 was found to be similar to the Coma Cluster, but with
a magnetic field energy density that scales super-linear instead (i.e. 𝐵2

∝ 𝑛
2

𝑒
). Several other

low-redshift clusters have been analysed in polarisation (Murgia et al., 2004; Govoni et al.,
2006; Guidetti et al., 2008; Govoni et al., 2010; Vacca et al., 2012; Govoni et al., 2017), with
typically less than five polarised radio galaxies per study, resulting in large uncertainties
on the magnetic field estimates (see e.g. Johnson et al., 2020, for a detailed discussion).

Because cluster magnetic fields are thought to be generally turbulent and disordered,
the observed Faraday rotation is the result of a random walk process and thus a random
variable. Accurate magnetic field estimates, therefore, require a statistical analysis probing
many independent sight lines. Another potential problem is that polarised radio galaxies
are often embedded in the cluster, and the degree to which the observed RM variations
are caused by local interaction of the lobes with the ICM is debated (Laing et al., 2008;
Guidetti et al., 2012; Osinga et al., 2022). Such problems can be overcome by stacking
clusters to increase the number of polarised radio sources located behind clusters and
thus independent sight lines through a cluster (Clarke et al., 2001; Bonafede et al., 2011;
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Böhringer et al., 2016; Stasyszyn & de los Rios, 2019; Osinga et al., 2022). Although stacking
experiments have limited ability to probe differences between clusters, they are useful
for obtaining average cluster magnetic field properties, and are currently the only way to
study clusters beyond the few nearest clusters.

We recently published, in Osinga et al. (2022), the largest homogeneous stacking
experiment using Karl G. Jansky Very Large Array (VLA) observations of 124 galaxy
clusters selected from the Planck 2nd Sunyaev-Zeldovich Source Catalog (PSZ2) (Planck
Collaboration et al., 2016a). This study presented the first clear depolarisation trend tracing
the radial profile of cluster magnetic fields using over 600 polarised radio sources. While
depolarisation traces the smaller scale structure of the magnetic fields (i.e. few kpc), the
larger scale structure can be inferred from the Faraday rotation of the radio sources. In this
paper, we add the information from the Faraday rotation of the same sample of sources
to study the large-scale properties of the magnetic fields in galaxy clusters. By jointly
fitting both depolarisation and Faraday rotation, we aim to constrain the average magnetic
field strength, scaling with density, and power spectrum. Cosmological calculations are
performed assuming a flat ΛCDM model with 𝐻0 = 70 kms−1Mpc−1, Ω𝑚 = 0.3 and ΩΛ = 0.7.

6.2 Chandra-Planck ESZ sample
The sample of galaxy clusters is a subset of 124 out of 165 clusters from the Chandra-
Planck Legacy Program for Massive Clusters of Galaxies1 (Andrade-Santos et al., 2021)
that have VLA observations presented in Osinga et al. (2022). The full details on the
data reduction, polarised source identification and association, and determination of the
polarisation properties are presented in the aforementioned paper, but we briefly summarise
the important points here and highlight some improvements to the catalogue.

Each of the 124 clusters was observed for ∼ 40 min each in the VLA L-band (1–2GHz),
resulting in typically 20–30 𝜇Jybeam

−1 noise levels at a resolution of 6–7′′ after data
reduction. Polarised sources were identified using RM-synthesis (Brentjens & de Bruyn,
2005) and matched to total intensity components and optical counterparts. In total 6,807
and 819 source components were detected in total and polarised intensity respectively. We
have fit the following model to the polarised intensity as a function of wavelength 𝜆, which
accounts for rotation and depolarisation (see Sokoloff et al., 1998, for details),

𝑃(𝜆
2
) = 𝑝0𝐼 exp(−2𝜎

2

RM
𝜆
4
)exp[2𝑖(𝜒0+𝜙𝜆

2
)], (6.2)

where 𝑝0 denotes the intrinsic polarisation and 𝜎
2

RM
the variance of the RM distribution

which models the depolarisation as a function of wavelength. 𝜒0 is the intrinsic polarisation
angle, and 𝐼 denotes the total intensity model, which was assumed to be a simple power-law
of the form 𝐼 (𝜈) = 𝐼0𝜈

𝛼 .
We have improved the Monte Carlo Markov chain (MCMC) fitter used in Osinga et al.

(2022) to now properly take into account the circular nature of 𝜒0 during the fitting. In
Osinga et al. (2022), the prior on 𝜒0 was uniform ∼ (0,𝜋), which would cause the sampler
in some cases to get stuck around the boundary values. We removed this prior on 𝜒0 and
fold the chain back into the range [0,𝜋) after the sampling is completed. We also calculate
the mean and spread using circular statistics where we take into account the fact that the
1http://hea-www.cfa.harvard.edu/CHANDRA_PLANCK_CLUSTERS/

http://hea-www.cfa.harvard.edu/CHANDRA_PLANCK_CLUSTERS/
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angles are distributed on the half-circle ∈ [0,𝜋). In this way, the mean denotes the angle of
the average vector on the unit circle, and the standard deviation is the spread in angles
around the average vector. This agrees with the definition of the simple arithmetic mean
and standard deviation when the angles are distributed away from the edges of the domain.

This paper is thus accompanied by an updated table of polarised components, shown
in Appendix 6.6. We note that this update mainly corrects the quoted mean and uncer-
tainty of the intrinsic polarisation angle 𝜒0 and most sources have similar best-fit RM and
depolarisation parameters. This thus does not significantly impact the results. Finally, we
used the same criteria for identifying bad fits as Osinga et al. (2022). All sources with a
best-fit 𝜒 2 value that is > 5𝜎 away from the theoretical distribution, and sources with low
signal-to-noise polarised emission resulting in artificially large values of 𝜎2

RM
were flagged.

This resulted in 196 bad fits out of 819 polarised sources. The following analysis is thus
performed using the remaining 623 polarised radio sources detected in 124 galaxy clusters.

6.3 Methods
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Figure 6.1: Simulated Faraday rotation (left) and depolarisation (right) screen for a random cluster from our
sample as it would appear at 1.5 GHz with perfect sampling. The parameters are 𝐵0 = 5.0𝜇G, 𝑛 = 2, 𝜂 = 0.5 and
the dashed and solid circles show 0.5𝑅500 and 1.0𝑅500, respectively.

The galactic contribution to the RM is expected to be small since the cluster sample is
selected from the PSZ2 survey and thus avoids the galactic plane by design. While cluster
induced RMs are often on the order of 103 rad m−2, for comprehensiveness we subtracted
the galactic contribution (on the order of 101 rad m−2) to the sources using the recent
map from Hutschenreuter et al. (2022), propagating the uncertainties as well. Afterwards,
we corrected the RM to the cluster rest frame to account for cosmological redshift. This
assumes that the RM, after subtraction of the galactic contribution, is dominated by the
effect of the ICM and that the intrinsic RM of the source and the component from the
intergalactic medium are both negligible in comparison. We thus defined the RM induced
by the ICM as

RMcluster = (RMobs−RMgal)(1+ 𝑧cluster)
2
, (6.3)

where RMobs refers to the best-fit RM in the observer frame, RMgal to the galactic contribu-
tion and 𝑧cluster to the cluster redshift.



6.4 Results

6

175

To infer magnetic field properties from the distribution of RMcluster, we consider models
of various levels of complexity. First, in the simple scenario of random magnetic field
orientations in cells of size Λ𝑐 kpc, which have uniform magnetic field strengths and
electron densities, the observed RM is the result of a random walk process. Because of the
central limit theorem, the distribution of RMs is then expected to be a Gaussian distribution
with zero mean, and variance given by (e.g. Murgia et al., 2004)

𝜎
2

RM
= 812

2
Λ𝑐 ∫

(𝑛𝑒𝐵||)
2
𝑑𝑙, (6.4)

where dl is the infinitesimal path length increment along the line of sight in kpc, 𝑛𝑒 is
measured in cm−3 and 𝐵

||
is the magnetic field strength parallel to the line of sight in 𝜇G.

In reality, the magnetic field structure will more closely resemble a random field with
fluctuations on many spatial scales, and both the magnetic field strength and electron
density will scale with radius. Thus comparing observations to more realistic scenarios
requires simulated magnetic fields. We followed the approach explained in Section 4 of
Osinga et al. (2022) to generate mock rotation measure and depolarisation images for all
clusters in our sample which have X-ray observations available (99/124). An example of
a mock RM and depolarisation image is shown in Figure 6.1 for a random cluster in our
sample. In these models, the magnetic field is assumed to be a three-dimensional Gaussian
random field with a single-power law spectrum characterised by the following parameters:
𝐵0, 𝜂, 𝑛, Λmin and Λmax. The first two denote the variables that parameterise the magnetic
field, assumed to follow (e.g. Bonafede et al., 2010)

𝐵(𝑟) = 𝐵0
(

𝑛th(𝑟)

𝑛th(0))

𝜂

, (6.5)

and the last three parameters encode the power spectrum of the magnetic field:

|𝐵𝑘 |
2
∝ 𝑘

−𝑛
, (6.6)

between minimum and maximum fluctuations scales that are denoted by Λmin and Λmax in
image space, respectively. In the picture of Kolmogorov turbulence, 𝑛 = 11/3, but this was
found observationally to take values between 𝑛 = 1 and 𝑛 = 4 (Murgia et al., 2004; Govoni
et al., 2006; Guidetti et al., 2008; Bonafede et al., 2010; Vacca et al., 2010, 2012; Govoni et al.,
2017; Stuardi et al., 2021; Osinga et al., 2022). We have computed all models on 1024

3 pixel
grids, to simulate all clusters in the same way. Here, one pixel represents 3 kpc, and clusters
are thus simulated out to about 1.5𝑅500, with a minimum fluctuation scale of Λmin = 6 kpc.
These models will be compared to observations in various ways, as detailed in the next
section.

6.4 Results
6.4.1 Average magnetic field strength
The cluster rotation measure with the uncertainty given by the 16th and 84th percentile
of the MCMC is plotted as a function of distance to the nearest cluster centre in Figure
6.2. A clear trend is visible, with the scatter in the rotation measures decreasing with a



6

176 6 Probing cluster magnetism in Planck clusters

larger distance to the cluster centre. Taking all sources within 1.0𝑅500, we find that the
standard deviations of the RM of cluster members and background sources are similar2,
being 263±56 and 216±68 rad m−2, respectively, as shown in Table 6.1. In reality, we expect
that for a given magnetic field strength, the standard deviation of the RM of background
sources is expected to be

√

2 times that of cluster members, as cluster members are on
average located at the mid-plane of the cluster. However, cluster members are also found
preferentially at smaller radii, where the scatter in RM is larger due to generally larger
magnetic field strength and electron densities.

Table 6.1: Standard deviation of RMcluster as defined in Eq. 6.3 for different subsets and projected radii.

< 0.5𝑅500 0.5−1.0𝑅500 < 𝑅500 > 𝑅500

All 299±61 120±29 241±44 38±4

Insidea 288±71 182±48 263±56 38±7

Behindb 315±103 57±6 216±68 37±5

CCc
169±67 85±29 139±49 27±2

NCCd
236±46 70±9 192±36 29±6

Notes. (a) Sources located inside clusters (b) Sources located behind clusters (c) Only cool-core clusters
(d) Only non-cool-core clusters

The mean value of the RMs is consistent with zero as a function of radius, as shown
in Figure 6.3, consistent with random magnetic field orientations along the line of sight.
Assuming the simple random walk scenario denoted by Equation 6.4, we find that the most
rudimental estimate of the line-of-sight magnetic field strength is given by

(

𝐵
||

𝜇𝐺)
= 2.46

(

𝜎RM/200

radm
−2

)(

𝑛𝑒/10
−3

cm
−3 )(

Λ𝑐/10

kpc )

−1/2

(

𝐿/1000

kpc )

−1/2

(6.7)

where 𝐿 indicates the line-of-sight column length, which will be on average twice as large
for background sources as cluster members. If we assume that cells are ordered on scales
of 10 kpc with an electron density of 10−3cm−3 (e.g. Böhringer et al., 2016), this reduces to

𝐵
||
=

𝜎RM

2.57

√

𝐿

. (6.8)

If we assume approximately 𝐿 = 1000 kpc for cluster members and twice as large for
background sources, we find magnetic field strengths averaged within 𝑅500 equal to 2-3
𝜇G. Although the simple scenario suffices to give an order of magnitude estimate for the
average magnetic field in galaxy clusters, it is clear from Figure 6.2 that the product of the
magnetic field strength and electron density is not constant as a function of radius.

To sample a more physical property, we plot in Figure 6.4 the observed rotation mea-
sures as a function of ICM electron column density. This plot is less populated, as we
now only show sources that are detected within a projected radius 𝑟 < 2𝑅500, where the
Chandra-derived column density values are reliable. The increased scatter in rotation
2Uncertainties on 𝜎RM are calculated by 1 000 bootstraps.
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Figure 6.2: Cluster induced rotation measure as a function of normalised distance to the nearest cluster centre.
The y-axis is partially linear and partially logarithmic for visibility. The region between −10

−2 and 10
2 rad m−2,

indicated by the dashed axis, is shown on a linear scale and the scale is logarithmic outside of this region. The
median uncertainty in RM is 13 and 11 rad m−2 in cluster members and background sources, respectively. The
plot is shown on a linear scale in Appendix 6.6.

measure with increasing column density is still significant, and the preferential sampling of
cluster members at high column densities (i.e. low radii) is clearly pronounced. Following
Böhringer et al. (2016), we calculated the scatter in rotation measure in bins of column
density, from which the average magnetic field strength along of the line of sight can be
calculated as

(

𝐵
||

𝜇𝐺)
= 3.801×10

18

(

𝜎RM

radm
−2)(

𝑁𝑒

cm
−2)(

𝐿

Λ𝑐
)

1/2

. (6.9)

The RM scatter as a function of column density is shown in Figure 6.5. The bottom panel
of Figure 6.5 shows the resulting magnetic field estimate from Equation 6.9. We find that
the average magnetic field strength is 0.3𝜇G

√

𝐿/Λ𝑐 , resulting in around 3𝜇G for typical
values of 𝐿 = 1000 kpc and Λ𝑐 = 10 kpc (Böhringer et al., 2016). There is a hint of increasing
average magnetic field strength towards lower column densities, although this is likely
dominated by the scatter from the uncertainties in the RM, as will be discussed in the next
section.

6.4.2 Radially declining magnetic field
In reality, cluster magnetic fields and electron densities show a radial decline. To investigate
the (spherically averaged) magnetic field properties as a function of radius, we calculated
the scatter in rotation measure as a function of radius. The data were binned into radial
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Figure 6.3: Mean of the cluster induced rotation measure in bins of projected normalised distance to the nearest
cluster centre. The horizontal error bars indicate the bin edges. Cluster members are shown in blue, background
sources in orange, and the combined bins in black.
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points are plotted at the median 𝑁𝑒 . The bottom panel shows the magnetic field estimate assuming Equation 6.9,
with a correlation length that is a factor 100 smaller than the line-of-sight distance, resulting in a mean strength
of 3𝜇G.
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Figure 6.7: Scatter in rotation measure as a function of the RM uncertainty, separately for sources detected within
𝑅500 and outside 𝑅500.

bins, and the standard deviation is shown as a function of radius in Figure 6.6. A strong
trend of the RM scatter being significantly higher closer to the cluster centre is present.

The RM scatter at large radii (i.e. 𝑟 > 2𝑅500) is still considerably above zero, with a value
of 𝜎RM = 28±6. It is likely that this value reflects the uncertainties in the RM determination.
To verify this, we plot in Figure 6.7 the scatter 𝜎RM as a function of the individual RM
uncertainty. The plot shows that the scatter outside 1𝑅500 is already dominated by the
uncertainties, with the observed 𝜎RM increasing with the RM uncertainty. For sources
located within 1𝑅500, we see no such trend, indicating that the scatter is dominated by the
real physical scatter induced by the turbulent magnetic medium. However, the RM scatter
near the centre of the clusters is likely underestimated, as sources with large RM values
are depolarised, given that the 50% sensitivity Faraday depth is equal to only 1200 rad m−2

for the channel width of our observations (Osinga et al., 2022).
Assuming that the magnetic field fluctuates on a single scale Λ𝑐 regardless of radius, we

can determine the magnitude of the 3D magnetic field fluctuations and the scaling between
magnetic field and thermal electron density from the 𝜎RM profile. In this assumption, the
variance in rotation measure as a function of projected distance is proportional to the
line-of-sight integral of Equation 6.4,

𝜎
2

RM
(𝑟/𝑅500) = 𝜎RM,0∫

LOS

𝑛
2(1+𝜂)

𝑒
(r)d𝐿, (6.10)

where 𝜎RM,0 denotes the theoretical central RM dispersion and 𝜂 models the relationship
between the magnetic field energy density and thermal energy density (i.e. 𝐵

2
∝ 𝑛

2𝜂

𝑒 ),
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Figure 6.8: RM scatter as a function of projected distance. The data is corrected for a baseline value of 𝜎RM = 28,
meaning the last data point is consistent with zero. The first point is plotted as a lower limit, and points outside
𝑅500 (shown in red) are ignored in the fit, as Fig. 6.7 showed that the scatter is dominated by uncertainties for
these points. The coloured lines show best-fit profiles computed for various values of 𝜂 assuming Equation 6.10.

which was found to be 0.5 in the Coma Cluster (e.g. Bonafede et al., 2010). Because we are
investigating a stacked sample of clusters this scaling might, in reality, be more complicated,
but this can only be investigated in single clusters with next-generation polarisation data.
At the moment, we determined an average cluster electron density profile by stacking all
individual profiles, which are shown in Figure 6.19, which is on average a good assumption
because clusters are relatively self-similar (e.g. Arnaud et al., 2010a).

Correcting for the scatter from measurement uncertainties, we compare in Figure 6.8
the observed RM scatter with the theoretical profile from integrating the mean density
profile along the line-of-sight out to 2𝑅500 for various values of 𝜂. This figure demonstrates
that the observed RM scatter profile is relatively flat, with models requiring 𝜂 ≤ 0.5 to fit
the observed RM scatter observed in the centre of clusters. The best-fit parameters are
found to be 𝜎RM,0 = 1538 rad m−2 and 𝜂 = 0.15, but we note that this value of eta likely
presents a lower limit, because the observed RM scatter at small projected radii is a lower
limit, as explained more in Section 6.5.

If we fit a 𝛽-model to the cluster density profile, we can de-project the profile and
calculate the 3D central magnetic field dispersion 𝜎𝐵,0 as (e.g. Johnson et al., 2020)

𝜎𝐵,0 = 𝜎RM,0

√

3

812𝜋
1/4

𝑛
−1

0
Λ
−1/2

0
𝑟
−1/2

𝑐

√

Γ(𝛼1+1/2)

Γ(𝛼1)

. (6.11)

where Λ0 is the unknown characteristic length scale of the magnetic field and 𝛼1 =
3

2
(1+
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Figure 6.9: Central magnetic field dispersion, calculated from Eq. 6.11, as a function of the characteristic length
scale Λ0 and the magnetic field to thermal electron density scaling parameter 𝜂.

𝜂)𝛽𝑐 −
1

4
. Figure 6.9 shows the value of 𝜎𝐵,0 against Λ0. For a reference value of Λ0 = 10 kpc

and 𝜂 = 0.15, we find that 𝜎𝐵,0 = 8𝜇G.

6.4.3 Cluster members vs background sources
Theoretically, since cluster members are on average located at the midplane of the cluster
and polarised light thus travels through half the column that background sources probe, we
would expect background sources to display a scatter in RM that is on average greater by a
factor

√

2. However, from Figure 6.6 it becomes clear that such an effect is not observed.
To investigate this in more detail, we calculated a more robust measure of scatter, the
interquartile range. This is defined as the difference between the 75th and 25 percentiles of
the data such that a few sources with large RM values do not dominate the scatter. The
interquartile range is shown in Figure 6.10. The trend of increasing scatter with decreasing
radius is still visible, but cluster members and background sources show similar scatter
even when computed at similar radii.

To quantify this, we performed a z-test to test two null hypotheses in every bin: i) that
the scatter of background sources and cluster members are the same, and ii) that the scatter
of background sources is

√

2 times the scatter of cluster members. We found that we could
reject neither of the null hypotheses with 95% confidence. This implies that the uncertainties
are currently still too large to identify a statistically significant difference between the RM
of background sources and cluster members. To increase the number statistics, we also
tried binning all sources into a radial bin bounded by [0,𝑅500], and found marginal evidence
(𝑝 = 0.02) to reject the null hypothesis that IQR(RMbehind) =

√

2⋅ IQR(RMinside). However,
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this is likely caused by the fact that the cluster members are preferentially detected at
smaller radii (median radius 0.34𝑅500) than background sources (median radius 0.54𝑅500),
where the scatter is expected to be larger.

6.4.4 Merging vs relaxed clusters
Differences between the magnetic fields of relaxed and merging clusters have been ten-
tatively observed in various studies (Bonafede et al., 2010; Stasyszyn & de los Rios, 2019;
Osinga et al., 2022), but not yet clearly quantified. Following Osinga et al. (2022), we split
our sample into merging and relaxed clusters based on the presence of a cool-core (CC)
or absence of one (NCC). We defined the same bins as Osinga et al. (2022) to separate the
central cooling core region (𝑟 < 0.2𝑅500), as this is where the enhanced electron density of
the cool-core clusters becomes noticeable, as also shown in Figure 6.19. The scatter in RM
as a function of distance for the NCC and CC clusters is shown in Figure 6.11. We note that
the central bin only has 7 sources in the CC sample (while the NCC sample has 37), which
prevents using the IQR as a robust estimate of the scatter. There is a hint that CC clusters
have higher 𝜎RM as expected from the increased electron density in the cooling core region,
but the uncertainties are too large to reliably conclude such an effect. We do however see
that merging clusters have significantly higher RM scatter in the region 0.2 < 𝑟/𝑅500 < 1.0

where 90 and 88 sources are detected respectively in both sub-samples.
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6.4.5 Comparison to models
To compare the data to more involved models with a radial decline of magnetic field values
and electron densities determined per cluster, and a power spectrum of magnetic field
fluctuation scales, we follow the principle as laid out in Section 6.3, simulating magnetic
fields with a 10243 pixel grid with a pixel size of 3 kpc. In the following section, we thus
consider only sources that are detected at ≲ 1500 kpc. This results in 303 polarised radio
sources detected in 70 clusters for which X-ray information is available and simulations
could be evaluated.

Constraining the magnetic field power spectrum
Both the RM and depolarisation of sources scale similarly (although not identically) with
the magnetic field strength, but differently with 𝑛 and Λmax, and therefore the ratio can be
used to constrain 𝑛 and Λmax, relatively independent of the other parameters (e.g. Bonafede
et al., 2010). We defined the RM ratio as

RMratio =

|RM|

1−𝐷𝑃

. (6.12)

This ratio is also relatively independent of radial distance, as the depolarisation will increase
(i.e. take lower values of 𝐷𝑃 ) as the RM increases towards the cluster centre. We verified
this with both Spearman and Pearson tests, which showed no significant correlation.

The median observed RM ratio across all sources was found to be 139±17, with the
uncertainty calculated by 1000 bootstraps. Figure 6.12 shows the median observed RM ratio
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compared with simulated values for sources sampled at similar positions in the simulated
RM and depolarisation images. It is clear from the figure that models with most of the
magnetic field energy on small scales (i.e. 𝑛 < 3) cannot reproduce the observed RM ratio,
mainly because those models result in too low values of |RM| due to the rapidly fluctuating
magnetic field along the line of sight. Instead, models with 𝑛 ≥ 3 provide a good fit for
various values of the maximum correlation scale Λmax. Lowering Λmax has an analogous
effect to lowering 𝑛, namely decreasing the coherence length of the magnetic field along the
line of sight. This thus results in a smaller average |RM|while the effect on depolarisation is
less significant, as this is measured on scales below the observing beam (less than typically
15 kpc, although dependent on cluster redshift). Thus, the observed data best matches
𝑛 ≥ 3.

For a Kolmogorov spectrum (𝑛 = 3.67) with typical values of the central magnetic field
strength between 1−10𝜇G, the data is consistent with Λmax > 300 kpc. Lower values of
Λmax would require significantly higher central magnetic field strengths.

Constraining the maximum correlation scale
To attempt to constrain the maximum projected correlation scale of the magnetic field, we
computed the RM structure function3. The structure function is sensitive to fluctuations
in rotation measure on varying scales. If the thermal electron density and magnetic field
3The structure function was computed using the framework from https://github.com/
AlecThomson/structurefunction

https://github.com/AlecThomson/structurefunction
https://github.com/AlecThomson/structurefunction
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strength are uniform, the structure function can be used to infer the power spectrum of
the magnetic field (Ensslin et al., 2003). Although this is not the case across our cluster
sample, the structure function is still a useful estimate to characterise RM fluctuations as a
function of physical scales.

The (two point) structure function is defined as (e.g. Haverkorn et al., 2004)

SFRM,obs(Δ𝑟) = ⟨RM(x)−RM(x+ r)⟩ . (6.13)

where the average is taken over all pairs at positions x and x+ r with similar distance Δ𝑟
between the two components. Taking into account the offset added by the uncertainties
on the RM, we computed the corrected structure function as

SFRM(Δ𝑟) = SFRM,obs(Δ𝑟)−SF𝜎RM
(Δ𝑟), (6.14)

where SF𝜎RM denotes the offset correction, calculated by computing the structure function
of the uncertainties. This correction was found to be on the order of < 10% of the observed
structure function, as is shown in Figure 6.20.

The uncertainty on the observed structure function was computed numerically by
bootstrapping the catalogue 100 times. Because we are interested in the structure function
of the cluster magnetic field and not that of the intrinsic radio sources, we computed the
projected distance between the radio source pairs by placing them at the cluster redshift, as
that is the location of the Faraday screen. This assumes that the intrinsic RMs of source pairs
are uncorrelated, which is a good assumption since they are almost exclusively unrelated
sources. However, the fact that sources in a similar Δ𝑟 bin can be located at different radial
distances complicates the interpretation of the structure function, unless the form of the
power spectrum is independent of radius, and only the amplitude scaling is affected.

The structure function is expected to approach zero for small values of Δ𝑟 and 2𝜎
2

RM

for large values of Δ𝑟 (Haverkorn et al., 2004; Johnson et al., 2020). In the Gaussian random
field assumption, the amplitude of the structure function scales with 𝐵

2, because the scatter
in RM scales linearly with 𝐵. We thus plot normalised structure functions, as we are not
interested in the 𝐵2 normalisation in this section.

The structure function is shown in Figure 6.13a, where the distance between pairs is
normalised by the host cluster 𝑅500 to stack different clusters together and only sources
detected at 𝑟 < 𝑅500 were used. The form of the structure function is relatively flat, showing
no clear increase as a function of projected separation, indicating that it has already
saturated. This would mean that the characteristic scale of RM fluctuations is below
0.05𝑅500, or roughly 50 kpc. However, when we compare the observed structure function to
the structure function calculated from simulated RM images with an equivalent sampling
of sight lines, the simulated structure functions all show similar behaviour to the observed
structure function, indicating the radial location of the sightline is dominating the form of
the structure function. This is clearly seen when sources are not sampled at equivalent
positions, as shown in Figure 6.13b. This means that current data do not allow us to
distinguish different characteristic correlation scales through the structure function.

We can, however, compute the structure function in bins of projected radius, to inves-
tigate whether the magnetic field adheres to a similar power spectrum as a function of
projected radius. The structure function computed in three different radial bins is shown
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Figure 6.14: Equivalent to Fig. 6.13a, but in bins of projected distance.

in Figure 6.14. From this figure, we see that the observed structure function is consistent
with being constant for all three radial bins. We thus find no evidence that the structure of
the magnetic field is different as a function of radius.

Full forward model

Finally, we find the best model that reproduces the data by following the approach used in
previous works such as Murgia et al. (2004); Bonafede et al. (2010); Govoni et al. (2017);
Stuardi et al. (2021), directly comparing the simulated RM and depolarisation images to
the observed data. For every source, we sample an equivalent source from the simulated
clusters, and compute the expected RM and depolarisation. We minimize the difference
between the simulated and observed radial scatter in RMs, and the depolarisation as a
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function of radius. We define the function to be minimized, 𝑞, as follows

𝑞 = 𝑞depol+ 𝑞RM =

∑

𝑟
(

DPobs(𝑟)− ⟨DPsim(𝑟)⟩

err(DPobs) )

2

+
(

𝜎RM,obs(𝑟)− ⟨𝜎RM,sim(𝑟)⟩

err(𝜎RM,obs) )

2

, (6.15)

where the observables are calculated in bins of projected radii (equivalent to Fig. 6.6), and
the simulated observables, denoted by the angle brackets, are averaged over 10 different
random initialisations. Because sources in this sample were found to be intrinsically
depolarised with DP=0.92 at large radii (Osinga et al., 2022), we incorporated this into
the simulated depolarisation. Similarly, we correct 𝜎RM for the contribution caused by
the uncertainties by subtracting in quadrature the observed 𝜎RM in the last bin from the
𝜎RM profile. As Section 6.4.5 showed that the RM ratio is consistent only with models that
have 𝑛 > 3, we fix the power spectrum to the Kolmogorov value of 𝑛 = 3.67 to reduce the
computational burden.

First, we investigate the best-fit models when fixing the magnetic field to electron
density scaling to the typical value of 𝜂 = 0.5. Figures 6.15a and 6.15b show the values of
𝑞depol and 𝑞RM respectively, as a function of 𝐵0 and Λmax. We find the best agreement for
a model with 𝐵0 = 5.0𝜇G and a maximum correlation scale equal to either Λmax = 1536

kpc or Λmax = 300 kpc. These models have very similar total 𝑞 values, but Λmax = 1536

kpc is preferred by the depolarisation profile, while Λmax = 300 kpc is preferred by the
𝜎RM profile. The measured and simulated radial profiles are shown in Figure 6.16 for both
best-fit models. Both models (Λmax = 300 and 1536 kpc) are shown to fit the data very
well, although the observed 𝜎RM at a low projected radius is in both cases lower than the
simulated value. This is likely due to the selection effect that sources with high values of
RM will be depolarised and thus missed, biasing our observed 𝜎RM low, as discussed more
in the next section. This selection bias is less important for radial depolarisation because
upper limits on DP can be calculated from unpolarised sources as well.

Section 6.4.2 showed that the radial profile of 𝜎RM preferred low values of 𝜂 ≈ 0.1. We
thus also test the value of 𝜂 = 0.1, although we stress again that this might be caused by
missing preferably high RM sources at low radii. The plots are shown in Appendix 6.6,
Figures 6.21 and 6.22. The modelled 𝜎RM curve does provide a better fit for 𝐵0 = 1.0𝜇G,
Λmax = 300 kpc and 𝜂 = 0.1, although the model now underestimates the central scatter,
while in reality, the central scatter is likely higher than what we observed. Additionally,
the depolarisation profile shows a worse fit to the data for this model, instead favouring
𝐵0 = 10𝜇G and Λmax = 30 kpc, which is rejected on the basis of the RM ratio analysis in
Section 6.4.5. A model with 𝜂 = 0.5 thus better explains both the depolarisation and RM
scatter profile simultaneously.
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6.5 Discussion
Previous studies of samples of clusters have investigated either the statistical depolarisation
(Bonafede et al., 2010; Osinga et al., 2022) or the rotation measure as a function of projected
radius (Clarke et al., 2001; Böhringer et al., 2016; Stasyszyn & de los Rios, 2019). In this
work, we have for the first time measured both the rotation measure and depolarisation in
a consistent way for polarised radio sources along sight-lines of stacked galaxy clusters.

The previously largest statistical study was performed by Böhringer et al. (2016), who
found 92 RM sight-lines within 𝑅500 by cross-matching 1773 clusters with the RM catalogue
compiled by Kronberg & Newton-McGee (2011). We significantly increase the number
statistics, detecting 261 radio sources with well-defined RM and depolarisation within
𝑅500 in only 124 clusters. Comparing Table 6.1 with Table 1 in Böhringer et al. (2016), we
find significantly higher 𝜎RM in all radial bins, except outside 𝑅500. The reason for this
is likely twofold. First, there is a difference in the RM sensitivity as the Böhringer et al.
(2016) is likely based on radio data with larger channel widths, preventing detection of
high RMs (they find a maximum |RM| < 700 rad m−2). Second, the cluster samples are
different, as Böhringer et al. (2016) quote a mean cluster mass of 3×1014𝑀⊙, while only 15
out of our 124 clusters have a mass below this value, and the mean mass of our sample
is 5.7×1014𝑀⊙. Taking the different sampling into account by calculating the scatter as a
function of electron column density in Section 6.4.1, we found an average magnetic field
estimate of 3𝜇G in our sample of galaxy clusters, perfectly consistent with the findings of
Böhringer et al. (2016).

The observed scatter of RMs was found to be dominated by the effect of the ICM inside
𝑅500, but dominated by the uncertainties in the RM outside 𝑅500, as shown in Figure 6.7.
At large radii (i.e. 𝑟 > 2𝑅500) we observed 𝜎RM = 28±6, which is a combination of source
to source RM scatter and measurement uncertainties. This is lower than the value of
56±8 found by Böhringer et al. (2016), but significantly higher than the expected intrinsic
variation in the radio sources of 5−7 rad m−2 (Schnitzeler, 2010). We thus cannot determine
the magnetic field properties on the outskirts of galaxy clusters, as we are dominated by
the uncertainties in the RM determination. However, inside 𝑅500, the radial profile of the
scatter can be used to determine the magnetic field strength and radial profile, as shown in
Figure 6.8.

The RM scatter inside 𝑅500 showed a flat radial profile compared to expectations from
a simple scaling of the magnetic field with the electron density of clusters. Plasma theories
generally predict 𝜂 > 0.5, with flux freezing giving 𝜂 =

2

3
, adiabatic compression giving

𝜂 = 1.0 and dynamo models often predicting a constant magnetic energy density to thermal
energy density ratio (i.e. 𝜂 = 0.5). Observationally, the best determined magnetic field
profile is that of the Coma cluster, for which 𝜂 = 0.4−0.7 was found. Other studies using
resolved (cluster) radio galaxies also find 𝜂 ≥ 0.5 (Murgia et al., 2004; Vacca et al., 2012;
Govoni et al., 2017; Stuardi et al., 2021). In comparison, we found that the best-fit 𝜎RM(𝑟)
model preferred 𝜂 > 0.15, which is below the other experimental and theoretical values.
However, statistical studies such as this one that use RMs of unresolved radio sources to
determine the RM scatter suffer from a significant observational bias as sources with high
RM values near the centre of clusters are likely to be depolarised and thus missed. The
observed electron density profiles, shown in Fig 6.19, illustrate the problem as the electron
densities rise strongly towards the core of clusters. Using Eq. 6.10, we expect 𝜎RM to be
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∼ 10 times larger at 𝑟 = 0.25𝑅500 than at 𝑟 = 0.5𝑅500. Since the scatter observed at 0.5𝑅500 is
on the order of 102 rad m−2, we expect a scatter on the order of 103 rad m−2 at 𝑟 = 0.25𝑅500.
Sources with such high RM scatter are quickly depolarised at L-band frequencies (Osinga
et al., 2022), presenting a missing data problem. This artificially decreases the steepness of
the 𝜎RM profile, requiring low values of 𝜂 to match the data. In contrast, studies relying on
resolved radio sources often probe 𝜎RM on smaller scales (i.e. the size of the radio source)
where fluctuations are expected to be significantly smaller and thus if a polarised radio
source is detected, the scatter can be determined more accurately (e.g. Bonafede et al.,
2010).

Other statistical studies probing many unresolved sightlines such as Böhringer et al.
(2016); Stasyszyn & de los Rios (2019) have also not observed a strong increase of 𝜎RM
at low radii, implying the same observational bias. However, at higher frequencies, RM
values as high as 10,000 have been observed in the centre of some clusters (e.g. Taylor &
Perley, 1993). Higher frequency data that suffers less from depolarisation is thus needed to
determine the value of 𝜂 accurately, but the current value 𝜂 > 0.15 can be interpreted as a
lower limit.

Depolarisation does not suffer as strongly from this observational bias at low radii, as
upper limits on depolarisation fractions can still be set on sources that are significantly
depolarised. Thus, we finally fit both the 𝜎RM and depolarisation radial profile jointly by
means of forward modelling. When fixing the magnetic field to electron density scaling to
the observationally best-determined value of 𝜂 = 0.5 (Bonafede et al., 2011). The best-fit
model was found to have 𝐵0 = 5.0𝜇G and Λmax ≥ 300 kpc. The central magnetic field
strength is consistent with previous single object studies as well as statistical studies
(Murgia et al., 2004; Govoni et al., 2006; Guidetti et al., 2008; Bonafede et al., 2010; Vacca
et al., 2010, 2012; Govoni et al., 2017; Stuardi et al., 2021; Böhringer et al., 2016). However,
the correlation scale is significantly larger than found in resolved cluster member studies
that typically find values around 50 kpc (Guidetti et al., 2008; Bonafede et al., 2010; Vacca
et al., 2012; Govoni et al., 2017), although the resolved sources are often limited in size to
less than a few hundred kiloparsec. Studies that use the brightness fluctuations or possibly
polarised emission of radio halos to constrain the magnetic field power spectrum found
results consistent with outer magnetic field fluctuation scales of ∼ 400kpc (Govoni et al.,
2005; Vacca et al., 2010), agreeing with our estimate. Fluctuations on scales of more than a
few hundred kpc are also expected theoretically, as the turbulent dynamo process thought
to be responsible for magnetic field amplification in galaxy clusters is expected to occur on
various scales, from less than a kpc up to a Mpc (Donnert et al., 2018).

In our modelling, we have decided to combine the information from cluster members
and background sources, as Osinga et al. (2022) showed that the depolarisation properties of
cluster members and background sources were similar. We checked for a local contribution
to 𝜎RM from cluster members in Section 6.4.3 but found that we could reject neither the
null hypothesis that cluster members and background sources have similar scatter nor the
null hypothesis that background sources show a scatter that is

√

2 times larger. This is
in accordance with the interpretation from Osinga et al. (2022) that, at the moment, we
do not have the number statistics to confidently assert that cluster members are a biased
probe of the magnetised ICM.

Finally, we checked for qualitative differences between merging and relaxed clusters.
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During cluster mergers, turbulence is injected on large scales, which can amplify magnetic
fields, and drive large fluctuation scales (e.g. Vacca et al., 2018). Relaxed clusters, on the
other hand, are expected to have smaller fluctuation scales, as the energy injected by a
previous merger has dissipated through cascades to smaller and smaller scales. We found
that merging clusters show higher values of 𝜎RM in the region 0.2 < 𝑟/𝑅500, while relaxed
clusters tentatively showed larger scatter inside the dense cooling core region (Fig. 6.11).
The higher RM scatter in merging clusters was also observed by Stasyszyn & de los Rios
(2019), although with larger radial bin sizes. If a scaling between 𝐵 and 𝑛𝑒 is assumed,
then CC clusters would indeed show a steep radial profile in both 𝜎RM and depolarisation
(which was observed in also in Osinga et al. 2022), while NCC clusters should show a flatter
profile, as the thermal gas density follows a flatter profile. The observed difference between
the radial RM scatter in CC and NCC clusters is thus consistent with the behaviour of the
thermal plasma in galaxy clusters.

6.6 Conclusion
This work has presented the continuation of the study presented in Osinga et al. (2022),
where VLA L-band polarisation observations of 124 massive Planck clusters were presented,
and the depolarisation properties of polarised sources were investigated as a function
of radius. We have incorporated the additional information from the best-fit RM and
constrained cluster magnetic field properties by combining depolarisation and RM in a
sample of clusters for the first time. We summarise the results of this work as follows:

1. We have clearly detected the increase of the scatter in rotation measure as a function
of decreasing projected radius or increasing electron column density. Averaging all
124 clusters, we find a scatter within 𝑅500 of 𝜎RM = 241± 44 rad m−2. The scatter
outside of 𝑅500 was found to be 38±4 rad m−2 and dominated by the uncertainties
in the RM determination.

2. Assuming that magnetic fields fluctuate on a single characteristic length scale Λ𝑐

with a constant strength, the observed RM scatter agrees with an average magnetic
field strength within 𝑅500 of 3(Λ𝑐/10kpc)

−0.5
𝜇G.

3. The profile of 𝜎RM as a function of projected radius requires a scaling of 𝐵 ∝ 𝑛
𝜂

𝑒

with 𝜂 > 0.15. This value presents a lower limit, as sources with high RM values are
missed near the centre of the clusters due to depolarisation. Higher frequency data
is required to more accurately constrain 𝜂 using RM scatter only.

4. Jointly modelling both the depolarisation and rotation measure of sources in a
forward modelling approach, we find that the observations best agree with the
following magnetic field parameters: 𝐵0 = 5.0𝜇G, Λmax = 300−1536 kpc, 𝜂 = 0.5 for
a fixed Kolmogorov power spectrum with 𝑛 = 3.67. Models with 𝑛 < 3 are strongly
rejected by the RM data.

5. We could not reject the null hypothesis that cluster members sources show similar
scatter in 𝜎RM as background sources, consistent with the result that background
sources and cluster members also show similar depolarisation in the same sample of
clusters (Osinga et al., 2022).
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6. The radial 𝜎RM profile of cool-core and non-cool-core clusters follows the expected
trend from the thermal gas density profiles, with CC clusters showing a hint of larger
𝜎RM in the core, which significantly drops below the observed 𝜎RM of NCC clusters
outside of the core, as the thermal gas density also drops rapidly outside of the core.

In this work, we implicitly assumed that all clusters have the same magnetic field
parameters, while in reality, this might be a function of dynamical state, mass, or redshift.
The universality of cluster magnetic fields has not been thoroughly tested (e.g. Govoni
et al., 2017). Future observations with more sensitive telescopes such as MeerKAT and the
SKA could test this assumption by detecting enough polarised sightlines through single
clusters such that stacking is not required.
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Appendix I: Additional plots
For completeness, we plot in Figures 6.17 and 6.18 the cluster-induced rotation measure
on a linear scale as a function of projected radius and column density, respectively. The
electron density profiles of the clusters in our sample, as determined in Andrade-Santos
et al. (2017), are shown in Figure 6.19. The structure function as defined in Equation 6.14 is
shown in Figure 6.20. Finally, the 𝑞 values of the full forward model for 𝜂 = 0.1 are shown
in 6.21, with the best-fit profiles shown in Fig 6.22. For 𝜂 = 0.1, there is a clear mismatch
between the depolarisation and RM scatter profiles. The depolarisation favours low values
of 𝐵0 with high values of Λmax, while the RM scatter favours high values of 𝐵0 with small
values of Λmax. A model with 𝜂 = 0.5 thus more naturally predicts the behaviour of both
the RM scatter and depolarisation consistently.
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Figure 6.17: Cluster induced rotation measure as a function of normalised distance to the nearest cluster centre.
The y-axis is shown on a linear scale, while a better view of sources with low RM is given by Figure 6.2.
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Figure 6.18: Cluster induced rotation measure as a function of electron column density. The y-axis is shown on a
linear scale, while a better view of sources with low RM is given by Figure 6.4.
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6.6 Conclusion

6

197

10−1 100

∆r/R500

102

103

104

105

106

S
F

(r
)

[r
ad

2
m
−

4
]

SFRM =SFσRM,obs
-SFσRM

SFσRM,obs

SFσRM

Figure 6.20: Corrected RM structure function as defined in Eq 6.14 as a function of normalised pair separation
in 20 logarithmically spaced bins. The total RM structure function and the relatively small offset correction are
shown in blue and orange respectively.

30.0 100.0 300.0 1536.0

Λmax [kpc]

1.0

5.0

10.0

B
0

[µ
G

]

Kolmogorov | η =0.1

101

102

q d
ep

ol

(a)

30.0 100.0 300.0 1536.0

Λmax [kpc]

1.0

5.0

10.0

B
0

[µ
G

]

Kolmogorov | η =0.1

101

102

103

q R
M

(b)

Figure 6.21: Values of 𝑞depol (a) and 𝑞RM (b) as defined in Equation 6.15 for combinations of 𝐵0 and ΛRM. Models
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Appendix II: Radial RM scatter
Here we investigate how to quantify the radial RM scatter in more detail than in Section
6.4.2, where the sample standard deviation was used. Figures 6.6 and Fig. 6.10 showed the
scatter calculated from the standard deviation and interquartile range respectively. For
a Gaussian distribution, it should hold that the standard deviation is equal to IQR/1.35,
but this is clearly not the case. This is expected, however, as the distribution of RMs is
only expected to be Gaussian at a single projected radius. In a radial bin of finite size, we
are thus observing the sum of Gaussian distributions with different standard deviations,
leading to a non-Gaussian distribution. This poses the question of how to best quantify
the scatter. In Figure 6.24, we show the full RM distribution in the radial bins of Figures
6.6 and Fig. 6.10. Gaussian distributions with scatter calculated from the IQR and sample
standard deviation are shown in the coloured lines. The IQR always shows a better fit to the
central peak of the distribution, but underestimates the tails of the distribution. Vice versa,
the standard deviation captures the tails of the distribution better but underestimates the
central peaks. To compare the effect of the different estimates on the result of Section 6.4.2,
we also fit the scatter calculated from the IQR to the theoretical RM scatter profile. The
results are shown in Figures 6.23 and 6.25. Because the IQR is less sensitive to the excess in
sources with high RM observed near the centre of clusters, the profile is flatter than the
sample standard deviation radial profile, and we can thus not constrain 𝜂 in this way. The
resulting central magnetic field dispersion is about a factor 3 lower when calculated by
means of IQR than through sample standard deviation.
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Figure 6.23: RM scatter calculated from the IQR and corrected for a baseline value of 𝜎RM = 15 as a function of
projected distance. The first point is plotted as a lower limit, and points outside 𝑅500 (shown in red) are ignored
in the fit. The coloured lines show best-fit profiles computed for various values of 𝜂 assuming Equation 6.10. The
coloured lines show best-fit profiles computed for various values of 𝜂.
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Appendix III: Updated polarised source catalogue
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