
What does this Python code do? An exploratory analysis of novice
students’ code explanations
Werf, V. van der.; Aivaloglou, E.; Hermans, F.F.J.; Specht, M.M.; Stikkolorum, D.; Rahimi, E.

Citation
Werf, V. van der., Aivaloglou, E., Hermans, F. F. J., & Specht, M. M. (2022). What does this
Python code do?: An exploratory analysis of novice students’ code explanations. Proceedings
Of The 10Th Computer Science Education Research Conference, 94–107.
doi:10.1145/3507923.3507956
 
Version: Publisher's Version
License: Creative Commons CC BY-NC-ND 4.0 license
Downloaded from: https://hdl.handle.net/1887/3655545
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://hdl.handle.net/1887/3655545


What does this Python code do? An exploratory analysis of
novice students’ code explanations

Vivian van der Werf
v.van.der.werf@liacs.leidenuniv.nl

Leiden Institute of Advanced Computer Science
Leiden, The Netherlands

Efthimia Aivaloglou
e.aivaloglou@liacs.leidenuniv.nl

Leiden Institute of Advanced Computer Science
Leiden, The Netherlands

Felienne Hermans
f.f.j.hermans@liacs.leidenuniv.nl

Leiden Institute of Advanced Computer Science
Leiden, The Netherlands

Marcus Specht
m.m.specht@tudelft.nl

Delft University of Technology
Delft, The Netherlands

ABSTRACT
Motivation. Code reading skills are important for comprehension.
Explain-in-plain-English tasks (EiPE) are one type of reading exer-
cises that show promising results on the ability of such exercises
to differentiate between particular levels of code comprehension.
Code reading/explaining skills also correlate with code writing
skills.Objective. This paper aims to provide insight in what novice
students express in their explanations after reading a piece of code,
and what these insights can tell us about how the students compre-
hend code.Method.We performed an exploratory analysis on four
reading assignments extracted from a university-level beginners
course in Python programming. We paid specific attention to 1) the
core focus of student answers, 2) elements of the code that are often
included or omitted, and 3) errors and misconceptions students may
present. Results.We found that students prioritize the output that
is generated by print-statements in a program. This is indication
that these statements may have the ability to aid students make
sense of code. Furthermore, students appear to be selective about
which elements they find important in their explanation. Assigning
variables and asking input was less often included, whereas control-
flow elements, print statements and function definitions were more
often included. Finally, students were easily confused or distracted
by lines of code that seemed to interfere with the newly learned
programming constructs. Also domain knowledge (outside of pro-
gramming) both positively and negatively interfered with reading
and interpreting the code. Discussion. Our results pave the way
towards a better understanding of how students understand code by
reading and of how an exercise containing self-explanations after
reading, as a teaching instrument, may be useful to both teachers
and students in programming education.

CCS CONCEPTS
• Social and professional topics→ CS1; Computing education; •
Theory of computation → Program reasoning; Program analysis.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8576-3/21/11.
https://doi.org/10.1145/3507923.3507956

KEYWORDS
program comprehension, CS education, Python, code reading, EiPE

ACM Reference Format:
Vivian van der Werf, Efthimia Aivaloglou, Felienne Hermans, and Marcus
Specht. 2021. What does this Python code do? An exploratory analysis of
novice students’ code explanations. In The 10th Computer Science Educa-
tion Research Conference (CSERC ’21), November 22–23, 2021, Virtual Event,
Netherlands. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3507923.3507956

1 INTRODUCTION
Historically, programming education has predominantly focused
on writing code to teach programming concepts and program un-
derstanding [4, 11]. As code writing is seen as the most complex
programming skill, it is often assumed that when you can write a
program, you understand how it works [25]. However, recent re-
search suggests that lower level programming skills, such as tracing
and reading, are at least equally important for novice programmers,
since students’ mastery of these skills correlates with their code
writing ability [8, 18, 20, 31]. Moreover, Lethinen et al. [14] found
that even students who correctly write programs struggle with
explaining their own code. Such findings underpin the potential of
reading exercises for learners. Furthermore, reading exercises may
also encourage teachers who are not (or are less) familiar with code
writing themselves. Reading exercises may be more recognizable to
them, as these exercises are able to mimic teaching strategies from
other disciplines, such as math and language. Therefore, teachers
may also require less deep initial understanding of programming.
However, reading exercises are not widely implemented in pro-
gramming education yet [4, 10, 11].

This paper explores the act of reading and explaining code with
the help of “Explain in plain English” (EiPE) exercises. EiPE exer-
cises are one particular way to practice and evaluate code reading
skills and grew in popularity in research on programming education
during the last decade. Research has confirmed the immense po-
tential of these exercises in developing and strengthening novices’
programming skills. Most research focused on one of two aspects:
1) the SOLO (“Structure of the Observed Learning Outcome”) tax-
onomy to evaluate and assess student answers, often in relation to
other programming skills [1, 6, 7, 19, 28, 33, 34] or 2) other frame-
works to rate the answers in regards to comprehension [5, 32]. Both

94

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3507923.3507956
https://doi.org/10.1145/3507923.3507956
https://doi.org/10.1145/3507923.3507956
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3507923.3507956&domain=pdf&date_stamp=2022-04-13


CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

aspects center on evaluating comprehension from reading. How-
ever, in this paper we aim to explore how students think about
code when they are learning new programming concepts. Hence,
we gather information outside such assessment frameworks, some-
thing that, to our knowledge, has not yet been documented within
previous research on EiPE-questions. This means that, rather than
using a fixed model or framework as a spyglass to look at student’s
answers, we analyze their answers in an open-ended, exploratory
way. To this end we mainly focus on what students take away from
reading a piece of code, and are less interested in how well students
comprehend that code after reading. After all, this has already been
intensively covered by prior works. Our assumption is that infor-
mation on what students express when explaining code can reveal
information about students’ comprehension processes.

In particular, we analyze in an exploratory manner what happens
when we ask novice students to explain a piece of code in their
own words. The research question central to this paper is what do
novice programmers include in their answers when asked to explain
given code segments in their own words (plain English)?. To answer
this question, the following sub questions are relevant:

(1) What is the core focus of the explanations?
(2) What elements are most present and which are absent in the

explanations? (e.g. lines of code or particular programming
concepts)

(3) What types of mistakes or misconceptions are demonstrated
by the explanations?

2 BACKGROUND AND RELATEDWORK
2.1 Code comprehension
When writing code, programmers construct their own mental mod-
els about the code and its programming concepts. This process
is usually referred to as program comprehension [11] and much
research has been done around this topic. Recently, program com-
prehension is increasingly recognized as important during learning,
to improve students’ overall coding skills [11]. Tasks that foster
program comprehension usually pertain reading, interpreting and
explaining code, as well as tracing, editing, debugging or extend-
ing existing code. Moreover, tasks like tracing and reading code
could provide novices with better opportunities to practice difficult
concepts, as these activities usually take less cognitive load than
code writing [4]. Too much cognitive load prevents students from
learning. Xie et al. [35] therefore argue that students should prac-
tice understanding common code patterns by reading first, before
attempting composing these patterns in writing tasks.

There exist many theories, models and frameworks concerning
program comprehension in education, which are well discussed in
[11]. However, one well-establish framework for evaluating code
comprehension in education is Schulte’s Block Model [27], which
can be used to analyse how novices make inferences when try-
ing to comprehend a code. The model differentiates between the
types of information in a code (text surface, program execution
(e.g. data flow), program goals) and the size of the entities in a code
(atoms, blocks, relations, macro structure) (see Table 1). Schulte
suggests that understanding a program means to be able to build a
bridge between the lowest forms of either dimension (text:atom)

Table 1: Schulte’s Block Model, after [15, 27]

.

Text – technical structure

Atom language elements
Block syntactically/semantically related elements
Relational connections between "blocks"
Macro entire program

Execution – technical structure

Atom elements’ behavior
Block a "block’s" behavior
Relational flow between "blocks"
Macro the program’s behavior

Goals – social function

Atom elements’ purpose
Block a "block’s" purpose, program subgoal
Relational integration of subgoals
Macro the program’s purpose

and the highest forms of either dimension (goals:macro). This in-
cludes a translation from the technical structure of a program to its
social function. Such translation often causes a learning problem
because students can have limited understanding of the structure.
Students can also have limited understanding resulting from the
code’s structure itself, since from the structure there exists no direct
path leading to function. Moreover, social functions can often be
interpreted differently, leading to miscommunication about the pro-
gram [27]. The block model thus highlights the need for translation
between code and function for comprehension. During this process
all its different levels play a specific role in program comprehen-
sion. It is, therefore, no surprise that the Block Model framework is
regularly used as a foundation to investigate or assess code com-
prehension. In this paper, the Block Model serves an example of a
means to assess code comprehension in general and is therefore an
interesting perspective to some specific results of this work.

2.2 Assessing comprehension
It is generally assumed that there exists a certain hierarchy in learn-
ing to code [4, 16, 17, 35], one that is not unlike learning a (foreign)
language: knowing the syntax, being able to trace code, being able
to read code and abstract beyond the code, and finally, being able to
write code. Just like writing a well-reasoned essay usually confirms
language abilities, writing a program is often seen as the capstone
of programming skills: if you can write a program yourself, you are
considered a programmer and it is assumed you have demonstrated
the skills that are lower in the mentioned hierarchy.

However, recent research by Salac and Franklin [25] on the rela-
tionship between ‘artifact analysis’ (analyzing programs created
by students) and summative written assessments in introductory
computing, using Scratch as case-study, has observed only a weak
link between them. This suggests that artifact analysis does not
measure whether a student truly understands their written code,
leaving Salac and Franklin to conclude that code-writing assign-
ments are “an expedient but inaccurate choice” for measuring code

95



Exploring EiPE student answers CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands

comprehension [25]. A think-aloud study by Kennedy and Krae-
mer [12] also found that students write "working" code through a
trial-and-error strategy, without them actually understanding (or
using) concepts that were to be learned.

In other words, students that write code may not understand all
its programming constructs. Vice versa, students that understand
certain programming concepts may choose not to use them in their
own programs. This conclusion supports earlier work by Brennan
and Resnick [2], who concluded that assessment should not only
focus on product-based assignments, but also incorporate computa-
tional thinking processes and computational thinking perspectives
into the evaluation of the (developing) computational thinker.

Finding a good indicator of a student’s skills on program com-
prehension proves to be difficult. Perhaps reading comprehension
assignments, such as EiPE tasks, can be an efficient, complementary
alternative to traditional code writing assignments (see also [25]).
Various researchers [5, 7, 22, 34] reported relative strong correla-
tions between reading and writing exercises, as well as between
reading exercises and overall performance. Furthermore, correct
explanations about one’s own code also seems to correlate with
increased success [14]. These findings indicate that EiPE exercises
are, in fact, promising when it comes to evaluating program com-
prehension. However, it is still unclear what causes this relation.
Are students better at writing code because they can better abstract
from code while reading, and thus better explain it? Are they better
at abstraction because they know how to write a program? Or are
there perhaps different skills at play that increase both reading
(abstraction/explanation) as well as writing skills? Such questions
still remain open.

2.3 EiPE exercises
Weeda and colleagues [32] describe the idea of an Explain-in-Plain-
English (EiPE) task as to summarize the goal of a given code. It is
assumed that “students who comprehend a program (or code segment)
should be able to provide a clear and coherent description of its overall
purpose as a whole, beyond merely tracing its execution or providing
a line-by-line description” [32]. This definition shows the general
direction of an EiPE task across literature, where the task serves
to assess a student’s functional understanding of a piece of code
(see also [5, 7, 9, 10, 22–24, 26]). Note that, in order to measure this
functional understanding (i.e. comprehension), the intended goal
of this task is usually to summarize the purpose of a code, without
including a line-by-line description.

Research indicates that EiPE questions have been proven to
effectively differentiate between students who summarize code
with a high level of abstraction beyond the code (also known as a
"relational answer") and those that do not [5, 7, 9, 22, 24, 32, 34].
Moreover, students who provide the general purpose of the code in
such EiPE exercises, score better on other types of programming
exercises as well, such as code production exercises [5, 7, 22, 28, 34].
Corney et al. [8] also found that when students have difficulties
explaining their code in terms of it’s purpose early in the semester,
they struggle with writing code later that semester.

Additionally, Pelchen and Lister [24] compared relational an-
swers on twelve different EiPE-exercises and concluded that they
can be used as an indicator for code comprehension. They studied

the frequency of words used in the answers given by novice pro-
grammers, and found statistically significant differences in word
use and word frequency between those students who answered all
questions correctly, and those who did not. Specifically, the first
group seemed to be more precise, more comprehensive and more
likely to mention words that were an abstraction beyond the explicit
code [24]. These results underpin the ability of EiPE-exercises to
differentiate between the comprehension level of different students.
This in turn paves way to its use in the assessment of program com-
prehension, and, as a result, they can be a potential goldmine for
understanding how students read and explain code. Consequently,
reading exercises, such as EiPE tasks, should be able to provide
information about how students develop their programming skills.

3 METHODS
In order to gain further insights in how novice students learn and
comprehend code, the aim of the current paper is to investigate what
information students present when they explain code segments in
plain English. For this purpose, this research investigates multiple
EiPE reading exercises that were extracted from an introductory
Python programming course. The course, its participants and the
investigated materials will be discussed below.

3.1 The course: setting and participants
The exercises that we analyzed in this paper are part of a 12-week
CS1 (bachelor level) course at Leiden University, The Netherlands.
This course has been running for four years. The course and all
its exercises were provided via Stepik, an online learning platform
that allows teachers to combine video lectures with different kinds
of (coding) exercises that can be graded automatically. The course
included information recall questions, recognizing and trying code,
writing exercises, reading exercises and reflection exercises.

All assignments, as well as the video lectures that introduce new
topics and explain or analyze difficult concepts step-by-step, were
available to the students from home for self-learning. Additionally,
once a week the students could come to physical class (1.5 hours)
to work on the course by themselves, with classmates, or with help
of trained teaching assistants. This way it was possible for students
to ask questions or get guidance when they found the materials
challenging. Every week new topics were introduced, and previous
topics could be practiced. The course philosophy has been based on
direct instruction [13, 30], considering cognitive load [13, 16, 29, 30],
retrieval practice and reflection to give shape to the course.

The course ran during the last quarter of 2020 (Sept-Dec), with
examination in January 2021. It was part of the mandatory cur-
riculum for the BSc Computer Science at Leiden University and
included students specializing in informatics, bioinformatics and
economy & informatics. Simultaneously, the course was also pro-
vided as an Honours program elective for excellent students from
different (science) backgrounds and was open for other interested
students and individuals. For this paper, we included data from all
individuals participating in the course (N=182). At the beginning
of the course, questions were asked on prior knowledge of, and
experience with, programming so that the teacher was acquainted
with the students’ background. It was determined that many stu-
dents already had some experience with one or more programming

96



CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

languages: 41% indicated they previous experience with Python,
13% with Java, 9% with Scratch and over 27% already used another
language prior to this course. Programming concepts that students
were already familiar with are shown in Table 2. Other student
characteristics, such as gender and age, were not asked during the
course. There is no indication that the population of this course
differs greatly from general university-level programming courses,
however, since more specific data was not available, no validation
could be made.

Table 2: Participants’ self-assessed knowledge of program-
ming concepts (N=178)

.

I can recognize I can write*
Variables 78% 58%
Loops 58% 33%
Functions 67% 37%
Boolean equations 30% 17%
List comprehension 13% 9%
Classes 29% 12%
Functional programming 12% 6%
* without consulting Google or other sources.

3.2 Investigated materials
As outlined above, each week new topics or programming concepts
were introduced (see Figure 1). Students were encouraged to prac-
tice these new topics as well as topics of previous weeks through
various (guided and non-guided) assignments that were given. At
the end of each week, students applied their knowledge and skills
through questions focusing on theory, reading code, producing code
(solving problems) and reflection questions. Exercises focusing on
reading code included EiPE-questions. All the EiPE questions in the
course were designed for the students to get familiar with code read-
ing and practice those skills, as well as to repeat the code concepts
they had learned so far. Most of the EiPE questions were followed
up by multiple choice comprehension questions and/or open-ended
reflection questions to help them (re)read and understand the given
code, however, no model-answers (EiPE-explanations) were pro-
vided, neither before nor after the exercises. Four of the EiPE ques-
tions are selected for further investigation: 1) a simple if-elif-else
construction; 2) a simple for loop; 3) a while-loop with nested if-
else condition, and 4) a larger (disguised) rock-paper-scissors (RPS)
game that consists of a main function and combines multiple func-
tions (see Figure 2a-d). Their corresponding comprehension and
reflection questions are not investigated in this research. Note that
although no questions of week 6, 7, and 8 were selected for this
research, students did get to practice more with similar exercises
corresponding to that week’s topics, therefore slightly increasing
in complexity each week.

All aforementioned assignments were selected because they
present different programming concepts in a comprehensive way.
The if-else assignment (2a) was chosen for analysis because it was
the first EiPE task the students had seen in the course. It also con-
tains a reference to the Dutch grading system, specifically designed
to see whether students are reading the code, or merely depending

on their prior knowledge of aforementioned system to interpret
the code. This assignment is therefore particularly interesting to
answer our question concerning mistakes (RQ3). The for-loop (2b)
was picked because it presents a very short piece of code that solely
practices what was learned that week. In contrast, the while-loop
(2c) was chosen as it shows slightly more complexity, while re-
maining a short piece of code, and therefore not too demanding in
terms of cognitive level. The disguised RPS-game (2d) was chosen
to include a longer, more difficult exercise towards the end of the
course to serve as contrast to assignments 2a, 2b and 2c. The longer
code forces students to focus on what they perceive as the most
important parts of the code, as a complete line-by-line descrip-
tion would presumably take too much effort. Moreover, this game
was intended to be extra challenging for the students and required
them to recall and combine knowledge that they had learned so far.
However, no new elements were introduced.

Since the exercises were designed to fit the course, they do not
directly match EiPE-tasks covered in earlier work (e.g. [8, 24]).
Nevertheless, we believe that the first three exercises contain rep-
resentative code that is usable for reading exercises such as EiPE,
because the type of code segments used are frequently seen in be-
ginner Python courses (e.g. to explain or apply control flow and
loops). Similar reasoning applies to the RPS-game: most introduc-
tory Python courses include writing or debugging some sort of
game and rock-paper-scissers is relatively easy and familiar.

In each of the selected exercises the students were asked to read
the piece of code carefully and explain it in “plain English” via a
written assignment. It was stressed not to use any jargon (i.e. “if
x equals 5 print x else increase x plus 1”). Moreover, it was not
important whether the students gave correct or incorrect expla-
nations of the program, nor were students taught to summarize
a corresponding purpose. The assignments’ primary goal was to
help students to read code and reflect on what they can or cannot
understand from it. In line with our goal, any other instructions,
such as to provide (only) the purpose of the code or not to include a
line-by-line description, were not added. Although many works on
EiPE-exercises do mention specifically adding such instructions or
examples (i.e [22, 24]), we regard this difference as beneficial to our
specific research goal: our aim is to explore what happens when you
ask a novice programmer to read a code. Asking to summarize the
purpose of a code may require additional skills, and such translation
from technical structure to social purpose is, according to the Block

Figure 1: Course structure with the programming concepts
covered in the course. Light green: first introduction of the
programming concepts; dark green: indication of when the
reading exercises analysed in our paper were introduced.

97



Exploring EiPE student answers CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands

Figure 2: The four investigated code-snippets. The following assignment was presented to the students: “Read this program
carefully, and then explain in plain English what it does. Try to avoid using jargon as much as possible”.

98



CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

Model, difficult for novices [27]. Under those circumstances it is
interesting to analyze how students interpret a "bare" explanation
question and what it is they include. After all, students can still
choose to add a summary or purpose and it would be interesting
to see if this also happens "naturally". Therefore, although the pur-
pose of the tasks used in this study and that of EiPE tasks generally
covered in literature may be inherently different, we consider the
chosen tasks to be relevant for gathering information on reading
and explaining tasks in general as well as specific EiPE tasks.

3.3 Data collection, coding and analysis
All student answers were collected in the online environment Stepik.
For the purpose of this research, student answers on the selected
EiPE questions were downloaded for analysis. Personal data and
student characteristics were excluded from the download, making
the dataset completely anonymous. Only a student number (given
to the students by Stepik) was kept to clean the data when a student
providedmultiple answers on the same question, and to identify and
compare answers from the same student across the four exercises.

Throughout the course the number of unique views per exercise
dropped gradually. After a check within the Stepik-environment,
this appeared to be the general pattern for all exercises in the
course. In theory, all students from the BSc Informatics should have
completed the exercises at the time that the data was downloaded.
Not completing the exercises would have negatively impacted their
grade. The drop in unique views (and thus number of answers) can
therefore only partially be explained by students not finishing the
course. As the course was open to everyone interested, it is likely
that interested students and other individuals (who therefore did not
work towards a grade) were dropping out gradually, or working
on the assignments on a slower pace. Blank answers (including
“I don’t know”) and nonsense answers (including “this is code”)
were eliminated from the final dataset as they do not address any
explanation of the program. When a student submitted double
answers, only the last submitted answer was selected for analysis.
The final number of explanations per question can be found in Table
3. In the end, 58 students answered all four exercises, another 52
students answered three exercises and finally another 72 students
answered only one or two exercises.

After removal of blank, double and nonsense answers, the stu-
dent explanations were analyzed through inductive and deductive
coding by the first author of this paper. First, the data from each ex-
ercise was explored through open inductive coding, after which the
emerging categories from each exercise were unified, summarized
and classified, with the research questions in mind. All student
answers from the first three exercises (if-else, for-loop, while-loop)
where re-analyzed with the new categories and coded deductively.

Table 3: Number of explanations analyzed per exercise.

Exercise Number of explanations analyzed
If-else 175
For-loop 168
While-loop 110
RPS-game 66

For each explanation it was then scored whether a category was
fulfilled or not, i.e. was the category present in the explanation?
These general categories are: one-sentence-summary, output in
words, exact output, and misconception/error. Besides these cate-
gories, each exercise also included more detailed categories, coded
inductively, that are specific to the presented code; such as the
presence of certain code concepts or individual lines of code. All
coding was performed by the first author of this work.

The same approach was made for the disguised RPS-game. How-
ever, since the nature and complexity of this code is very different
from the other three programs, we decided to focus further analysis
only on the presence of the one-sentence summary, the output and
several code-specific elements. That means that for the RPS-game,
mistakes were not included for analysis.

Since the deductive coding was done with the research questions
in mind, our questions are answered as follows: RQ1 (focus) is
answered with the categories one-sentence-summary, output in
words and exact output; RQ2 (inclusion/absence of elements) is
answered by using the inductive analysis specific to the different
pieces of code; and RQ3 (mistakes) is answered with the help of the
category misconceptions/error.

4 RESULTS
The research question central to this paper is “what do novice pro-
grammers include in their answers when asked to explain given code
segments in their own words (plain English)?”. To answer this ques-
tion, the following sub questions were asked: 1) What is the focus
of the explanations, 2) What elements are most present and which
are absent, and 3) What types of mistakes or misconceptions are
demonstrated by the explanations? The data concerning these sub
questions are discussed below. A synthesis per sub question is given,
followed by more detailed findings from each of the four exercises.

4.1 Focus of the explanations
Our first research question concerns the core focus of the explana-
tions. Our general observation is that, in three of the four exercises,
the output generated by print-statements in the program is at the
center of the students’ explanations. Over 80% of these explanations
include the output in words or copy the exact output that would be
generated. However, the results from the RPS-game indicate that
if the nature of the code is more complex and/or the length of the
code is longer, students no longer favor mentioning the generated
output and instead shift their attention to various other elements
presented in the code. It is possible that the output generated by
the first three case-studies was considered “sufficient” to explain
the code, whereas for the RPS-game students selected several func-
tion definitions as their primary source for explanation. With the
RPS-program, students were also more likely to provide an overall
summary of the code. More details of these results can be found in
the sections below and in Table 4.

4.1.1 If-else (Figure 2a). The exact text in the print statement for
each condition was mentioned by more than 4 out of 5 students
(84%). A typical explanation looks like this: “This program asks the
user to type a grade. Then the program checks whether the grade is
above 10, if so it prints You are cheating. If the grade is above 6 it prints
Well done. If not it prints Try again”. Students that did not provide

99



Exploring EiPE student answers CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands

Table 4: Per exercise is displayed: the number and percentage of explanations that contain (some) output generated by the
program those that (also) include a one-sentence summary. The categories are not mutually exclusive.

If-else For-loop While-loop RPS-game
(N=175) (N=168) (N=110) (N=66)

One-sentence-summary 29 (17%) - 34 (40%) 39 (60%)
Output in words 19 (11%) 109 (65%) 87 (79%) 22 (33%)
Copying exact output 147 (84%) 59 (35%) 7 (6%) 5 (8%)
. . .of which contain no further description - 10 (6%) 2 (2%) -

an exact output, all included that an output was given based on the
conditions that applied to the grade, for example “This program will
give a reaction for the grade that is inserted”.

4.1.2 For-loop (Figure 2b). In all answers (100%), the output gener-
ated by the print-statements was central to the explanation. One
third of the students (35%) also incorporated what they conclude
as the exact output in their answers. Examples of these are: “This
program will print ’Hello!’ first. After that the for loop will run, print-
ing the numbers 0, 1, 2, 3, 4 each separated by a new line”, and “[the
program] prints hello and then under that [it] prints 0 1 2 3 4”. One in
six students that mention such exact output explicitly, provide no
further descriptions to explain the code (N=10, 6% of total). When
the exact output is not included, the output was mentioned slightly
more implicitly, like: “In this program it will first print ’hello!’. Then
in the next part it will print the variable i 5 times. The variable i is
different in each of the 5 times. It starts at 0, and then every time it
will go up one”, or “This program prints "hello" and then it prints the
numbers 0 to 4 all on new lines”. Occasionally the explanations only
mention “it will print hello”, without any referral to the for-loop.

4.1.3 While-loop (Figure 2c). Almost 80% of explanations include
the output that is generated by the program’s print-statement in
words and 6% provides an exact output. The way the output was
described, however, differed from student to student. The most
common patterns are described below. About one in five expla-
nations (21%, N=23) mention that “odd numbers” (or equivalent)
are printed by the program. The term “odd numbers” (or equiv-
alent) is mentioned explicitly in three different ways: 1) as part
of a stand-alone one-sentence summery, such as “for the numbers
0 through 9, this program prints all odd numbers”, 2) as part of a
one-sentence summary preceded by a more detailed explanation,
such as “[the program] keeps adding 1, starting at zero. If the number
is divisible by two it will continue (skip) the number, if it is not it will
print it. Basically, it will print all uneven numbers”, or 3) as part of
a line-by-line description: “a variable i is set to zero. If the value of
this variable is below 10 then the lines below will be executed. First
the value of i will be topped up with one. Next, the program checks
whether this new value for i, is an even number. If it is, nothing will
happen. If the number is uneven, the value of i will be printed”.

Other students gave no explicit indication of recognizing the
importance of odd numbers to this program. Instead, these students
mentioned that the program prints i (or the value of i) in a certain
condition and provided a rather technical description of the code
that is almost entirely line-by-line: “this program takes the current
number ’i’ and adds 1 to it. Then it divides the number by 2, and if

the remainder of the division is 0, it skips the value and starts at the
beginning of the while loop with a new value i. If the remainder of
the division is not 0, it will print the number ’i’”. Sometimes these
explanations were brief and contained (extreme) jargon: “the start
value is 0. In the while loop it will be increased with 1, if i modular 2
is equal to 0, i will not be printed otherwise i will be printed” and “We
start at 0. while the index is below 10. increase i. return the remainder
after division. continue: skips one element. print i”. While it looks
as if these students know how to explain the code well, no one-
sentence summary was provided, nor can anything be concluded
about their interpretation of the codes purpose (printing odds only).
It is possible these students understood "what does this code do"
rather literally in terms of the code’s procedure.

Furthermore interesting to mention is that about 12% of the
explanations reported the program “prints not [certain values]”,
mostly without stating what the program does print. Finally, there
are explanations that present a very vague description of the output.
These include “prints the number/value” (28%) or even “prints a
number/answer” (5%) without further specification of the number.
This perhaps hints at little understanding of the program.

4.1.4 RPS-game (Figure 2d). Contrary to the previous three exer-
cises, the RPS-game provided different results regarding the focus of
the explanations. Only one in three students (33%) mentioned any
output generated by the print-statements in the program. Instead, a
one-sentence summary was more commonly included (60%). More-
over, procedural information regarding the game, that corresponds
to the different function definitions inside the program, was often
included: setting a maximum end score (52%), entering a color (68%),
the computer choosing a color (60%), determining the winner of a
round (52%) and determining the winner of the game (42%). Based
on the focus of the explanations, four types of student answers
were identified (further addressed to in section 4.2.4) that mention:

A a non-specified (N=3) or RPS-game (N=9), without explana-
tion of the functions.

B a RPS-game, (some) functions are explained (N=15).
C a game (not specified), (some) functions are explained (N=16).
D only explanations of (some) functions (N=23).

4.2 Presence and absence of elements
For our second research question, concerning the elements of a
program that are most present or absent in students’ explanations
of that program, we looked to more detailed elements than just
the core focus of explanations. These details include specific lines
of code and specific code concepts. It is our assumption that the

100



CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

Table 5: Elements of the while loop (exercise nr. 3) with the number of times they were included in the students explanations.
A division is made between students that (also) included a one-sentence summary and those who did not.

Element N (=110) With one-sentence Without
summary (N=34) (N=76)

Set variable / start with 0 37 (34%) 3 (9%) 34 (44%)
Repeat / iteration / end of loop 92 (84%) 26 (76%) 66 (87%)
Increase i+1 55 (50%) 5 (15%) 50 (66%)
Mentions “modulo” or “remainder” 55 (50%) 8 (24%) 47 (62%)
. . . of which mention “remainder” only 41 (37%) 7 (21%) 34 (44%)
. . . of which mention “modulo” only 12 (11%) 1 (3%) 11 (14%)
. . . of which mention both 2 (2%) - 2 (3%)
Checks if even / dividable by 2 75 (68%) 24 (71%) 51 (67%)
Continue / skip 59 (54%) 10 (29%) 49 (64%)
Print 103 (94%) 31 (91%) 72 (95%)

presence or absence of these details can provide insight in what
the students deem important in their explanations and may reveal
how students comprehend the code themselves. It was found that
assign-statements at the start of the code are often neglected in
the explanations. It is possible that these statements are simply
forgotten or altogether considered irrelevant to their explanation.
In contrast, control-flow statements, such as if-else conditions and
the start or ending of a loop, are often included. When function
definitions are involved, they too are often included. It is likely
that these elements contribute most to the comprehension of the
program, as in the current case-studies, they were also at the heart
of the programs. However, a difference can be seen between ex-
planations with and without a one-sentence summary included in
the answer. When such a summary is not included, students tend
to focus on technical elements such as the increase of an index, a
continue statement and user input.

4.2.1 If-else. Corresponding with the focus of the explanations
being on the different possible outputs generated by the program,
most explanations includes a form of if-else (93%). One in 5 students
(N=34, 19.4%) (also) included the program has “conditions” and/or
“checks” or “tests” the grade. However, the first line of the code
(the input-function) was not always included. About one in three
students (36%) neglected to mention that the user is required to give
an input for this program to work.When it was mentioned, students
showed very different ways of describing the concept. Examples
are: “[the computer / python / the program] asks the user to [type / fill
/ enter] a grade”, “the grade will be made by what you type yourself”,
“the grade given by the user”, “the program allows you to put in a
test grade of some sort”, “the program [accepts / takes] a number
(as input)”. Additionally, only one in four students (23%) explicitly
mentioned the int()-function in their explanations. However, as will
be discussed in 4.3, this function was often misinterpreted by the
students.

4.2.2 For-loop. Regarding the for-loop, one interesting element
is the printing of new lines. About sixteen percent (N=27) of the
explanations contain an implicit or explicit mention of the print
statements being separated by new lines. Half of these explanations
show the exact output on separate lines either with or without

further explanation. The other half mentioned explicitly that the
output is printed on new or separate lines. Closer investigation
revealed that there seems to be no pattern in how well the students
comprehended the for-loop. Both implicit and explicit mentioning
of the new line covered both correct and incorrect answers, such as
“prints hello 5 times” or “prints 1 2 3 4 5” (see also section 4.3.2). One
in five students that include a correct exact output (on new lines)
also include further explanation of the code, for example explaining
the range or how the loop ends (N=6, 22%).

4.2.3 While-loop. The while-loop offered good insights in what
lines of the code are central to the explanations and therefore per-
haps to the comprehension of the program. Table 5 shows the
presence of each element in the code snippet. Overall, the most
mentioned elements are the range of the iteration (0-9; 84%), and
the if-condition that checks for equal numbers (68%). The element
that is most omitted from the explanations is the first line of the
code, which sets the variable.

There exists a difference in distribution of the elements that are
included or excluded between those explanations that contain a one-
sentence summary, and those who do not. The biggest difference is
seen with the first line in the loop (increase i+1), as two thirds of the
explanations without such summary include a reference to this line
of code, whereas only 15% of explanations that do include a sum-
mary refer to this line. A similar effect is seen with a specific referral
to the modulo or remainder of the modulo, the continue statement
and the starting variable. If we take into account that students who
are able to abstract a summary or purpose of a program are usually
considered to have better programming skills in general [7, 19, 31],
this effect may not be surprising. Nevertheless, our findings con-
firm that without including a one-sentence-summary, students tend
to focus on various specific and rather technical elements of the
program to explain it.

4.2.4 RPS-game. Since this program was considerably larger than
the other case-studies, it contained many different elements to
present or omit in the explanation. As already shown in section
4.1.4, four groups were identified: A) (RPS) game without further
explanation, B) RPS-game with further explanation, C) other game
with further explanation, D) only explanation with no mention

101



Exploring EiPE student answers CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands

Table 6: Frequency distribution of different elements over the four different groups: A) (RPS) game without further explana-
tion, B) RPS-game with further explanation, C) other game with further explanation, D) only explanation, no mention of a
game. The percentages are percentage of total per group

Total A B C D Total A B C D
TOTAL N 66 12 15 16 23 % % % % %
RPS-game 24 9 15 0 0 36.4% 75% 100% 0% 0%
other game 19 3 0 16 0 28.8% 25% 0% 100% 0%
with colors 17 5 9 3 0 25.8% 42% 60% 19% 0%
play against pc 20 5 3 11 1 30.3% 42% 20% 69% 4%
one sentence summary 39 12 11 13 3 59.1% 100% 73% 81% 13%
exact output 5 0 0 1 4 7.6% 0% 0% 6% 17%
output in words 22 0 6 4 12 33.3% 0% 40% 25% 52%
mentions functions are used 7 1 1 2 3 10.6% 8% 7% 13% 13%
describes functions in detail 3 0 1 1 1 4.5% 0% 7% 6% 4%
enter a max points 34 0 9 8 17 51.5% 0% 60% 50% 74%
enter a color (user) 45 0 9 15 21 68.2% 0% 60% 94% 91%
—pc chooses random 39 0 11 12 16 59.1% 0% 73% 75% 70%
check validity of color 15 0 1 6 8 22.7% 0% 7% 38% 35%
—enter new color if not valid 11 0 1 4 6 16.7% 0% 7% 25% 26%
—prints something 7 0 0 2 5 10.6% 0% 0% 13% 22%
compare colors (calculate) 10 0 2 3 5 15.2% 0% 13% 19% 22%
—explicit ranking of colors 17 0 6 3 8 25.8% 0% 40% 19% 35%
—implicit "colors have hierarchy" 8 0 3 3 2 12.1% 0% 20% 19% 9%
—what happens when "tie" 13 0 3 5 5 19.7% 0% 20% 31% 22%
—determine winner (round) 34 0 6 13 15 51.5% 0% 40% 81% 65%
—allocate points 21 0 4 9 8 31.8% 0% 27% 56% 35%
—prints winner 7 0 1 1 5 10.6% 0% 7% 6% 22%
main function 7 0 1 3 3 10.6% 0% 7% 19% 13%
—connects previous functions 4 0 1 1 2 6.1% 0% 7% 6% 9%
—explicitly "if max_score reached" 13 0 3 4 6 19.7% 0% 20% 25% 26%
—repeat game (while loop) 18 0 7 3 8 27.3% 0% 47% 19% 35%
—game ending (winner) 28 0 9 9 10 42.4% 0% 60% 56% 43%
—prints the scores at end game 17 0 5 4 8 25.8% 0% 33% 25% 35%

of a game. Apart from the distinctions mentioned before, other
differences can be observed that are related to the elements of the
code that are (not) presented by these groups (see Table 6). The
most noteworthy observations are mentioned below.

Groups C and D almost always include a phrase referring to “user
enters a color” (>90%). Most explanations in these groups start with
this sentence. Moreover, these explanations are likely to include
statements about the function checking the validity of the colors.
However, in group C only one in five (17%) explanations mention
an explicit ranking of the colors, compared to 40% and 35% in group
B and D. Group C also seems to omit the function that specifies
the maximum score most often and is least likely to include an
output in words. Instead, explanations belonging to group C are
much likelier to include that a winner is determined at the end of
a round than explanations from the other two groups (C: 81%. B:
40% D: 65%). Furthermore, group B most often includes a reference
to the program repeating itself caused by the while loop in the
main-function, and, related to it, they also most often mention the
end of the game (when a winner is found based on the maximum
score). Finally, group D most often includes that a maximum score

is entered (74%), usually right after or in the same sentence as the
reference to “enter a color”.

4.3 Mistakes
For our investigation into the types of mistakes that students ex-
press in their explanations, only the first three assignments were
analysed. Most strikingly, students showed various misinterpreta-
tions of programming concepts even after they had practiced them
and used them by themselves inmultiple assignments already, some-
times even for several weeks. Some of these mistakes are caused by
a misunderstanding of programming concepts, something that was
especially visible with the for-loop explanations. Other mistakes
may be caused by lazy or inaccurate reading, partly due to prior
domain knowledge, or by an inability to explain the code clearly in
words.

4.3.1 If-else. The concept of conditions and the if-else structure
was well understood by the students. When misconceptions oc-
curred they mainly concern the first line of the code: the input()-
statement containing the int()-function. As mentioned above, the

102



CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

int()-function was mentioned only by one in four students (N=41)
and often seemed to confuse or distract them; only eleven students
that refer to the int()-function (36%) mention that the given in-
put will be converted (or rounded down) to an integer. All others
showed misconceptions. For example, multiple students mention
that the input must be entered as a whole number or integer for
the program to work. Other students only mention that the grade
(or input) is a (whole) number. Occasionally students describe that
the program will choose a random number. This last misconception
probably shows a misunderstanding regarding input().

Next to misconceptions on programming concepts another type
of mistake was interesting, and concerns the application of domain
knowledge. In the if-else exercise the students could apply knowl-
edge of the Dutch grading system (scale: 1 to 10; 10 being perfect,
6 being sufficient). Our analysis showed that knowledge of this
system impacts the students’ explanations in two ways: 1) they use
it to explain the print statements, or 2) they use it to interpret (read)
the code. For example, the code itself does not assume that it is
impossible to obtain a grade higher than 10, yet multiple students
have given this exact explanation to why the code prints “you are
cheating” if the grade is any number higher than 10. Typical ex-
amples of these are: “This code will grade your test. If you get more
than the maximum grade the code will recognize it as cheating. (...)",
and “This [program] means that if you get higher than a 10, which is
impossible, you are cheating. (...)"

Regarding the use of domain knowledge to try and interpret
the code, something else happens as well. A close read of the code
tells us that a grade of 6 would print “try again”. Contrary to the
Dutch grading system where a grade of 6 is regarded as “sufficient”,
the print message in this code thus implies that a grade of six is
not good enough. Using just their knowledge of the Dutch grading
system, rather than closely reading the code, would therefore result
in a mistake. Our results confirm that this is also happens: some
students’ explanations include that a “six or higher” is “sufficient”
and/or prints “well done”, whereas anything “lower than a six”
would be “insufficient” and therefore print “try again”. An important
note is that students do not always include what should happen
when the grade is exactly six, as they do mention “higher than a
six” and “lower than a six”. These descriptions almost exclusively
occur in explanations that explicitly show knowledge of the Dutch
grading system, such as in the explanations mentioned above. Other
explanations tend to use more explicit phrasings, such as “higher
than a six” or “between 6-10” for "well done", combined with “six
and lower” or “everything else/lower” for "try again".

These results may indicate that prior domain knowledge not
only helps the students in understanding or explaining the code
correctly but also contributes to wrong assumptions about the code.
In these cases, students may have gotten “lazy” in reading the code
properly by thinking they already know what the code does.

4.3.2 For-loop. Even though the students had been practicing
with for-loops for a whole week, the first line of this program
(print(‘hello’)) proved to distract or confuse the students in the
interpretation of the loop, revealing underlying misconceptions
or poor comprehension of the construct. More than a fifth of the
explanations (21%) propose that the word “Hello!” is printed five
times. An example of this is: “The program is asked to print the word

Hello 5 times in a row”. Of the 36 students making this mistake, 6 stu-
dents combined it with the first print-statement, so “Hello!” will be
printed six times in total. Some of these students explained their rea-
soning: “Here the code is going to print "Hello!" 5 times. If you change
the range it’s going to print "Hello!" with that amount” and “First
Hello! is printed/shown in your terminal. After that Hello becomes a
variable in ’i’, with range it is selected that this variable will move
step by step 5 times. i is printed 5 times, or in other words: Hello! is
printed 6 times in total”. These students’ explanations clearly shows
a very fragile understanding of the for-loop, grasping the main idea,
but making wrong assumptions about it’s implementation.

The first line of the program also seems to mislead some of
the students in a different way, letting them focus on the range of
“Hello!” within the loop. Explanations of these students conclude for
example that the program will print each individual letter on a new
line (N=3), or that it prints the exclamation mark (“!”) only (N=2).
It is interesting to see that this kind of mistake was not isolated but
was repeated multiple times by different students, and that they
seem confident in their explanations: “This program presents user
with hello message. Then proceeds to present a rule in which the code
traces a range of 5 and continues to print it. Resulting in the letters
separated line by line” ; “The program first prints Hello! After this it
prints the sixth character: ! " and "the program will generate the word
’hello’. if there is an i in the word range, the program will print i".

Another difficulty in this exercise is visible with range(5) , which
in Python counter-intuitively starts counting from 0, and stops
before reaching 5. About half of the explanations (54%) include a
correct reference to this, mentioning either zero to four or zero to
fivewith an explicit explanation that five itself is excluded. However,
thirteen explanations (8%) mention the program prints “0 to 5”; “0
– 5” or “0 till 5” while not providing extra explanation. This makes
it difficult to read from the explanation whether the students have
understood what will be printed. At least one of these explanations
shows evidence that the student may have understood the concept
of the for-loop rather well, while still making a little mistake in
implementing the range-function: “[. . . ] print 0 then run the program
again and print 1 etc till it prints 5". Other explanations (5%) show
incorrect ranges too, mostly “prints numbers 1 to 5” or “print 1 2
3 4 5 in separate lines”. Sometimes this is combined with a further
(correct) explanation of the for-loop: “At first you print out "Hello",
after that there is a for loop created which means the computer goes
over the lines in the for loop as many times as given, in this case the
computer goes 5 times of the for loop, because of the range(5) that
was added. So in this case the output would be Hello 1 2 3 4 5”.

4.3.3 While-loop. There are a couple of misconceptions or learn-
ing difficulties visible in the students’ explanations of this program.
About one third of the explanations showed signs of a misconcep-
tion (32%, N=35). Half of them showed a difficulty with the continue
statement (N=18, 16% of total) and a third showed difficulty with
the modulo (N=11, 10% of total). Fourteen students showed (also)
other errors, such as “prints all numbers between 0-10” or “prints
the remainder”. Errors occurred with and without other errors.

Of the 18 students exhibiting difficulties with the continue state-
ment, most of them (N=12, 11%) described their explanations in such
a way that the program would print only even numbers instead of
odd numbers. Two of these mentioned “even numbers” explicitly

103



Exploring EiPE student answers CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands

and three answers included exact output (“2, 4, 6, 8, 10” ), either
combined with a line-by-line description, a one-sentence summary
or on its own. The other eight explanations contained sentences,
including one-sentence summaries, like: “if i can be divided by 2, i
will be printed” or “this program will print i if it, divided by 2, has no
remainder”. This finding could suggest a misinterpretation of the
continue statement. However, even students that show the ability
of abstraction in one-sentence summaries are not spared from this
mistake, therefore, we may also argue that this mistake can be due
to neglecting the continue statement or perhaps lazy reading.

Other mistakes with the continue statement include ‘vague’ de-
scriptions such as “If the remainder is found after division is equal
to zero, it is skipped. After that, i is printed”, as well as (technical)
descriptions that show no signs of understanding, like “An object
has value 0. If the object is under 10, execute a certain task”.

Students that showed difficulties with the modulo-operator most
often described the modulo as “if the division is not equal to 0”, “if
i/2 equals zero” or “the i that is equal to 0” rather than mentioning
the remainder of the division. This may be a direct result of the
students either being unfamiliar with the concept, or not knowing
how to describe it properly when they actually mean to say the
remainder of the division.

5 DISCUSSION
The aim of this paper is to investigate what novice students include
in their explanations when we ask them to explain code segments in
plain English. We approached this by analysing student answers on
given EiPE-questions that were part of a 12-week CS1 Python pro-
gramming course. Special attention was given to what can be seen
as the core focus of the explanations, which specific elements or
lines of code are present or absent from the explanations, and what
mistakes students demonstrate. Four case-studies were explored
through open-ended, inductive and deductive coding.

5.1 What do students focus on?
It was found that the focus of the explanations, in the first three
case-studies, was on the program’s output as generated by the
print-statements. However, the larger, more complex RPS-game
showed a different pattern. In the explanations from the RPS-game
we observed a smaller presence of the generated output and a
larger presence of one-sentence summaries, input-statements and
individual function-definitions. It is likely that this is the effect of
the nature and complexity of the code. Presumably, print statements
are the first thing students look for when reading the code; this
could be confirmed by follow-up think-aloud research.

Both print and input-statements can, and usually do, contain nat-
ural language. They can therefore aid the student’s comprehension
of the code when they recognize them as clues. This is especially
true when such statements include information that link the code’s
structure to its purpose, for instance when the statement contains
information about the programs context. One example of this in the
analysed RPS-game is a print statement that includes "the computer
wins!", giving away that the program is likely to be a game against
the computer. In the case of the analysed if-else program, the print
statement "you are cheating" connects the condition to a natural lan-
guage interpretation. Therefore, print and input-statements seem

to serve as a kind of "translator" between technical structure and
social purpose, aiding students in interpreting the code as follows
from the Block Model [27]. Moreover, these parts of the code can
guide the reader towards a more focused reading strategy, as they
may give indication of where to look next for important informa-
tion. Although the students’ reflections on their reading strategies
were not analyzed as part of this paper (see section 3.1 & 3.2), a
quick run through their reflections seemed to confirm this hypoth-
esis. Further research into students’ self-reflections of their reading
strategies may yield additional insights on this subject.

5.2 What do students include or exclude?
When looking at the more specific elements, or lines of code, that
were included or omitted in the students’ explanations, we found
that some elements were almost always included, whereas other
elements seem to escape students’ attention in explaining the code.
Besides print-statements and generated output, control-flow ele-
ments such as conditions for if-else statements, and the start and
ending of a loop are most present. Another common pattern that
was seen across the case-studies is that variable assignments at the
beginning of the code is often omitted from the explanations.

However, and perhaps not surprisingly, the more elements there
are in the presented code, the more variation we see in the descrip-
tions. For example, the while-loop exercise, being complex enough
to consist of enough different elements to choose from, while not
being too big of an exercise to be overwhelming, showed that dif-
ferences occur between explanations that include a one-sentence
summary and those who exclude it. This is partly due to the fact
that those who present a one-sentence summary do not always
include any further explanation. However, it remains interesting
to see which elements students choose to represent in that one-
sentence summary. Previous studies have referred to such elements
as possible “beacons” [3, 24] or primary goals of the program [32].

More technical elements, such as increasing the index, a continue
statement and the specific mentioning of the modulo or remainder,
could be considered as secondary goals to the program. Perhaps
students wish to be thorough and therefore include all elements in
their description, but we could also argue that the students need
these technical elements to explain the program. This would be in
line with previous researchwhich argues that relational answers (i.e.
providing a summary of what the code does in terms of the purpose
of the code [7]) are related to higher scores on writing assignments
and exams that test multiple programming skills [7, 22, 28].

5.3 What mistakes do students make?
Pelchen and Lister [24] found a Java-code EiPE-exercise that proved
strikingly difficult for students that only included the primary goals
or beacons of the code. It is plausible that these students are only
selectively reading the code, skipping, and therefore guessing, the
parts that they do not understand [24]. In fact, some of the mistakes
that the students demonstrated in the while-loop assignment in
our current paper can also underpin this theory. For example, we
have seen students providing one-sentence summaries with wrong
conclusions (“this program will print i if it, divided by 2, has no re-
mainder"), which could mean that they misinterpreted the continue
statement, or disregarded it completely, guessing the answer. In

104



CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

case of the RPS-game, we have seen three students just mentioning
that the code represents a game of some sort, without recognizing
the rock-paper-scissors structure to it. Furthermore, it is possible
that the students recognized the RPS structure from just reading
the input/print-statements and the variable names. If so, they did
not need to read or understand the specifics of the program to
explain its purpose. It would be interesting to test the students’
comprehension from reading with a similar exercise, but instead
with unfamiliar or meaningless variable- and function names and
without revealing interpretations in the print-statements.

Another mistake we have seen, the misinterpretation of the for-
loop, could reveal possible flaws in the instruction or the set-up of
the course. Since the students were practicing with for-loops for a
week, even making their own little programs with the concept, it
was not expected that one in five students made the same major
error in thinking that the program would print “Hello!” five times.
The first print statement in this program clearly acted as a distractor
for the students, who may have thought that the whole program
was part of the loop. This line of reasoning could be the result of
earlier exercises, in which students had merely practiced with stand-
alone for-loops. Therefore, the students may yet have been unable
to transfer their knowledge to a different context, reinforcing the
notion that transfer of programming knowledge is not easy [21].

Finally, our results on the if-else case-study indicated that prior
domain knowledge was most often used to explain the behavior
of this program. However, next to guiding students in their in-
terpretation of the program, it also mislead them towards wrong
explanations. Our results show that knowledge of the Dutch grad-
ing system interfered with a careful reading of the code: students
stopped reading and assumed it followed the Dutch system instead.
Future research could further investigate this topic, especially re-
garding the effect of variable names in explanations. Prior work
has already indicated that students who are better in explaining
code are more likely to explicitly refer to variables [24].

5.4 Relation to other EiPE-exercises
Previous research has already shown the potential of EiPE-exercises
when it comes to evaluating students’ programming skills. As Lis-
ter [17] nicely summarizes it: “the ability to answer plain English
questions is a proxy; an estimate of a novice’s ability to reason about
code in an abstract way”. Unlike prior work, where only the purpose
of a code is central to the explanation, this paper focused on what
(else) students include, or exclude. It is the authors’ presumption
that in-depth knowledge of students’ explanations after reading
code may reveal learning processes, struggles and misconceptions
that could be concealed when these explanations are primarily an-
alyzed based on performance criteria (i.e. correct, complete, level
of abstraction). Since the investigated assignments here are not
specifically focusing on the purpose of a given code, our results
may not be one-on-one extendable to classical EiPE tasks. However,
our results do expand our knowledge on what students focus on
while explaining a code, which is a crucial step also in translation
to a code’s purpose. In fact, even when specifically requesting the
purpose of a code, part of the students seem to neglect it anyways
from their answers. The work by Murphy et al. [22] shows that
even when an extra prompt is given, so to only state what the

code does overall, only 50-80% of the students returned a relational
answer concerning the purpose of the code. Also work by Pelchen
and Lister [24], who only include relational answers in their analy-
sis, shows that many students do not include a relational answer
when asked "explain in plain English what this code does": only
144 out of 344 students included four or more relational answers
out of twelve EiPE tasks, which corresponds to roughly 43%. This
clearly indicates that, although relational answers may correlate
with better overall programming performance, explaining a given
code is not easy for students.

5.5 Limitations
A threat to validity is the very generic question that the students
answered to in this research (’explain what does this code do’). It
is very plausible that different students interpreted the question
in different ways, especially because they had no prior training in
explaining code. Some students may intuitively aim for a general
purpose, whereas other students, perhaps including students with
autism syndrome, may have interpreted the exercise rather literally.
For example, they may be expecting that they are asked to describe
the code line by line (focusing on the syntax), interpret "what does
this code do" as "what does this code produce?" (focusing on output),
or interpret it as "how does the program work?" (focusing on the
code’s execution). Furthermore, if a student chose to only include a
general purpose, it does not necessarily mean that he/she ignored
other aspects of the code, but could have deemed those irrelevant
to their answer. Respectively, this impacts the extent to which stu-
dent explanations can reveal their thinking or even understanding.
Future EiPE research may consider using a less generic or clearer
EiPE question that cannot be interpreted in multiple ways.

Since all explanations students provided were regarded as "cor-
rect answers" it is not expected that the exercises consistently in-
creased students learning: no "model-answer" was provided before
nor after the exercise and no feedback on their answers was given.
Therefore, in theory, students could continue the curriculum with-
out learning anything from the exercise. After all, the tasks were
primarily designed to get the student more familiar with reading
code, practice their reading skills and reflect on their understanding
from reading. This of course interferes with the classic purpose of
EiPE-tasks. Their idea is to learn to comprehend and explain code in
a relational way, much according to the Block Model, encouraging
the student to create a bridge between the structure of the code and
the purpose of the code.

A further limitation is that no comparison was made between
the students answers and their overall grade on the course. Such
comparison could greatly increase our understanding of students’
learning success as it can differentiate between stronger and weaker
performing students. Furthermore, since the RPS-exercise was given
much further in the course, a straightforward comparison with the
first exercises is difficult to make: students may have already es-
tablished a stronger foundation of the programming concepts that
were asked, or gained insights in how best to explain code. How-
ever, following individual students’ performance was not part of
this research. Finally, the group of students participating in the
investigated course was not homogeneous, covering BSc Computer

105



Exploring EiPE student answers CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands

Science students, Honours Students (with different science back-
grounds), and interested individuals. The different (programming)
backgrounds of these students are likely to have somewhat influ-
enced the results of this work.

6 CONCLUSIONS
Our paper investigated novice students’ code explanations that
were extracted from a university-level beginner course on Python
programming. The results from our qualitative analysis show that
student explanations may reveal specific struggles, possible flaws
in the instruction, as well as elements of code that are especially
important to students or that serve as a distractor. Such information
can be used by teachers to improve their instruction, but also by
students themselves when they are explaining their code to each
other or have to interpret other people’s code.

With this paper, it is our intention to contribute to knowledge
on the use of reading exercises in programming education and to
inspire further research into EiPE-exercises as a possible instruc-
tion instrument. Related areas that we wish to explore in the future
which are mentioned in the discussion are prior domain knowledge
and students’ self-reflections on their reading strategies. Addition-
ally, we wish to further abstract patterns from the explanations
into specific student (or explanation) types, look at the relation of
these types with overall performance and programming skills, and
explore individual progress of students once they practice more
with reading exercises.

ACKNOWLEDGMENTS
This project was funded by the Leiden-Delft-Erasmus Centre for
Education and Learning (LDE-CEL).

REFERENCES
[1] John. B. Biggs and Kevin F. Collins. 1982. Evaluating the Quality of Learning.

The SOLO Taxonomy. Elsevier Inc. https://doi.org/10.1016/c2013-0-10375-3
Publication Title: Educational Psychology.

[2] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. InAmerican Educational Re-
search Association. https://doi.org/10.1007/978-3-319-64051-8_9 ISSN: 1860949X.

[3] Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies 18, 6 (1983), 543–554.
https://doi.org/10.1016/S0020-7373(83)80031-5

[4] Teresa Busjahn and Carsten Schulte. 2013. The Use of Code Reading in Teaching
Programming. In Proceedings of the 13th Koli Calling International Conference
on Computing Education Research (Koli, Finland) (Koli Calling ’13). Association
for Computing Machinery, New York, NY, USA, 3–11. https://doi.org/10.1145/
2526968.2526969

[5] Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A Validated Scoring Rubric for Explain-in-Plain-English Questions. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 563–569. https://doi.org/10.1145/3328778.3366879

[6] Tony Clear, Jacqueline L Whalley, Raymond Lister, Angela Carbone, Minjie Hu,
Judithe Irene Sheard, Beth Simon, and Errol Thompson. 2008. Reliably classifying
novice programmer exam responses using the SOLO taxonomy. In Proceedings
of the Twenty First Annual Conference of the National Advisory Committee on
Computing Qualifications, SamuelMann andMike Lopez (Eds.). National Advisory
Committee on Computing Qualifications (NACCQ), 23 – 30. 21st National
Advisory Committee on Computing Qualifications, NACCQ 2008 ; Conference
date: 04-07-2008 Through 07-07-2008.

[7] Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. ’explain in Plain English’ Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for
Computing Machinery, New York, NY, USA, 591–596. https://doi.org/10.1145/
2538862.2538911

[8] Malcolm Corney, Raymond Lister, and Donna Teague. 2011. Early Relational
Reasoning and the Novice Programmer: Swapping as the "<i>Hello World</i>"
of Relational Reasoning. In Proceedings of the Thirteenth Australasian Comput-
ing Education Conference - Volume 114 (Perth, Australia) (ACE ’11). Australian
Computer Society, Inc., AUS, 95–104.

[9] Malcolm Corney, Donna Teague, Alireza Ahadi, and Raymond Lister. 2012. Some
Empirical Results for Neo-Piagetian Reasoning in Novice Programmers and the
Relationship to Code Explanation Questions. In Proceedings of the Fourteenth
Australasian Computing Education Conference - Volume 123 (Melbourne, Australia)
(ACE ’12). Australian Computer Society, Inc., AUS, 77–86.

[10] Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding "Explain in Plain English" Questions Using NLP. Association for
Computing Machinery, New York, NY, USA, 1163–1169. https://doi.org/10.1145/
3408877.3432539

[11] Cruz Izu, Carsten Schulte, AshishAggarwal, Quintin Cutts, RodrigoDuran,Mirela
Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo, and
RenskeWeeda. 2019. Fostering ProgramComprehension in Novice Programmers -
Learning Activities and Learning Trajectories. In Proceedings of theWorking Group
Reports on Innovation and Technology in Computer Science Education (Aberdeen,
Scotland Uk) (ITiCSE-WGR ’19). Association for Computing Machinery, New
York, NY, USA, 27–52. https://doi.org/10.1145/3344429.3372501

[12] Cazembe Kennedy and Eileen T. Kraemer. 2019. Qualitative Observations of
Student Reasoning: Coding in theWild. In Proceedings of the 2019 ACMConference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland
Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA,
224–230. https://doi.org/10.1145/3304221.3319751

[13] Paul AKirschner, John Sweller, and Richard EClark. 2006. WhyMinimal Guidance
During Instruction Does Not Work: An Analysis of the Failure of Constructivist,
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational
Psychologist 41, 2 (2006), 75–86. https://doi.org/10.1207/s15326985ep4102_1

[14] Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. 2021. Students Struggle
to Explain Their Own Program Code. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 206–212. https://doi.org/10.1145/3430665.3456322

[15] Teemu Lehtinen, André L. Santos, and Juha Sorva. 2021. Let’s Ask Students About
Their Programs, Automatically. In 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC). Association for Computing Machinery, 467–475.
https://doi.org/10.1109/ICPC52881.2021.00054

[16] Raymond Lister. 2016. Toward a developmental epistemology of computer pro-
gramming. In ACM International Conference Proceeding Series (New York, NY,
USA), Vol. 13-15-Octo. Association for Computing Machinery, 5–16. https:
//doi.org/10.1145/2978249.2978251

[17] Raymond Lister. 2020. On the Cognitive Development of the Novice Programmer:
And the Development of a Computing Education Researcher. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3442481.
3442498

[18] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). Association for Computing Machinery, New York, NY, USA, 161–165. https:
//doi.org/10.1145/1562877.1562930

[19] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Chris-
tine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Programmers
and the SOLO Taxonomy. In Proceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education (Bologna, Italy)
(ITICSE ’06). Association for Computing Machinery, New York, NY, USA, 118–122.
https://doi.org/10.1145/1140124.1140157

[20] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships between reading, tracing and writing skills in introductory pro-
gramming. In ICER’08 - Proceedings of the ACM Workshop on International Com-
puting Education Research (New York, New York, USA). ACM Press, 101–111.
https://doi.org/10.1145/1404520.1404531

[21] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Sub-
goals, Context, and Worked Examples in Learning Computing Problem Solv-
ing. In Proceedings of the Eleventh Annual International Conference on Inter-
national Computing Education Research (Omaha, Nebraska, USA) (ICER ’15).
Association for Computing Machinery, New York, NY, USA, 21–29. https:
//doi.org/10.1145/2787622.2787733

[22] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’explain in Plain English’ Linked to Proficiency in Computer-Based
Programming. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research (Auckland, New Zealand) (ICER ’12).
Association for Computing Machinery, New York, NY, USA, 111–118. https:
//doi.org/10.1145/2361276.2361299

[23] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ’Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM

106

https://doi.org/10.1016/c2013-0-10375-3
https://doi.org/10.1007/978-3-319-64051-8_9
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1145/2526968.2526969
https://doi.org/10.1145/2526968.2526969
https://doi.org/10.1145/3328778.3366879
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1145/3408877.3432539
https://doi.org/10.1145/3408877.3432539
https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/3442481.3442498
https://doi.org/10.1145/3442481.3442498
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2361276.2361299


CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands van der Werf et al.

Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
385–390. https://doi.org/10.1145/2157136.2157249

[24] Thomas Pelchen and Raymond Lister. 2019. On the Frequency of Words Used in
Answers to Explain in Plain English Questions by Novice Programmers. Association
for Computing Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/
3286960.3286962

[25] Jean Salac and Diana Franklin. 2020. If They Build It, Will They Understand It? Ex-
ploring the Relationship between Student Code and Performance. In Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer Science Ed-
ucation (Trondheim, Norway) (ITiCSE ’20). Association for ComputingMachinery,
New York, NY, USA, 473–479. https://doi.org/10.1145/3341525.3387379

[26] Jean Salac, Qi Jin, Zipporah Klain, Saranya Turimella, Max White, and Diana
Franklin. 2020. Patterns in Elementary-Age Student Responses to Personalized &
Generic Code Comprehension Questions. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE ’20).
Association for Computing Machinery, New York, NY, USA, 514–520. https:
//doi.org/10.1145/3328778.3366833

[27] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,
Australia) (ICER ’08). Association for Computing Machinery, New York, NY, USA,
149–160. https://doi.org/10.1145/1404520.1404535

[28] Judy Sheard, Simon, Julian Dermoudy, Daryl D’Souza, Minjie Hu, and Dale Par-
sons. 2014. Benchmarking a set of exam questions for introductory programming.
In Proceedings of the Sixteenth Australasian Computing Education Conference -
Volume 148. Australian Computer Society, Inc., 113–121.

[29] John Sweller. 2011. Cognitive Load Theory. Vol. 55. Academic Press. https:
//doi.org/10.1016/B978-0-12-387691-1.00002-8 ISSN: 00797421 Publication Title:

Psychology of Learning and Motivation - Advances in Research and Theory.
[30] Jeroen J.G. van Merriënboer and Paul A. Kirschner. 2013. Ten steps to complex

learning. A systematic approach to four-component instructional design. (second
ed.). Routledge.

[31] Anne Venables, Grace Tan, and Raymond Lister. 2009. A closer look at trac-
ing, explaining and code writing skills in the novice programmer. In ICER’09
- Proceedings of the 2009 ACM Workshop on International Computing Education
Research (New York, New York, USA). ACM Press, 117–128. https://doi.org/10.
1145/1584322.1584336

[32] Renske Weeda, Cruz Izu, Maria Kallia, and Erik Barendsen. 2020. Towards an
Assessment Rubric for EiPE Tasks in Secondary Education: Identifying Quality
Indicators and Descriptors. In Koli Calling ’20: Proceedings of the 20th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’20). Association for Computing Machinery, New York, NY, USA, Article
30, 10 pages. https://doi.org/10.1145/3428029.3428031

[33] Jacqueline Whalley and Nadia Kasto. 2014. How difficult are novice code writing
tasks? a software metrics approach. In Proceedings of the Sixteenth Australasian
Computing Education Conference - Volume 148. Australian Computer Society, Inc.,
105–112.

[34] Jacqueline L.Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, Using the Bloom and SOLO
Taxonomies. In Proceedings of the 8th Australasian Conference on Computing
Education - Volume 52 (Hobart, Australia) (ACE ’06). Australian Computer Society,
Inc., AUS, 243–252.

[35] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

107

https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/3286960.3286962
https://doi.org/10.1145/3286960.3286962
https://doi.org/10.1145/3341525.3387379
https://doi.org/10.1145/3328778.3366833
https://doi.org/10.1145/3328778.3366833
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1016/B978-0-12-387691-1.00002-8
https://doi.org/10.1016/B978-0-12-387691-1.00002-8
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/3428029.3428031
https://doi.org/10.1080/08993408.2019.1565235

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Code comprehension
	2.2 Assessing comprehension
	2.3 EiPE exercises

	3 Methods
	3.1 The course: setting and participants
	3.2 Investigated materials
	3.3 Data collection, coding and analysis

	4 Results
	4.1 Focus of the explanations
	4.2 Presence and absence of elements
	4.3 Mistakes

	5 Discussion
	5.1 What do students focus on?
	5.2 What do students include or exclude?
	5.3 What mistakes do students make?
	5.4 Relation to other EiPE-exercises
	5.5 Limitations

	6 Conclusions
	Acknowledgments
	References

