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Abstract—Transit of wasteful materials within the European
Union is highly regulated through a system of permits. Waste
processing costs vary greatly depending on the waste category of
a permit. Therefore, companies may have a financial incentive to
allege transporting waste with erroneous categorisation.

Our goal is to assist inspectors in selecting potentially ma-
nipulated permits for further investigation, making their task
more effective and efficient. Due to data limitations, a supervised
learning approach based on historical cases is not possible.
Standard unsupervised approaches, such as outlier detection
and data quality-assurance techniques, are not suited since we
are interested in targeting non-random modifications in both
category and category-correlated features.

For this purpose we (1) introduce the concept of crosslier:
an anomalous instance of a category which lies across other
categories; (2) propose eXPose: a novel approach to crosslier
detection based on supervised category modelling; and (3) present
the crosslier diagram: a visualisation tool specifically designed for
domain experts to easily assess crossliers. We compare eXPose
against traditional outlier detection methods in various bench-
mark datasets with synthetic crossliers and show the superior
performance of our method in targeting these instances.

Index Terms—crosslier, anomaly, detection, visualisation.

I. INTRODUCTION

Within the European Union (EU), economic proliferation
and globalisation have resulted in a increase of transnational
waste transportation. The nowadays established List of Waste
provides EU member-states with waste categorisation, which
promotes appropriate waste handling, particularly relevant for
hazardous waste [1]. Since transportation of waste poses
serious health and environmental risks, all movement of waste
must be priorly noticed through a system of permits [2]. In
the Netherlands, the entity responsible for permit compliance
is the Human Environment and Transport Inspectorate (ILT).

In the ILT, inspectors must evaluate and determine whether
(1) a permit is likely to be compliant and requires no further
inspection, or (2) a permit raises concern and requires inves-
tigation. Since different waste categories are encompassed by
specific regulations with dissimilar processing costs, compa-
nies may have an economic incentive to purposefully miscat-
egorise their waste. Hence, targeting such cases is of utmost
importance to the inspectors of the ILT. Given high volume
and velocity of data, however, inspectors cannot adequately
assess all permits. Therefore, automatic methods are required.

Under the current problem scenario, the usually most-
effective supervised learning approaches to instance target-
ing [3] are not applicable since no historical labels for
misconduct are available. Unsupervised learning techniques
are also not suited, given the unspecificity of the retrieved
instances; here we note that for outlier detection methods,
outlyingness alone does not translate to the desired targets,
and we further mention the difficulty of detecting outliers
in high-dimensional data [4]; with respect to data-quality
assurance techniques, we remark that they mostly depend on
variable distribution assumptions and concentrate on random
errors [5]. We focus on instances in which the category label
and category-correlated feature values have been altered. In
other words, our goal is to pinpoint samples with non-random
changes in feature values which mask the true underlying
category label.

To address the current problem of manipulation, we propose
the following three contributions:

1) the concept of a crosslier: a deviating instance resulting
from potentially intentional category manipulation;

2) the eXPose approach to crosslier detection, by comput-
ing the crosslier score of a sample given its category;

3) the crosslier diagram: a visualisation tool which allows
easy assessment of crossliers.

Albeit motivated by a waste transportation problem, our
proposed contributions are intrinsically domain-agnostic and
therefore applicable to other fields.

Within a dataset with category labels, a crosslier is an
instance of which the combination of (1) its set of feature
values and (2) the category label are disharmonious. We
consider crossliers to be a special case of outliers in the sense
that they are outlying instances with specific characteristics.
More precisely, a crosslier is a specific outlier with some
connection regarding a category label; that is, it is a sample
of a category which lies across other categories.

The paper structure follows: Sec. II states our problem
formally; Sec. III discusses past work related to ours; Sec. IV
elaborates our approach in detail; Sec. V describes ours
experimental setup; Sec. VI refers to our results; Sec. VII
discusses our method; and Sec. VIII concludes this work and
suggests future research directions.
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II. PROBLEM STATEMENT

Given a category-labelled dataset, we define a crosslier
as a sample of which the category label is swapped and
a proportion of its features are more similarly valued to
the features of samples of the newly-swapped category. To
put it simply, we assume that feature values might have
been manipulated to mask the true category label. To detect
crossliers, we propose crosslyingness as a rankable property
expressed as a function, in which the instance with the highest
crosslyingness with respect to a category is the most likely
crosslier. Accordingly, either (1) crossliers fall within the
cluster of some other category, or (2) crossliers lie across
other categories. To illustrate, we present Fig. 1; four different
categories A, B, C, and D are denoted, with crossliers marked
as A∗, B∗, C∗, and D∗.

Formally, let D be a distribution of random variables
(X,Z) ∈ X × Z , where X ⊆ Rm, Z = {z1, z2, . . . , zq},
and z ∈ Z is one of the q different category labels. Let also
(x1, z1), . . . , (xn, zn) represent the samples drawn from D.
Our goal is to find, for each unique category z ∈ Z , a function
fz(x) which scores the crosslyingness of xi ∈ X with zi = z.

III. RELATED WORK

In this section, we provide a brief overview of three tech-
niques typically used to address anomaly detection problems.
Hereinafter the term anomaly is used to broadly refer to a data
point which, given its observed values an/or domain knowl-
edge, stands out from the dataset. In this sense, we consider a
crosslier to be a particular type of data anomaly, with specific
characteristics as described in the previous sections.

We report on previous work which applied: (A) supervised
and semi-supervised learning techniques; (B) unsupervised
learning methods; and (C) data quality-related procedures. We
further disclose their non-applicability to our scenario.

A. Supervised and Semi-supervised Learning

In the presence of labels indicative of previously-recognised
non-compliance, the problem can be approached as a su-
pervised learning task. Examples are: detecting insurance
fraud [6], exposing deceitful telecommunication users [7], and
identifying irregular heart beat patterns [8]. The choice of fit-
ting algorithm is diverse: support vector machines (SVM) [9],
neural networks [10], and random forests [11], to name a few.
However, a common issue is class imbalance; i.e., the small
ratio of positive to negative instances [12]. Some remedies to
this issue are instance importance reweighting [13], under and
over sampling [14], or a mixture of both [15].

For the case where both labelled and unlabelled instances
are available, a semi-supervised learning approach is suitable.
This framework can, as an example, make use of clustering
algorithms assuming that data points within the same cluster
probably share the same label [16]. Other authors focus
on addressing sample bias to improve on the selection of
inspection targets [17], using unlabelled instances as negative
samples. The assumption is that the incidence of inspection
targets is negligible within the unlabelled data. Our data does
not possess target labels, making these techniques inapplicable.

B. Unsupervised Learning

A straightforward alternative is to find deviating cases
through outlier detection techniques using unsupervised meth-
ods. The assumption is that the most probable samples to
target are the ones that differ the most from all others in their
category, i.e., outliers. Outlier detection techniques have been
applied to system intrusion detection [18], maritime traffic
anomaly flagging [19], and image curation [20], amongst
others. Some examples of the algorithms used are one-class
classifiers [21], isolation forests [22], nearest-neighbour [23],
k-means clustering [24], and local outlier factor [25].

Fig. 1. Crosslier detection. Samples with features X1 and X2, pertaining to either category A, B, C, or D (left). Crossliers are marked as crosses (right).
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There are at least three types of problem with most un-
supervised methods. The main problem is their dependency
on distance metrics (Minkowski measures) to define outly-
ingness, which makes them sensitive to feature scaling. A
second problem arises when dealing with high-dimensional
data [26], particularly when attempting to estimate densities
empirically [27]. Thirdly, through manipulation of only a
proportion of features as assumed in the problem description,
target samples may not stand out as outliers.

Yet, outliers are not necessarily crossliers. To illustrate,
we present Fig. 2, which builds on the example in Fig. 1
by applying an isolation forest algorithm as per [28]. We
see how data points flagged as outliers do not represent the
target crossliers; hence, we should take in consideration the
distribution of categories when marking instances as cross-
lying. A second problem with the outlier detection method
illustrated is that most flagged instances are arguably not
outlying with respect to their clusters. The insensitivity shown
makes outlier detection methods precarious to address our
problem. Ultimately, not all outliers are crossliers: they do not
possess the specific category-related characteristics we seek.

C. Data Quality Assurance

By considering an outlier to be anomalous, and therefore
an inspection candidate, one could argue that the abnormal
values by which outlyingness is attributed can be caused
by erroneous data entries on the permit category. Here, data
quality assurance techniques can be used for anomaly detec-
tion [29]. Typical methods involve, for example, assumptions
over feature distributions [30] and cross-referencing datasets
for dependency-matching or constraint-mining [31], [32].

Our scenario does not allow for reliable cross-dataset
linkage due to the lack of entity identifiers. Furthermore,
despite the existence and usage of both univariate and mul-
tivariate constraints, the constraints are not generated with
respect to an ulterior task. In other words, the assumptions
over feature distributions need not hold towards the category
distributions we are interested in.

In summary, the current literature is ill-equipped to ade-
quately address our issue of discriminating towards crosslying
instances, which translate to permits of interest to inspectors.

IV. THE EXPOSE APPROACH

Here, we detail the proposed eXPose for the detection of
crossliers. As defined in Sec. II, the aim is to find a function
fz(x) that determines the crosslier score of sample x ∈ X
with category label z. The eXPose method is data-driven in
the sense that it uses a learning function to obtain the scores
for a dataset with category labels. Since the whole dataset
is category-labelled by definition, all samples can obtain a
crosslier score. We follow a supervised learning approach,
where the crosslying score is determined per category on a left
out part in order to obtain an independent score. As a result,
we need to optimise several learners as in a cross-validation
setup. Therefore, these learned functions must be calibrated to
make the scores comparable among each other.

Fig. 2. Distinction between outlier and crosslier. Four-category example
from Fig. 1. Crossliers are marked as crosses and outliers are denoted as cir-
cles. Transparency values for data clusters have been raised for visualisation.

Below, we first describe the setup to obtain the learners
in a supervised way. We then elaborate on the model selec-
tion and model calibration steps per data subset based on
cross-validation. The learners collectively yield the overall
crosslier score function. We finalize the method section with
the crosslier diagram, a tool to visualise crosslier scores and
pinpoint suspect samples.

A. Classification Setup

Consider the distribution D defined in Sec. II. For a fixed
category z, (x1, y1), . . . , (xn, yn) are samples of D in which

yi =

{
1, if zi = z

0, otherwise
(1)

Given D and a loss function L, the task of the learner is to find
a function f ∈ F through empirical risk minimisation [33]:

arg min
f∈F

R̂D,L,f (2)

where

R̂D,L,f =
1

n
·
n∑
i=1

L(f(xi), yi) (3)

Depending on the chosen learner, the curse of dimen-
sionality is addressed by incorporating either regularisation,
feature selection, or both protocols in the learning task [34].
These protocols also alleviate overfitting and promote classifier
robustness by reducing the complexity of the final model [35].

All regularisation parameters given prior to the learning task
can be optimally retrieved through hyperparameter optimisa-
tion [36], [37]. The learners to be applied within a specific
problem can also be optimally selected.
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B. Model Selection

A model is selected based on classification performance.
For each candidate learner that is applicable to a problem and
their respective hyperparameters, the estimated classification
performance is measured in terms of Area Under the receiver
operating characteristic Curve (AUC) through cross-validation
(CV) [38]. The choice of CV strategy is dependent on D, as
the appropriate number of folds and splitting strategy relate to
Z and the respective P (y), as well as sample size n. Model
calibration is also subject to the CV strategy, detailed further.

Formally, consider the dataset D, with distribution D. For a
given k ∈ {1, 2, . . . ,K}, K > 1, let test set Dts

k and training
set Dtr

k be independent and identically distributed subsets of
D such that

K⋂
k=1

Dts
k = ∅,

K⋃
k=1

Dts
k = D, and Dtr

k = D \Dts
k (4)

Fixing on k, we define test and training sets Dts
` and Dtr

` ,
respectively, as independent and identically distributed subsets
of Dtr

k , for ` ∈ {1, 2, . . . , L} and L > 1, such that

L⋂
`=1

Dts
` = ∅,

L⋃
`=1

Dts
` = Dtr

k , and Dtr
` = Dtr

k \Dts
` (5)

Given D and sets of learners {Ψ1,Ψ2, . . . ,Ψr} with hyper-
parameters {φ1, φ2, . . . , φp}, the final model is selected by
maximising the estimated AUC with K and L folds, comprised
of learner ∗Ψ and hyperparameters φk ∈ {φ1, φ2, . . . , φK}.
AUC is directly linked to crosslyingness, as detailed ahead.

Learner ∗Ψ and hyperparameters φk are used to generate the
crosslier scores. Since eXPose generates crosslier scores from
a collection of models learned on independent data subsets to
avoid overfitting, the output of each model is not comparable
across models. We address this through model calibration.

C. Crosslier Score

To transform the output of uncalibrated models into a
calibrated output, Platt scaling [39] is used. The original output
ŷ of a learned model given input x thus becomes the estimated
posterior probability P̂ (y|x).

Given z, the crosslier score function fz is defined as the
information content [40] of a sample x from category z:

fz(x) = − log2 P̂ (y|x) (6)

The choice of − log2 translates to: (1) the score difference
between samples with low and high posterior probabilities are
augmented; and (2) scores are easily interpretable, in which
a posterior 1 returns a score 0, and a posterior 0.5 returns 1.
Heuristically, samples with crosslier score greater than 1 can
be considered crossliers and are rankable by crosslyingness
according to their respective crosslier scores.

The estimated AUC model performance relates to the
crosslier scores. By definition, poor-performing models output
calibrated posterior probabilities close to 0.5. Therefore, the
crosslier scores will lie close to 1 for all samples. With high
AUC models, the range of crosslier scores is allowed to widen.

Formally, let xk and yk represent the variable values of
samples (x, y) ∈ Dts

k for a given k. The estimated posterior
is then given as

P̂ (y|x) =

K⋃
k=1

P̂ (yk|xk) (7)

in which,

P̂ (yk|xk) =
1

L
·
L∑
`=1

[fk` (∗φΨtr
k (xk))] (8)

where ∗φΨtr
k (xk) is the output of ∗Ψ learned on (x, y) ∈ Dtr

k

with hyperparameters φk, given input xk, and fk` is the
sigmoid function with parameters α∗ and β∗

fk` (u) =
1

1 + e−(α∗+β∗·u)
(9)

in which

α∗, β∗ = arg min
α,β

−
∑

(x,y)∈Dts`

[µ · log(p) + (1−µ) · log(1− p)]

(10)
where

µ =


(
∑
y∈Dts`

y) + 1

(
∑
y∈Dts`

y) + 2
, if y = 1

(|Dts
` | − (

∑
y∈Dts`

y) + 2)−1, otherwise
(11)

and
p =

1

1 + e−(α+β·∗φΨtr` (x))
(12)

In (12), ∗φΨtr
` (x) is the output of ∗Ψ learned on (x, y) ∈ Dtr

`

with hyperparameters φk, given input x ∈ Dts
` .

D. Crosslier Diagram

At the basis of the crosslier diagram lies an interactive tool
which discriminates individual samples based on their crosslier
score. Existing tools such as box, swarm, and violin plots were
not suited since: (1) box plots do not present all samples that
might be relevant crossliers; (2) swarm plots do not function
well for a large number of samples; and (3) violin plots do
not exhibit any samples in their output.

The diagram is a mapping of the output of fz(x) onto a
horizontal axis where x are samples of category z. To each
plotted sample we add a Gaussian-generated vertical value so
that even if two or more samples have the same crosslier score
they do not entirely overlap. Finally, the crosslier diagram can
display related domain-specific information of a sample by
hovering over it. In the context of real-world transportation
data, we present the crosslier diagram (Fig. 3) in the upcoming
Sec. VI as part of our experimental results.

V. EXPERIMENTS

In this section, we describe our experiments. Two setups
are considered in which eXPose is (A) applied to the waste
permit dataset, and (B) compared to other anomaly detection
methods. Resources described in (B) are made available [41].
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A. Waste Transportation Setup

1) Data: the dataset was generated and provided by the
ILT. It represents solicitations of waste transportation events
across Europe (2009–2015), encompassing a total of 876, 311
waste transportations. Each row represents an individual trans-
portation event. Several rows are linked by a permit identifier,
where permits are the units of interest to inspectors of the ILT.
We followed an aggregation strategy with respect to permit
identifiers. The aggregation process produced 11,740 permit
instances, each with a waste category (out of 20 total different
waste categories) and 49 variables which were a mixture of
both numerical and nominal features.

2) Learners: we experimented with both linear and non-
linear learners to find the best performing model for each waste
category: An elastic net-regularised logistic regression learner
(LR) was deployed, with hyperparameters λ and ε referring
to the regularisation coefficient, and the ratio of L1 to L2-
regularisation, respectively. Besides its broad usage and proven
efficacy [42]–[44], advantages of this learner are, for example:
its calibrated output probabilities (hence, not requiring any
further calibration); and its resilience to overfitting given
low complexity and regularisation [45]. A non-linear gradient
boosted tree framework (XGB) was considered [46], with 100
additive trees where each tree was allowed a maximum depth
of 3 with regularisation parameter λ = 1. This learner is
widely accepted as a state-of-the-art solution to supervised
problems [47] in terms of scalability, robustness to noisy
samples, and classification performance.

3) Selection and calibration: to select and calibrate the best
model, we applied nested-CV in a stratified manner [48] with
K = 10, L = 10 as described in Sec. IV. Stratification is
selected to ensure that each category is represented in each
fold with the same relative frequency as in the full dataset.
A grid-search [49] was applied to find the optimal set of LR
regularisation parameters λ and ε. Each parameter was set to
one of 21 distinct values, in ranges [10−3, 103] logarithmic
and [0, 1] linear, respectively, for a total of 441 sets of candi-
date hyperparameters. Since XGB is relatively insensitive to
hyperparameter changes, as shown in the experimental results
of [50], we did not perform hyperparameter optimisation for
this learner. The best model for each category was used to
generate the crosslier scores and crosslier diagrams (Sec. VI).

B. Benchmark Setup

1) Data: 20 binary classification datasets were retrieved
from openML: an open, organised, and online ecosystem for
machine learning [51]. They are real-world datasets from dif-
ferent domains, and can be easily accessed through openML’s
API. Target classes were treated as the categories Z . Table I
summarises each dataset with identifier ID, n instances, and
m features of which u are numeric. The datasets were chosen
such that n, m, and u are heterogeneous across datasets.

2) Preprocessing: numeric features values were scaled to a
[0, 1] range to accommodate feature scale-sensitive methods.
Non-numeric features were {0, 1}-binarised per unique value.

TABLE I
DATASETS

ID n m u ID n m u

446 200 7 6 40705 959 44 42
40 208 60 60 31 1000 20 7
1495 250 6 0 1494 1055 41 41
53 270 13 13 40706 1124 10 0
40710 302 14 5 1462 1372 4 4
59 351 34 34 1504 1941 33 33
40690 512 9 0 1487 2534 72 72
1063 522 21 21 1485 2600 500 500
335 554 6 0 41143 2984 144 8
1510 569 30 30 41144 3140 259 259

3) Synthetic crossliers: to simulate a real-world scenario,
crossliers were generated by replacing category labels and
feature values. Different proportions of both label and feature
manipulation were considered extensively. The proportion of
label-swapped samples for each category per dataset was
ρy ∈ {.01, .05, .1, .15, .2, .25, .3, .35, .4}. To recreate the sce-
nario in which feature values are manipulated to simulate
another category, samples which were label-swapped had a
proportion of their feature values replaced. The proportion of
randomly-selected features to have their values replaced was
ρx ∈ {0, .05, .1, .15, .2, .25, .3, .35, .4}. Replacement values
were drawn from univariate distributions with parameters
estimated from the features of the category being mimicked,
modelled as either: (a) the normal distribution N (µ̂, σ̂) for
numeric features, where µ̂ is the estimated mean and σ̂
is the estimated standard deviation; or (b) the multinomial
distribution with estimated event probabilities {p̂1, p̂2, . . . , p̂π}
where π is the number of unique feature values, otherwise.
Crossliers were generated 10 times with different random
initialisation seeds for all datasets per configuration (ρx, ρy)
to account for randomness. Both categories per dataset were
corrupted with crossliers before any method was applied.

4) Methods: eXPose was compared to two well-established
anomaly detection methods: local outlier factor (LOF) and
isolation forest (IF), mentioned in Sec. III. The previously-
established methods were not designed to detect crossliers; to
promote a reasonable comparison, eXPose was applied with
a single set of learner and hyperparameters and no optimised
model selection was performed. The model selected was a tree-
based gradient boost learner and default hyperparameters of
100 trees of maximum depth 3 with regularisation λ = 1 [52];
calibration values K and L were set to 10. LOF neighbourhood
size was set to 20 and IF number of trees was set to 100.

5) Evaluation: the crosslier scores of eXPose were gen-
erated as in Sec. IV; the anomaly scores of the anomaly
detection methods were generated category-wise for every
method. For each category, crosslier detection performance
was measured in average precision (AP) [53], a common
measure in outlier detection assessment [54]. Accordingly, the
targets are the crossliers in each category. The performance
of both categories in each configuration (ρx, ρy) were jointly
averaged per dataset, and posteriorly across initialisation seeds.
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VI. RESULTS

Here, we present findings relative to both experimental
setups: (A) eXPose applied to the real-world scenario of
waste transportation in the inspection domain; and (B) eXPose
compared to other anomaly detection methods in a controlled
environment with benchmark datasets.

A. Waste Transportation

When applied to the waste transportation data, we show
firstly the estimated AUC performances yielded by both can-
didate models LR (logistic regression learner) and XGB (gra-
dient boosted tree-based learner). The next step was presenting
the crosslier diagrams of waste categories to the inspectors for
assessment. Waste category 4 (waste from textile industries)
was not shown due to insufficient number of instances.

1) Model performance and selection: table II shows the
estimated AUC performances and measured standard devia-
tions yielded during the model selection step of eXPose, which
were used to select the best model per category for crosslier
detection. Values in bold indicate the highest performance
per category of which the model was chosen. Learner XGB
provided the best performance for all categories and was
selected to generate the crosslier diagrams. For clarity, AUC
does not measure the performance of crosslier detection since
no crosslier labels exist in this real-world problem.

2) Crosslier diagrams: in Fig. 3 the crosslier diagrams with
scores generated by the selected model XGB are shown. For
demonstration purposes, we show crosslier diagrams of four
waste categories: (1) exploration and treatment of minerals; (2)
agriculture, food preparation, and processing; (9) waste from
photography industry; and (18) human or animal healthcare.
In addition, the interactive aspect of the diagram is represented
for a sample of waste category 9, in which its permit identifier
(ID 4358) and crosslier score (1.41) are shown.

TABLE II
MODEL PERFORMANCE

Category LR XGB

1 0.983± 0.008 0.985± 0.010
2 0.868± 0.044 0.919± 0.037
3 0.868± 0.020 0.908± 0.027
— — —
5 0.672± 0.092 0.755± 0.082
6 0.740± 0.038 0.794± 0.037
7 0.776± 0.016 0.821± 0.015
8 0.798± 0.026 0.856± 0.025
9 0.867± 0.047 0.915± 0.047
10 0.737± 0.032 0.788± 0.035
11 0.815± 0.021 0.896± 0.016
12 0.860± 0.032 0.897± 0.031
13 0.609± 0.063 0.720± 0.062
14 0.776± 0.034 0.817± 0.024
15 0.841± 0.019 0.883± 0.016
16 0.695± 0.016 0.753± 0.019
17 0.845± 0.023 0.889± 0.022
18 0.894± 0.015 0.921± 0.015
19 0.806± 0.014 0.851± 0.013
20 0.719± 0.024 0.779± 0.027

3) Inspection domain: the inspectors of ILT were provided
with the crosslier diagrams of all waste categories excluding
category 4. They analysed the permit cases across waste cate-
gories according to the given crosslier scores. Their assessment
was that the authenticity of most of the high-scoring permits
was sufficiently doubtful and that further investigation was
necessary to establish compliance. All in all, the crosslier
diagram was considered a valuable expansion of their tool set,
especially when compared to strenuous spreadsheet analysis.

B. Benchmark

The outcome of our experiments with respect to controlled
crosslier detection is to be seen in Fig. 4. We present the results
for the three methods: eXPose, local outlier factor (LOF), and
isolation forest (IF). Fig. 4 shows (a) the mean performance
scores (AP) across 20 datasets, (b) for 81 different config-
urations of (ρx, ρy), each dataset-configuration pair with 10
different random initialisations of crosslier synthesis.

Lighter (darker) cell tones indicate higher (lower) val-
ues of performance. Each number indicates the yielded AP
performance for each (ρx, ρy) configuration with which we
experimented. For every possible setting (i.e., heatmap cell),
eXPose yielded a higher mean performance than any of the
other methods. The differences in performance diminish as
both ρx and ρy increase.

Note that to perform a correct comparison, eXPose was
not subject to any optimisation: the model selection step
was reduced to a single learner with a single set of default
hyperparameters. When deployed onto a real-world scenario,
model selection should be applied to select the best possible
learner and hyperparameter configuration, as described in
Sec. IV.

Fig. 3. Crosslier diagrams of four waste categories. Hovering over an
instance highlights its identifier (4358) and crosslier score (1.41).
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Fig. 4. Crosslier detection performance across different methods. Heatmaps depict the AP scores for our method (eXPose), local outlier factor (LOF), and
isolation forest (IF). Performance values were averaged across datasets and random initialisations. In the vertical axis, ρy is the proportion of samples which
have been category-swapped. In the horizontal axis, ρx denotes the proportion of features (in category-swapped samples) of which the values were replaced.

VII. DISCUSSION

The eXPose approach is evidently better at detecting
crossliers through the exploitation of category models, when
compared to standard outlier detection methods. This was
expected, as crossliers are defined based on their feature values
in a category-wise manner, instead of simply considering
any outlying feature value. High dimensionality and feature
dependence are also better dealt with through the appropriate
selection of learner with adequate feature selection and regu-
larisation protocols.

The implementation of the eXPose approach is to be seen
as a wrapper over different components: at its core, it is
a data-driven category-modelling method using learner func-
tions. Here, score calibration is applied, and even though a
selected model might have a low AUC, the generated crosslier
scores are — we argue — reliable. For low AUC values, the
crosslier scores will tend to cluster at 1 (corresponding to the
posterior 0.5). In this sense, eXPose will not expose a sample
unless its respective category is well modelled (high AUC
performance). This is relevant when dealing with sensitive
inspectorate domains where wrongly-targeting instances has
negative outcomes. Assuming sensible feature values and
category labels, a high AUC depends only on learner and
hyperparameters selected.

VIII. CONCLUSION

In the present work, we (1) defined a specific type of data
anomaly, which we term crosslier, (2) introduced the eXPose
approach to crosslier detection, and (3) designed the crosslier
diagram, a visualisation tool to represent crossliers evidently.
We showed that conventional outlier detection methods (LOF
and IF) are ill-suited for crosslier detection when compared
to eXPose. Although domain-insensitive, eXPose produced
valuable domain-specific insights into the problem scenario of
targeting potentially fraudulent permits of waste transportation
across European countries.

We defined crosslier as an instance which is more similar
to other categories than its own; in other words, it is a
sample which likely carries company misconduct. Extensive
preprocessing and optimisation steps were performed which
culminated in well-performing (high AUC) models of waste
categories. Accordingly, the feature values collected in the
waste permits allow for suitable differentiation. This finding
shows that administrative data allow for compliance checking.

After presenting the crosslier diagrams to the inspectors,
their assessment was on par with the expected workings of
our eXPose approach: (1) detected crossliers were considered
suspicious, and (2) were marked for further inspection. We
remark that these cases had gone undetected in standard permit
review operations. So, the crosslier diagram was considered by
the inspectors a beneficial extension to current methods.

In the future, close cooperation with the inspectors is highly
recommended. By receiving their feedback on the inspected
crosslying permits, our method will be further validated.
Moreover, we can use those cases as labelled instances in a
supervised learning scenario. A further direction is to apply
eXPose to other real-world problems in other domains in order
to investigate its general applicability and related outcomes.
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