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CAPTER 3
CHAPTER

KiDS-Legacy calibration: Unifying shear
and redshift calibration with the SKiLLS
multi-band image simulations

ABSTRACT

We present SKiIiLLS, a suite of multi-band image simulations for the weak lensing
analysis of the complete Kilo-Degree Survey (KiDS), dubbed KiDS-Legacy analysis.
The resulting catalogues enable joint shear and redshift calibration, enhancing the
realism and accuracy over previous efforts. By integrating cosmological simulations
with high-quality imaging data, we created a large volume of simulated galaxies, faithfully
mirroring the realistic galaxy properties to a sufficient depth. We accounted for point
spread function (PSF) variability across CCD images, while also considering variations
in stellar density and noise levels between different pointings. Using variable shear fields,
we studied blended systems at different redshifts. Our results show a discernible redshift-
shear bias correlation, underscoring this subtle yet noticeable higher-order blending
effect. Additionally, we detected a minor but noteworthy impact of PSF modelling errors
on shear bias. Finally, we conducted sensitivity tests, affirming the robustness of our
fiducial shape measurement algorithm, lensfit, within the KiDS weak lensing analysis
requirement. For future, more stringent weak lensing surveys, we recommend further
study into blending effects, refinement of PSF modelling, and improvement of shape
measurement techniques to minimise their sensitivity to variations in galaxy properties.

S.-S. Li, K. Kuijken, H. Hoekstra et al.
Astronomy & Astrophysics, 670, A100
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3.1 Introduction

Weak gravitational lensing, the small deflection of light rays caused by inhomogeneous
matter distributions, is a powerful tool for observational cosmology as an unbiased tracer
of gravity (see Bartelmann & Schneider 2001, for a review). It allows us to study the
underlying distribution of both baryonic and dark matter (see Refregier 2003; Hoekstra
& Jain 2008; Kilbinger 2015, for some reviews). Together with redshift estimates
for the sources, the cosmological lensing signal can even quantify the growth of the
cosmic structure and infer the properties of dark energy (e.g. Hu 1999; Huterer 2002).
Recent weak lensing surveys, including the Kilo-Degree Survey + VISTA Kilo-degree
INfrared Galaxy (KiDS+VIKING) survey (de Jong et al. 2013; Edge et al. 2013)!, the
Dark Energy Survey (DES, Dark Energy Survey Collaboration et al. 2016)2, and the
Hyper Suprime-Cam (HSC) survey (Aihara et al. 2018)3, provided some of the tightest
cosmological constraints on the clumpiness of matter in the local Universe (Heymans
et al. 2021; Abbott et al. 2022; Hamana et al. 2020). The upcoming so-called Stage
IV surveys, such as the ESA Euclid space mission (Laureijs et al. 2011)#, the Rubin
Observatory Legacy Survey of Space and Time (LSST, Ivezi¢ et al. 2019)3, and the
NASA Nancy Grace Roman space telescope (Spergel et al. 2015)¢, will advance the
field significantly by increasing the statistical power of weak lensing measurements by
more than an order of magnitude.

While promising, measuring the weak lensing signals to the desired accuracy in
practice is demanding (see Mandelbaum 2018, for a recent review). In particular, the
observed images of distant galaxies are smeared by the point spread function (PSF) and
contain pixel noise, biasing the measurements of galaxy shapes (e.g. Paulin-Henriksson
et al. 2008; Massey et al. 2013; Melchior & Viola 2012; Refregier et al. 2012). These
issues drove the early development of many shape measurement methods and triggered
a series of community-wide blind challenges based on image simulations, including the
Shear TEsting Programme (STEP, Heymans et al. 2006; Massey et al. 2007) and the
Gravitational LEnsing Accuracy Testing (GREAT, Bridle et al. 2010; Kitching et al.
2012; Mandelbaum et al. 2015). These early efforts illuminated some crucial issues
and paved the way to calibrate the systematic biases for an actual survey using image
simulations.

Early applications of simulation-based calibration have already demonstrated that
the calibration accuracy depends on how well the simulation matches the survey under
consideration, especially the observational conditions and the galaxy properties (e.g.
Miller et al. 2013; Hoekstra et al. 2015, 2017; Samuroff et al. 2018). Therefore, recent
implementations carefully mimic the data processing procedures and use morphological
measurements from deep imaging surveys to reproduce the measured galaxy properties

Thttps://kids.strw.leidenuniv.nl
2https://darkenergysurvey.org
3https://hsc.mtk.nao.ac.jp/ssp/
4https://sci.esa.int/web/euclid/
Shttps://www.lsst.org/
Shttps://roman.gsfc.nasa.gov/
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for a specific survey (e.g. Mandelbaum 2018; Kannawadi et al. 2019 hereafter K19;
MacCrann et al. 2022). Alternately, newer methods, such as the Bayesian Fourier
Domain (Bernstein & Armstrong 2014) and MetracaLiBraTiON (Huff & Mandelbaum
2017; Sheldon & Huft 2017), seek an unbiased estimate of the shear either using deeper
data as a prior or directly calibrating the measurements using the observed data.

Recent studies highlighted the effect of blending. The blending effect occurs when
two or more objects are close together in the image plane, so their light distributions
overlap. It introduces biases during both the selection and measurement processes. For
example, Hartlap et al. (2011) found that the rejection of recognised blends alters the
selection function of the final sample (see also Chang et al. 2013). In some circumstances,
blended systems are so close that they appear as single objects. These unrecognised
blends increase the shape noise by decreasing the number density and widening the
measured ellipticity dispersion (e.g. Dawson et al. 2016; Mandelbaum et al. 2018). Even
if the blended objects are below the detection limit, they still introduce correlated noise
that affects the detection and measurement of the adjacent bright galaxies (e.g. Hoekstra
et al. 2015, 2017; Samuroff et al. 2018), an effect that becomes even more dramatic
when the clustering of galaxies is considered (Euclid Collaboration et al. 2019). Given
all of these concerns, it is essential for image simulations to contain faint objects and
physical clustering features.

More concerns arise when considering a tomographic analysis, which is at the
core of current and future weak lensing surveys. From the shear estimate side, the
tomographic binning approach introduces further selections that link the shear bias to
redshift estimates (K19, MacCrann et al. 2022). From the redshift estimate side, redshift
calibration methods need mock photometric catalogues to verify their performance.
These mock catalogues must resemble the target data in object selections and photometric
measurements, which are challenging to address at the catalogue level (Hoyle et al. 2018;
Wright et al. 2020a; van den Busch et al. 2020; DeRose et al. 2022).

All these issues become even more challenging for the KiDS-Legacy analysis, the
weak lensing analysis of the complete KiDS. It covers the entire 1350 deg? survey area,
a ~35% increase over the latest KiDS release (KiDS-DR4, Kuijken et al. 2019). More
importantly, thanks to the deeper i-band observations and dedicated observations in
spectroscopic survey fields, the KiDS-Legacy analysis aims to unleash the power of
high-redshift samples (up to a redshift of z~2). The improved statistical power, however,
makes a higher demand on the shear and redshift calibrations, including an assessment
of the cross-talk between the systematic errors in the shear and redshift estimates.

In this chapter, we present SKiLLS (SURFS-based KiDS-Legacy-Like Simulations),
the third generation of image simulations for KiDS following SCHOo! (Simulations
Code for Heuristic Optimization of lensfit, Fenech Conti et al. 2017, hereafter FC17)
and COllege (COSMOS-like lensing emulation of ground experiments, K19). By
simulating multi-band imaging that includes realistic galaxy evolution and clustering in
terms of colour, morphology and number density, SKiLLS allows for the simultaneous
measurement of shear and photometric redshifts from the same simulation. This study,
therefore, provides the first joint calibration of these two key observables for cosmic
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shear analyses. With our approach, we provide a natural solution to address the expected
cross-talk between shear and redshift bias, accounting for the impact of blends that
carry different shears (Dawson et al. 2016; Mandelbaum et al. 2018; MacCrann et al.
2022). We also release our simulation pipeline, which contains customisable features
for general use by other surveys”.

The remainder of this chapter is structured as follows. In Sect. 3.2, we build
input catalogues for image simulations. Then in Sect. 3.3, we detail the creation and
processing of the KiDS-like multi-band images, starting from instrumental setups and
ending with photometric catalogues. Section 3.4 reviews our fiducial shape measurement
algorithm, /ensfit (Miller et al. 2007; Kitching et al. 2008; Miller et al. 2013), with some
improvements introduced for the KiDS-Legacy analysis. The shear calibration results
for the updated lensfit measurements are presented in Sect. 3.5, and the sensitivity test is
conducted in Sect. 3.6. Finally, we conclude in Sect. 3.7.

Throughout the chapter, we define the complex ellipticity of an object as

1-
€E=¢€ +ig = (_q) exp(2i¢) , 3.1
1+¢g
where g and ¢ denote the axis ratio and the position angle of the major axis, respectively.
In terms of the quadrupole moments of the measured surface brightness Q;;, this
definition equals
_ 011 -0»n+2i01n
€= 2312
O11+02+2 (01102 -07,)

As stated by Bartelmann & Schneider (2001), this ellipticity definition is convenient
because it directly links to the weak lensing shear signal < via the estimator

(3.2)

iWi €
y=ZiVWis (3.3)

i Wi
where w; is a weight assigned per object to account for individual measurement
uncertainties®. Although the cosmic shear analysis uses higher-order statistical measures,
such as the two-point correlation functions (e.g. Kaiser 1992), the simple estimator
presented in Eq. (3.3) is commonly used for constraining the shear bias from image
simulations (e.g. Heymans et al. 2006).

3.2 Input mock catalogues

To generate mock images, we need input catalogues of galaxies and stars with realistic
morphology, photometry and clustering. We detail our procedure for building these
catalogues in this section. Section 3.2.1 describes how we create the mock galaxy
catalogue by combining deep observations with up-to-date cosmological and galactic

"https://github.com/KiDS-WL/MultiBand_ImSim.git
8Strictly speaking, the expectation value of the ellipticity is /(1 — k), where « is the convergence. But
as k < 1 in the weak lensing regime, we can safely neglect this term.
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simulations. Section 3.2.2 shows how we generate stellar multi-band magnitude
distributions from a population synthesis code.

3.2.1 Galaxies: SURFS-Shark simulations with COSMOS morphology

Our input galaxy catalogue, a compilation of simulations and observations, is crafted to
achieve a balance between considerable sample volume and realistic galaxy morphology.
In the subsequent parts of this section, we first review the simulation part, which
includes the clustering and multi-band photometry. Next, we introduce our specifically
designed algorithm, which learns galaxy morphology from observations and applies
this knowledge to simulated galaxies — a crucial step towards ensuring accurate shear
calibration.

Generating synthetic galaxies from simulations

To jointly calibrate the shear and redshift estimates, we must base the image simulations
on wide and deep (z > 2) cosmological simulations, where the true redshift is known. In
the previous KiDS redshift calibration, van den Busch et al. (2020) used the MICE Grand
Challenge (MICE-GC) simulation, an N-body light-cone simulation that covers an octant
of the sky (Fosalba et al. 2015a). However, the MICE simulation has a redshift limit of
z~1.4, preventing its use for calibrating the high-redshift samples in the KiDS-Legacy
analysis (up to z~2). Therefore, we switched to another public N-body simulation from
the Synthetic UniveRses For Surveys (SURFS, Elahi et al. 2018).

The SURFS simulation we adopted has a box size of 210 2~ 'cMpc (cMpc stands for
comoving megaparsec), containing 1536° particles with a mass of 2.21 x 108 2~ 'M,,
and a softening length of 4.5 h~!ckpc (ckpc stands for comoving kiloparsec). It assumes
a ACDM cosmology with parameters from Planck Collaboration (2016). The final halo
catalogues and merger trees are constructed from 200 snapshots starting at redshift
z = 24, using the phase-space halo-finder code VELOCIrAPTOR (Cailas et al. 2019;
Elahi et al. 2019a) and the halo tree-builder code TREEFROG (Elahi et al. 2019b). We refer
to Lagos et al. (2018) for details on the building and Poulton et al. (2018) for validating
the halo catalogues and merger trees.

The galaxy properties, including the star formation history and the metallicity
history, are from an open-source semi-analytic model named SHARk® (Lagos et al.
2018). The model parameters are tuned to reproduce the z = 0, 1 and 2 stellar-mass
functions (Wright et al. 2018), the z = 0 black hole-bulge mass relation (McConnell &
Ma 2013) and the mass-size relations at z = 0 (Lange et al. 2016). Any other observables
are predictions of the model, which also match well with observations (see Lagos et al.
2018 for more details). As for weak lensing calibration, the most crucial property is the
redshift evolution of the galaxy number density (e.g. Hoekstra et al. 2017), which we
checked in detail in Appendix 3.A and found it to be sufficient for KiDS.

The light cones from the SHARK outputs are created using the code STINGRAY

Shttps://github.com/ICRAR/shark
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(Chauhan et al. 2019), an improved version of the code used by Obreschkow et al. (2009).
It first tiles the simulation boxes together to build a complex 3D field along the line
of sight, then draws galaxy properties from the closest available time-step, resulting
in spherical shells of identical redshifts. A possible issue would be the same galaxy
appearing once in every box but with different intrinsic properties due to cosmic evolution.
To avoid this problem, sTINGRAY randomises galaxy positions by applying a series of
operations consisting of 90 deg rotations, inversions, and continuous translations. We
refer to Chauhan et al. (2019) for more details about the light-cone construction.

The final mock-observable sky covers ~108 deg? with minimum repetition of the
large-scale structure. The sample variance bias caused by the replicating structure is
negligible for our direct shear and photometric redshift calibration. Since we learn
galaxy morphology from deep observations, our input galaxy sample is still limited
mainly by the observational data we have, which only covers ~1 deg? (see Sect. 3.2.1
for details). We test the robustness of our calibration results against this sample variance
bias using the sensitivity analysis detailed in Sect. 3.6.

The multi-band photometry is drawn from a stellar population synthesis technique
implemented in the PRoSpecT!® and VipERFISH!! packages. PRoSPECT (Robotham et al.
2020) is a high-level package combining the commonly used stellar synthesis libraries
with physically motivated dust attenuation and re-emission models; while VIPERFISH
is a light wrapper to aid the interface with the SHARK outputs. We refer to Lagos et al.
(2019) for detailed predictions, validations and a demonstration that the predicted results
agree with observations in a broad range of bands from the far-ultraviolet to far-infrared,
without any fine-tuning with observations.

For our purpose, we care most about the nine-band photometry covered by the
KiDS+VIKING data, so we compared the synthetic near-infrared and optical magnitude
distributions to observations from the COSMOS2015 catalogue (Laigle et al. 2016).
Figure 3.1 shows the magnitude distributions of eight filters available in both SHARK
and COSMOS2015 catalogues, together with an analytical fitting result from Eq. (4)
of FC17. The counts in the original simulations are ~35% lower than the observations
with some variation between filters. As this affects the blending level and then the shear
bias (Hoekstra et al. 2015, 2017), we calibrated the original synthetic photometry for
a better agreement. The technical details are presented in Appendix 3.A. In short, we
found that the differences in the magnitude distributions stem from the difference in
stellar mass-to-light ratio between the simulations and observations. Therefore, we
scaled the original SHARK magnitudes using a modification factor derived from the stellar
mass-to-light ratio difference. The modification is the same for all bands, preserving the
intrinsic colours of individual galaxies. The modified magnitudes now agree with the
observations within ~3%.

We later noticed that Bravo et al. (2020) proposed a similar fine-tuning method when
working with the panchromatic Galaxy And Mass Assembly (GAMA) survey. They
used an abundance matching method by comparing the number counts between SHARK

Ohttps://github.com/asgr/ProSpect
Uhttps://github.com/asgr/Viperfish
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Figure 3.1: Number of galaxies per square degree per 0.1 magnitude in the input
apparent magnitudes. The green dashed lines represent data from the original SURFS-
SHARK mock catalogue, while the blue solid lines indicate the modified results. The
red solid lines correspond to the COSMOS2015 observations, factoring in flags for the
UltraVISTA area within the COSMOS field after the removal of saturated objects and
problematic areas (yielding a 1.38 square degree effective area, as per Table 7 in Laigle
et al. 2016). The black dahsed linne depicts the analytical fitting result in the r-band,
derived from FC17. The g-band photometry, absent from the COSMOS2015 catalogue,
is not displayed here. We note that the COSMOS2015 catalogue lacks completeness at
K > 24.5 (Laigle et al. 2016).

and GAMA after fine binning in redshift and r-band apparent magnitude. They tuned
magnitudes for all SHARK galaxies with r<21.3 to match the number counts in GAMA.
Their modifications are consistent with our results, albeit targeting different magnitude
ranges.

Learning galaxy morphology from observations

Simulating galaxies with realistic morphology is essential for accurate shear calibration.
Following K19, we represent the galaxy morphology using the Sérsic profile (Sérsic
1963) with three parameters: the effective radius determining the galaxy size (also known
as the half-light radius), the Sérsic index describing the concentration of the brightness
distribution, and the axis ratio determining the galaxy ellipticity. We learned these
structural parameters from deep observations accounting for their mutual correlations
and their correlations to galaxy photometry and redshift. Figure 3.2 shows the workflow
for the learning algorithm.
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VST + VISTA spec + photo ACS-GC synthetic snapshotted N-body
photometry redshift morphology photometry redshift clustering
COSMOS SURFS-Shark
observations simulations
’ redshift & magnitude binning ‘ ’ redshift & magnitude binning ‘
training sample target sample
vine copulas ‘ ’ in order of colour

learned property in order of colour SKiLLS inputs

Figure 3.2: Flowchart summarising the algorithm employed in constructing the SKiLLLS
input mock catalogue. The SKILLS galaxies inherit the synthetic multi-band photometry
and 3D positions from the SURFS-SHaRrRk simulations, while their morphology is
learned from the observations in the COSMOS field using a vine-copula modelling-
based algorithm (see the detailed explanation in Sect. 3.2.1)

We start with a ‘reference’ sample comprising morphology, photometry and redshifts
from several deep observations. The structural parameters are adopted from the catalogue
produced by Griffith et al. (2012), who fitted Sérsic models to the galaxy images taken
by the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope
(HST). We used their results derived from the COSMOS survey and cleaned the sample
by only preserving objects with a good fit (FLAG_GALFIT_HI = 0) and reasonable
size (half-light radius between (0’701 and 10””) to avoid contamination. We note that this
catalogue was also used by K19 and proved to be sufficient for KiDS-like simulations.

The r-band photometry is derived from a deep VST-COSMOS catalogue using 24
separate VST observations of the COSMOS field taken from KiDS and the SUpernova
Diversity And Rate Evolution (SUDARE) survey (Cappellaro et al. 2015; De Cicco
et al. 2019). These observations have a maximum seeing of 082, close to the KiDS
r-band image qualities. To ensure consistent measurements, we conducted the stacking
and detection processes using the same pipeline as the standard KiDS data processing.
The stacked image has an average seeing of 0”/75 and a total exposure time of 42 120
seconds, which is a factor of ~23 over a standard KiDS observation. The limiting
magnitude of the final deep catalogue is more than one magnitude deeper than usual KiDS
catalogues. To include colour information, we also used the K-band photometry from
the COSMOS2015 catalogue (Laigle et al. 2016), as it originates from the UltraVISTA
project (McCracken et al. 2012) that shares the same instruments with the VIKING
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near-infrared observations.

The redshifts are taken from the catalogue compiled by van den Busch et al.
(2022). It contains observations from several spectroscopic and high-quality photometric
surveys in the COSMOS field. The spectroscopic redshifts were collected from G10-
COSMOS (Davies et al. 2015), DEIMOS (Hasinger et al. 2018), hCOSMOS (Damjanov
et al. 2018), VVDS (Le Fevre et al. 2013), LEGA-C (van der Wel et al. 2016), FMOS-
COSMOS (Silverman et al. 2015), VUDS (Le Fevre et al. 2015), C3R2 (Masters et al.
2017, 2019; Euclid Collaboration et al. 2020; Stanford et al. 2021), DEVILS (Davies
et al. 2018) and zCOSMOS (private comm. from M. Salvato), while the photometric
redshifts were from the PAU survey (Alarcon et al. 2021) and COSMOS2015 (Laigle
et al. 2016). For sources with multiple measurements, a specific ‘hierarchy’ was defined
with orders based on the quality of measured redshifts to choose the most reliable redshift
estimates (see Appendix A in van den Busch et al. 2022, for details). Given the high
quality of the redshift estimates, we treated them as true redshifts.

All catalogues mentioned above overlap in the COSMOS field, so we can combine
them by cross-matching objects based on their sky positions. The final reference catalogue
has 75403 galaxies with all the necessary information. It has a limiting magnitude
of 27 in the r-band but suffers incompleteness after m, > 24.5. We verified that the
incompleteness at the faint end does not bias the overall morphological distribution by
comparing it to measurements from the Hubble Ultra Deep Field observations (Coe et al.
2006).

We aim to inherit not only the individual distributions of structural parameters but
also their mutual dependence and possible correlations with redshifts and magnitudes.
To achieve this goal, we developed a learning algorithm based on a statistical inference
technique, dubbed vine-copulas (e.g. Joe 2014; Czado 2019). A brief introduction to the
technique is presented in Appendix 3.B. In short, a copula-based method models joint
multi-dimensional distributions by separating the dependence between variables from
the marginal distributions. It is popular in studies concerning dependence modelling,
given its flexibility and reliability. In practice, we first divided galaxies into 30 x 40 bins
based on their redshifts and r-band magnitudes. Each bin contains a similar number of
reference galaxies. Then in each bin, we built a data-driven vine-copula model from the
measured r — K colour and morphological parameters using the public pyvinecopulib
package'?. The learned vine-copula model can be sampled to produce an arbitrary
number of vectors of parameters from the constrained multi-dimensional distributions.
We decided to generate the same number of vectors as the available SHARK galaxies
and assign them to the SHARK galaxies in the order of r — K colour. This approach
allows us to mimic observations from the underlying distributions rather than repeatedly
sampling from the measured values.

Figure 3.3 shows the correlations between the magnitude and the two critical
structural parameters: half-light radius and ellipticity, in several redshift bins. We see
that the learned sample follows the average trends of the reference sample. Figure 3.4
presents two-dimensional contour plots in several magnitude bins to better inspect the

2Zhttps://github.com/vinecopulib/pyvinecopulib


https://github.com/vinecopulib/pyvinecopulib

60 CHAPTER 3. COSMIC SHEAR CALIBRATION WITH SKILLS

underlying distributions of morphological parameters. We again see agreements in
correlations between the size and ellipticity and between the size and concentration,
proving that our copula-based algorithm captures the multi-dimensional dependence
from the reference sample.

3.2.2 Stars: Point objects with synthetic photometry

We treated stars as perfect point objects. Their multi-band photometry was obtained
from the population synthesis code, TRILEGAL (Girardi et al. 2005, with version 1.6 and
the default model from its website!?). We generated six stellar catalogues at galactic
coordinates evenly spaced across the KiDS footprint to capture the variation of stellar
densities between KiDS tiles. Each catalogue spans 10 deg?. When simulating a specific
tile image covering 1 deg?, we selected the stellar catalogue whose central pointing is
closest to the target tile, then randomly drew ten per cent of stars from that catalogue
as the input. Figure 3.5 shows the r-band magnitude distributions of the six stellar
catalogues compared to the catalogue used by the COllege simulations. The broader
coverage of stellar densities is noticeable, marking one of the improvements in SKiLLS.
Also, stars in SKiLLS have nine-band magnitudes consistently predicted from a library
of stellar spectra (see Girardi et al. 2005, for details), while in COllege, stars only have
r-band magnitudes.

3.3 KiDS+VIKING nine-band image simulations

This section details the creation and processing of the multi-band mock images. We start
with the creation of KiDS-like optical images (Sect. 3.3.1) and VIKING-like infrared
images (Sect. 3.3.2), then summarise the SKiLLS fiducial setups in Sect. 3.3.3. We end
the section with the measurement of colours and photometric redshifts (Sect. 3.3.4).

3.3.1 KiDS-like optical images

Each KiDS pointing consists of four-band optical images taken with the OmegaCAM
camera at the VLT Survey Telescope (Kuijken 2011): u, g, r and i. The r-band images
are the primary products used for the shear measurement, while the remaining bands
are only for photometric measurements. The science array of the OmegaCAM camera
has a ~1° x 1° field of view covered by 8 x 4 CCD images, each of size 2048 x 4100
pixels with an average resolution of 0”7214. Although the CCDs are mounted as closely
as possible, a narrow gap between the neighbouring CCDs is technically inevitable. The
average gap sizes between the pixels of neighbouring CCDs are:

* between the long sides of the CCDs: 1.5 mm (100 pixels)

* central gap along the short sides: 0.82 mm (55 pixels)

Bhttp://stev.oapd.inaf.it/cgi-bin/trilegal
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Figure 3.3: Comparison of the overall magnitude-morphology relationships across
several redshift bins. The training and target samples are represented by red solid and
blue dashed lines, respectively. The top panel illustrates the average half-light radius as
a function of r-band magnitude, while the bottom panel depicts the average ellipticity
as a function of r-band magnitude. Statistical uncertainties displayed are calculated
from 500 bootstrap iterations. The top panel also includes histograms of normalised
magnitude distributions, indicating that the bright galaxies at higher redshifts from the
simulation contribute minimally to the overall population.
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Figure 3.5: The r-band input magnitude distributions for the six stellar catalogues
utilised by SKGiLLS. Labels represent the pointing centres (RA, Dec), with the exception
of ‘COllege’, which signifies the stellar catalogue employed by K19.

» wide gap along short sides: 5.64 mm (376 pixels)

To avoid ‘dead zones’ caused by these gaps, each tile image incorporates multiple
dithered exposures (five in the g, » and i bands, four in the # band). The dithers form
a staircase pattern with steps of 25”” in RA and 85" in declination to match the gaps
between CCDs (de Jong et al. 2013).

KiDS raw observations are processed with two independent pipelines: the AsTro-
WISE pipeline designed for the photometric measurements (McFarland et al. 2013; de
Jong et al. 2015)*, and the THELI pipeline optimised for the shape measurements (Erben
et al. 2005; Schirmer 2013; Kuijken et al. 2015)15. While the former is applied to all
four-band observations, the latter is only used for the r-band observations, as KiDS only
measures galaxy shapes for lensing in the r-band images. The main difference between
the AsTro-WISE and THELI pipelines is in the co-addition process, where the former
resamples all exposures to the same pixel grid with a uniform 0’720 pixel size, while the
latter preserves the original pixels to maintain image fidelity as much as possible.

We kept all these features in mind when generating SKiLLLS optical images. We
created raw exposures using the GaLSim pipeline!® (Rowe et al. 2015), with galaxies
and stars from the mock catalogues described in Sect. 3.2. The underlying canvas
mimicked the science array of the OmegaCAM camera, including pixels and gaps.

Uhttp://www.astro-wise.org/
Bhttps://www.astro.uni-bonn.de/theli/
https://github.com/GalSim-developers/GalSim
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SKiLLS KiDS tile 133.0.0.5

Figure 3.6: Comparison of the THELI weight image generated by SKiLLS (shown in the
left panel) with a randomly chosen example from KiDS (depicted in the right panel).
The 8 x 4 CCDs span a sky area of approximately one square degree. The shallow
regions are attributed to gaps in individual exposures. A similar level of agreement is
also observed in the AsTro-WISE co-added images.

Galaxies and stars were mapped to the canvas using the gnomonic (TAN) projection
of their original sky coordinates. Following the KiDS image processing, we stacked
exposures using the SWarp software (Bertin 2010), with the identical setups as in the
KiDS pipelines, including AsTro-WISE-like images re-gridded to a uniform 0”720 pixel
size and THELI-like images preserving the original 07214 pixel size. Figure 3.6 compares
a co-added THELI weight image from SKiLLS to a randomly selected tile from KiDS. It
shows that the SKiLLS images contain the main features of KiDS images, including
the gaps and dither patterns, albeit lacking subtle features, such as the inhomogeneous
backgrounds between CCDs and masks of satellites.

Besides the image layout, we need information on the pixel noise and point spread
function (PSF) to mimic observational conditions. We extracted this information from
the fourth public data release of KiDS (KiDS-DR4, or DR4 for short, Kuijken et al. 2019).
It has a total of 1006 square-degree survey tiles with stacked ugri images along with their
weight maps, masks and source catalogues. We selected a representative sample of 108
tiles and replicated their properties in our image simulations (see Sec. 3.3.3 for details).
For the raw pixel noise, we adopted Gaussian distributions with variances estimated from
the Astro-WISE weight maps corrected with a boost factor of ~1.145 [: (0.214/ 0.2)2]
to account for the re-gridding effect. For the PSF, we used two approaches, depending
on the different usages of the images.

For the r-band images from which galaxy shapes are measured, we used the position-
dependent PSF models for individual exposures. These PSF models, constructed from
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well-identified stars, are in the form of two-dimensional polynomial functions and can
recover a PSF image in the pixel grid for any given image position (see Miller et al. 2013;
Kuijken et al. 2015; Giblin et al. 2021 for details). In practice, we recovered 32 PSF
images for each exposure using the centre positions of the CCD images. The recovered
PSF images contain modelling uncertainties, which can introduce artificial spikes when
being used to simulate bright stars. Therefore, we applied a cosine-tapered window to
the original PSF image to suppress the modelling noise at its outskirts. The two edges
of the window function are defined at 5 and 10 times the full-width half-maximum
(FWHM) of the target PSF to preserve features in the central region as much as possible.
With these recovered PSF images, we can treat the 32 CCD images separately using
their own PSFs, a significant improvement from the constant PSF used in previous work.
The recovered PSF image is also superior to a Moffat profile as it captures more delicate
features of complex PSFs, such as ellipticity gradients.

For other optical bands where only photometry is measured, we still adopted the
Moffat profile, given that the photometric measurement is insensitive to the detailed
profile of PSF. We estimated the Moffat parameters by modelling bright stars identified
in the AsTro-WISE images. Since the photometry is measured from the stacked images
and is less sensitive to the gentle PSF variation within a given tile, we kept the PSF
model invariant for all exposures for simplicity. To alleviate the Moffat fitting bias
introduced by the pixelisation of CCD images, we applied the first-order correction to
the measured Moffat parameters using image simulations. Specifically, we simulated
the pixelated PSF image using measured Moffat parameters and then remeasured them
with the same fitting code. The difference between the remeasured and input values is
the correction factor and is subtracted from the initially measured value. Our test shows
that this correction can suppress the original percent-level bias down to a sub-percent
level, which is sufficient for our photometry-related purpose.

3.3.2 VIKING-like infrared images

To improve the accuracy of photometric redshifts, KiDS includes near-infrared (NIR)
measurements from the VISTA Kilo-degree Infrared Galaxy (VIKING) survey (Edge
et al. 2013). The two surveys share an almost identical footprint. We refer to Wright et al.
(2019) for details of the VIKING imaging and its usage in KiDS. Briefly, the VIKING
data have three levels of products: exposures, paw-prints, and tiles. Given the complex
NIR backgrounds, the VIKING survey first takes multiple exposures in quick succession
with small jitter steps for reliable estimation of the noisy background. These exposures
are then stacked together to create the second level of product: the ‘paw-print’. A
paw-print still contains gaps between individual detectors, so six paw-prints with a dither
pattern are used to produce a contiguous tile image. However, these co-added tiles have
non-contiguous PSF patterns caused by the large dithers between successive paw-prints.
Therefore, in the KiDS+VIKING analyses, photometry is done on individual paw-prints
instead of the co-added tiles. The dither pattern of paw-prints causes multiple flux
measurements per source (typically four in the case of the J-band and two in the other
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bands). The final flux estimate for each source is a weighted average of the individual
measurements with the weights derived from individual flux errors.

Given the complexity of the VIKING observing strategy, we simplified the NIR-
band observations in SKiLLS with single images per square degree of KiDS tile. To
compensate for the simplified images, we considered the overlap between individual
paw-prints when estimating the observational conditions. As we show in Sect. 3.3.4, this
simplified approach can still achieve realistic photometry, which is the only important
quality we seek from the NIR-band images.

Specifically, we created a ‘flat-field image’ for each paw-print with the same size
and pixel scale. Its pixel value equals the absolute standard deviation of the background
pixel values on the corresponding paw-print. For each KiDS pointing, we selected all
VIKING paw-prints that overlap in the given one square-degree sky area and stacked their
flat-field images with shifts accounting for the different sky pointings of the paw-prints.
We took the median pixel value of the co-added flat-field image as the final pixel noise
of the corresponding KiDS pointing. In doing so, we captured various overlapping
VIKING paw-prints in individual KiDS pointings. Following the typical situations of
the KiDS+VIKING data (Wright et al. 2019), we only preserved KiDS pointings with
at least two paw-prints in the ZY HK ;-bands and at least four paw-prints in the J-band.
This requirement reduced the number of pointings from 1006 to 979, which is still
plentiful for our purpose. As for the PSF, we employed a constant Moffat profile for
each KiDS pointing. The PSF FWHM is a weighted average from overlapping VIKING
paw-prints with the weights determined by their noise levels. In order to determine
the Moffat concentration index for a given FWHM value, we fitted Moffat profiles to
bright stars in some representative paw-prints. The Moffat fitting bias introduced by the
pixelisation is corrected using the same method introduced in Sect. 3.3.1. We found the
relationship between the Moffat index n and FWHM (arcsec) in VIKING images to be:
In(n) = 66.56 exp (—6.36 FWHM) + 0.90. This empirical formula is used to pair each
FWHM with a unique Moffat index.

3.3.3 SKIiLLS fiducial setup

Since we have 108 deg® of SHARK galaxies as described in Sect. 3.2.1, we selected 108
KiDS pointings for the SKiLLS fiducial run. Figure 3.7 shows the sky locations of the
selected 108 tiles along with the 979 KiDS-DR4 tiles that have the nine-band noise and
PSF information. Clusters of the selected blocks pair with the six stellar catalogues
generated from TRILEGAL so that SKIiLLS captures the stellar density variation across
the whole KiDS survey (see Sect. 3.2.2).

Figure 3.8 compares the r-band noise and PSF properties between the SKiLLS
selected tiles and all usable KiDS-DR4 tiles. We measured the PSF size and ellipticity
using the weighted quadrupole moments with a circular Gaussian window of dispersion
2.5 pixels, the typical galaxy size in the KiDS sample. The PSF size is defined as

rpse = (011022 — 03)'*, (3.4)
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Figure 3.7: Sky distribution of the KiDS-DR4 tiles. The tiles marked in blue are
incorporated in the SKILLS fiducial run, accounting for a total of 108 tiles. The grey
blocks represent all KiDS-DR4 tiles, amounting to 979, for which nine-band noise and
PSF information are available. The black stars signal the centres of the stellar catalogues
generated using TRiLEGAL (Girardi et al. 2005).

where Q;; are the weighted quadrupole moments, and the PSF ellipticity is defined by
Eq. (3.2). Figure 3.8 shows that the selected tiles represent the KiDS-DR4 data well.
Because we vary PSF for individual CCD images and exposures, the 108 SKiLLLS images
cover 17 280 different PSF models, a significant extension of the 65 PSF models used
by FC17 and K19. That also explains the smooth distributions of the PSF parameters.
Figure 3.9 shows similar comparisons for other bands. Again we see fair agreements
across all bands. As KiDS-DR4 already covers ~75% of the whole survey, we expect a
similar agreement to the KiDS-Legacy data. The wide coverage of the noise and PSF
properties also makes the SKiLLS results more robust than previous simulations and
simplifies sensitivity tests (see Sect. 3.6 for details).

3.3.4 Photometry and photometric redshifts

With the simulated multi-band images, we can measure colours and estimate photometric
redshifts (photo-zs) for simulated galaxies using the same tools developed in KiDS with
minor adjustments.

For galaxy colours, we used the GAAP (Gaussian Aperture and PSF) pipeline
(Kuijken et al. 2015, 2019). It provides accurate multi-band colours by accounting
for PSF differences between filters and optimises signal-to-noise ratio (S/N) by down-
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Figure 3.8: Comparison of normalised histograms for pixel noise (top left), PSF size
(top right), and PSF ellipticity (bottom left) between KiDS-DR4 (depicted in red) and
SKILLS (in blue) within the r-band images. Both PSF size and ellipticity are measured
from the recovered PSF image employing a circular Gaussian window of a sigma value
of 2.5 pixels.

weighting the noise-dominated outskirts. The latter is possible because the photo-z
estimation only needs the ratio of the fluxes from the same part of a galaxy in the given
bands rather than the total light. A prerequisite for the GAAP pipeline is a detection
catalogue with source positions and aperture parameters, which we measured from the
THELI-like r-band images using the SExTRAcTOR code (Bertin & Arnouts 1996). Once
the detection catalogue is ready, we can obtain the list-driven photometry by running the
GAAP algorithm on the u, g, r and i AsTro-WISE-like images and the Z, Y, J, H and
K simple images. In short, the GAAP method includes three major steps:

1. Homogenising PSFs by convolving the whole image with a spatially variable
kernel map modelled from high S/N stars. The resulting image has a simple
Gaussian PSF, for which estimating the PSF-independent Gaussian aperture flux is
possible. The main side effect is that the convolution process introduces correlated
noise between neighbouring pixels, complicating the estimation of measurement
uncertainties. GAAP handles this by tracking the noise covariance matrix through
the whole process.

2. Defining an elliptical Gaussian aperture function for each source using the size and
shape parameters measured by SExTrRACTOR on the r-band detection images. In
practice, users must customise the minimum and maximum GAAP aperture sizes
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Figure 3.9: Comparison of normalised histograms for pixel noise (top) and PSF FWHM
(bottom) across bands used solely for photometry, contrasting KiDS-DR4 (red) with
SKiLLS (blue). The equivalent comparisons for the lensing r-band images are illustrated
in Fig. 3.8. To facilitate comparison in the same range, pixel noise values are normalised
by their median values in each band.
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Figure 3.10: Differences in the median 10 GAAP limiting magnitudes across the nine
bands (simulation - data). The three lines represent the 16, 50 and 84 percentiles derived
from the 108 tiles incorporated in the SKIiLLS fiducial run. The larger scatters in the
NIR bands can be partially attributed to the adoption of a simplified simulation strategy.

to balance the S/N and the effect of blending. Following the KiDS fiducial setup,
we set the maximum aperture to 2’ to avoid contamination from neighbouring
sources. We conducted two separate runs by setting the minimum aperture to 0”7
and 1’70. When used as the input for the photo-z estimation, a source-by-source
decision was made to optimise the flux errors across the nine bands (see Kuijken
et al. 2019 for details).

3. Performing the aperture photometry on the PSF-Gaussianised images for each
band using the defined aperture functions. It is worth stressing that GAAP aims to
provide robust colours for the high S/N parts of galaxies; it underestimates the
total fluxes for extended sources by design.

Figure 3.10 compares the nine-band 100 GAAP limiting magnitudes between the
KiDS-DR4 data and SKILLS fiducial results. We calculated the median limiting
magnitudes for tiles in both KiDS and SKiLLS and then compared their differences.
We see a general agreement for all the bands, verifying our noise and PSF modelling.
Noticeably, even for the NIR bands where we simplified the VIKING observations
with single images, the differences are still tolerable, albeit with larger uncertainties.
Figure 3.11 compares the GAAP photometric distributions between the simulation and
data. Once again, we see a decent agreement in both magnitude and colour distributions.

For the photo-z estimation, we implemented the public Bayesian Photometric
Redshift (Bpz, Benitez 2000) code with the re-calibrated template set from Capak (2004)
and the Bayesian redshift prior from Raichoor et al. (2014). We closely followed the
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Figure 3.11: Comparison of the GAAP magnitudes (top panel) and colours (bottom
panel) for KiDS-DR4 (red) and SKiIiLLS (blue). The displayed results incorporate all
galaxies possessing valid photometric measurements (with the GAAP flags equating to
zero across nine bands). No shape-measurement-related filters have been applied at this

stage.
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Figure 3.12: Photometric versus true redshifts distributed across several apparent 7-band
magnitude bins. The annotated statistics are: the normalised median-absolute-deviation
(o) of the variable Az/(1 + z), the proportion of sources with |Az/(1+z)| > 30,
(173) and the proportion of sources with |Az/(1+ z)| > 0.15 ({o.15). The dashed lines
represent the one-to-one correlation, while the dotted lines indicate |Az/(1 + z)| = 0.

settings in the KiDS-DR4 analysis (Kuijken et al. 2019) unless it conflicts with the
simulation input. For example, we set ZMAX to 2.5, the limiting redshift of SKiLLLS
galaxies, instead of 7.0 as in the data. We tested the choice of ZMAX in the simulations
and found that only 0.1% of the test sample resulted in estimates differing more than
0.1, which means most of the objects have similar photo-z estimates and end up in the
same tomographic bins for these two choices. Moreover, the SHARK photometry in the
u, g, r,i and Z bands is based on the Sloan Digital Sky Survey (SDSS) photometric
system, which is slightly different from the KiDS/VIKING system (Kuijken et al. 2019).
We corrected these slight differences in the measured GAAP magnitudes in order to use
the KiDS/VIKING filters to run the Bpz code. The detailed procedures and comparisons
are described in Appendix 3.C. Overall, the modification is minor and has a negligible
impact on the magnitude, colour distributions, and final shear biases. Still, it improves
the agreement between the simulation and the data in the photo-z distributions. Unless
specified otherwise, we base our fiducial results on the transformed photometry.

Figure 3.12 compares the estimated photo-z to the true redshift from the input
SURFS-SHARK simulations in several measured magnitude bins. It shows the photo-z vs.
true redshift distributions, along with annotated statistics based on the distributions of
(zB — Ztrue) / (1 + zyrue) = Az/(1 + z) values. We see the Brz code works well in SKiLLS
and is at the same level as in KiDS (Wright et al. 2019). More detailed verification of
the SKiLLS photo-z performance is presented in the companion redshift calibration
paper (van den Busch et al., in prep).

As for the redshift calibration, our end-to-end approach, which starts with image
simulation followed by object detection, PSF homogenisation, forced multi-band pho-
tometry, and photo-z estimation, is a significant improvement compared to previous
catalogue-level simulations (e.g. Hoyle et al. 2018; van den Busch et al. 2020; DeRose
et al. 2022). The image-simulation-based approach not only yields more realistic
observational uncertainties but also naturally accounts for the blending effect, which
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is hard to address at the catalogue level. As for the shear calibration, these photo-z
estimates are essential for performing tomographic selections (K19). Our approach that
directly measures the photo-zs from simulated images accounts for various measurement
uncertainties of photo-zs, hence a tomographic selection consistent with how it is done in
the data. Moreover, using the same mock catalogue in both shear and redshift calibration
unites these two long-separated processes in the KiDS-Legacy analysis.

3.4 Shape measurements with the updated lensfit

The primary task of any weak lensing survey is to measure the shapes of galaxy
images. Previous KiDS analyses tackled this task using a likelihood-based code, dubbed
lensfit (Miller et al. 2007; Kitching et al. 2008; Miller et al. 2013). It is the default shape
measurement algorithm for the KiDS-Legacy analysis, with some updates described in
this section. We test SKiLLS using this updated lensfit code!’.

3.4.1 The self-calibration version of lensfit

The lensfit code, first developed for CFHTLenS (Heymans et al. 2012), follows a Bayesian
model-fitting approach. We refer to Miller et al. (2013) for its detailed formalism. In
brief, it first performs a joint fit to individual exposures using a PSF-convolved galaxy
model, which yields a likelihood distribution of seven parameters: 2D position, flux,
scalelength, bulge-to-total flux ratio and complex ellipticity. Then it deduces the
ellipticity parameters from the likelihood-weighted mean values by marginalising other
parameters with priors as described by Miller et al. (2013). For each ellipticity estimate,
an inverse-variance weight is also determined from (Miller et al. 2013)
2 2 -1
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where o ; is the uncertainty of the measured ellipticity, o¢ pop is the ellipticity
dispersion of the galaxy population (intrinsic shape noise), and €y« is the maximum
allowed ellipticity in the lensfit model-fitting. As for KiDS data, we adopted ¢, pop =
0.253 and €pax = 0.804.

The code has evolved as KiDS progressed. The most significant is a self-calibration
scheme for noise bias, as detailed in FC17. The pixel noise in a given image skews the
likelihood, which biases the estimate of individual galaxy ellipticities. It is a complex
function of the signal-to-noise ratio, galaxy properties and PSF morphology, making it
difficult to predict accurately. Thus, lensfit conducts an approximate correction using the
measurements themselves, that is a self-calibration. The basic idea is to simulate a test
galaxy with parameters measured from the first run, then remeasure the test galaxy using
the same pipeline. The difference between the remeasured and input values serves as a

7Nevertheless, we note that SKiLLS can also calibrate other algorithms, such as the KiDS METacaLI-
BRATION catalogue (Yoon et al., in prep.).
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correction factor for the corresponding parameter. Since its introduction, self-calibration
has been a standard part of lensfit, given its promising overall performance (Mandelbaum
et al. 2015; FC17; K19). We keep this feature for the KiDS-Legacy analysis.

3.4.2 Updates for KiDS-Legacy analysis

A long-standing mystery of all previous /ensfit analyses has been the presence of a small
but significant residual bias in € that is uncorrelated with the PSF and the underlying
shear (Miller et al. 2013; Hildebrandt et al. 2016; Giblin et al. 2021). We now understand
that this feature arises from an anisotropic error in the original likelihood sampler, which
has been corrected in our algorithm. However, we found that this correction inadvertently
increases the fraction of residual PSF contamination in the weighted average signal (see
the discussion in Giblin et al. 2021). Besides, object selection and galaxy weights are
also known to introduce bias (e.g. Kaiser 2000, Bernstein & Jarvis 2002, Hirata & Seljak
2003, Jarvis et al. 2016 and FC17). These selection biases can be more severe than the
raw measurement bias and hence cannot be ignored even for a perfect self-calibration
measurement algorithm.

FC17 presented a method to isotropise weights using an empirical correction scheme,
which has been adopted in previous KiDS studies to mitigate these biases. Unfortunately,
we found this approach to be insufficient for the improved lensfit algorithm. Furthermore,
we found the approach to be sensitive to the sample volume, and therefore hard to apply
consistently to the data and simulations. So, we introduce a new empirical correction
scheme that mitigates the PSF contamination to the weighted shear signal.

Weight correction

We begin by investigating the impact of PSF leakages on the reported weight. For
galaxies of similar surface brightness, those oriented in the same direction as the PSF
tend to exhibit a higher integrated signal-to-noise ratio compared to those perpendicular
to the PSF. This orientation bias introduces an asymmetry in the measurement variance
(the 0'5’ ; term in Eq. 3.5), which can be quantified using a first-order linear function:

S; = asepsF, i, prioj + N [(S), o] . (3.6)

Here, S; = o-g’ ; signifies the measurement variance, while €psF, ;, proj denotes the scalar
projection of the PSF ellipticity along the direction of the galaxy ellipticity. The term
as quantifies the degree of PSF contamination in the measurement variance. The noise,
denoted by N [(S), o], is assumed to follow a Gaussian distribution with a mean of
(S) and a standard deviation of o.

Following FC17, we estimate the PSF contamination as a function of the integrated
signal-to-noise ratio (vsn) reported by lensfit and the resolution, which is defined as

2

’
- PSF
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Figure 3.13: PSF leakage in the measurement variance as a function of signal-to-noise
ratio and the resolution parameter R. We note that, according to the definition in
Eq. (3.7), a larger R corresponds to a lower resolution.

where ryp, = req/q is the circularised galaxy size with r. and g denoting the scalelength
along the major axis and the axis ratio, respectively. The PSF size rpgsr is defined by
Eq. (3.4). By construction, the resolution R has a value between 0 and 1, with a larger
value corresponding to a more poorly resolved object.

When estimating as, we first divide galaxies into an irregular 20 X 20 grid of vgn
and R, each containing the same number of objects. Then in each bin, we perform a
linear regression using Eq. (3.6) to measure ag. Figure 3.13 shows the measurements
for the KiDS-DR4 re-run with the updated /ensfit. It demonstrates a clear correlation
between the estimated as and the vgny and R. We derive the corrected measurement
variance for individual galaxies through O'z’ i corr = 0'3’ ; — @SEPSF, i, proj, Where the
value of ag is determined based on which vgn-R bin the target galaxy is assigned to.
The corrected lensfit weight is then calculated with

2 2 -1
_ O-e, i, corr €max 2
Weorr, i = 5 5 + O, pop s (38)
2ex. — 40
max €, I, corr

following Eq. (3.5). We verified that this approach is sufficient to remove the overall
weight bias and is robust against the binning scheme.
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Figure 3.14: PSF leakage in the measured ellipticity after the weight calibration, plotted
as a function of signal-to-noise ratio and the resolution parameter R. We note that,
according to the definition in Eq. (3.7), a larger R corresponds to a lower resolution.

Ellipticity correction

In addition to the weight bias, there is still some residual PSF leakage in the measured
ellipticity because of the residual noise bias and selection effects. To first order, this
residual PSF bias can be formulated as

€obs, i = Etrue, i + X €psE, i +C+ N [0, o] , (3.9)

where €., ; 1S the measured ellipticity, €y, ; 1S the underlying true ellipticity, « is the
fraction of the PSF ellipticity epgF, ; that leaks into the measured ellipticity, and c is
an additive term uncorrelated with the PSF. N [0, o] denotes the noise in individual
shape measurements, which are assumed to follow a Gaussian distribution of mean
0 and standard variation o.. We note that all parameters in Eq. (3.9) are complex
numbers (o« = a; +iap). We focus on the a term, as the ¢ term with the improved
likelihood sampler is now small in practice, and the N [0, o] vanishes for an ensemble
of galaxies.

Like the weight bias correction, we first estimate & in the 20 X 20 grid of vgy and R
using a linear regression of Eq. (3.9). Figure 3.14 shows the amplitude of « in the 2D
vsn and R plane. We see modest values in most situations, except for the low vgyn cases,
where it drops abruptly to negative values. We confirmed that the negative tail is mainly
from the selection effects by measuring the PSF leakage using the input ellipticity in
simulations. This non-trivial negative tail prevents us from using the direct correction
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approach introduced in the weight bias correction section. Therefore, we propose a
hybrid approach, with a fitting procedure for the overall trend and a direct correction for
residuals. Specifically, we first fit the measured « as a function of vgn and R, using a
function of the form

ap(vsn, R) =ap+ alvgf, + “2"5_131 +b1R+c1R Vs_1\21 , (3.10)

whose coeflicients are constrained using the weighted mean results from the 20 x 20
grid. Then, we correct the raw measurements of individual galaxies using €ops, i, tmp =
€obs, i — &p(VsN, i» Ri) €psr, i, where the polynomial &, (vsn, i, R;) is determined
from the target galaxy’s vsn,; and R;. After removing the overall trend, we use
the corrected €gps, i, tmp t0 measure the residual «;, which changes mildly across
the 2D vgn and R plane. Therefore, we can conduct the direct correction through
€obs, i, corr = €obs, i, tmp — &r EPSF, ;> Where the values of «; for individual galaxies are
determined based on which vgn-R bin they are assigned. This two-step approach
balances performance and robustness. We verified that the corrected measurements have
negligible PSF leakages and the results are robust against the binning scheme.

3.4.3 Comparison between KiDS and SKiLLS

We applied the updated lensfit code to KiDS-DR4 and SKiLLS r-band images. The
object selections after the measurements are detailed in Appendix 3.D. In short, we
largely followed the selection criteria proposed in Hildebrandt et al. (2017), with an
additional resolution cut introduced to mitigate the PSF contamination. We applied the
same selections to the KiDS data and SKiLLS simulated catalogue to ensure a consistent
selection effect, even though SKiLLS does not contain artefacts like asteroids and binary
stars.

Figure 3.15 compares the weighted distributions of some critical observables reported
by the updated lensfit. The SKiLLS results match the KiDS-DR4 data reasonably well.
We also checked the properties of the close pairs. Specifically, we show the magnitude
difference and the projected distance between close pairs in the measured catalogues.
Both properties agree well between the data and simulations, implying SKiLLLS has
realistic clustering features. These realistic neighbouring properties are essential for an
accurate shear calibration, especially when considering the shear interference between
blended objects (see Sect. 3.5 for details).

3.5 Shear biases for the updated lensfit

The central task of image simulations is to quantify the average shear bias for a selected
source sample. This is done by comparing the inferred shear b, to the input shear
Yinput- Which have a linear correlation to the first order (Heymans et al. 2006)

Yobs = (1 +m) Yinpue + €, (3.11)
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Figure 3.15: Comparison of the updated lensfit measurements between KiDS (rep-
resented in red) and SKiLLS (in blue). All distributions are normalised using lensfit
weights, with the exception of the /ensfit weight distribution itself. Neighbour properties
are based on the nearest neighbour identified in the measured catalogue. The magnitude
difference is calculated by subtracting the primary target’s neighbour magnitude from
that of the neighbour. The absence of closely paired galaxies with a distance less
than ~1 arcsecond results from the conservative blending cut used by KiDS (refer to
Appendix 3.D). This cut effectively mitigates the most severe blending bias.
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where m is known as the multiplicative bias, and c is the additive bias. The simulation-
based calibration focuses on the multiplicative bias, as the additive bias is usually
corrected empirically (for example, the correction scheme proposed in Sect. 3.4.2).
So we use the term ‘shear bias’ and ‘multiplicative bias’ interchangeably throughout
the paper. We note that all parameters in Eq. (3.11) are in complex forms, such as
m = mj +1imy. However, we found m; and m, to be consistent in our analysis, so unless
specified, we only report the amplitude m.

The shear calibration methodology keeps evolving as our understanding of system-
atics deepens. Early studies demonstrated that the shear bias correlated with galaxy
properties and PSFs, especially the signal-to-noise ratio and resolution (e.g. Miller
et al. 2013; Hoekstra et al. 2015; Mandelbaum et al. 2018; Samuroff et al. 2018). So
the first lesson is to avoid using one averaged result from the whole simulation as a
scalar calibration to the entire data unless the simulations perfectly represent the data. A
natural procedure then attempts to estimate the shear bias as a function of the galaxy and
PSF properties (e.g. Miller et al. 2013; Jarvis et al. 2016). Nevertheless, we can only
derive the relation of the bias to the noisy, measured properties, as the true properties
are unknown in actual data. FC17 found that the relation derived from the measured
properties introduces biases because of the correlations between observed quantities,
an effect referred to as the ‘calibration selection bias’. So the second lesson is that we
should be cautious about object-based shear calibrations that rely on the relation to the
noisy properties. That is why the recent simulations try to resemble the data and only
provide a mean correction for an ensemble of galaxies (e.g. K19). The latest lesson,
stressed by MacCrann et al. (2022), is the interplay between shear estimates of blended
objects at different redshifts, a higher-order effect that the traditional constant shear
simulations cannot capture. It becomes more important as the precision of surveys
improves.

Our shear calibration method builds on all these lessons. We created constant shear
simulations following the previous KiDS tomographic calibration method but with
improvements to the photo-z estimates by taking advantage of the simulated multi-band
images (Sect. 3.5.1). Using additional blending-only variable shear simulations, we
applied a correction to account for the interplay between blends containing different
shears (Sect. 3.5.2). When testing the PSF modelling algorithm in image simulations,
we detected a small but noticeable change of shear bias, which was also corrected in our
fiducial results (Sect. 3.5.3).

3.5.1 Results from the constant shear simulations

Our constant shear simulations largely followed FC17 and K19 with some simplifications
for better usage of computational resources. Table 3.1 lists the main changes we made
compared to our predecessor. Given the 108 deg? of unique synthetic galaxies we built
in Sect. 3.2, we mimicked 108 KiDS pointings, where we vary the PSF, noise level
and stellar density as detailed in Sect. 3.3. To reduce the shape noise, we copied each
tile image with galaxies rotated by 90 degrees. We created four sets of constant shear
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simulations with input shear: (0.0283,0.0283), (0.0283, —0.0283), (—0.0283, —0.0283),
(—0.0283,0.0283). The total simulated area is 864 (= 108 x 4 x 2) deg?, which
is equivalent to ~5170 deg? after accounting for the shape noise cancellation (=
864 X (0 ¢ raw/ UG,SNC)Q, where 0 ¢ raw and o ¢ sne denote the weighted dispersion of the
mean input ellipticities before and after the shape noise cancellation), which is roughly
four times the final KiDS-Legacy area.

For a tomographic analysis, we need to estimate the bias for each redshift bin
separately, given that the galaxy properties vary between bins. This requires photo-z
estimates for the simulated galaxies. For SKiLLS, we can follow the KiDS processing
steps to directly measure photo-zs, thanks to the simulated nine-band images. We
conducted the detection from the THELI-like r-band images, the PSF Gaussianisation and
forced multi-band photometry using the GAAP pipeline, and the photo-z estimates with
the BPz code (see Sect. 3.3.4 for details). This consistent data processing ensures that
SKiLLS embraces realistic photometric properties, marking one of the most significant
improvements over the previous image simulations.

Table 3.1: Differences between the COllege (K19) and SKiLLS simulations.

COllege (K19) SKiLLS (this work)

Galaxies Morphology  Sérsic models with pa- Sérsic models with pa-
rameters taken directly rameters learned from
from the HST-ACS mea- the HST-ACS measure-
surements (Griffith et al. ments (Sect. 3.2.1)
2012)

Photometry  Single-band  magni- Nine-band synthetic
tudes from the Subaru magnitudes based
r*-band observations on a semi-analytic

model (Sect. 3.2.1)

Depth Limited by the HST- Extending to 27th mag-
ACS measurements nitude in the r band

Position Based on the observed Based on the SURFS N-
locations in the COS- body simulations (Elahi
MOS field et al. 2018)

Stars Photometry  Single-band synthetic Nine-band synthetic
magnitudes from the magnitudes from the
Besancon model (Robin  TriLEGAL model (Gi-
et al. 2003; Czekaj et al. rardi et al. 2005)
2014)

Images Band the r-band images only the full nine-band im-

ages

Continued on next page
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Table 3.1 continued from previous page

COllege (K19) SKiLLS (this work)

Layout 32 CCDswithevengaps 32 CCDs with variable
in between gaps as in the actual

camera (Fig. 3.6)

PSF 13 sets of spatially con- 108 sets of spatially
stant Moffat profiles, varying  polynomial
with each containing models, with each
five different models containing 5 X 32
corresponding to the different models
five exposures

Noise One fixed noise level for 108 different noise lev-
all tiles els

Stack Only TtHELI-like stacks Both THELI-like and As-
for shape measurements TRO-WISE-like stacks

for shape and photomet-
ric measurements, re-

spectively
Measure Shape From the self- From the updated /ensfit
calibration version with the AlphaRecal
of lensfit with the method detailed in

weight bias correction Sect. 3.4.2

of FC17

photo-z Assigned with the KiDS  Measured from the

observations of the
COSMOS field

simulated nine-band
images following
the KiDS photomet-
ric processing steps
(Sect. 3.3.4)

Sample variance

Identical input cata-
logues of galaxies and
stars for all the 13 reali-
sations

Different galaxy cata-
logues for the 108 re-
alisations and six stel-
lar catalogues for the
selected sky blocks
(Fig. 3.7)

Continued on next page
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Table 3.1 continued from previous page

COllege (K19) SKILLS (this work)
Input shears Eight sets of constant Four sets of constant
shears shears in the baseline

simulations and a vari-
able shear field for the
blended objects (Ap-
pendix 3.E)

Shape noise cancellation” Each tile has three coun- Each tile has one coun-
terparts with galaxies terpart with galaxies ro-
rotated by 45, 90 and tated by 90 degrees
135 degrees

Total simulated area 416 deg? 864 deg? in the constant
shear simulations plus
7776 deg® of blending-
only simulations for
the correction of the
‘shear interplay’ effect
(Sect. 3.5.2)

(@) We verified that the four sets of input shears are sufficient to recover the previous
results.

(P) Although more rotations suppress shape noise more efficiently (FC17), the
selection effects diminish the actual performance of the shape noise cancella-
tion (K19).

As shown in Fig. 3.15, SKILLS matches KiDS generally well but not perfectly. K19
argued that an accurate estimate of the shear bias must account for any mismatches
between the simulations and the target data. Therefore, we followed FC17 and K19 to
reweight the simulation estimates using the lensfit reported vsy and resolution factor R
(Eq. 3.7). Specifically, for each tomographic bin, we first divided simulated galaxies
into 20 X 20 bins of vgy and R, each containing equal lensfit weight. Then we estimated
the multiplicative bias for each vgn-R bin using Eq. (3.11). Galaxies in the target data
were assigned the bias based on the vsn-R bin they fall in, and the final bias for each
tomographic bin was the lensfit-weighted average of these individual assignments. This
procedure ensures the estimated bias accounts for any vgy and R differences between the
simulations and the data while also minimising the impact of the calibration selection
bias.

Table 3.2 and Figure 3.16 show the multiplicative bias estimates for the KiDS-DR4
re-run with the updated lensfit from our constant shear simulations. The quoted errors
only contain the statistical uncertainties from the linear fitting. Compared to Table 2 of
K19, we reduced the statistical uncertainties by about half because of the larger sky area
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Figure 3.16: Multiplicative bias across tomographic bins for KiDS-DR4, with the
updated lensfit. The red diamonds represent our final results, including corrections
for the shear-interplay effect (Sect. 3.5.2) and PSF modelling bias (Sect. 3.5.3). The
grey points, on the other hand, display the raw results from the idealised constant
shear simulations (Sect. 3.5.1). The hatched regions denote the proposed nominal error
budgets, intended for comparison (refer to Sect. 3.6 for more details).

simulated. Direct comparisons between the calibration values quoted in Table 3.2, cannot
be made to those in K19 and Giblin et al. (2021). We updated the shape measurement
algorithm /ensfit and calibrated the raw measurement against PSF contamination in our
analysis (see Sect. 3.4.2). These changes modify the effective size and signal-to-noise
ratio distribution of the samples and hence the overall calibration in each tomographic
bin. Furthermore, Giblin et al. (2021) accounts for the Wright et al. (2020a) ‘gold’
selection for photometric redshifts, which reduces the effective number density by ~20%,
compared to the sample simulated in this analysis.

3.5.2 Impact of blends at different redshifts

MacCrann et al. (2022) recently highlighted a complication that arises from blended
objects at different redshifts, which are, therefore, sheared by different amounts. It stems
from the fact that when objects are blended, a shear measurement of one object responds
to the shear of the neighbouring object. This higher-order effect, which we refer to as
‘shear interplay’ through this paper, cannot be captured by the aforementioned constant
shear simulations. So, we built an extra suite of variable shear simulations to account
for this effect.

Since the shear interplay only happens when objects are blended, we built a blending-
only input catalogue for these additional simulations to save some computing time. This
blending-only catalogue only contains bright galaxies with bright neighbours, assuming
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Table 3.2: Shear bias for the six tomographic bins.

Zp range Ratio of Nef Dsw_u_m:&:m AmpsF Mraw Mfinal
(blending / whole)

0.1<zg <03 0.345 -0.012+0.034 +0.002 +0.001 -0.012+0.006 -0.013+0.017
03<z8 <05 0.332 —-0.003 +£0.014 +0.004 +£0.001 -0.021 +£0.004 -0.018 +0.007
0.5<z8 <07 0.365 —0.021 £0.012 +0.004 +£0.001 -0.006 +0.004 —-0.008 = 0.007
0.7<zg <09 0.366 —0.018 £0.008 +0.003 +0.001 +0.022 +0.004 +0.019 + 0.006
09<zg<12 0.370 —0.013+£0.007 +0.005+0.001 +0.033 +0.005 +0.034 +0.006
1.2 <z <20 0.358 +0.000 £ 0.008 +0.007 £0.002 +0.064 +=0.007 +0.072 £ 0.008

The ratio of Neg between the blending-only simulation and the whole simulation is calculated from the measured catalogue with the
lensfit weight taken into account. The Aritpjending 1 the mean residual bias introduced by the shear-interplay effect, estimated from the
blending-only simulations (see Sect. 3.5.2 for details). The correction to the whole sample should also account for the Neg ratio and the
correlation with the signal-to-ratio and resolution (see Sect. 3.5.2 for details). The Ampgr is the residual bias introduced by the PSF
modelling errors (see Sect. 3.5.3 for details). The m,y results are derived from the idealised constant shear simulations (Sect. 3.5.1), and
the mgnq are our final estimates with the corrections for the shear-interplay effect and PSF modelling bias (Sect. 3.5.4). The uncertainties
quoted along with individual m values are reported by the linear regression fitting, thus only reflecting the statistical power of SKiLLS
simulations. All results are based on the KiDS-DR4 re-run with the updated lensfit before any redshift calibration. They only indicate the
general performance of the updated lensfit.
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that the blending effects caused by the faint objects are sufficiently accounted for by
our main constant shear simulations, which include galaxies down to magnitude 27.
It means we only ignore the higher-order shear-interplay effect from the faint objects,
which is valid as long as the excluded faint galaxies are below the measurement limit of
the survey. In practice, we selected all galaxies with an input 7-band magnitude < 25.
The choice of this magnitude cut meets the overall sensitivity of the KiDS survey. We
further discarded those isolated galaxies whose nearest neighbour is 4’/ away based
on their input positions (see Fig. 3.20). The final selected sample covers ~10% of the
entire input catalogue. But after the lensfit measurements, this blending-only simulation
covers ~35% of the objects measured in the whole simulation (see Table 3.2 for the
exact values). The higher fraction in the measured catalogue is because most objects
fainter than 25 in the r-band magnitude are not measurable for KiDS.

To properly account for the shear-interplay effect, we need realistic shear fields
with proper correlations between the shear and the environment of galaxies. We refer
to Appendix 3.E for technical details of our approach to creating such variable shear
fields. In short, we considered two primary contributions to the weak lensing signal: the
cosmic shear due to the large-scale structure and the tangential shear induced by the
foreground objects (also known as the galaxy-galaxy lensing effect). The cosmic shear
was learned from the MICE Grand Challenge (MICE-GC) simulation (Fosalba et al.
2015b), whilst the tangential shear was calculated analytically by assuming Navarro-
Frenk-White (Navarro et al. 1995) density profiles for the underlying dark matter halos.
Figure 3.17 shows the average shear signals as a function of redshift. We see a roughly
linear relationship between the mean signals and redshift. On average, the cosmic shear
contributes more than the tangential shear. However, we note that the importance of
the tangential shear varies between systems depending on the host halo mass of the
foreground galaxies.

To increase the constraining power, we used 32 variable shear fields generated from
the same learning algorithm but with different choices for the direction of the shear.
Specifically, we created four variable shear fields with directions of the cosmic shear
that differ by 90°. Then, we made eight copies for each shear field by rotating the final
shear by 45° each time. We also created an extra suite of blending-only constant shear
simulations to serve as a reference. The final sky area of these additional simulations is
7776 deg®(= 108 x 36 x 2). Except for the input shear, these blending-only simulations
use the same pipeline, observational conditions and random seeds as the full simulations
detailed in Sect. 3.5.1 so that we can directly correct the constant shear results using the
extra bias estimated from these additional simulations.

While estimating the shear bias for constant shear simulations is straightforward by
directly conducting the linear least squares fitting to all measurements using Eq. (3.11),
given that the input shear values do not depend on the underlying sample. The situation
is more complicated for variable shear simulations. The crucial caveat is that the

. . . . Sh .
shear bias is now correlated with redshift [mtv)?én dfrf;(ztrue)] due to the shear-interplay
effect. Owing to the realistic shear field we built, we can measure mgferﬁgf;g (Ztrue)

directly from simulations by performing the least squares fitting to sub-samples of
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Figure 3.17: Variation of the shear field with respect to redshift. The solid black line
represents the average amplitude of the final utilised shears, comprising two components:
the cosmic shear (dashed magenta line) and the tangential shear (dotted orange line).
For more information, see Appendix 3.E.

galaxies split based on their true redshift. The same approach can also be applied
to the blending-only constant shear simulations to get mg‘l’:rfgl}l‘gear(ztrue); only, in that
case, we would expect a negligible correlation with the true redshift, except for some
fluctuations stemming from the different signal-to-noise ratios between true redshift bins.
Figure 3.18 shows the difference Amplending (Zirue) = mlv)f‘;slgfna;(ztrue) - m;?;j;?fgw, which
is a direct measure of the impact of the shear-interplay effect, as the only difference
between the simulations is the input shear value. It demonstrates evident residuals that
correlate with redshift, indicating the non-trivial impact of the shear-interplay effect.
Interestingly, the high-redshift outliers, which have an estimated photo-z much lower
than their true redshifts, show the most noticeable residuals across all tomographic bins,
implying that the blends with objects from different redshifts are likely responsible for
those outliers. This coupling between the photo-z and shear biases in blended systems
warrants a dedicated future study.

To correct the raw shear bias derived in Sect. 3.5.1, an average correction Afiplending

is necessary, which takes into account zy via the equation:

Amblending = / dZirue 1(Zirue) A7”’lblending(ztrue) . (3.12)
0

Here, n(zyue) signifies the weighted number density related to redshift (as represented
by the dashed lines in Fig. 3.18). The averaged results for individual tomographic bins
are presented in Table 3.2 and Fig. 3.19.

In practice, the blending fraction, which is associated with the signal-to-noise ratio
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Figure 3.18: Shear bias residuals caused by the shear-interplay effect (orange points)
as a function of true redshift, as estimated from the blending-only simulations. The

: : . — ,,,varShear _ _ constShear varShear
residuals are derived from Ampiending = My lending ~ Mblending > where My lending refers

to the shear bias from the blending-only variable shear simulations, and mg?éleé?r}fgear
refers to the shear bias from the blending-only constant shear simulations. The error
bars correspond to the fitting uncertainties reported by the linear regression. These
uncertainties are influenced by two factors: the number of objects used in the fitting
and the amplitude of the input shear value. The dashed lines represent the normalised

number density with respect to redshift.

and resolution—much like the bias itself—should also be accounted for. Hence, we
implement the correction in each vgn-R bin, adhering to the binning approach proposed
for reweighting the simulation (refer to Sect. 3.5.1). Specifically, within each vgn-R
bin, we calculate the average correction Affiplending and the blending fraction. The
blending fraction is measured as the ratio of the effective number counts between the
blending-only simulation and the complete simulation. Subsequently, we adjust the raw
bias in each vsn-R bin with the product of A#ipjending and blending fraction. The final
corrected bias is the lensfit-weighted average of these adjusted biases. This correction
methodology can be easily merged with the reweighting procedure, as they employ the
same binning strategy.

Another more direct way to inspect the blending effect is to check the relation between
the shear bias and the nearest neighbour distance in the input catalogue. Figure 3.20
demonstrates such estimations for both constant shear and variable shear simulations. We
see a clear correlation between the bias and the neighbour distance in both simulations,
indicating the significant impact of the blending effect. It also confirms our choice of 4"
to define blended systems, as we barely see any correlation after this threshold. The
other important finding is that the traditional constant shear simulations can already
capture the dominant contributions from the blending effect. The higher-order impact
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Figure 3.19: Mean residual multiplicative bias induced by the shear-interplay effect,
as computed from Eq. (3.12). We emphasise that these results are derived from the
blending-only simulations. When applying to the entire sample, we must also account
for the blending fraction (the third column of Table 3.2).

we study in this section, shown as the bias difference between the variable shear and
constant shear simulations, contributes relatively minor except for the very close blends.
The aggressive treatment of the blending in /ensfit can partially explain this finding, as it
throws away most of the recognised blends (Hildebrandt et al. 2017).

We note that our variable shear simulations and the correction methodology differ
from those of MacCrann et al. (2022). In their study, the simulated shear changes as
a function of redshift, but, per redshift slice, it remains constant across the field of
view. The chosen redshift intervals and adjusted shear have no physical meaning in their
setups. But they built four sets of simulations by choosing different redshift intervals, so
they were able to fit a smooth model to the simulated results, obtaining a continuous
redshift-bias relation. In our approach, we computed the variable shear fields using a
more physical model that accounts for the shear correlations to both the redshift and
clustering of galaxies (see Appendix 3.E). Thanks to these realistic shear fields, we can
measure the redshift-bias relation directly from the simulations without additional model
fitting procedures. Our direct measurements confirmed the non-trivial impact of the
shear-interplay effect (see Fig. 3.18). By design, our method results in large uncertainties
for low redshift bins due to the small input shear values. Fortunately, these low redshift
bins carry little cosmic shear signals, making the overall downgrade tolerable. Albeit
following a different approach, our final result is consistent with MacCrann et al. (2022)
finding that the overall correction due to the shear-interplay effect is negligible for the
current weak lensing surveys. However, it will potentially impact the next-generation
surveys.
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Figure 3.20: Multiplicative bias as a function of the distance to the nearest neighbour.
The distance is measured in the input catalogue after exclusion of faint galaxies with
r-band input magnitude >25. The values on the x-axis correspond to the weighted
average of each sub-sample selected for the estimation of the multiplicative bias shown
on the y-axis. The top panel displays the individual biases measured from the blending-
only variable shear simulations (magenta points) and the blending-only constant shear
simulations (dark green points). The vertical dashed lines denote the threshold we set
when creating the blending-only simulations. Two additional dark green points beyond
the threshold are calculated from the complete constant shear simulations. The bottom
panel shows the difference between these two estimates (varShear - constShear).

3.5.3 PSF modelling bias

So far, we have ignored the PSF modelling errors, given the expected accuracy of PSF
models relative to the requirement of the current weak lensing surveys (see e.g. Giblin
et al. 2021). We used the input PSF for shape measurements (i.e. assuming perfect
PSF modelling). However, as the requirement of systematics becomes more stringent, it
becomes necessary to check the impact of PSF modelling errors. This section quantifies
this impact by including the PSF modelling procedure in the simulations.

The SKiIiLLS images have realistic stellar populations and variable PSFs across the
field, so we can apply the PSF modelling code directly to the simulated images using
similar setups as for the data. We refer to Kuijken et al. (2015) for detailed descriptions of
the PSF modelling algorithm used by KiDS. In short, it describes the position-dependent
PSFs at the detector resolution using a set of amplitudes on a 48 x 48 pixel grid. The
spatial variation of each pixel value is fitted with a two-dimensional polynomial of order
n, with additional flexibility for allowing the lowest order coefficients to differ from CCD
to CCD. This extra freedom allows for a more complex PSF variation between CCDs and,
in principle, allows for discontinuities in the PSF between adjacent CCDs. When fitting
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Figure 3.21: Adjustments in multiplicative bias when adopting modelled PSFs instead
of the input PSFs. The hatched regions represent the nominal error budgets designated
for comparison (refer to Sect. 3.6 for additional details).

to individual stars, the flux and centroid of each star are allowed to change, and a sinc
function interpolation is used to align the PSF model with the star position. Following
Giblin et al. (2021), we set n = 4 and allow the polynomial coefficients up to order 1
to vary between CCDs. We skipped the complicated star-galaxy separation procedure
with an implicit assumption that the point-source sample used by KiDS is sufficiently
pure as verified using NIR colours in Giblin et al. (2021). Instead, we built a perfect star
sample by cross-matching the detected catalogue with the input star catalogue. However,
we still applied the same magnitude and signal-to-noise ratio cuts as used in the data to
ensure a similar noise level in the modelled stars.

We selected 30 tiles from the available 108 fiducial tiles to test the influence of PSF
modelling uncertainty on the multiplicative bias. These selected tiles cover the whole
range of the PSF size, including the minimum and maximum. We performed the PSF
modelling on the selected tiles and re-ran lensfit using the modelled PSFs. Since all
the images and detection catalogues are unchanged, the shift of the shear bias directly
quantifies the contribution of the PSF modelling errors. Figure 3.21 and Table 3.2 show
the shifts for the six tomographic bins. We find the PSF modelling procedure does
introduce small yet noticeable biases. Our fiducial results take these additional biases
into account.

3.5.4 Results

The final results after accounting for both the shear-interplay effect and PSF modelling
errors are listed as mgp,) in Table 3.2 and shown as the red points in Fig. 3.16. Within the
current statistical uncertainties, the average shifts due to the shear-interplay effect and
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PSF modelling errors are insignificant across all redshift bins, as indicated in Fig. 3.16
between the grey points and the red points. A more noticeable change is the increased
uncertainty introduced by the correction of the shear-interplay effect, especially in
the low redshift bins where the input shear values are overall small in the variable
shear simulations. Our proposed systematic error budgets account for these additional
uncertainties (the hatched regions in Fig. 3.16).

3.6 Sensitivity analysis

Given the resemblance between the SKiLLS and KiDS images and the reweighting in
the signal-to-noise ratio and R when estimating the shear biases, it is reasonable to
assume that the estimates from SKiLLS can be used to correct the actual measurements.
Nevertheless, it is still worth testing the robustness of SKiLLLS results and accounting for
any potential systematic uncertainties. We start with tests proposed by FC17 and K19
in Sect. 3.6.1. Thanks to the broad coverage of observational conditions in SKiLLS,
we can quickly achieve these analyses without dedicated test runs. Additionally, we
test how sensitive the lensfit results are to the changes in the input galaxy morphology
(Sect. 3.6.2). For comparison reasons, we propose some nominal error budgets based on
the general performance of SKiLLS and the overall requirements of lensing analyses with
KiDS. Specifically, we set an error budget of 0.02 for the first and sixth tomographic bins
and 0.01 for the remaining bins. We found these nominal error budgets are conservative
enough that our results are robust within them. Nevertheless, we note that these nominal
error budgets can be over-conservative for cosmic shear analyses. In which case, we
can estimate more accurate systematic uncertainties following other more aggressive
approaches proposed by previous KiDS analyses (Giblin et al. 2021; Asgari et al. 2021).

3.6.1 Impact of observational conditions

When developing SKiLLS, we improved most of the critical sources of uncertainty
in the previous KiDS simulations. For instance, we based our input galaxy catalogue
on N-body simulations, so it has reasonable clustering features and is complete down
to 27 in the r-band magnitude. We learned realistic morphologies from observations
using a powerful technique, dubbed vine copulas, which captures the multi-dimensional
correlations between ellipticities and other galaxy properties. We included six stellar
catalogues to account for the varying stellar densities across the survey sky. We covered
more variations of the PSF models and background noise levels. Above all, we measured
photo-zs directly from the simulated multi-band images to properly account for the
correlation between the measurement uncertainties on the redshift and shear estimates.
Consequently, most of the sensitivity analyses proposed by FC17 and K19 are either
trivial or redundant for the SKiLLS results.

Still, we examine the robustness of the lensfit results against some crucial properties
by comparing between sub-samples. The basic idea is to split the fiducial simulations
into three sub-samples based on a targeted property and examine the consistency of
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Figure 3.22: Variations in multiplicative bias when the fiducial simulations are divided
into three subsets, each reflecting different observational conditions. From left to right
and top to bottom, the panels present results when the division is based on PSF ellipticity,
PSF size, background noise level in r-band images, and stellar density. The hatched
regions denote the proposed nominal error budgets for comparison (refer to Sect. 3.6 for
additional details). We note that these shifts represent the maximum possible systematic
biases in our results (see Sect. 3.6.1 for further clarification).

their bias estimates to the fiducial results. These sub-samples contain roughly equal
numbers of measured objects while covering different ranges of the targeted property.
After applying the overall shear correction from the whole sample to the sub-samples,
we calculate their residual biases to quantify the impact of the variations of the targeted
property. We note that the estimated residuals are not systematic biases in our fiducial
results, but they indicate the robustness of the shape measurement algorithm against
the tested properties. Ideally, if the simulations fully match the data in the distributions
of the targeted property, we would still expect an accurate bias estimate even if the
estimated residuals are large. For that account, the estimated residuals are conservative
upper limits of the systematic biases in our results.

Figure 3.22 shows the estimated residuals for the variations in four critical properties
of the simulated images: the PSF ellipticity, PSF size, background noise level in r-band
images, and stellar density. It indicates that our fiducial results are robust within the
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Figure 3.23: Variations in multiplicative bias due to increased morphological parameters
of all input galaxies. Top panels show shifts in bias for increased factors of 1 + 10~ (dark
red), 1 + 20 (dark orange), and 1 + 30 (dark green), where o indicates median relative
uncertainties from Griffith et al. (2012). Hatched regions represent the nominal 0.01
error budget. Bottom panels show normalised histograms of parameter distributions
before and after the alterations. The shift of entire distributions depicts extreme cases,
as mean shifts across all galaxies would typically be smaller.

nominal error budgets, considering the shifts shown in the plots are the upper limits of
possible deviations.

3.6.2 Impact of the input galaxy morphology

We learned the galaxy morphology from Griffith et al. (2012) based on Sérsic models
fitted to the HST observations. We have shown that our copula-based learning algorithm
captures the properties of the reference sample (see Sect. 3.2.1). However, the reference
sample itself contains measurement errors. This section examines how sensitive the
lensfit measurements are to the changes in the input galaxy morphology.

We focus on the three morphological parameters used to describe the Sérsic profile:
the half-light radius, axis ratio and Sérsic index. To get some indication of the overall
accuracy of the reference sample, we first checked the fitting uncertainties. We found that
the median relative uncertainties for these three parameters are < 5%, < 5% and < 10%,
respectively. We took these values (quoted as o below) as the benchmark for changing
the input galaxy morphology. We built new input catalogues by increasing a certain
parameter with 10-, 20~ and 30 each time while keeping the other parameters unchanged.
We generated test simulations using these new input catalogues and measured the bias
difference with respect to the fiducial simulations.

Figure 3.23 presents the test results from 10 tiles of simulations. We find minor
residuals in most cases, with the most significant shifts seen when changing the Sérsic
index. We note that we shifted all galaxies with the same amount of fractions, resulting
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in an overall shift of the whole distribution, as shown in the bottom panels of Fig. 3.23.
Given that the entire distribution’s uncertainty is much smaller than the individual
measurement uncertainties, we are testing the most extreme cases. Hence, the measured
residuals only indicate the sensitivity of /ensfit towards the input galaxy properties but
cannot be seen as systematics in our fiducial results. To achieve tighter requirements
for future surveys, we will need a shape measurement method that is less susceptible
to the galaxy properties, as the fidelity of image simulations will always be limited by
the realism of the input galaxy catalogue. For the upcoming KiDS-Legacy analysis,
we will, therefore, also explore an alternative method based on the METACALIBRATION
technique (Huff & Mandelbaum 2017; Sheldon & Huff 2017), which is expected to be
more robust against the galaxy properties (Yoon et al., in prep.).

3.7 Discussion and conclusions

Achieving an unbiased measurement of the ensemble shear signal is crucial for maintain-
ing the integrity of precision cosmology studies using weak lensing surveys. Contempo-
rary shape measurement techniques attained an accuracy level of one percent, or even a
fraction thereof. However, as the statistical powers of weak lensing surveys continue to
expand, the demand for systematics control intensifies. This resulted in an increased
focus on higher-order effects that differ from the shape estimation bias, such as selection
bias, PSF modelling errors, and shear-interplay bias. These effects present a challenge
to eradicate merely by refining shape measurement algorithms. Alternatively, image
simulations offer promising capabilities for calibrating these higher-order effects.

In this chapter, we introduced the third-generation image simulations for the KiDS
survey, termed SKiLLS, following SCHOo! (FC17) and COllege (K19). These simula-
tions incorporate several substantial enhancements to meet the calibration requirements
of the KiDS-Legacy analysis, which utilises an updated lensfit. Among the key im-
provements are the simulation of full nine-band images and the creation of a joint
shear-redshift mock catalogue. Balancing the sample volume and realism of galaxy
morphology, we combined cosmological simulations with deep imaging observations
as input. Additionally, we augmented the image realism by incorporating variations
in PSF between CCDs, stellar density, and noise levels between pointings. We closely
mirrored the entire KiDS procedure for photometric measurements, encompassing
r-band detection, PSF Gaussianisation, forced multi-band photometry, and photo-z
estimation. The large volume of simulated galaxies and their realistic photometric
properties will enhance not only shear calibration but also redshift calibration, providing
a valuable resource for further study (van den Busch et al., in prep.).

We extended our investigations to consider the impact of galaxy blends at varying
redshifts by generating realistic shear fields that take into account both redshift and
galaxy clustering. We also accounted for PSF modelling errors by implementing the PSF
modelling procedures on the image simulations. Additionally, we conducted sensitivity
tests, including changing the input galaxy properties, demonstrating the robustness
of SKiLLS-calibrated measurements for future KiDS lensing studies. The final shear
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calibration results for the updated lensfit are outlined in Table 3.2 and Fig. 3.16. Based
on our statistical uncertainties and sensitivity tests, we believe that the shear bias
estimated from SKiLLS is within the nominal error budget of 0.02 for the first and sixth
tomographic bins and 0.01 for the others. Furthermore, our studies provide valuable
insights for calibrating future weak lensing surveys.

The success of image simulations heavily depends on the realism of the input
galaxy population in terms of photometry, morphology, and clustering. Recent image
simulations used high-quality imaging observations as input, but these have limitations
in sample volume and depth, which may soon prove inadequate for next-generation
weak lensing surveys. While there is an alternative approach that uses input galaxy
populations from cosmological simulations, these simulations are currently unable to
fully replicate observed galaxy morphology — a crucial feature in image simulations.

In our study, we explored the feasibility of an integrated approach that combines the
advantages of cosmological simulations with high-quality imaging observations. We
introduced a copula-based learning algorithm designed to mimic and establish a link
between observed morphology and synthetic galaxies from cosmological simulations.
The results indicate that this hybrid methodology shows promise for future image
simulations requiring a substantial volume of galaxies.

Recent studies have already indicated the necessity for shear calibration to consider
redshift-related selections. This requires simulating multi-band observations to account
for the measurement of photometric redshifts (e.g. K19; MacCrann et al. 2022). We
extended this to demonstrate that multi-band image simulations, with a sufficiently large
volume of galaxies, not only improve shear calibration but also redshift calibration.
By performing the full procedure for photometric measurements, we achieved realistic
photometric properties in the mock catalogue. This comprehensive approach advances
over previous catalogue-level simulations (e.g. Hoyle et al. 2018; van den Busch et al.
2020; DeRose et al. 2022). In addition, image simulations allow us to examine the
impact of blending on redshift estimates, which is challenging to account for at the
catalogue level. Given the importance of blending, we believe that integrating shear
and redshift calibrations with multi-band image simulations will be crucial for future
high-accuracy tomographic analyses.

MacCrann et al. (2022) recently investigated the effects of blended systems in which
galaxies experience varying shears, a phenomenon we refer to as ‘shear interplay’
throughout this paper. We extended their work by creating realistic variable shear
fields that account for both the redshift and clustering of galaxies, explicitly including
galaxy-galaxy lensing contributions. Although our final results confirmed its relatively
minor impact on current weak lensing surveys (see Fig. 3.16), we detected a significant
correlation between redshift and shear bias from our blending-only variable shear
simulations. This correlation underscores the presence of the shear-interplay effect
and its contributions (see Fig. 3.18). Furthermore, we observed that photo-z outliers
demonstrate the most pronounced shear interplay, implying a mutual origin of the shear
and redshift biases. A focused study is needed to further investigate this correlation in
blended systems, as it will become increasingly important for the next generation of
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weak lensing surveys.

Typically, image simulations bypass the PSF modelling process, due to the PSF
validation conducted in data (see e.g. Giblin et al. 2021). However, thanks to the
realistic SKiLLS images, we are able to evaluate the impact of PSF modelling errors
by applying the PSF modelling code directly on simulated images. By comparing the
shear biases derived from runs with and without PSF modelling, we discerned residual
biases from PSF modelling errors, albeit below one percent. Despite being negligible
for current requirements, this will be a point of concern for upcoming weak lensing
surveys. Therefore, we underscore the necessity of refining the PSF modelling algorithm
or incorporating it into image simulations for future surveys.

Lastly, we investigated the sensitivity of our simulation to the characteristics of the
input galaxy population. By altering the input values of morphological parameters, we
determined that our current standard shape measurement method, /ensfit, is somewhat
sensitive to the input galaxy shapes, but this sensitivity falls within an acceptable range
for KiDS analysis. Despite this, we aim to implement an alternative approach based on
the METACALIBRATION technique (Huff & Mandelbaum 2017; Sheldon & Huff 2017) for
KiDS-Legacy analysis, which has proven to be more robust against variations in galaxy
properties (Yoon et al., in prep.). For future weak lensing surveys, it will be crucial to
develop methods less susceptible to galaxy properties, as image simulations may never
fully capture the observed galaxy population due to limitations in the input catalogue.
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3.A An empirical modification to the synthetic photometry

We detail the proposed empirical modification of the SHARK photometry in this appendix.
It intends to improve the agreement of the magnitude counts between the simulations
and observations, which is critical for the redshift and shear calibrations.

We took the COSMOS2015 catalogue as the benchmark under an implicit assumption
that the COSMOS field is representative. The COSMOS2015 catalogue is a near-infrared-
selected photometric catalogue containing 30-band photometry, precise photometric
redshifts and stellar masses for more than half a million objects (Laigle et al. 2016). We
note that measurement uncertainties and modelling errors are inevitable for observations,
especially for faint objects. Therefore, the COSMOS2015 catalogue cannot, in principle,
be treated as the truth. Nevertheless, these uncertainties are tolerable for calibrating a
KiDS-like sample. Following this reasoning, we tuned the simulated properties solely
based on the COSMOS2015 measurements for the sake of simplicity, but caution any
physical interpretation of our modified results.

First of all, we must locate the cause of the discrepancy. As the SHARk free
parameters were tuned using the observed stellar mass functions, we would expect the
number density of the SHARK galaxies is realistic. This is confirmed by Figure 3.24,
where we see a good agreement of the stellar mass distributions between the data and
simulations. As a next step, we inspected the stellar mass-to-light ratio (Y ), for which
took the K-band photometry as an indicator of the total luminosity as it is least affected
by the dust extinctions. Figure 3.25 shows the comparing results as a function of the
stellar mass in several redshift bins. Noticeably, the SHARK Y, is systematically higher
than the COSMOS2015 one, especially in the low stellar mass and low redshift ranges.
It can, at least partially, explain the discrepancy seen in the magnitude distributions.
Fortunately, this Y, difference is easy to calibrate without changing other intrinsic
properties, such as the colours, redshifts, and positions.

We, therefore, conducted an empirical modification of the simulated magnitudes
to account for the Y, difference. We divided SHaArRk and COSMOS2015 galaxies into
24 x 23 evenly spaced small bins based on their redshifts and stellar masses. In each
bin, we calculated the median Y, for the SHARK and COSMOS2015 galaxies, separately.
To mitigate the observational uncertainties, we only used the COSMOS2015 galaxies
with good stellar mass estimations (6M, < 0.15M,). For bins that lack observations,
we extrapolated Y, bs as a function of M, for each redshift slice. After inspecting the
general trend, we found a good fit by combining an exponential descending function
in the low M, end and a linear ascending function in the high M, end. From these
estimates, we constructed a magnitude modification factor Amag as

median[ Yy, syark]

Amag = -2.5log,, (3.13)

median[ Y4, ops]

Figure 3.26 demonstrates the estimated Amag values in the 2D redshift-stellar mass
plane. Following the difference seen in Fig. 3.25, substantial modifications happen in
the low mass and low redshift bins. Therefore, the magnitude modification reduces the
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Figure 3.24: Comparison of stellar mass functions. The COSMOS2015 catalogue
(represented by red solid lines) utilises the median values derived from the marginalised
likelihood distributions. On the other hand, the SHARk catalogue (represented by green
dashed lines) operates under the assumption that the total stellar mass is equivalent to
the combined stellar masses of the bulge and the disc.

range of magnitudes of SHARK galaxies. We note that the different bands share the same
Amag values, so the colours of individual galaxies are preserved.

3.B Modelling multivariate distributions with vine copulas

We outline some necessary background on the vine-copula modelling in this appendix.
For a comprehensive introduction, we refer to Joe (2014) and Czado (2019).

A copula is simply a multivariate cumulative distribution function (CDF) with
uniformly distributed margins. The Sklar (1959) theorem states that any d-dimensional
CDF F(x), with univariate margins Fi(xy), ..., F4(x4), can be described as F(x) =
Ci,. a(F1(x1),.... Fg(xq)), where Cy 4 1s the corresponding copula function. Therefore,
given a joint probability distribution function (PDF) f(x) with d-dimensional variables

.....

x = (x1,...,xq), we can always find a copula density ¢ _4 thatis the partial differentiation
of the copula C;__4, such that
f(x) =cia(Fi(x1),... Fa(xq)) - fi(x1) - fa(xa) . (3.14)

It means we can divide the modelling of any joint multi-dimensional PDF into
two parts: one for the independent distributions of the individual random variables
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Figure 3.26: Distribution of the magnitude modification factor Amag in the redshift-
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in blue. The definition of Amag is given in Eq. (3.13). For each galaxy, the same Amag
value is added to the apparent magnitudes across all available bands.
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{fi(x;)}, and the other for their mutual dependence captured by the copula density
ct,..a(F1(x1), ... Fa(xq)).

The restriction of the classical copula method is that most of the flexible copula
families available in the literature are bivariate, making it tricky to deal with high-
dimensional distributions. In this aspect, the vine copula method stands out as an
effective approach (Bedford & Cooke 2002; Aas et al. 2009). A vine copula is a
graphical model organising a set of bivariate copulas, called pair-copulas. The chain
rule states that any PDF f(x) can be decomposed as

f(x) = f(xq) - f(xa-1lxa) - f(xa-2lxa-1,xq) - - - f(x1]x2, ..., xa) , (3.15)

with f(.|.) being the conditional PDF. Aas et al. (2009) further states that each term
in Eq. (3.15) can be decomposed into an appropriate pair-copula times a conditional
marginal density as described by the following general formula

J(x|) = cxyjjo_; (F(xlv-j), F(vjlo-j)) - f(x[o-)) . (3.16)

where v stands for a d-dimensional vector, v is an arbitrary component of v, and v_;
denotes the v-vector excluding this component. Therefore, the multiple dependence can
be captured by a product of pair-copulas acting on underlying conditional probability
distributions. Since the decomposition shown in Eq. (3.15) is not unique, there is
a significant number of possible pair-copula constructions. These possibilities are
organised by the graphical models, that is the vines.

3.C Transformation of the SDSS filters to the KiDS/VIKING filters

This appendix details the transformation of the Sloan Digital Sky Survey (SDSS)
photometric system to the KiDS/VIKING system. The SDSS photometric system
comprises five colour bands (u, g, r, i, z) that cover wavelengths ranging from ultra-violet
at 3000 to near-infrared at 11 000 (Fukugita et al. 1996), whilst the KiDS/VIKING system
contains optical filters (u, g, r, i) mounted on the VST OmegaCAM camera (Kuijken
2011) and near-infrared filters (Z, Y, J, H, K;) mounted on the VISTA infrared
camera (Gonzdlez-Ferndndez et al. 2018). Figure 3.27 compares the filter curves from
these two systems. The differences are noticeable, especially for the Z filter, where the
KiDS/VIKING system cuts the tail towards long wavelengths. We used the following
relation to correct these differences:

Xxips/VIKING = Xspss + J (Zuue) (Xspss — Wspss) + A(Zrue) (3.17)

where X corresponds to the target filter, whilst W is another filter, helping to define the
colour. Given the superior depth of the r-band measurement, we picked it as the Y filter
whenever possible. When the r band is the target filter, we chose the g band as the Y
filter. The coefficients j(Ziue) and i (zyue) are correlated with the redshift, for which we
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Figure 3.27: Comparison of normalised transmission curves. The curves represent the
ugriZ filters in the SDSS photometric system (green dashed lines) and the KiDS/VIKING
system (red solid lines).

took values from the ProSpEcT web-portal®. For the redshift, we used the true redshift
from the input SURFS-SHARK simulations.

As for the SKILLS measured photometry, we need to correct six measurements:
the five u-, g-, r-, i-, Z-band magnitudes measured in the AstrRo-WISE images
(MAG_GAAP_X) and the r-band magnitudes measured in the THEL1 images (MAG_AUTO).
There is no need to correct the remaining YJHK bands as SKIiLLS also uses VISTA
filters for them. Figure 3.28 shows the distributions of the magnitude modification
as a function of the initially measured magnitude. The modifications are generally
small, especially for the # and g bands. Even for the r and Z bands with the most
significant differences, the majority of objects has a modification < 0.05. Accordingly,
the changes in the overall magnitude and colour distributions are negligible. Still, we
get a better agreement with the data in the photo-z distributions after transforming to the
KiDS/VIKING filters, as shown in Fig. 3.29.

3.D Selection criteria for the updated lensfit catalogue

This appendix details all selections we propose to the updated lensfit shear catalogue.
Most of the selection criteria were taken from earlier KiDS analyses, documented in
Hildebrandt et al. (2017). These include:

1. Several lensfit fitclass cuts to discard:

(a) objects without sufficient data, for example, those fall near the image edge

Bhttps://transformcalc.icrar.org/
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Figure 3.28: Joint distributions of the initially measured magnitude and the magnitude
modifications. The dashed lines indicate the 16 and 84 percentiles. ‘MAG_GAAP_X’
magnitudes are those measured by the GAAP in the AsTro-WISE images, while
‘MAG_AUTO’ represents magnitudes measured by SEXTRACTOR in the r-band THELI
images (refer to Sect. 3.3 for more details).
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Figure 3.29: Distributions of the photometric redshift estimates. The KiDS-DR4 results
are represented by the red histogram. The initial measurements in the SDSS filters are
shown by the green histogram, while the blue histogram presents results corrected to the
KiDS/VIKING filters. Most of the improvement is visible around zg~0.55 and 1.55.
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Figure 3.30: PSF leakage and effective number density based on the resolution factor.
Top panel: PSF leakage; Bottom panel: effective cumulative distribution. Measurements
for weighted average ellipticity €; (dark-red triangle) and €, (dark-orange triangle) were
taken before PSF contamination correction. The vertical red dashed line indicates the
proposed resolution cut (R < 0.9), resulting in a 2% loss in effective number density.

or a defect (fitclass = —1),
(b) objects classified as duplicates (fitclass = —10),

(c) objects poorly fitted by the given bulge plus disc galaxy model (fitclass =
-4,

(d) objects identified as stars and star-like point sources (fitclass =1 and 2),

(e) objects whose fitted centroid is more than 4 pixels away from the input
centroid (fitclass = -7),

(f) objectsthatare unmeasurable, usually because of being too faint (fitclass =
-3).
2. A magnitude cut to remove bright objects (MAG_AUTO > 20).

3. A contamination radius cut to mitigate blending effects (contamination_radius >
4.25 pixels)

4. Removing asteroids based on the object colours (MAG_GAAP_g — MAG_GAAP_r <
1.5 or MAG_GAAP_i — MAG_GAAP_r < 1.5).

5. Removing unresolved binary stars by requiring objects with ellipticity > 0.8 to
have a measured scalelength

> 0.5 X 10(24.2—MAG_GAAP_I‘)/3.5 piXelS .
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6. A non-zero weight cut using the weight bias corrected weight (Sect. 3.4.2).
7. A resolution cut to remove poorly resolved objects (R < 0.9).

The resolution cut is a new criterion proposed in this work. When developing
our empirical correction method for the PSF contamination (Sect. 3.4.2), we noticed
that objects with poor resolution contain very high PSF leakages, as demonstrated in
Fig. 3.30. These poor-resolution outliers contribute little to the effective number density
but introduce significant bias. So we propose a new selection using the resolution factor
defined in Eq. (3.7). We found the proposed cut of R < 0.9 can remove most outliers
while only decreasing the effective number density by ~2 per cent.

3.E Building the variable shear field

In this appendix, we detail the creation of a realistic shear field accounting for the shear
dependence on the redshift and clustering of galaxies. We considered the two main
contributions to the weak lensing signals: the cosmic shear from the large-scale structure,
and the tangential shear from the foreground objects (also known as the galaxy-galaxy
lensing effect).

We split the blending-only sample into two classes based on their relative line-of-sight
distances to their brightest neighbours. Those more distant than their brightest neighbours
are referred as the background galaxies, whilst the remaining are the foreground galaxies.
This classification is necessary to quantify the shear correlations within the blended
systems. We found a roughly equal number of foreground and background galaxies in
our sample.

For the cosmic shear effect, we learned it from the galaxy lensing mocks associated
with the MICE Grand Challenge (MICE-GC) simulation (Fosalba et al. 2015b). The
MICE-GC simulation is a large volume N-body light-cone simulation developed by the
Marenostrum Institut de Ciencies de 1I’Espai (MICE) collaboration (Fosalba et al. 2015a).
It contains ~6.9 x 10'° dark matter particles with a mass of ~2.9 x 10! 1~'Mg and a
softening length of 50 2~ 'kpc, in a box of 3072 h~'Mpc aside. The simulation starts
at zi = 100 and produces the light-cone in 265 steps from z = 1.4 to 0. It builds halo
catalogues using the Friends-of-Friends algorithm (Crocce et al. 2015), and subsequently
populates galaxies using halo occupation distribution recipes along with the subhalo
abundance matching technique (Carretero et al. 2015). The construction of all-sky
lensing maps follows the Onion Universe approach, which reaches a sub-arcminute
spatial resolution up to z = 1.4 (Fosalba et al. 2015b). Here we used the second version
of the catalogue, named MICECAT?2, from the CosmoHub web-portal (Carretero et al.
2017; Tallada et al. 2020)%.

Following the building of the blending-only sample for SKiLLS, we selected blended
objects and classified foreground and background galaxies for MICECAT?2 under the
same conditions expect for the magnitude cut. We first estimated the relationship between

Bhttps://cosmohub.pic.es/
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the mean cosmic shear amplitude and redshifts by averaging individual shear values of
galaxies in redshift bins defined with a width of 0.1. These redshift-dependent mean
amplitudes are good approximations for cosmic shears experienced by the foreground
galaxies. It is more intricate to get proper cosmic shears for the background galaxies.
Because of the overlapping line-of-sights of the blended objects, we expect the cosmic
shear experienced by the background galaxy (<) to correlate with that in its neighbour
(vr). Based on our tests, the correlation can be described by a linear formula

v8(zB, 2F) = A(zB, 2F) - YF + (28> 2F) (3.18)
with the scaling factor

Dep—0.5Dcr  Der
Dep Dep—0.5Dcf

A(zB,zF) = (3.19)

and an offset y1(zg, zr) = N [0, o1(zB, zr)] following the Gaussian distribution with a
mean of zero and variance depending on redshifts of both galaxies. The D.p and D.r
denote the comoving distances to the background galaxy and its neighbour, respectively.
The scaling factor A reflects the geometrical relation between the blended objects; whilst
the offset <1 specifies contributions from the intermediate structures between blended
galaxies. We estimated the redshift-dependent variance of 7 again from MICECAT?2 by
measuring the dispersion of g — A - F in each redshift bin. Because the MICECAT?2
stops at z = 1.4, we linearly extrapolated measured values to z = 2.5, which is the limit of
SKILLS. Figure 3.31 shows the learned cosmic shear as a function of redshift. The black
solid line indicates the mean amplitude of the yr component; whilst the coloured lines
present the dispersion of the 9 component. It illustrates that the linear extrapolation
captures the general trends towards the high redshift for both components.

We note that MICECAT?2 assumes a ACDM cosmology with parameters from the
Wilkinson Microwave Anisotropy Probe five-year data (WMAPS, Dunkley et al. 2009),
whilst our base SURFS-SHARK simulation uses cosmological parameters from Planck
Collaboration (2016). Therefore, the cosmic shear field we learned from MICECAT2
does not necessarily match the galaxy mock we are using. But, since the current
calibration still adopts one-point statistics (see Eq. 3.11), our calibration results are
robust against detailed galaxy populations or underlying cosmologies and even more so
to the higher-order correlation between galaxy populations and cosmology. We defer
the proper treatment using a ray-tracing approach with consistent properties from the
underlying cosmological simulations to future studies.

Besides the cosmic shear, a background galaxy also suffers from the tangential
shear induced by the host dark matter halo of its neighbour. We calculated this effect
analytically by assuming Navarro-Frenk-White (NFW) density profiles for dark matter
halos presented in the SURFS-Suark simulation. The NFW profile, proposed by
Navarro et al. (1995), is the most popular analytical model for dark matter halos, given
its ability to describe the radial matter distribution of dark matter halos over a wide range
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Figure 3.31: Cosmic shear signals learned from MICECAT? (as described in Eq. 3.18).
The black solid line and points represent the mean amplitude of the g component,
while the coloured lines and points denote the -y dispersion for various redshifts of the

foreground galaxies. The points are direct measurements from MICECAT?2, while the
lines represent linear extrapolations.

of masses (Navarro et al. 1996, 1997). Its mass density is described by the formula

Per Oc
(”/”s)(l"'r/"s)2 ’

where 0. and rg are two free parameters known as the characteristic overdensity and the
scale radius, respectively. We set the normalisation to the critical density at the redshift
of the halo p.; = 3H?(z)/(87G) with H(z) the Hubble parameter at that same redshift
and G the gravitational constant. With the definition of the virial radius, rygoc, the
radius inside which the mean mass density of the halo equals 200p.;, we can construct a
so-called concentration parameter ¢ = rygo./7s and relate it to §. through

p(r) = (3.20)

3 In(l+c)—-c/(1+c¢) "’

O0c = (3.21)
In practice, we used mvir_subhalo, the virial mass of the subhalo from the SURFS-

SHARK simulation?9, to calculate the virial radius for each lens. For the concentration

parameter, we adopted the concentration—mass relation from Duffy et al. (2008)

M vir

=785 [——vr
¢ (2>< 1012 - TM,

-0.081
) (1+2)77, (3.22)

20https://shark-sam.readthedocs.io/en/latest/output_files.html
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We note that Eq. (3.22) is estimated from N-body simulations based on a WMAPS5
cosmology (Komatsu et al. 2009), which has slightly different parameter values from the
Planck Collaboration (2016) cosmology used by the SURFS simulations. Nevertheless,
the weak-lensing shear amplitude is dominated by the enclosed mass of the lens but has
minor sensitivity to the concentration (e.g., Viola et al. 2015). Therefore, we ignored
any potential WMAP5-to-Planck cosmology correction to Eq. (3.22).

Recognising the spherically symmetric feature of the NFW profile, we can derive
the radial-dependent tangential shear as (Bartelmann 1996; Wright & Brainerd 2000):

0. 1
i) = e () (3.23)
Cr
where x = Rgg/r is a dimensionless radial distance factor defined as the ratio of Rgg,
the projected radial separation between the lens and the source, to the scale radius of the

lens. The critical surface mass density

c? D,p

> -
°r 47TG Da,F Da,FB

(3.24)

is a geometric term depending on the angular diameter distances to the source D, g, to
the lens D, r and between the lens and the source D, rg. The radial dependence of the
shear is captured by the function g(x) as

gx) = %ln ()—C)

2
2 8 — 12x? [1-x
— 2 + (122 arctanh Tox x<1
+410/3 (x=1)

2 .\ 12x2 -8 . /x—l o> 1)
arctany | —
1-x2 x2(x2-1)3/2 l+x *

With all these ingredients in hand, we can now assign galaxy a specific shear value
based on its redshift and neighbouring conditions. In summary, those identified as
foreground galaxies only contain the redshift-dependent mean amplitude yg(zg), whilst
the background galaxies combine the cosmic shear from Eq. (3.18) and the tangential
shear from Eq. (3.23). This treatment accounts for not only the redshift-shear dependence
but also the correlations between the blended objects.



