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ChapTER 2
CHAPTER

KiDS+VIKING-450: An
internal-consistency test for cosmic shear
tomography with a colour-based split of
source galaxies

ABSTRACT

We performed an internal consistency test for the KiDS+VIKING-450 (KV450) cosmic
shear analysis, focusing on the colour-based split of source galaxies. Using the same
measurements and calibrations across both sub-samples, we evaluated the properties of
the shear measurements and the efficiency of the calibration pipelines. On the modelling
side, we explored the observational nuisance parameters, particularly those associated
with redshift calibration and intrinsic alignments, using a Bayesian analysis equipped
with specific test parameters. Our study confirmed that the current nuisance parameters
adequately capture residual systematic deviations in the KV450 data, albeit with minor
discrepancies observed in the second and third redshift bins. Our results additionally
revealed the degeneracy between the apparent amplitude of intrinsic alignments and
redshift uncertainties in low redshift bins. Given the relative insensitivity of our test to
the assumed cosmological model, it can be implemented in the cosmic shear analysis
prior to drawing any cosmological conclusions.

S.-S. Li, K. Kuijken, H. Hoekstra,
H. Hildebrandt, B. Joachimi, and A. Kannawadi
Astronomy & Astrophysics, 646, A175
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2.1 Introduction

Cosmic shear, a coherent distortion of distant galaxy shapes due to weak gravitational
lensing by large-scale structures, is sensitive to the amplitude of matter density fluc-
tuations (quantified by o, which is the standard deviation of linear-theory density
fluctuations in a sphere of radius 84! Mpc, where Hy = 1007 km s~! Mpc™') and
the mean matter density (€2,,). As a result, cosmic shear surveys commonly report a
derived parameter Sg = 03(Q1,/0.3)%. Alternatively, cosmic microwave background
(CMB) measurements can infer local density fluctuations by extrapolating the measured
amplitude of temperature fluctuations at recombination, based on a cosmological model.
By comparing results from these two distinct probes, we can test cosmological models.

The latest Planck Legacy analysis of CMB measurements predicts an Sg = 0.832 +
0.013 (68% credible region), assuming the standard A cold dark matter (ACDM)
model (Planck Collaboration et al. 2020). This results is slightly higher than the results
from the recent cosmic shear surveys, such as the Dark Energy Survey (DES; Troxel

etal. 2018, Sg = 0.782f%%2277), the Hyper Suprime-Cam Subaru Strategic Program (HSC;

Hikage et al. 2019, Sg = 0.780t%%3§g), and especially the Kilo-Degree Survey (KiDS;
Hildebrandt et al. 2020, hereafter H20, Sg = 0.737+0040).

It is crucial to consider potential systematic effects associated with observations
when interpreting results from different surveys. Internal consistency tests are thus a
standard part of any cosmological probe. Cosmic shear studies often base these checks
on a split of the estimated two-point shear correlations (Kohlinger et al. 2019; or Sect. 7.4
of H20). By assigning duplicate model parameters to each subset, one can perform
theoretical modelling of the reconstructed data vector and assess data consistency by
comparing these duplicate parameters. This approach aids in verifying the consistency
of a specific sample of source galaxies, but it only tests at a late stage in the analysis.
Moreover, doubling cosmological parameters incurs a significant computational cost,
which hinders further splitting of the source sample in practice. However, additional
splits could be particularly interesting, as systematics may vary among them.

Source galaxy properties present two main challenges to calibration pipelines: shape
measurements and redshift estimates. First, different galaxy samples typically exhibit
varying ellipticity distributions, with red, early-type galaxies tending to have rounder
shapes than their blue, late-type counterparts (Hill et al. 2019; Kannawadi et al. 2019,
hereafter K19). This leads to a correlation between shear bias and the underlying galaxy
sample, primarily because shape measurements are sensitive to ellipticity distributions.
For instance, the lensfit algorithm used in the KiDS survey assigns weights to measured
ellipticities, resulting in a bias towards intermediate ellipticity values (Fenech Conti et al.
2017). Second, both the accuracy and precision of photometric redshift estimates depend
on a galaxy’s broad spectral features, such as the Balmer break below 4000 (Salvato
et al. 2019). The prominence of these broad spectral features varies by galaxy spectral
type. Generally, galaxies with an older stellar population appear red at rest-frame optical
wavelengths and exhibit a pronounced 4000 break. The more young stars a galaxy
contains, the bluer it appears, causing the Balmer break and other broad spectral features
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to be washed out. Consequently, errors in photometric redshifts correlate with galaxy
spectral type (Mo et al. 2010).

In this chapter, we consider these sample-related systematic effects, specifically
focusing on photometric redshift uncertainty. We divided the KiDS source galaxies into
two mutually exclusive sub-samples based on their spectral types and applied the same
measurement and calibration pipelines to each sub-sample. By doing this, we explored
how sample-related systematics can affect measurements and assessed the effectiveness
of calibration pipelines in mitigating these effects. This split also has implications for
modelling intrinsic alignments, which must be explicitly accounted for. To quantify
consistency, we performed a Bayesian analysis using dedicated test parameters that
describe the relative deviations of nuisance parameters between the two sub-samples.
By examining their posterior distributions, we can determine if the original settings are
sufficient to capture residual biases. The analysis code is publicly available!.

Our approach complements other studies that assess the consistency of inferred
cosmological parameters by removing tomographic bins or by splitting the sample by
galaxy type, while marginalising over the corresponding nuisance parameters (Kohlinger
et al. 2019; Samuroff et al. 2019). Instead, we focused on a different aspect: keeping
cosmological parameters fixed while examining changes in the nuisance parameters. We
found that our method can effectively test for inconsistencies in redshift distributions and
highlight the degeneracy between redshift uncertainties and apparent intrinsic alignment
signals, all while remaining insensitive to cosmological assumptions.

The remainder of this chapter is organised as follows. In Sect. 2.2, we provide a brief
overview of the cosmic shear catalogues under consideration. We present the redshift
calibration in Sect. 2.3 and the shear bias calibration in Sect. 2.4. Next, we introduce the
measurement and modelling of the shear signal in Sect. 2.5. We discuss the covariance
matrix and consistency tests in Sect. 2.6. Our main results are presented in Sect. 2.7,
and we conclude with a summary in Sect. 2.8.

2.2 Data

Our test is based on the first release of optical and infrared KiDS cosmic shear data,
known as KiDS+VIKING-450 (KV450; Wright et al. 2019, hereafter W19). This data
set includes four-band optical photometry (ugri) from the first three data releases of
KiDS (de Jong et al. 2015, 2017) and five-band near-infrared photometry (ZYJHK)
from the overlapping VISTA Kilo-Degree Infrared Galaxy Survey (VIKING, Edge et al.
2013).

Details on the derivation and verification of this cosmic shear catalogue can be
found in the main KiDS cosmic shear papers (Hildebrandt et al. 2017; H20) and their
companion papers (Fenech Conti et al. 2017; W19). The public catalogue provides all
the necessary information for conducting a tomographic cosmic shear analysis. Among
the most important columns are the photometric redshifts (photo-zs, or zg as in the
catalogues) and the galaxy shapes (described by two ellipticity components, €] and ).

thttps://github.com/1shuns/CosmicShearRB
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The zp values are estimated using the Bayesian photometric redshift code (Bpz, Benitez
2000; Coe et al. 2006) with an improved redshift prior from Raichoor et al. (2014) and
the nine-band photometry from W19. The galaxy shapes are measured from the r-band
images (median seeing of 0/7) using the /ensfit algorithm (Miller et al. 2007; Kitching
et al. 2008; Miller et al. 2013) with a self-calibration for noise bias (Fenech Conti et al.
2017).

Throughout this study, we only use sources with valid nine-band photometry
(GAAP_Flag_ugriZYJHKs==0). This mask reduces the original area by approximately
5% and retains around 13 million objects, which is identical to the choice made by
the main KV450 cosmic shear analysis. Following H20, we bin source galaxies into
five tomographic bins defined as 0.1 < zg < 0.3, 0.3 < zg < 0.5, 0.5 < zg < 0.7,
0.7 < zg £0.9, 09 < zg < 1.2. To check for systematic effects caused by galaxy
properties, we further split the whole sample into two sub-samples based on the spectral
types of source galaxies. This is achieved by using the Ty values reported by the Bpz code
during the photo-z estimation procedure (see Benitez 2000, for a detailed discussion).
Briefly, the T value is calculated within a Bayesian framework using six templates of
galaxy spectra (Coleman et al. 1980; Kinney et al. 1996). We define our two sub-samples
as Tg < 3 (a combination of E1, Sbc, Scd types, labelled as ‘red’) and T > 3 (a
combination of Im and two starburst types, labelled as ‘blue’). This cut is chosen to
ensure similar statistical power in the two sub-samples (see Fig. 2.1). Source properties
of these two sub-samples are summarised in Table 2.1.

2.3 Calibration of redshift distributions

One of the most challenging tasks in a tomographic cosmic shear study is estimating
the source redshift distribution for each tomographic bin. Since these intrinsic redshift
distributions vary with galaxy samples, we need to calibrate the photo-z estimates for the
two sub-samples separately. We employed the technique from the fiducial KV450 cosmic
shear analysis, known as DIR in H20, for this task. This method directly estimates
the underlying redshift distributions of a photometric sample using deep spectroscopic
redshift (spec-z) catalogues that overlap with the photometric survey. In this section,
we briefly discuss our implementation of this method and refer interested readers to the
original papers for more details (Lima et al. 2008; Hildebrandt et al. 2017, 2020).

The DIR method necessitates that the calibration sample (the spec-z sample) spans,
at least sparsely, the full extent of the multi-band magnitude space covered by the target
sample (the photo-z sample), and that the mapping from magnitude space to redshift
space is unique. Consequently, the coverage of the spec-z sample is essential for this
method’s accuracy. We used the same set of spec-z catalogues as employed in the
fiducial KV450 cosmic shear analysis. This includes the zZCOSMOS survey (Lilly et al.
2009), the DEEP2 survey (Newman et al. 2013), the VIMOS VLT Deep survey (Le
Fevre et al. 2013), the GAMA-G15Deep survey (Kafle et al. 2018), and a combined
catalogue provided by ESO in the Chandra Deep Field South area. These independent
spec-z surveys, with different lines-of-sight and depths, minimise shot noise and sample
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Figure 2.1: Cumulative /ensfit-weighted distributions of 7g values. The dashed line
indicates the ideal equal split in each tomographic bin, which is closely approximated by
our split at 7g = 3.

variance in the calibration sample.

Since the spec-z catalogues cannot fully represent the photometric sample, it
is necessary to weight spec-z objects to ensure an appropriate match between the
spectroscopic and photometric distributions. The method, based on a kth nearest
neighbour (kNN) approach, is detailed in Sect. 3 of Hildebrandt et al. (2017). In brief, it
assigns weights to the spec-z objects by comparing the volume densities of the spec-z
and photometric objects in the nine-band magnitude space (ugriZYJHK). As a result,
KiDS+VIKING-like observations are required in the same areas as the aforementioned
spec-z surveys. H20 have constructed these photometric observations from multiple
sources, depending on the availability of specific data sets in those spec-z survey fields.
We adopted the same sample and split it with the same criterion as used for the main
KV450 sample to build two representatives of our two sub-samples.

The resulting redshift distributions of the two sub-samples are shown in Fig. 2.2. Also
presented are the mean and median differences between these two redshift distributions
(see Table 2.1 for separate values). The importance of photo-z calibration is demonstrated
by the tails of the DIR redshift distributions compared to the ranges selected by the
photo-z cuts (shaded regions). These differences between the DIR results and photo-z
estimates are more significant in the red sub-sample, where an overall bias towards
overestimating photo-z is shown. This may seem counter-intuitive at first, given the
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Figure 2.2: Redshift distributions for the two sub-samples, estimated using the DIR
technique. Shaded regions correspond to photo-z cuts for the tomographic binning.
Mean and median differences were calculated as 0Zmean/median = Zmean/median,blue —

Zmean/median,red-

discussion presented in Sect. 2.1, which states that young stars can wash out spectral
features for photo-z estimation, resulting in larger errors in bluer galaxies. However,
we emphasise that the ‘red’ sub-sample defined in Sect. 2.2 is not purely red, but also
includes Sbc and Scd types (see Sect. 2.2), which could worsen the photo-z estimates. For
our purposes, we are interested in the redshift difference between the two sub-samples.
As can be seen, the differences are significant, with the median differences as high as
~0.13 and the mean differences ~0.24 in certain bins. This level of difference will result
in considerably different cosmic shear signals for the two sub-samples (see Sect. 2.5).
In practice, the DIR method is susceptible to various systematic effects, primarily
induced by the incompleteness of the spec-z sample, due to selection effects and sample
variance in the different spectroscopic surveys that comprise the spec-z catalogue
(see Wright et al. 2020a for an updated method that is more robust against such
incompleteness). To account for these potential systematic effects, H20 introduced
five nuisance parameters ¢, in their model to allow for linear shifts of the redshift
distributions n;(z) — n;(z+ ;) (see Table 2.2). Priors for these parameters are obtained
using a spatial bootstrapping approach. In our consistency tests described below, we
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focus on an extension of these nuisance parameters to the colour-split sub-samples (see
Sect. 2.6).

2.4 Calibration of shape measurements

The shape measurements are susceptible to various biases due to the noise of galaxy
images, the complexity of galaxy shapes, selection effects, and so on (see Sect. 2 of K19
for a theoretical discussion). The weak lensing community has conducted several blind
challenges to test the performance of shape measurement pipelines (see, e.g. Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al.
2015). These tests, based on simplified image simulations, are useful for understanding
common sources of shear bias but cannot eliminate biases in a specific survey. In
particular, differences in selection criteria between surveys affect the shear bias. These
residual biases need to be calibrated with dedicated, tailor-made image simulations (see,
e.g. Hoekstra et al. 2015). Following Heymans et al. (2006), we quantify these residual
biases using a linear parameterisation:

obs true

g =(1+m)g ™ +ci, 2.1)

where g?bs and g™ are the observed and true gravitational shears, respectively, with

i = 1,2 referring to the two different components. In practice, we found isotropy in the
m results, meaning that m| ~ my, so we simply adopt m = (m +my)/2.

The two types of biases, m (the multiplicative bias) and ¢ (the additive bias or c-term),
have distinct sources and properties. The former is typically determined from image
simulations, while the latter can be inferred directly from the data. As demonstrated
in K19, shear biases depend not only on the selection function but also on the overall
population of galaxies. Consequently, shear calibrations should be performed separately
for samples containing different galaxy populations. This was the case for the various
tomographic bins in the KV450 analysis and is even more relevant for our split analysis.

We therefore re-estimated the multiplicative biases in the two sub-samples using the
COllege simulations (COSMOS-like lensing emulation of ground experiments, K19),
which were also employed in the fiducial KV450 cosmic shear analysis. The main
features of the COllege simulations are the observation-based input catalogue and the
assignment of photometric redshifts. The input catalogue contains information on
galaxy morphology and position from Hubble Space Telescope observations (Griffith
et al. 2012) of the COSMOS field (Scoville et al. 2007). The photometric redshifts
of simulated galaxies are assigned by cross-matching the input catalogue to the KiDS
catalogue. This setup ensures a high level of realism in the simulated catalogue and
allows us to analyse the simulated data using the same pipelines as for the real data.
K19 have demonstrated that the simulated catalogue faithfully matches the full KV450
catalogue in all crucial properties, including galaxy shapes, sizes, and positions.

As anticipated, we observed significant differences in galaxy properties between the
two sub-samples. We showcase one of these comparisons in Fig. 2.3, which compares
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Figure 2.3: Normalised /ensfit-weighted distributions of ellipticities for galaxies in the

two sub-samples. The ellipticity is defined as € = /612 + e%. We note that the differing
distributions reflect distinct galaxy populations and suggest different shear biases in the
two sub-samples.

the distributions of galaxy ellipticities. As previously mentioned in Sect. 2.1, ellipticity
variance is one of the main sources of shape measurement biases (see also Viola et al.
2014) and thus serves as an indicator of the variance in shear biases between the two
sub-samples.

Our calibration approach is identical to that used in the fiducial KV450 cosmic shear
analysis. It adopts a re-weighting scheme referred to as ‘Method C’ in Fenech Conti et al.
(2017) to account for slight differences between the observations and the simulations.
The m value is reported per tomographic bin, using a weighted average of individual
galaxies belonging to the corresponding tomographic bin. We direct readers to Sect. 6
of K19 for further details.

We present our estimates of multiplicative biases for the two sub-samples in Fig. 2.4,
comparing them with the results from the whole sample. The five sections from top to
bottom correspond to the five tomographic bins, ranging from lower to higher redshifts.
We noticed some significant differences in the m values, particularly for the higher
tomographic bins; these differences mainly arise from the ellipticity distributions shown
in Fig. 2.3. However, when considering their impact on the cosmic shear signals, the
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Figure 2.4: Multiplicative biases for the two sub-samples and the whole sample in each
tomographic bin. Errors shown were estimated from bootstrapping. The hatched regions
indicate the 0.02 error budget adopted by H20.

adjustments induced by these m-value differences are much smaller than those caused by
the redshift differences, as demonstrated in Fig. 2.5. Therefore, we assume that residual
systematics from the shear calibration are secondary and focus our consistency tests on
the redshift calibration.

The treatment of additive bias in the fiducial KV450 cosmic shear analysis is
sophisticated (see Sect. 4 of H20 for details). Briefly, the treatment can be summarised in
three aspects: First, the value of c; in each tomographic bin and in each patch is estimated
by averaging over the measured galaxy ellipticities. These ¢; values are then subtracted
from the galaxy ellipticities before the shear correlation functions are calculated (Eq. 2.2).
Second, a nuisance parameter ¢ is introduced into the model to account for a potential
offset of the empirically determined c; values. The result from forward-modelling
suggests that ¢, is very close to 0 (see Table 2.2). Third, a position-dependent additive
bias pattern in the € ellipticity component is introduced to account for an imperfection in
the OmegaCAM detector chain. This pattern is publicly available as a supplementary file
along with the main cosmic shear catalogues. Furthermore, another nuisance parameter
A is introduced to allow an overall scaling of this 2D pattern (see Table 2.2).

We primarily adhered to this strategy for the additive bias calibration. We corrected
the c-term per tomographic bin and per patch using the same empirical approach
mentioned above. We also incorporated the 2D c-term pattern into our models. However,
we excluded the two nuisance parameters d. and A, from our model, as they do not have
a significant impact on the fit.
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2.5 Cosmic shear signal

The cosmic shear signal is encoded in the measured shapes of source galaxies as minor
coherent distortions. Therefore, proper statistical measures and models are essential
for a cosmic shear study. We delve into these processes in this section: Section 2.5.1
presents the construction of the joint data vector for the two sub-samples using the shear
correlation functions; while Section 2.5.2 discusses the modelling of the measured data
vector while taking into account various astrophysical and cosmological effects. Our
analysis builds on the fiducial cosmic shear analysis of H20 but includes adjustments to
accommodate our testing objectives.

2.5.1 Statistical measures

The shear signal is quantified by two-point shear correlation functions. These can be
calculated from two tomographic bins i and j as follows

S Waws |ef (xa)e! (o) + ek (xa) el (y)|

(L+m")(1+mJ) ¥ waWs

J(0) = ; (2.2)
where ¢, » represent the tangential and cross ellipticities concerning the vector x, — yp
between a pair of galaxies (a, b), and w is the lensfit weight. The summation runs
over all galaxy pairs within a designated spatial bin A6 for each 8 = |0, — 0,|. The
multiplicative biases m’, obtained in Sect. 2.4 for each tomographic bin i, are factored in.

We computed Eq. (2.2) separately for the two sub-samples using the publicly available
TrREeECORR code? (Jarvis et al. 2004). The spatial binning scheme is identical to the one
used in H20, featuring nine logarithmically spaced bins within the [0/5,300"] interval.
We used the first seven bins for £, and the last six bins for £_. These selection criteria
help mitigate the impact of baryonic feedback on small scales and additive shear biases
on large scales (for details, see H20). The joint data vector (£21'¢, £7°d) that we created
through these measurements comprises (7 +6) X 15 x 2 = 390 data points.

Our estimates of the data vector are presented in Fig. 2.5, with differences defined
as A&y = £81ve — ¢4 The accompanying error bars were derived from the analytical
covariance matrix, as discussed in Sect. 2.6.1. The two sets of data vectors correspond
to the results obtained with and without the multiplicative shear calibration. The
discrepancy between them is minor, as anticipated given the relatively small m values
(refer to Table 2.1). Some bins show non-zero trends, which can be attributed to
the differing redshift distributions of the two sub-samples, as depicted in Fig. 2.2.
The influence of the redshift distributions in explaining these measurements is further
elaborated in the subsequent section.

2https://github.com/rmjarvis/TreeCorr
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Figure 2.5: Differences between two-point shear correlation functions for the two sub-
samples (A& = 21”6 - fd). The error bars are defined as o¢ = \/Cb,D + Cip — 2Cu: D,
where the subscript ‘D’ refers to the diagonal of a matrix, and the three unique parts of the
complete covariance matrix are denoted as Cy, for the blue sub-sample, C; for the red sub-
sample, and Cy, for their cross-covariance. These errors closely match the measurement
errors reported by the TREECORR code (0 easure/0c = 0.8), suggesting that the diagonal
elements of the covariance matrix are predominantly influenced by measurement noise.
The overall consistency between the two sets of data vectors—with and without shear
calibration (represented by orange crosses and black dots, respectively)—implies that
the multiplicative bias exerts a minimal effect in this study.

2.5.2 Theoretical modelling

The measured correlation functions §ij (0) are connected to the lensing convergence
power spectrum P,/ (£) through (see e.g. Bartelmann & Schneider 2001)

Vo) =5, [ aeer oo, 23)

where ¢ signifies the angular wavenumber in the Fourier domain. The terms Jo,4(£6)
represent Bessel functions of the first kind, where Jy corresponds to the zeroth-order
(applied in the case of &), and J4 denotes the fourth-order (used for £_). Using the
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Kaiser-Limber approximation (Limber 1953; Kaiser 1992, 1998; Loverde & Afshordi
2008), P,/ (¢) is in turn related to the physical matter power spectrum P, via

TN X qi(x)q;(x) (€+1/2 )
P (6) /0 dy TAOIE Ps fK()()’X ; 2.4

where y represents the comoving radial distance, and fx(y) denotes the comoving
angular distance. The integration is carried out up to yy, which is the comoving horizon
distance. The lensing efficiency g;(y) for a given tomographic bin i can be defined as

3H{Om fi(x) [, q ,)fK(X’—)()
2¢2 aly) Jy ’ felx)

which is dependent on the redshift distribution of galaxies, represented as n; (y)dy =
n;(z)dz, as well as various other cosmological parameters. This implies that variances
in the redshift distributions between two sub-samples can lead to differences in their
shear signals.

We used the Boltzmann-code CLASS (Blas et al. 2011) to compute the matter
power spectrum, incorporating non-linear corrections from HMCobk (Mead et al. 2016).
In line with H20, we adopted a ACDM model comprising five primary cosmological
parameters and an additional parameter representing baryonic feedback processes on
smaller scales. These parameters include the densities of cold dark matter and baryons
(QcpMm and Qyp), the amplitude and the index of the scalar power spectrum (In( 1010As),
ns), the scaled Hubble parameter (%), and the amplitude of the halo mass-concentration
relation (B).

For consistency tests, it is not necessary to traverse the entire cosmological parameter
space since these parameters remain the same for both sub-samples. Therefore, we
set the aforementioned cosmological parameters to two distinct sets of best-fit values
derived from KV450 (Hildebrandt et al. 2020) and Planck (Planck Collaboration et al.
2020) (see Table 2.2). This approach allows us to simplify our theoretical models while
concurrently investigating potential dependencies on cosmology.

The final piece of information necessary for modelling the observed correlation
functions is the intrinsic alignment (IA) of galaxies (Troxel & Ishak 2015; Joachimi et al.
2015). In the KiDS analyses, this effect is accounted for by incorporating a ‘non-linear
linear’ IA model into the measured shear signal (Hirata & Seljak 2004; Bridle & King
2007):

qi(x) = (2.5)

Eo=gar el v &0 (2.6)

where &, and &, represent the measured shear signal and the pure cosmic shear signal,
respectively. The IA signals are incorporated in the form of ¢! and £81. The term

f_rl represents the ‘intrinsic-intrinsic’ correlation, that is, the correlation between the
intrinsic ellipticities of nearby galaxies. The term £S! stands for the ‘gravitational-
intrinsic’ correlation, which refers to the correlation between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a background galaxy. These two IA
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terms can be calculated using the same formula as given in Eq. (2.3), but with the power
spectra defined as

ij A n: (x)nj(x) {+1/2
J f) = d 2 J ( ’ ), 27
Fu) fo O eor T\ R X @D
ij xH qi () (x) +q;(x)ni(x) (€+1/2 )
J(6) = d vl 2.8
PG = [k T o\ Tt X @8
where o
F(z) = _AIACPcrit,OD—I(nZ) : (2.9)

The normalisation constant is given by C = 5 X 10‘14h‘1M51MpC3, and pgrito 1S the
critical density today. The linear growth factor D, (z) is normalised to unity today.
Consistent with H20, we disregarded the redshift or luminosity dependence of intrinsic
alignments, assigning one nuisance parameter Aja to account for these effects (for a
more detailed treatment, see Fortuna et al. 2021a).

Equipped with all the necessary data, we can now forward-model the shear correlation
functions. For illustrative purposes, we first maintained all model parameters constant,
using the redshift distributions estimated in Sect. 2.3 to predict the combined data vector
of the two sub-samples. The outcomes are depicted in Fig. 2.5. Two distinct predictions
arise from two separate sets of cosmological parameters: the red solid line represents
the KV450 best-fit values, and the black dashed line symbolises the Planck best-fit
values. All other nuisance parameters align with the best-fit KV450 results as indicated
in Table 2.2. Even with this simplified approach, the predicted results generally mirror
the trends observed in the data, underscoring the redshift difference as the primary
factor for the dissimilar shear correlation functions in the two sub-samples. Another
notable characteristic is the resemblance between the two predictions derived from
two distinct sets of cosmological parameters. This suggests that our test model is not
significantly influenced by the adopted cosmological parameters. However, to accurately
assess the goodness of fit and verify the robustness of the pipelines, we require a more
meticulous Bayesian analysis, implementing appropriate test models and taking into
account correlations between measurements.

2.6 Consistency tests

Quantifying internal consistency is no trivial task, given the correlations between
measurements and the challenge of comparing different models. On the one hand, over-
looking intrinsic correlations between measurements can lead to unreliable conclusions.
As demonstrated by Kohlinger et al. (2019), failing to consider these correlations can
confound residual systematics with the overall goodness of fit. On the other hand, null
tests based on global summary statistics, such as Bayesian evidence, are practically
challenging for high-dimensional models (see e.g. Trotta 2008). Furthermore, vary-
ing prior choices between hypotheses can complicate the interpretation of the final
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Table 2.2: Model parameters and their best-fit values from KV450 cosmic shear
analysis (Hildebrandt et al. 2020) and the Planck CMB analysis (Planck Collaboration
et al. 2020).

Parameter KV450 Planck Definition

Qcpmh? 0.058 0.120 CDM density today

Qph? 0.022 0.022 Baryon density today

In(10'0Ay) 4.697 3.045 Scalar spectrum
amplitude

s 1.128 0.966 Scalar spectrum index

h 0.780 0.673 Hubble parameter

B 2.189 - Baryon feedback
amplitude

Ala 0.494 - IA amplitude

5o % 10° 2.576 - c-term offset

A 1.143 - 2D c-term amplitude

0z -0.006 - Bin 1 offset

Oz, 0.001 - Bin 2 offset

Oz 0.026 - Bin 3 offset

Oz, —-0.002 - Bin 4 offset

Ozs 0.003 - Bin 5 offset

The first five parameters are the standard cosmological parameters. The remaining
parameters are nuisance parameters introduced by Hildebrandt et al. (2020) to account
for various effects associated with cosmic shear analysis. The KV450 best-fit values are
derived from the primary Monte Carlo Markov Chain, which is publicly available at
http://kids.strw.leidenuniv.nl/cosmicshear2018.php. The Planck best-fit
values correspond to the TT, TE, EE+lowE+lensing results with the P1ik likelihood
(Table 1 of Planck Collaboration et al. 2020).

results (Handley & Lemos 2019b; Lemos et al. 2019).

In this section, we address these challenges. First, we construct an analytical
covariance matrix to account for all the correlations between measurements (Sect. 2.6.1).
Then, we conduct a Bayesian analysis using dedicated test parameters to quantify
potential discrepancies between measurements from the two sub-samples (Sect. 2.6.2).
Our conclusions are based on the posterior distributions of these test parameters. This
approach allows us to strike a balance between model accuracy and simplicity.

The modelling pipeline described below is publicly available3. It is a modified

3https://github.com/1shuns/montepython_Kv450
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version of the MoNTEPYTHON package (Audren et al. 2013; Brinckmann & Lesgourgues
2018) using the PyMuLTINEsT algorithm (Buchner et al. 2014), which is a Python
wrapper of the nested sampling algorithm MuLTINEsT (Feroz et al. 2009). The original
MonTePYTHON package was used for the KV450 cosmological analysis in H20 and for
the consistency tests with a split of data vector (Kohlinger et al. 2019).

2.6.1 Covariance matrix

We estimated the covariance matrix for the joint data vector assembled in Sect. 2.5.1
using the analytical model developed in Hildebrandt et al. (2017), H20, and Joachimi
et al. (2021). This analytical approach represents an advancement over traditional
numerical or Jackknife methods, offering benefits in managing noise effects and finite
survey areas. Here, we provide a brief overview of the key aspects of this analytical
approach, while detailed discussions can be found in Sect. 5 of Hildebrandt et al. (2017)
and Joachimi et al. (2021).

The analytical model consists of three components: a Gaussian term related to
sample variance and shape noise, a non-Gaussian term originating from in-survey
modes, and a third term, also non-Gaussian, derived from super-survey modes (known as
super-sample covariance, or SSC). The Gaussian term is calculated following Joachimi
et al. (2008), with a transfer function taken from Eisenstein & Hu (1998) and non-linear
corrections from Takahashi et al. (2012). The information about the sources used
is detailed in Table 2.1; it includes the effective galaxy number density (n.¢) and
the weighted ellipticity dispersion (o¢ ;). The second non-Gaussian term is derived
using the formalism proposed by Takada & Hu (2013), incorporating the halo mass
function and halo bias from Tinker et al. (2010). The halo profile is described using a
Fourier-transform version of the NFW model (Navarro et al. 1996; Scoccimarro et al.
2001), with the concentration-mass relation taken from Duffy et al. (2008). The final
SSC term is modelled once again using the formalism from Takada & Hu (2013). The
survey footprint is modelled with a HEALP1x map (Goérski et al. 2005).

The shear calibration outlined in Sect. 2.4 also entails uncertainties. Following the
approach used in H20 and Wright et al. (2020b), we considered a systematic uncertainty
om = 0.02 for the multiplicative biases as estimated by K19. This uncertainty is
propagated into the covariance matrix using the relation C¢ ;.‘1 = 4§in,T‘0'2m +C;j, where
&7 is the joint data vector predicted with the KV450 best-fit values and the DIR redshift
distributions (refer to Sect. 2.3 for more details). The error associated with the additive
biases was neglected due to its minimal impact. For a more detailed discussion on this
topic, please refer to Appendix D4 of Hildebrandt et al. (2017).

The final correlation matrix for the joint data vector is presented in Fig. 2.6.
There are noticeable contributions from the off-diagonal regions, which highlight the
significant correlations within each individual sub-sample as well as between the two
sub-samples. The importance of potential correlations between parts of a split was
previously emphasised in Kohlinger et al. (2019), but here we provide a more direct
confirmation. By incorporating the complete covariance matrix into our consistency
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Figure 2.6: Analytical correlation matrix for the joint data vector. To highlight the
correlations, the covariance C;; is normalised using the diagonal 1/C;;C; ;.

gblue gred

tests, we automatically account for all the data correlations.

We examined the relative contributions of the Gaussian and non-Gaussian terms to the
complete covariance matrix. Generally, the Gaussian term dominates the diagonal parts
of the covariance matrix, while the non-Gaussian term contributes more significantly to
the off-diagonal regions. This pattern is also clearly outlined in Joachimi et al. (2021).

Given that our test model is especially sensitive to the difference A¢ between the
two sub-samples, we built the covariance matrix of A¢ as Ca = Cppue + Cred — 2Ceross-
We then compared this to the covariance matrices of the individual data vectors (&ppye
or &red). Our findings indicate that the non-Gaussian contributions are significantly
diminished in C,, with an overall reduction of < 75% compared to Cpjye. The Gaussian
contributions are also slightly reduced, primarily in the off-diagonal regions. These
reductions in the covariance matrix Cp can be explained by the cancellation of sample
variance. Hence, we confirmed that our test model is robust against uncertainties in the
sample variance and alterations in the cosmological parameters.

2.6.2 Test setup

With the covariance matrix in place, we can explore the parameter space using a Bayesian
analysis. Our main goal is to evaluate whether a unified set of nuisance parameters could
adequately account for the residual systematics in the two sub-samples. Consequently,
we opted to hold all cosmological parameters constant, under the assumption that the
two sub-samples should intrinsically have identical values for these parameters.
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To substantiate this assumption, we ran an additional test where we allowed cosmo-
logical parameters to vary. The results are in an agreement with our fixed-cosmology
framework, revealing minimal degeneracy between cosmological parameters and test
parameters. Therefore, we maintained our approach of fixing cosmological parame-
ters, simplifying the likelihood function and preventing the unnecessary traversal of a
high-dimensional parameter space.

To ensure robustness against any possible residual effects stemming from an
inaccurate selection of cosmological parameters, we implemented two different settings.
One setting used cosmological parameters derived from the KV450 cosmic shear analysis,
while the other employed parameters from the Planck CMB results (see Table 2.2). This
approach enabled us to factor in potential discrepancies in our choice of cosmological
parameters.

Our test model, Hj, contains six test parameters besides the nuisance parameters
used in H20. These test parameters are a shift in IA amplitude, denoted as Aja s,
and shifts in redshift offsets, represented as 6., s. They are implemented in the two
sub-samples as

Xblue/red =X+X, (2.10)

where X stands for either the Aja or ¢, parameters, while X, designates the corresponding
test parameters. The blue sub-sample is characterised by the positive sign, while the red
sub-sample is associated with the negative sign.

While a discrepancy in the IA signal is anticipated, differences in the redshift
offsets should be non-existent if the calibration pipeline is impervious to sample-
related systematics. Any non-zero values for ¢, would indicate the presence of
residual systematics that are not fully encompassed by the common nuisance parameters.
Therefore, our conclusions are primarily grounded on the posterior distributions of these
test parameters.

For control purposes, we also established a base model, Hp, with the same set of
nuisance parameters as in H20, to model the joint data vector derived from our two
sub-samples. It contains six free nuisance parameters: the amplitude of the IA signal
Apa (refer to Sect. 2.5.2) and the redshift offset ¢, for each tomographic bin i (refer to
Sect. 2.3).

However, it is important to note that this assumption is stronger than what is mandated
by data consistency. Given that the IA signal is dependent on the galaxy population, it is
not expected to be identical across the two sub-samples.

The prior distributions for all free parameters are detailed in Table 2.3. The common
nuisance parameters leverage the priors from H20. Specifically, A;4 employs a wide flat
prior, while ¢, adopts Gaussian priors, the variance of which is determined using a spatial
bootstrapping technique during the redshift calibration process (refer to Sect. 3.2 of H20).
For the six new test parameters in the test model H;, we selected wide, uninformative
priors. These choices, as demonstrated in Sect. 2.7, incorporate prior knowledge of
redshift uncertainties into the common nuisance parameters, while simultaneously
enabling a comprehensive exploration of the test parameters. We emphasise that the
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main objective of our test is to ascertain whether the KV450 nuisance parameters are
adequate for capturing any residual systematics.

Our testing method, which does not rely on Bayesian evidence to identify ten-
sions, avoids the ‘suspiciousness’ issue associated with common model-selection
methods (Lemos et al. 2019). In this regard, our approach is akin to the second tier of
the Bayesian consistency tests proposed by Kohlinger et al. (2019). However, rather
than duplicating the cosmological parameters and drawing conclusions from the pos-
terior distributions of differences in these parameters, we concentrate on the nuisance
parameters, particularly those tied to redshift calibration.

Another key difference lies in our approach to data splitting. We performed a
colour-based split of the source galaxies, repeating measurements and calibrations for
the sub-samples, whereas Kohlinger et al. (2019) based their analysis on a split of the
measured correlation functions. Consequently, our method is more attuned to potential
inconsistencies within the source samples, while their approach offers a more global test
of residual systematics and their impact on the ultimate cosmological results. Thus, our
test serves as a complementary examination of pipeline robustness alongside theirs.

2.7 Results

The primary outcomes of our consistency tests are depicted in Fig. 2.7, where we
present the marginal posterior constraints of the five test parameters, 6, s, introduced in
Sect. 2.6.2. Each of the five sections in the plot corresponds to one of the five tomographic
bins. The two sets of results, drawn from the KV450 best-fit cosmology (represented by
red lines) and the Planck best-fit cosmology (black lines), are in agreement, reinforcing
the notion that our test model is not sensitive to the specific choice of cosmological
parameters.

All of the values are consistent with zero within approximately 1.50-, which suggests
that the KV450 calibration pipelines are effectively correcting for these sample-related
systematics. This finding further implies that there is no need to introduce additional
nuisance parameters for the current analysis.

The two tomographic bins that exhibit slightly non-zero differences are the second
bin (approximately 1.20°) and the third bin (approximately 1.30"). The interpretation
of such a level of difference is nuanced, given the statistical power of current data.
We emphasise that the 6., ¢ parameters we constrained here represent the shifts in the
redshift offsets within the two sub-samples. These shifts are expected to be larger than
the mean redshift offsets (¢, ), considering the notable redshift differences between the
two sub-samples and the breadth of the DIR redshift distributions (refer to Fig. 2.2).

As demonstrated in Table 2.3, all 6, values are less than the width of the
underlying redshift distributions and are approximately zero within the uncertainties.
This observation attests to the overall precision of the DIR redshift distributions.

Table 2.3 presents the posterior results for all free parameters, as well as the best-fit
12 values for all models. While we do not base our conclusions strictly on the y? test,
due to the complex nature of Bayesian models where dimensionality is not directly
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defined by the number of free parameters (see, for example, Handley & Lemos 2019a),
it is still informative to compare these values. Upon considering the number of free
parameters, it appears that the test model | is statistically on par with the control model
Hp. This further reinforces our initial conclusion regarding the suitability of the current
nuisance parameters in accounting for any remaining systematic errors.

Figure 2.8 shows the contour plot for the test model, with a notable feature being
the pronounced degeneracy between A s and ¢, ¢ in the lower redshift bins (refer to
Fig. 2.8). This correlation primarily contributes to the ambiguity in the test parameters.
The complex relationship between the IA signal and redshift uncertainties was also
observed in Wright et al. (2020b), where an updated redshift calibration of the KV450
data resulted in a negligible IA amplitude. Our observation underlines the complexity
inherent in deciphering the apparent IA signal.

We performed an additional test in which we constrained 6, s = 0 in the test model
H,. The result was a significantly positive Aja s value, suggesting Aja plue > AIA red-
This contradicts established IA studies (see Joachimi et al. 2015 for a review), implying
that IA parameters could potentially mask issues with redshift estimates. Therefore, we
must exercise caution when interpreting the IA parameters.

To further investigate the influence of the IA parameters in our test model, we
executed an additional test, 71, where Aja s was held constant at zero. This approach
maximises the shifts of the redshift offsets by disregarding the IA difference in the two
sub-samples. Even with this conservative estimate, the shifts are < 2.10 for all redshift
bins, with the most significant values still appearing in the third bin (refer to Table 2.3).

2.8 Summary and discussion

We conducted an internal consistency test on the KV450 cosmic shear analysis by
dividing source galaxies based on colour, yielding two statistically equivalent sub-
samples comprising distinct galaxy populations (refer to Figs. 2.1, 2.2, and 2.3). Uniform
measurements and calibrations were applied to these sub-samples, and we evaluated
changes in the two-point correlation functions due to known variations in redshift
distributions and multiplicative biases (see Fig. 2.5). With cosmological parameters
fixed, we used a Bayesian analysis and specific test parameters to scrutinise the internal
consistency of observational nuisance parameters, focusing on those related to redshift
distributions. We noticed a degeneracy between redshift uncertainties and the inferred IA
amplitude for lower redshift bins. However, we found no signs of internal inconsistency
in the KV450 data, affirming the adequacy of the current approach—utilising a common
set of nuisance parameters to linearly shift redshift distributions—for addressing residual
systematics in redshift calibration.

The internal consistency test we introduced is resilient to uncertainties in background
cosmology and cosmic variance. It can be employed in upcoming cosmic shear surveys
prior to making any cosmological inference. This weak sensitivity to cosmology aligns
with the ‘shear-ratio’ test (Jain & Taylor 2003; Schneider 2016; Unruh et al. 2019),
which has been used to verify the precision of redshift distributions in current cosmic
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Figure 2.7: Constraints on J, ; for each tomographic bin under the H; model. The
errors depicted represent the 68% credible intervals derived from the MCMC analysis.
For contextual comparison, the vertical blue lines indicate half of the mean differences
between the reconstructed DIR redshift distributions of the two sub-samples (as seen in
Fig. 2.2).

shear surveys (Heymans et al. 2012; H20; Giblin et al. 2021). The ‘shear-ratio’ test, a
cross-correlation method, relies on the galaxy-galaxy lensing signals from two or more
source samples at varying redshift bins. Consequently, these two tests are sensitive to
different systematics, making them complementary tools.

While our discussion primarily focused on redshift calibration, we discovered that
the test is also contingent on our assumptions about IA signals (refer to Fig. 2.8). Without
an extensive exploration of IA models, our test is already capable of identifying the
degeneracy between the 1A signals and redshift uncertainties, a concept previously hinted
at in other studies(see Sect. 6.6 of Hildebrandt et al. 2017). Recently, Samuroff et al.
(2019) conducted an analysis similar to ours, but based on DES data. Their focus was
the IA signal and cosmological parameters, while they marginalised over observational
nuisance parameters. While this differs from our approach, it links to our test via the IA
signals, which both tests examined. They achieved more precise constraints on the A
signals in sub-samples by employing a range of IA models. We can similarly enhance
our test model to glean deeper insights into IA signals and their correlation with other
nuisance parameters in future cosmic shear data.
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Figure 2.8: Contour plots outlining the 68% and 95% credible regions for all free
parameters within the #; model. The plotting ranges align with the prescribed prior
ranges. Dashed lines demarcate zero values, which would represent the ideal case. The
two different colours correlate with the two sets of results derived from the KV450 and
Planck cosmological values, respectively. The faint degeneracy observed between dz;, s
in the lower redshift bins is an artefact of the substantial degeneracy between Aja s and
0z s- This degeneracy dissipates in the 77 test setting, wherein Ay s is held constant at
Zero.



