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CHAPTER

Introduction

Approximately 13.8 billion years ago (Planck Collaboration et al. 2020), an event known
as the ‘Big Bang’ marked the inception of the physical Universe. As the Universe
continues to expand, its energy density decreases, leading to the separation of the four
fundamental forces and the cooling of particles. Eventually, the temperature fell to
such a level that the initial density fluctuations could grow by gravitationally attracting
surrounding matter, resulting in the formation of gas clouds, stars, galaxies, and the
large-scale structures we observe today.

Unveiling this big picture of the history of our Universe, as depicted in Figure 1.1,
stands as one of the most significant accomplishments of twentieth-century cosmological
research, if not the most significant. The theoretical and observational advancements in
the field are truly remarkable. This is especially evident with the establishment of the
spatially flat A Cold Dark Matter (ACDM) model, which hinges on only six parameters
and yet successfully describes several key observations with astounding accuracy,
including the expansion of the Universe, the measurements of the Cosmic Microwave
Background (CMB), and the matter distribution of cosmic large-scale structures.

As we move into the 21st century, the field of cosmology continues to thrive,
intertwined with advancements in observational techniques and the subsequent challenges
in accurately interpreting increasingly precise measurements. On the one hand, the
development of various cosmological probes, facilitated by modern technology, yields
unprecedented precision in our measurements. This progress provides a massive
opportunity to unravel the mysteries surrounding some critical elements of our current
cosmological model, such as the origins of initial density fluctuations and the enigmatic
nature of dark matter and dark energy. On the other hand, the technical advancements
come with the challenging task of controlling various systematic effects that stem from
both observational conditions and astrophysical contamination. Therefore, devising
effective strategies to control these systematics, in order to harness the full statistical power
of advanced cosmological probes, remains a pivotal topic in 21st-century cosmological
studies.

Among the techniques that show promise as cosmological probes but present
practical challenges is weak gravitational lensing. According to general relativity, light
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Figure 1.1: An overview of the history of our Universe, from its initial
state—characterised by near uniformity, punctuated by small fluctuations—to the
complex cosmic structure we observe today. [Credit: ESA — C. Carreau]

from distant galaxies is distorted by the gravitational fields associated with foreground
matter. Consequently, measuring these small yet coherent distortions offers a direct
probe into the matter distribution in large-scale structures, or those associated with
individual massive objects, such as galaxy groups or clusters. However, in practice,
robustly measuring these small lensing-induced distortions is difficult due to distortions
introduced by observational conditions and instrumental effects. The task is further
complicated by the challenges involved in accurately determining the distances to the
galaxies. Even with robust weak lensing measurements in hand, extracting cosmological
information from these measured signals is non-trivial due to astrophysical effects like
the intrinsic alignment of galaxies and baryonic effects.

This thesis focuses on this very topic, with a specific emphasis on the role of weak
gravitational lensing in deriving cosmological parameters and investigating dark matter
halos. Our primary objective is to enhance the accuracy of weak lensing analyses
by improving the calibration of signal measurements and scrutinising the inference
pipeline through consistency and sensitivity tests. Additionally, we aim to deepen
our understanding of the relationship between dark matter halos and galaxies. This
relationship is critical not only for achieving robust cosmological inference but also for
enhancing our understanding of galaxy formation and evolution.
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1.1 Foundations of the modern cosmology

Before delving into the cosmological applications of weak lensing, it is instructive to
review the foundational elements of contemporary cosmological models. For the sake of
brevity and specificity, we focus on the current standard cosmological model, namely the
ACDM model. We begin with an examination of the isotropic and homogeneous average
Universe in Sect. 1.1.1, followed by an analysis of the evolution of inhomogeneities at
small scales in Sect. 1.1.2. Finally, we conclude with a discussion of key observational
tests to the standard cosmological model in Sect. 1.1.3.

1.1.1 The homogeneous and isotropic Universe

The standard cosmological model is built upon two main foundations: the cosmological
principle and the validity of general relativity at cosmological scales. The cosmological
principle states that, on sufficiently large scales, the average matter distribution is
both homogeneous and isotropic. This assumption leads to the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, which defines the geometry of space-time as follows

ds? = —g,,,dxtx” = 2di? - a®(1)di? , (1.1)

where c stands for the speed of light. The metric tensor, g, establishes the relationship
between the coordinate values and the interval ds in the four-dimensional space-time.
The scale factor, a(r), captures the expansion of space. The comoving spatial element,
dl, is then defined as

2

di?> =
1-Kr?

+r2(d6? +sin 6 d¢?) | | (1.2)

where r, 8, and ¢ represent comoving spatial polar coordinates, and K is the curvature
parameter. A K value of zero corresponds to a spatially flat Euclidean space, K > Oto a
positively curved, spherical space, and K < 0 to a negatively curved, hyperbolic space.

The relationship between the space-time geometry and the energy content in the
Universe is described by the Einstein field equation:

Ry = 53Ry = Ay = g Ty (13)

Here, R, and R denote the Ricci tensor and scalar, respectively, which describe the

local curvature of space-time. The cosmological constant, A, was initially introduced

by Einstein to achieve a static Universe, but it is now used to explain the observed

accelerating expansion of the Universe. G is the Newtonian gravitational constant, and
T,,, represents the energy-momentum tensor.

In the case of a perfect fluid—an apt approximation for the average matter distribution

at large scales under the cosmological principle—the energy-momentum tensor is formed

by a simple diagonal matrix T*, = diag(pc?, =P, —P, —P), where pc? represents the
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energy density, and P denotes pressure. By inserting this energy-momentum tensor and
the FLRW metric into the Einstein field equation, we obtain the Friedmann equations,
which describe the dynamics of the cosmological expansion:

. 2 2 2
[%] - %,;(r) - a;:(t)K+ %A, (1.4)

and

i 4nG (3 ’

The connection between the cosmological constant and the energy content is apparent
from these equations. The influence of the cosmological constant is equivalent to an
energy component with a constant density and pressure that satisfy py = —Pp/c? =
Ac?/(87G). As such, the cosmological constant is also regarded as the simplest form of
the mysterious dark energy, which is considered to be driving the observed accelerating
expansion of the Universe.

Broadly speaking, the matter components in the Universe can be categorised into two
groups: non-relativistic matter, which includes cold dark matter and ordinary baryons,
and relativistic matter, consisting of photons and relativistic neutrinos. These two types of
matter show different pressure-density relationships. For a perfect fluid, this relationship
is characterised by the equation of state parameter w, defined as w = P/(pc?). For
non-relativistic matter, the pressure is negligible, corresponding to a wy, = 0. On the
other hand, relativistic matter has a wy,g = 1/3. In similar terms, the cosmological
constant can be interpreted as a dark energy component with a wp = —1.

These equations of state enable us to re-formulate the Friedmann equations into the
following form:

c2

a*(t)

H(1) = Hy [Qa0 + Qmo a7 (1) + Quaap a*(1)] - K, (1.6)
where the Hubble parameter, H(t) = da(t)/a(¢), is introduced. Q; is defined as the
ratio of the density p; to the critical density pii(f) = 3H*(t)/(87G). The subscript 0
indicates values measured at the current epoch (a(fg) = 1).

The Hubble parameter at the current epoch, Hy, is also known as the Hubble
constant, and it measures the current rate of cosmological expansion. Historically, the
exact value of the Hubble constant has been uncertain, with estimates ranging from
50 — 100 km s~ Mpc~!. Consequently, it is common to introduce a little /4 factor,
defined as Hy = 100k km s~' Mpc™!, to absorb the uncertainties in the exact value of
Hy. This convention will be used throughout this chapter.

The cosmological parameters in Eq. (1.6) were precisely determined through the
Planck CMB observations, although some discrepancies persist among results from
different cosmological probes (as discussed in Sect. 1.1.3). By combining information
from temperature and polarisation maps, as well as lensing reconstruction, and adopting
a spatially flat ACDM model (K = 0), Planck Collaboration et al. (2020) constrained
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Hy = 67.36 +0.54 km s~! Mpc_l, Qo = 0.6847 +0.0073, Qpno = 0.3153 £ 0.0073,
and Qg0 < 1074,

1.1.2 Structure evolution

An entirely homogeneous and isotropic Universe would not spontaneously form the
complex cosmological structures we observe today. The existence of these large-scale
structures, such as groups and clusters of galaxies, implies the presence of initial density
fluctuations. These early cosmological inhomogeneities, serving as the seeds of our
current observed structures, grew due to gravitational instability. While the origin of
these primordial density fluctuations remains a subject of debate — with the current
popular theories suggesting quantum fluctuations associated with inflation or topological
defects from early-time Universe phase transitions — the evolution of these fluctuations
is well-described by the current standard cosmological model. In fact, when these
primordial cosmological perturbations are considered as initial conditions, the standard
ACDM model accurately predicts both the observed anisotropy in the CMB and the
matter distribution in the late-time Universe. We briefly review some key aspects of
structure formation within the framework of the standard ACDM model in this section.

Density fluctuations and two-point statistical measures

Typically, the cosmological density fluctuations are described by a perturbation field, ¢,
defined as the contrast between the local density and the mean background density as
follows:

§(x) = PR (1.7)

(o)
Here, (---) denotes the averaging operator, and x represents the comoving spatial
coordinate. It is also convenient to consider the perturbation field as a superposition
of many signal modes, which in a flat comoving geometry, is quantified by the Fourier
transform:

o(x) = Zék exp(ik - x) ; Ok = %‘/d3x exp(—ik - x) 6(x) , (1.8)
k

where V denotes the volume of a sufficiently large box, inside which the perturbations
are assumed to be periodic, and k represents the wavevector. The cosmological principle
implies that while the perturbation field characterises inhomogeneities, its statistical
properties should exhibit homogeneity and isotropy like the background density field
(see Chapter 16 of Peacock 1999 for a detailed discussion). This enables us to simplify
calculations by reducing the three-dimensional coordinates of x and the wavevector k to
single dimensions, x and k respectively.

Given the stochastic nature of the initial fluctuations, the meaningful predictions
about the cosmological structure concern its statistical properties. Thus, it is necessary to
introduce some statistical measures of the perturbation field. One of the basic measures
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is the two-point correlation function, defined as

£(r) =(6(x)o(x+7)) . (1.9)

where r denotes the separation between two spatial points in comoving units. This
correlation function quantifies the clumpiness of the density field, and thus can serve
as a means to characterise the cosmological structure. An equivalent measure in the
Fourier space is the power spectrum, which is the Fourier transform of the two-point
correlation function:

sin(kr)

kr

P(k) = V{|6¢|*) =47r/ dr &(r) r, (1.10)
In this equation, we integrated the angular coordinates in the 3D Fourier transform (as
defined in Eq. 1.8), based on the assumption that the perturbation field is homogeneous
and isotropic.

Assuming that the initial fluctuations follow a Gaussian random field, a condition
which aligns with current observational data and the predictions of the popular inflation
theory, the power spectrum or two-point correlation function entirely captures the
statistical properties of the field. However, for non-Gaussian random fields, which could
develop at later times due to non-linear dynamics, higher-order correlation functions
become necessary. For the sake of brevity, we shall not extend our discussion to these
higher-order statistics in this short introduction.

Linear evolution in the early stage

During the early stage of structure evolution, fluctuations are typically small (03 < 1).
In these circumstances, we can employ a perturbative approach to analytically solve the
evolution problem, subject to certain approximations. The choice between Newtonian
mechanics or a relativistic treatment is influenced by the properties of the matter
content and the size of the perturbation. The simplest case involves sub-horizon
perturbations—fluctuations on scales much smaller than the horizon size—in pressureless
matter, which comprises cold dark matter and non-relativistic baryons.

In this scenario, the Newtonian perturbation theory is applicable. Moreover, if
we disregard the entropy perturbation, the evolution of each Fourier mode of these
perturbations can be described by the equation:

5k+2H(l‘)5k =47G{p)0y . (1.11)

In this equation, a damping term 2H (¢)Jy arises due to the cosmological expansion,
resulting in the growth of the fluctuations following a power law in time, rather than an
exponential growth. This slow growth rate enables probing the primordial fluctuations
using observations from the present epoch, as the evolved matter distribution still retains
significant information about the initial state.
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Non-linear evolution and gravitational collapse
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Figure 1.2: Visual representations of some numerical simulations. The simulations
are categorised into large-volume simulations, which statistically represent large-scale
structures, and zoom-in simulations, focusing on resolving smaller scales. Each of these
types is further classified into two classes: dark matter-only N-body simulations, which
consider only gravitational effects, and hydrodynamical simulations, which also include
non-gravitational processes such as gas cooling and feedback mechanisms. [Credit:
Vogelsberger et al. (2020)]

As the fluctuations continue to grow, the linear approximation becomes less and less
accurate, and eventually a full non-linear treatment of gravitational collapse is required to
effectively study galaxy formation. While the underlying physical principles remain the
same, finding analytical solutions becomes increasingly challenging or even impossible
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due to the complexity of these non-linear dynamical systems. This is where numerical
simulations prove indispensable. Figure 1.2 showcases visual representations from
some recent simulations. Such cosmological simulations are essential for understanding
the intricate process of structure and galaxy formation, and they serve as key tools in
interpreting observations from modern cosmological surveys.

While non-linear dynamics are complex, valuable insights can still be drawn from
simplified analytical models. Comparing non-linear results with their linear counterparts
can provide a qualitative understanding of the evolution of cosmic structures. A useful
example involves the evolution of spherically symmetric, sub-horizon fluctuations
in pressureless matter. For these small-scale fluctuations, the Newtonian equation
# = —GM /r? is applicable, where r is the radius of a given mass shell, and M is the
mass enclosed within that shell. Assuming that M remains constant over time and that
the mass shell initially expands but ultimately collapses due to a negative net energy,
we can solve the Newtonian equation to find the times of maximum expansion (7 = 0)
and collapse (r = 0). Substituting these times into the formula derived from the linear
treatment gives corresponding linear perturbation values of approximately 1.06 and 1.69,
respectively. While these values do not match the actual amplitude of the fluctuations,
they allow us to use linear perturbation theory to predict the timing of the turn-around
and collapse.

The final density of the collapsed objects cannot be directly estimated from the
aforementioned simplified model because the Newtonian equation diverges when r — 0.
This divergence arises because the assumption of a constant M breaks down when r is
small and particles move across different mass shells. Ultimately, the kinetic energy
from the random motion of particles balances the gravitational potential energy, and the
collapsed system reaches virial equilibrium. Consequently, the virial theorem can be
used to estimate the final overdensity of the collapsed system. Under the assumption of
a matter-dominated Universe, the overdensity of the collapsed system in the spherical
collapse model is found to be A, = 187> ~ 178. Although this value is dependent on the
idealised assumptions of the spherical collapse model, it implies that virialised regions
can be effectively described by a sphere with an average density roughly 200 times the
mean density of the Universe. This definition of virialised objects continues to be widely
used in contemporary studies.

Smoothed perturbation filed and Press-Schechter formalism

A notable application of the aforementioned simple spherical collapse model is the
Press-Schechter formalism proposed by Press & Schechter (1974). This method predicts
the mass function of collapsed objects from the initial perturbation field, bypassing
the need for detailed non-linear dynamic calculations. The basic idea is to evolve the
perturbation field using linear theory and connect it to the mass function of collapsed
objects. This connection is established by using a smoothed version of the perturbation
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field, defined as
A(x;R)E/d3x’ S(X)W(x+x";R) ; /d3x W(x;R) =1, (1.12)

where W (x; R) is a spherical window function with a characteristic radius R. One of
the most commonly used window functions is the top-hat window function defined as

-1
(%”R3) if |x| < R

W(x;R) = (1.13)

0 otherwise

With this window function, it is straightforward to establish a connection between
the characteristic radius and the average mass contained within the window volume:
M =4rR3*(p)/3. A similar correlation between the characteristic radius and mass can
be established for any chosen window function.

In practice, a top-hat window function with a radius of 82~! Mpc is often used
because the variance of the cosmic structure at present day, when smoothed with this
function, approximates one. This window function, when applied to smooth the present
linear perturbation field—computed by evolving the initial perturbation field to the
present day using the linear treatment—yields a root-mean-square measure known as
03, which is commonly used to quantify the strength of cosmic density fluctuations.

The Press-Schechter formalism assumes that the probability A(R) > &, denoted as
P(>d.), is equivalent to the fraction of collapsed objects with a mass greater than M,
represented as F'(>M). Here, ¢, is the overdensity of collapsed objects inferred from the
linear treatment. In the spherical collapse model discussed earlier, 6. = 1.69. However,
this assumption contains an inherent flaw due to the limits of linear treatment, which
suggest only the regions initially overdense can result in collapsed objects. Consequently,
this leads to a loss of half the total mass when transitioning from £ (>6.) to F(>M).

To remedy this issue, Press & Schechter (1974) assumed without proof that the
remaining mass in the underdense regions will be accreted into the collapsed objects,
resulting in doubling all collapsed object masses but keeping the shape of the mass
function unchanged, thus, F(>M) = 2P (>6.). In the case of A(x;R) following a
Gaussian random field, the resulting Press-Schechter mass function is as follows:

62 \|dInoy,
- dm , 1.14
eXp( 2(71%4)’ dinM (1.14)

240) o
T M? oy

n(M)dM =

where o represents the dispersion of the smoothed overdensity field, as filtered by a
window function corresponding to mass M.

Despite its reliance on several idealised assumptions and some unjustified ansatz,
the Press-Schechter mass function effectively captures the general behaviour of the true
mass function. Specifically, it correctly predicts the exponential decrease at the high
mass end and the power-law increase at the low mass end. Further refinements of the
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Press-Schechter formalism, including the extended Press-Schechter formalism by Bond
et al. (1991) and the merger-tree method (e.g. Lacey & Cole 1993), continue to play
significant roles in current hierarchical models of galaxy formation and serve as the
backbone of modern semi-analytical models of galaxy formation.

1.1.3 Testing the standard cosmological model

Apart from theoretical developments, which primarily focus on parametrising the
Universe with cosmological models and understanding structure formation, another
crucial aspect of cosmological studies is the use of astronomical observations to test
and refine these models. These observational endeavours play a significant role in
falsifying established cosmological theories. With the advent of increasingly powerful
cosmological surveys and the new observational window opened by the detection of
gravitational waves, we can anticipate significant advancements in the coming decades.
In this section, we provide a brief overview of some key cosmological probes that have
played — and will continue to play — a central role in shaping our current standard
cosmological model.

Determining the Hubble constant

The start of observational cosmology can be traced back to the pioneering work of Hubble
(1929), who observationally confirmed the expansion of the Universe by measuring
the recession of galaxies, as had been theoretically predicted by Lemaitre (1927). The
slope of the relationship between the distance to a galaxy and its recession velocity is
now termed the Hubble constant Hy, which quantifies the current expansion rate of the
Universe.

Accurately determining the value of Hy remains an active area of research in
observational cosmology. Figure 1.3 provides a summary of the current constraints on Hy
derived from various indirect and direct methods. The indirect method typically involves
using CMB measurements to infer Hy values based on assumed cosmological models.
The direct method currently involves three approaches: the ‘standard candle’ method,
which is based on bright objects with absolute luminosity that can be inferred from
non-distance-related measurements; the ‘standard siren’ method based on gravitational
waves, which enables a direct measurement of Hy without forming any ‘cosmic distance
ladder’; and time-delay measurements from strongly lensed quasars.

Beyond the impressive precision of the current constraints from these varied methods,
the most striking finding is the 40 to 60 discrepancy between the results from the
indirect method and those from the direct method. This statistically significant Hy
tension triggered extensive interest in exploring potential systematic effects inherent in
either method or in refining the current cosmological model (see Di Valentino et al. 2021
for a recent review).
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Figure 1.3: A summary plot showing the constraints on Hy derived from various indirect
and direct cosmological probes. The error bars denote the 68% credible intervals. The
y-axis labels show the sources of the measurements, which are grouped based on their
respective methods. [Credit: Di Valentino et al. (2021)]
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Cosmic microwave background

The discovery of the CMB by Penzias & Wilson (1965) served as a crucial piece of
evidence in support of the ‘Big Bang’ theory. The properties of the CMB observed today
are consistent with predictions from this theory. According to the ‘Big Bang’ theory,
the early Universe was extremely hot and dense, resulting in ionisation of all atoms and
frequent photon scattering. This intense scattering resulted in a blackbody spectrum.
As the Universe expanded, its temperature decreased, eventually reaching a point where
protons and electrons could combine to form neutral atoms. This ‘recombination epoch’
rendered the Universe transparent, as neutral atoms could no longer scatter photons
via Thomson scattering. This allowed photons to travel freely through space. The
photons emitted from this ‘last scattering surface’ are what we now observe as the CMB,
providing invaluable insights into the early stages of the Universe.

The pattern of CMB anisotropies is influenced by all cosmological parameters,
making it an extremely powerful tool for constraining these parameters. Currently,
the most precise constraints on the majority of cosmological parameters are provided
by the Planck CMB measurements (Planck Collaboration et al. 2020). The Atacama
Cosmology Telescope (Fowler et al. 2007) and South Pole Telescope (Carlstrom
et al. 2011) experiments continue these efforts, with a focus on achieving higher
angular resolution in CMB measurements and increasing sensitivity in detecting CMB
polarisations. Such advances will not only further refine the constraints on cosmological
parameters, but also aid in studying distant galaxy clusters and their environments by
leveraging the interactions between CMB photons and the hot ionised gas within these
clusters, a phenomenon known as the Sunyaev-Zeldovich effect (Sunyaev & Zeldovich
1972).

Measuring large-scale matter distribution

Another major class of observational methods involves the direct measurement of matter
distribution in the late-time Universe, using techniques such as galaxy clustering and
weak gravitational lensing, with the latter being the primary focus of this thesis. As
detailed in Sect. 1.1.2, the evolution of cosmic structure within an expanding Universe
encodes valuable information about initial density fluctuations. According to the
standard ACDM model, the current matter distribution is mainly determined by the
initial perturbation field and the horizon scale at the time of matter-radiation equality
(Pm = Prad)- This horizon scale, as shown by Bardeen et al. (1986) and Sugiyama (1995),
is characterised by the parameter 2,/ and to a lesser extent, the baryonic mass fraction.
Consequently, observations of the large-scale structure offer direct constraints on the
cosmological parameters Q;, and og. A standard approach to simplify the comparison
of cosmological results from different probes is the introduction of a structure growth
parameter, Sg = 0gy/Qm/0.3.

Galaxy clustering operates on the assumption that galaxy locations trace the cosmic
matter distribution. However, galaxies, being the outcome of complex, non-linear
processes, can deviate from this assumption, resulting in a statistical difference between
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Figure 1.4: Constraints on Sg from different cosmological probes. The label 3 x 2pt
refers to results from a joint analysis combining three sets of two-point statistics: galaxy
position-position correlations (galaxy clustering), galaxy shear-position correlations
(galaxy-galaxy lensing), and galaxy shear-shear correlations (cosmic shear). Other labels
represent the respective survey teams and the probes used. The error bars correspond to
the 68% credible intervals. [Credit: Heymans et al. (2021)]

the galaxy and underlying matter distributions (see Desjacques et al. 2018 for a review).
This galaxy bias complicates the interpretation of measured galaxy clustering signals.
Furthermore, constructing a 3D galaxy distribution depends on galaxy redshift estimates,
which encapsulate both the cosmological expansion and the line-of-sight peculiar
velocity, thus introducing contamination from intricate dynamical effects.

On the other hand, the weak lensing effect, which directly correlates with the
gravitational field of foreground matter, provides an unbiased trace of the large-scale
structure. However, the minute distortions induced by the weak lensing effect are
challenging to measure and susceptible to various systematic errors associated with the
measurement process. Despite advances in high-quality imaging surveys and innovative
shear measurement algorithms, careful control of systematic effects remains essential as
survey statistical power increases.

A promising approach entails a joint analysis of these two methods, as they
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probe the same underlying large-scale structure of the Universe. This method can
break the degeneracy between cosmological parameters found in individual observables,
significantly increasing the precision of cosmological parameter constraints. Furthermore,
because different observables are affected by different systematic effects, a joint analysis
permits some degree of self-calibration, leading to more accurate cosmological results.

Figure 1.4 presents the Sg constraints from a recent joint analysis by the Kilo-
Degree Survey (KiDS, Heymans et al. 2021), comparing results with the Planck CMB
measurements and other contemporary galaxy surveys such as the Baryon Oscillation
Spectroscopic Survey (BOSS, Alam et al. 2015), the Dark Energy Survey (DES,
Dark Energy Survey Collaboration et al. 2016), and the Hyper Suprime-Cam (HSC)
survey (Aihara et al. 2018). It shows that the precision of the current joint analysis
of galaxy clustering and weak lensing is already comparable to the Planck CMB
measurements. Interestingly, a mild 20 to 30 discrepancy exists between the Sg
values measured from large-scale matter distribution and those inferred from CMB
measurements. Explaining this mild Sg tension is more subtle than resolving the more
significant Hy tension. Given the high precision of modern surveys, any slight systematic
residuals in any probe could induce such level of difference, underscoring the importance
of identifying and controlling measurement and astrophysical systematic errors. More
detailed discussions on this aspect will be presented in the following sections and
throughout this thesis.

1.2 Weak gravitational lensing

The deflection of light by massive objects due to the curvature of space-time induced
by their gravity is a common phenomenon in modern astronomical observations and is
well-grounded in the theory of general relativity. Cosmological lensing effects can be
broadly divided into two categories depending on the prominence of the lensing effect,
as illustrated in Fig. 1.5: strong lensing, which produces substantial arcs or multiple
images; and weak lensing, which causes gravitational distortions to the source galaxy
images that are not visually detectable and thus require a statistical analysis.

This section provides a concise overview of gravitational lensing theory, emphasising
weak lensing effects. We begin with a brief introduction to the fundamental concepts
of lensing theory in Sect. 1.2.1, which is followed by discussions on the two primary
weak lensing configurations: galaxy-galaxy lensing and cosmic shear in Sect. 1.2.2 and
Sect. 1.2.3, respectively. The section concludes with a summary of major challenges
related to the measurement and modelling of weak lensing for cosmological applications,
presented in Sect. 1.2.4.

1.2.1 Fundamentals of gravitational lensing

For the study of gravitational lensing, we typically deal with lens objects that are much
smaller than the Hubble length cH; I"and have peculiar velocities much smaller than the
speed of light. In such cases, the lensing effects can be represented by introducing small
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Figure 1.5: Simulated images illustrating the two lensing regimes. The bottom left
part of the left panel plot concerns the strong lensing regime, where giant arcs and
multiple images are produced. As the radial distance of source galaxies from the lens
centre increases, the lensing effect decreases, and eventually lensing-induced distortions
become smaller than the intrinsic ellipticity of the source galaxies. The right panel offers
a zoomed-in view of this weak lensing regime, where the contours represent galaxy
shapes as determined from their second moments. [Credit: Mellier (1999)]

perturbations to the FLRW metric (Eq. 1.1) as
20 20
ds® = (1+—2) czdtz—(l——z)az(t)dlz, (1.15)
c c

where @ is the Newtonian potential, which is assumed to be weak (@ <« ¢?) and satisfies
the Poisson equation:
V20 =4nGp . (1.16)

Here, p represents the mass density of the lens objects, and the gradient operator, V,
operates on the physical, or proper, coordinates.

This perturbed FLRW metric, in combination with the light geodesic equation
(ds = 0), forms the theoretical foundation for solving gravitational lensing problems
that meet the weak gravitational field requirements. However, deriving a general
analytical solution from these equations is challenging and often requires approximations.
Therefore, a more practical approach would be to find specific solutions for individual
problems based on their unique conditions. We shall adopt this approach, starting with a
simple case known as the geometrically-thin lens to introduce some general concepts
associated with gravitational lensing theory. More practical examples concerning the
cosmological applications of weak gravitational lensing will be discussed in subsequent
sections.
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Figure 1.6: A sketch illustrating the geometry of a thin gravitational lensing system.

The deflection angle and lens equation

A geometrically-thin lens corresponds to a lens whose size is much smaller than the
distances between the observer, lens, and source. This is a valid assumption for most
astrophysical objects, such as galaxies and clusters of galaxies. Under such circumstances,
we can use a geometric relationship to describe the effects of gravitational lensing on
light propagation, as illustrated in Fig. 1.6. Here, the lens is located at an angular
diameter distance D4, while the source object is located at an angular diameter distance
D;. The angular diameter distance between the lens and source is denoted as D .

Locally, we can construct source and lens planes that are perpendicular to a straight
line (referred to as the optical axis in the figure) extending from the observer to the
lens, and onwards to infinity. These planes intersect the optical axis at the centres of the
source and lens, respectively. Then, the smoothly curved trajectory of light, which is
the reality under gravitational lensing, can be approximated by two straight lines that
intersect at a point in the lens plane, forming a kink. The magnitude and direction of
this kink are described by a deflection angle, &, which quantifies the extent of light
deflection due to the gravitational lensing effect.

The simplest lens model under this configuration involves a point mass M serving as
the lens. As long as the impact parameter—defined as the distance between the kink and
the lens—is much larger than the Schwarzschild radius of the lens (|§ | > R, =2GMc™?),
the weak gravitational field approximation remains valid, and the deflection angle can
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be found as (see e.g. Narayan & Bartelmann 1997):

4GM
c2€ '

An extended lens object can be treated as a collection of point masses. The resulting
deflection angle is then calculated as the vector sum of the deflections due to each
individual point mass. Each point mass element has a mass dM = pdV, where p is the
mass density of the lens and dV is a volume element. If we denote the three-dimensional
location of the kink as (&1, &2, 73) and that of the mass element dM as (7,7, 73), then the
impact vector is E - 5 ’, independent of r3 due to our assumption of a geometrically-thin

lens. The total deflection angle can be obtained as (see e.g. Bartelmann & Schneider
2001):

g”p(é?) =

(1.17)

. . 4G L E-E .
&@):7/&5’2(5')%; 2(§)s/dr3p(§1,§z,r3), (1.18)

&= ¢

where Z(g? ) is the surface mass density.

Once we determined the deflection angle, mapping from the source plane to the lens
plane becomes straightforward using the geometric relations illustrated in Fig. 1.6. Let
77 represent the two-dimensional source position in the source plane, we have

= —f D (@) . (1.19)

We can simplify this equation by introducing angular coordinates, defined as B =177/ D;
and 6 = £/Dy, and a scaled deflection angle

. - D PP
a(6) = dh&(Dde)_—/dze k(0)—=——=—, (1.20)
Dy 16— 0|2

where K(é) = Z(Ddé) /2 is the dimensionless surface mass density, often called
convergence, with X = 2Dy /(4nGDyDgs) representing the critical surface mass
density. With these definitions, Eq. (1.19) simplifies to

- -

B=0-a(0). (1.21)

This relation, known as the lens equation, provides the mapping from a sky position
in the source plane to a posmon in the lens plane. In physical terms, this means that a
source situated at a position ﬁ in the sky will appear at position 6 due to the gravitational
lensing effect. Notably, this mapping from the source plane to the lens plane may not
be one-to-one. Indeed, Eq. (1.21) can yield more than one solution for certain ,é In
physical terms, these multiple solutions correspond to multiple images of the same
source object being detected by the observer, a phenomenon commonly referred to as
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strong lensing.

The Fermat potential and time delay

Equation (1.20) implies the existence of a deflection potential, defined as
.1 . .
W) = — / d*0’ k(0" In|6 - 6], (1.22)
/4

which satisfies @ = Vgi. Here, Vg4 represents the two-dimensional gradient operator in
respect to 6, acting on the lens plane. This deflection potential can be interpreted as
a two-dimensional analogue of the Newtonian potential, given that it also satisfies the
two-dimensional Poisson equation:

2%
Viy =2k = s (1.23)

cr

Building on this, we can define a Fermat potential

I o
7(6;p) = 5(0—,8)2 —y(0), (1.24)

and the condition that its gradient V47 equals to zero is equivalent to the lens equation
given in Eq. (1.21).

As demonstrated by Schneider (1985), the Fermat potential 7(5; ﬁ), subject to an
affine transformation, represents the light travel time from the source to the observer,
accounting for the lensing effect. Thus, the lens equation can be interpreted as another
manifestation of Fermat’s principle, which states that light follows a path where the
travel time is stationary, i.e., a local minimum, maximum or saddle point. Given the
generality of the Fermat potential and its connection to the light travel time, it proves
valuable in understanding the properties of lens systems, including the study of multiple
images and time delays in strong lensing (e.g., Blandford & Narayan 1986).

The Jacobian matrix and image distortion

Until now, we have focused on the mapping of a single source position. In reality, source
objects like galaxies have an extended shape, and light emitted from different parts of
these sources will be deflected differently. This results in distortions in the observed
images. In general, quantifying this image distortion involves solving the lens equation
for each point within an extended source. However, when a source is relatively small
and the lens properties do not change significantly within its angular scale, the image
distortion can be linearly represented by the Jacobian matrix:

3/3:(1—K—71 -7

A6) = (1.25)

80 Y2 l—k+y1)’
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where

967 965

Y1

10> %y 0%y
. . = 1.2
2 ( ’ 72 00100, ° (1.26)

represent the two components of the shear parameter y = y; +1iy,. The convergence «,
introduced earlier, is connected to the deflection potential through Eq. (1.23).

According to Liouville’s theorem, surface brightness is conserved before and after
gravitational lensing, assuming no photon emission or absorption occurs during the
process. As a result, the Jacobian matrix contains all information about changes in the
local shape and flux of the source pre- and post-lensing distortion. To better grasp how
the parameters in the Jacobian matrix relate to the distortions of the source image, we
can re-formulate the Jacobian matrix as

3 l-g1 -8
AG) = (1 K)( e, 1+g1) , 1.27)
by introducing the reduced shear parameter: g = y/(1 — k).

With Eq. (1.27), it is evident that the factor (1 — ) influences the image isotropically,
affecting only the size and apparent flux of the observed image without altering its
shape. In the context of weak lensing, since the intrinsic properties of source objects are
unknown, this isotropic magnification effect cannot be directly measured for individual
lens systems!. On the other hand, the anisotropic distortions are entirely determined by
the reduced shear g, making it the central quantity in the study of weak gravitational
lensing.

1.2.2 Galaxy-galaxy lensing

After establishing the general principles of gravitational lensing, we can now explore
some practical examples of weak lensing that are vital in observational cosmology. Our
first example involves lens systems where individual massive objects, such as galaxies, or
groups/clusters of galaxies, serve as the lens. Such lens systems are commonly referred
to as ‘galaxy-galaxy lensing’ in contemporary weak lensing studies. Considering that
a typical galaxy cluster is only a few Mpc in size, while the cosmological distances
involved are usually several hundred to a few thousand Mpc, the geometrically-thin
lens condition is well satisfied. Thus, the results derived in the previous section can be
directly implemented in galaxy-galaxy lensing studies.

The key element in galaxy-galaxy lensing studies involves the correlation between the
surface mass density and the lensing effect, as illustrated in Eq. (1.18). This correlation
enables a range of applications such as estimating the total lens mass, mapping the matter
distribution, and more. Although the convergence « is directly linked to the surface
mass density by its definition, it is challenging to measure in practice. Conversely, the

'However, we can statistically measure the magnification effect, for example, by evaluating changes in
the local source number density (e.g. Broadhurst et al. 1995; Schneider et al. 2000; Hildebrandt et al. 2009)
or in the size-magnitude-redshift relation of galaxies (e.g. Alsing et al. 2015).
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shear parameter vy is relatively easier to measure from observed source images. Hence,
establishing a connection between convergence and shear is crucial.

Assuming the surface mass distribution of the lens is axisymmetric, this connection
can be readily derived from their relations to the deflection potentials (Eqs. 1.23 and
1.26):

v(0) = k(<6) —«(6) , (1.28)

where «(<8) represents the average value of x within a radius of 8. We also introduced the
tangential shear: y, = —y; cos(2¢) —y> sin(2¢), where ¢ represents the relative position
angle of the source with respect to the lens centre. Remarkably, this relationship holds
for general matter distributions as long as we replace local y(6) and x(6) estimations
with their azimuthally-averaged counterparts (y{(6)) and («x(6)) (Bartelmann 1995).
In practical terms, this implies that we can determine the azimuthally-averaged
mass profile of a lens object by measuring the azimuthally-averaged tangential shear,
irrespective of whether the density distribution is axisymmetric. This method can be
used to map the projected matter distribution of lens objects or to estimate the total
mass of the lens, provided the density profile of the lens is available. This application of
galaxy-galaxy lensing with real-world data will be the topic of Chapter 5.

1.2.3 Cosmic shear

Another primary application of the weak lensing effect is its use in directly probing the
large-scale structure of the late-time Universe. This method, known as ‘cosmic shear’,
considers all matter distributions between the source and the observer as the lens. As
mentioned in Sect. 1.1.3, the study of large-scale structures provides powerful constraints
on cosmological models, and cosmic shear is one of the few methods capable of such
examination. Therefore, cosmic shear plays a central role in modern cosmological
surveys.

On the theoretical side, ‘the lens’ of cosmic shear, spanning the entire space between
the source and the observer, breaks the geometrically-thin lens condition and requires an
extension of the classical lens theory. Furthermore, given the lack of a concrete lens
in this context, cosmic shear measurements depend on statistical analyses to establish
a connection with the statistical properties of the cosmic density field. Covering all
these aspects with careful derivations would exceed the scope of this introductory
section. Therefore, we will only outline the key elements of cosmic shear without
detailed derivation, focusing on the second-order statistical measures, namely, the
two-point correlation function and power spectrum as defined in Sect. 1.1.2. For a more
comprehensive discussion, we refer to Bartelmann & Schneider (2001) and Kilbinger
(2015).

Although the geometrically-thin lens condition no longer holds, the assumption of
weak gravitational perturbations remains applicable. Thus, the perturbed FLRW metric
and the Poisson equation, as defined in Egs. (1.15) and (1.16), are still valid. Considering
2®/c? as a small parameter, we can identify an effective deflection potential expressed
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as
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Here, w represents the comoving distance, fx (w) is the comoving angular diameter
distance, which equals w in a spatially flat Universe, and the integral is performed from
the observer to a target source.

Using this definition of g, we can apply Eq. (1.23) to introduce an effective
convergence parameter, formulated as

ke (6, W) = . (1.30)

3H2Qum0 /w dy JEOV SO0 =) 6] fx (W8, w']
2¢? 0 frk(w) a(w’)

where we used the Poisson equation (1.16) and replaced p with the overdensity 9, as
defined in Eq. (1.7). This equation reveals the correlation between the cosmic shear
effect and cosmological parameters. The effective convergence parameter is essentially
a line-of-sight integral of the cosmic perturbation field, with the scale factor a(w”) and
a combination of comoving angular diameter distance factors acting as a weighting
function. The combination of the Hubble constant and matter density parameter only
influences the amplitude of Keﬁ(é, w).

In practice, cosmic shear measurements from a collection of source galaxies are
averaged to enhance the signal-to-noise ratio. If these sources have a redshift distribution
such that p,(z)dz = G(w)dw, we can derive an averaged effective convergence,
expressed as

3HZQ WH o S ’ 5 ’
Rer = —20 2‘“’0/ aw’ Tw') fic (w) LLIE OO W] (1.31)
2c 0 a(w’)
Here, the weighting function, also known as the lensing efficiency factor, is defined as
_ WH !
W(w') = / dw Gw) KW =) (1.32)
w’ fK(W)

In these equations, the upper limit of integration corresponds to the horizon distance,
equivalent to infinite redshift.

To connect the cosmic shear measurements to the statistical properties of the cosmic
overdensity field, we use the power spectrum and apply the Limber’s equation, which links
the two-point statistical measures of a projected field to its original three-dimensional
field (Limber 1953). Following this approach, we can derive

402 —2
OH QL /WH dw W (w) k y
4t Jo 2w\ fxw) )
which links the power spectrum of convergence field to the power spectrum of the cosmic

matter distribution.
However, as mentioned earlier, convergence is challenging to measure in weak

Po(k) = (1.33)
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lensing studies, necessitating a connection to the shear parameter. Fortunately, in the
weak lensing limit, the two-point statistical properties of convergence and shear are
identical: P, = P, (Blandford et al. 1991). This relationship can be straightforwardly
demonstrated in Fourier space by considering the relations of convergence and shear
to the deflection potential, as defined in Egs. (1.23) and (1.26). Hence, we can use the
observed shear statistics to directly study the cosmic matter distribution, adhering to the
same relationship as in Eq. (1.33).

The line-of-sight integral in Eq. (1.31) implies that cosmic shear primarily measures
two-dimensional projections of the three-dimensional cosmic matter distributions. To
mitigate the signal loss from this integration, contemporary cosmic shear analyses often
include an additional layer of correlations along the line of sight by binning galaxies
based on their redshifts, a method known as tomographic analysis. This technique has
proven highly effective in enhancing the statistical power of cosmic shear for constraining
cosmological parameters (e.g. Hu 1999). Furthermore, it enables cosmic shear to
constrain properties of dark energy by facilitating measurements of the evolution of
cosmic structure (e.g. Huterer 2002). Chapter 4 presents an application of this cosmic
shear tomography using real-world data.

1.2.4 Challenges in weak lensing analysis

By now, it should be evident that the theory of weak lensing is well-established and
has shown itself to be extremely powerful in studying the matter distribution of both
individual objects and large-scale cosmic structures. However, applying it to real-world
data presents substantial challenges that warrant further investigation. This is particularly
true given the advancements of current and upcoming cosmological surveys, and the
intriguing disagreements found among different cosmological probes, as discussed
in Sect. 1.1.3. This section provides a brief overview of some key systematic issues
encountered during the measurement and modelling of weak lensing. Chapters 2 and 3
will delve deeper into these systematics, exploring their impact and discussing strategies
for their control in real-world applications.

Shear measurement and selection biases

The initial challenge in weak lensing studies arises when attempting to measure subtle
weak lensing distortions from noisy, faint galaxy images. This complexity is amplified
by distortions caused by the point spread function (PSF), resulting from instrumental
and observational conditions (e.g. Paulin-Henriksson et al. 2008; Massey et al. 2013),
the detection or selection bias during the identification of faint objects (e.g. Hartlap et al.
2011; Chang et al. 2013; Hoekstra et al. 2021), and the blending effects that occur when
two or more objects are in close proximity on the sky (e.g. Hoekstra et al. 2015; Dawson
et al. 2016; Hoekstra et al. 2017; Mandelbaum et al. 2018; Samuroff et al. 2018; Euclid
Collaboration et al. 2019). These factors not only introduce shear measurement bias but
also modify the selection function of the source sample, complicating the interpretation
of the measured shear signals. Therefore, managing shear measurement and selection
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biases is a crucial first step in any weak lensing studies.

Following two decades of development, the state-of-the-art shear measurement meth-
ods are capable of controlling measurement biases at a sub-percent level (e.g. Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al. 2012; Mandelbaum
et al. 2015). In addition, the use of realistic pixel-level image simulations helps address
residual biases and account for selection biases (see Chapter 3). This progress paints a
promising picture for controlling shear biases in future high-requirement weak lensing
surveys. Further investigation into blending effects and the interplay between shear
and redshift measurements could still provide benefits (e.g. MacCrann et al. 2022; Li
et al. 2023b). However, the shear measurement alone does not appear to pose the major
challenge for future surveys. More demanding are tasks such as careful modelling of
the PSF and improving the realism of image simulations (e.g. Li et al. 2023a,b). These
improvements, related to the shear measurement and calibration, seem to be the more
challenging aspects and warrant further study.

Photometric redshift uncertainties

Determining the distances of source galaxies presents a significant challenge for current
and future weak lensing surveys. This distance estimation relies on observing the
electromagnetic spectral energy distribution (SED) of a galaxy. The cosmological
expansion stretches the observed SED towards longer wavelengths by a factor (1 + z),
where z is the redshift. Therefore, the redshift can be related to a proper distance,
assuming a cosmological model. To measure the stretch of the SED, we need to identify
some characteristic features in it, such as emission and absorption lines. These features
are easy to identify if the observed wavelength resolution is high, i.e., if we obtain the
spectra of galaxies.

However, for deep imaging surveys, the fraction of galaxies with observed spectra is
very low. Fortunately, weak lensing analyses do not require precise redshift estimates
for each source galaxy. The source redshifts enter the calculation through an integral,
as shown in Eq. (1.32). Therefore, as long as the average redshift of the ensemble of
source galaxies is accurately estimated, the analysis yields unbiased results. This allows
for the use of so-called photometric redshifts, which are less precise.

This method measures the flux of distant galaxies in a few broader wavelength filters,
thereby obtaining a sparse sampling of the SED. It estimates the redshift based on broad
features such as the Lyman and Balmer breaks. Nevertheless, the raw estimates from
this process have large uncertainties that exceed the requirements of current and future
weak lensing analyses (e.g. Hildebrandt et al. 2010; Salvato et al. 2019). Therefore,
an additional step of redshift calibration, using more precise spectroscopic reference
samples, is necessary. However, this calibration process introduces its own biases, for
instance caused by incompleteness or non-representative sampling of the samples with
spectroscopic redshifts. This results in another layer of residual bias correction that also
relies on realistic simulations.

The first-step calibration is currently undergoing rapid development with the rise
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of machine learning-based techniques, such as self-organising maps (e.g. Kohonen
1982; Masters et al. 2015). The focus now is on enhancing the spectroscopic reference
samples and gaining a better understanding of the transfer function in both samples,
which describes how intrinsic photometry maps to measured ones and its correlation
with redshifts. This progress is crucial as colour-based redshift calibration methods
rely on the assumption that galaxy colour and redshift are closely correlated, and that
the spectroscopic calibration sample and the faint photometric target sample share
similar underlying properties (e.g. Hildebrandt et al. 2021; Myles et al. 2021; Rau et al.
2022). Simulations can aid this understanding, but the current absence of simulations
for the spectroscopic reference sample, and the complexity of the transfer function in
spectroscopic measurements, make this a challenging endeavour. Therefore, further
explorations in this direction are critical.

For the second step, residual bias correction, realism in simulations is pivotal, much
like in shear calibration (e.g. Hoyle et al. 2018; van den Busch et al. 2020; DeRose
et al. 2022). Recent advancements in multi-band image simulations appear promising
(e.g. Li et al. 2023b). These simulations naturally account for the transfer function
in the photometric sample and the blending effect, an aspect previously overlooked
in catalogue-level simulations. Furthermore, multi-band image simulations enable
a joint calibration of both shear and redshift estimates, leading to a full end-to-end
calibration, that is beneficial for both processes. The development of such multi-band
image simulations will be the focus of Chapter 3.

Baryonic effects and Intrinsic alignment

Even after achieving robust shear and redshift measurements, interpreting the weak
lensing signal, particularly the cosmic shear signal, remains a complex task. This
complexity arises from the fact that cosmic shear probes the matter distribution in the
late-time Universe, which undergoes non-linear evolutions, as discussed in Sect. 1.1.2.
Additionally, measured statistical signals include contamination from the intrinsic
alignment (IA) of galaxies, a non-lensing-induced coherent alignment of galaxies,
originating from tidal effects between neighbouring galaxies. Therefore, a crucial aspect
of weak lensing studies involves enhancing modelling accuracy to account for these
non-linear and astrophysical effects.

Regarding non-linear evolution, cosmological numerical simulations offer a promis-
ing solution. Advances in simulation algorithms and computational power now make it
possible to create gravitational-only N-body simulations that meet the requirements for
interpreting future weak lensing measurements (e.g. Heitmann et al. 2009; Nishimichi
et al. 2019; Euclid Collaboration et al. 2021). However, baryonic processes, such as
feedback from star formation and active galactic nuclei, also alter matter distributions
on scales relevant to cosmic shear studies (e.g. van Daalen et al. 2011; Semboloni et al.
2011). These non-gravitational processes cannot be captured by N-body simulations,
necessitating hydrodynamic simulations that include baryonic processes. However,
constructing hydrodynamic simulations that capture all astrophysical processes is compu-
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tationally demanding. More cost-effective alternatives, such as simplified hydrodynamic
simulations with fixed subgrid physics or semi-analytical models, require a sufficient
understanding of the astrophysical processes that are not included in the original simu-
lations, and this remains an active research area (e.g. Schaye et al. 2023; Kugel et al.
2023).

The issue of IA contamination is notably challenging to resolve due to our currently
limited understanding of its properties (see e.g. Joachimi et al. 2015; Troxel & Ishak
2015 for reviews). The prevailing approach introduces empirical models with nuisance
parameters to mitigate the IA impact (e.g. Hirata & Seljak 2004; Bridle & King 2007;
Blazek et al. 2019). However, these IA parameters were found to correlate with other
nuisance parameters, such as those related to redshift calibration (see Chapter 2). This
issue is further complicated by the fact that different types of galaxies exhibit varying
IA behaviours, which complicates the interpretation of a mixed-colour weak lensing
sample (e.g. Johnston et al. 2019; Fortuna et al. 2021b; Samuroff et al. 2022). In
this regard, a strategy of splitting the source samples based on their colours would be
beneficial, a method we employ in our Chapter 2 study. Moreover, advancements in
cosmological simulations allow for the study of IA within these simulations, providing
valuable insights into the underlying mechanisms of IA signals and aiding in refining
our modelling approach (e.g. Tenneti et al. 2014; Chisari et al. 2015; Hilbert et al. 2017;
Kurita et al. 2021).

1.3 This thesis

The rest of this thesis delves into the real-world applications of weak lensing as a
cosmological probe. We focus on two main aspects of weak lensing applications: cosmic
shear and galaxy-galaxy lensing, as previously introduced. Our goal is to enhance
constraints on cosmological parameters and deepen our understanding of the connection
between dark matter halos and galaxies. Throughout this work, we devote considerable
attention to identifying, testing, and controlling systematic effects that arise during weak
lensing measurements and modelling, recognising this aspect as critical for current and
future weak lensing studies.

In Chapter 2, we conduct an internal consistency test for cosmic shear analysis
using data from the Kilo-Degree Survey (KiDS). We split source galaxies based on their
colours and assess the robustness of the current KiDS pipeline when handling samples
with varied galaxy properties. Our findings confirm that the existing KiDS pipeline
effectively accounts for various systematic residuals. However, we identify a correlation
between IA parameters and nuisance parameters associated with redshift calibrations,
emphasising the need for improved IA models. Notably, the consistency test method
we use is insensitive to assumed cosmological models, making it an effective tool for
verifying the robustness of cosmic shear analysis before drawing any cosmological
conclusions.

Chapter 3 introduces a suite of multi-band image simulations for shear and redshift
calibration of KiDS weak lensing analysis. These newly developed simulations enable a
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joint calibration of shear and redshift, enhancing the realism and accuracy over previous
efforts. By integrating cosmological simulations with high-quality imaging data, we
generate a large volume of simulated galaxies, accurately mirroring realistic galaxy
properties to an adequate depth. We improve the realism of image simulations by
carefully addressing various observational and instrumental effects, including noise
background, point spread function, and stellar density. Furthermore, we study blended
systems at different redshifts by introducing variable shear fields into the simulations.
Our study reveals a correlation between shear and redshift biases due to blending
effects, underscoring the importance of joint shear and redshift calibration. We also
identify a minor but noteworthy impact of PSF modelling errors on shear bias. After
conducting sensitivity tests, we confirm the robustness of the current KiDS fiducial shape
measurement algorithm, within the requirements of the KiDS weak lensing analysis. For
future weak lensing surveys with stricter requirements, we recommend further studies on
blending effects, refinement of PSF modelling, and improvements to shape measurement
techniques to reduce their sensitivity to variations in galaxy properties.

In Chapter 4, we conduct a cosmic shear analysis, incorporating improvements
in cosmic shear measurements and calibrations facilitated by the work conducted in
Chapter 3. Moreover, we take into account recent advancements in cosmological
inference and investigate the influence of prior information on IA modelling on the final
cosmological results. We propose treating the statistical and systematic uncertainties
from the shear calibration separately, given their distinct origins. Our final cosmological
results align with previous KiDS studies and other weak lensing surveys, showing a
tension of approximately 2.30- with the Planck cosmic microwave background constraints
on Sg.

Finally, in Chapter 5, we investigate the connection between dark matter haloes
and galaxies using galaxy-galaxy lensing. We measure galaxy-galaxy lensing signals
around galaxy groups identified by the Galaxy And Mass Assembly (GAMA) project
using KiDS data. We interpret these statistical lensing signals through the halo model
formalism to infer the total halo mass associated with these galaxy groups. By adopting
optical observables provided by GAMA, we constrain the scaling relation between the
halo mass and the total luminosity of the groups. We assess the robustness of our halo
mass estimates by varying the treatment of halo model parameters not well-constrained
by the current data. These sensitivity tests help us identify critical model components
and guide future improvements. Given the increased statistical power of the measured
signals, this exploration and future enhancement of our current model are considered
necessary.



