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CHAPTER

Introduction

Approximately 13.8 billion years ago (Planck Collaboration et al. 2020), an event known
as the ‘Big Bang’ marked the inception of the physical Universe. As the Universe
continues to expand, its energy density decreases, leading to the separation of the four
fundamental forces and the cooling of particles. Eventually, the temperature fell to
such a level that the initial density fluctuations could grow by gravitationally attracting
surrounding matter, resulting in the formation of gas clouds, stars, galaxies, and the
large-scale structures we observe today.

Unveiling this big picture of the history of our Universe, as depicted in Figure 1.1,
stands as one of the most significant accomplishments of twentieth-century cosmological
research, if not the most significant. The theoretical and observational advancements in
the field are truly remarkable. This is especially evident with the establishment of the
spatially flat A Cold Dark Matter (ACDM) model, which hinges on only six parameters
and yet successfully describes several key observations with astounding accuracy,
including the expansion of the Universe, the measurements of the Cosmic Microwave
Background (CMB), and the matter distribution of cosmic large-scale structures.

As we move into the 21st century, the field of cosmology continues to thrive,
intertwined with advancements in observational techniques and the subsequent challenges
in accurately interpreting increasingly precise measurements. On the one hand, the
development of various cosmological probes, facilitated by modern technology, yields
unprecedented precision in our measurements. This progress provides a massive
opportunity to unravel the mysteries surrounding some critical elements of our current
cosmological model, such as the origins of initial density fluctuations and the enigmatic
nature of dark matter and dark energy. On the other hand, the technical advancements
come with the challenging task of controlling various systematic effects that stem from
both observational conditions and astrophysical contamination. Therefore, devising
effective strategies to control these systematics, in order to harness the full statistical power
of advanced cosmological probes, remains a pivotal topic in 21st-century cosmological
studies.

Among the techniques that show promise as cosmological probes but present
practical challenges is weak gravitational lensing. According to general relativity, light
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Figure 1.1: An overview of the history of our Universe, from its initial
state—characterised by near uniformity, punctuated by small fluctuations—to the
complex cosmic structure we observe today. [Credit: ESA — C. Carreau]

from distant galaxies is distorted by the gravitational fields associated with foreground
matter. Consequently, measuring these small yet coherent distortions offers a direct
probe into the matter distribution in large-scale structures, or those associated with
individual massive objects, such as galaxy groups or clusters. However, in practice,
robustly measuring these small lensing-induced distortions is difficult due to distortions
introduced by observational conditions and instrumental effects. The task is further
complicated by the challenges involved in accurately determining the distances to the
galaxies. Even with robust weak lensing measurements in hand, extracting cosmological
information from these measured signals is non-trivial due to astrophysical effects like
the intrinsic alignment of galaxies and baryonic effects.

This thesis focuses on this very topic, with a specific emphasis on the role of weak
gravitational lensing in deriving cosmological parameters and investigating dark matter
halos. Our primary objective is to enhance the accuracy of weak lensing analyses
by improving the calibration of signal measurements and scrutinising the inference
pipeline through consistency and sensitivity tests. Additionally, we aim to deepen
our understanding of the relationship between dark matter halos and galaxies. This
relationship is critical not only for achieving robust cosmological inference but also for
enhancing our understanding of galaxy formation and evolution.
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1.1 Foundations of the modern cosmology

Before delving into the cosmological applications of weak lensing, it is instructive to
review the foundational elements of contemporary cosmological models. For the sake of
brevity and specificity, we focus on the current standard cosmological model, namely the
ACDM model. We begin with an examination of the isotropic and homogeneous average
Universe in Sect. 1.1.1, followed by an analysis of the evolution of inhomogeneities at
small scales in Sect. 1.1.2. Finally, we conclude with a discussion of key observational
tests to the standard cosmological model in Sect. 1.1.3.

1.1.1 The homogeneous and isotropic Universe

The standard cosmological model is built upon two main foundations: the cosmological
principle and the validity of general relativity at cosmological scales. The cosmological
principle states that, on sufficiently large scales, the average matter distribution is
both homogeneous and isotropic. This assumption leads to the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, which defines the geometry of space-time as follows

ds? = —g,,,dxtx” = 2di? - a®(1)di? , (1.1)

where c stands for the speed of light. The metric tensor, g, establishes the relationship
between the coordinate values and the interval ds in the four-dimensional space-time.
The scale factor, a(r), captures the expansion of space. The comoving spatial element,
dl, is then defined as

2

di?> =
1-Kr?

+r2(d6? +sin 6 d¢?) | | (1.2)

where r, 8, and ¢ represent comoving spatial polar coordinates, and K is the curvature
parameter. A K value of zero corresponds to a spatially flat Euclidean space, K > Oto a
positively curved, spherical space, and K < 0 to a negatively curved, hyperbolic space.

The relationship between the space-time geometry and the energy content in the
Universe is described by the Einstein field equation:

Ry = 53Ry = Ay = g Ty (13)

Here, R, and R denote the Ricci tensor and scalar, respectively, which describe the

local curvature of space-time. The cosmological constant, A, was initially introduced

by Einstein to achieve a static Universe, but it is now used to explain the observed

accelerating expansion of the Universe. G is the Newtonian gravitational constant, and
T,,, represents the energy-momentum tensor.

In the case of a perfect fluid—an apt approximation for the average matter distribution

at large scales under the cosmological principle—the energy-momentum tensor is formed

by a simple diagonal matrix T*, = diag(pc?, =P, —P, —P), where pc? represents the
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energy density, and P denotes pressure. By inserting this energy-momentum tensor and
the FLRW metric into the Einstein field equation, we obtain the Friedmann equations,
which describe the dynamics of the cosmological expansion:

. 2 2 2
[%] - %,;(r) - a;:(t)K+ %A, (1.4)

and

i 4nG (3 ’

The connection between the cosmological constant and the energy content is apparent
from these equations. The influence of the cosmological constant is equivalent to an
energy component with a constant density and pressure that satisfy py = —Pp/c? =
Ac?/(87G). As such, the cosmological constant is also regarded as the simplest form of
the mysterious dark energy, which is considered to be driving the observed accelerating
expansion of the Universe.

Broadly speaking, the matter components in the Universe can be categorised into two
groups: non-relativistic matter, which includes cold dark matter and ordinary baryons,
and relativistic matter, consisting of photons and relativistic neutrinos. These two types of
matter show different pressure-density relationships. For a perfect fluid, this relationship
is characterised by the equation of state parameter w, defined as w = P/(pc?). For
non-relativistic matter, the pressure is negligible, corresponding to a wy, = 0. On the
other hand, relativistic matter has a wy,g = 1/3. In similar terms, the cosmological
constant can be interpreted as a dark energy component with a wp = —1.

These equations of state enable us to re-formulate the Friedmann equations into the
following form:

c2

a*(t)

H(1) = Hy [Qa0 + Qmo a7 (1) + Quaap a*(1)] - K, (1.6)
where the Hubble parameter, H(t) = da(t)/a(¢), is introduced. Q; is defined as the
ratio of the density p; to the critical density pii(f) = 3H*(t)/(87G). The subscript 0
indicates values measured at the current epoch (a(fg) = 1).

The Hubble parameter at the current epoch, Hy, is also known as the Hubble
constant, and it measures the current rate of cosmological expansion. Historically, the
exact value of the Hubble constant has been uncertain, with estimates ranging from
50 — 100 km s~ Mpc~!. Consequently, it is common to introduce a little /4 factor,
defined as Hy = 100k km s~' Mpc™!, to absorb the uncertainties in the exact value of
Hy. This convention will be used throughout this chapter.

The cosmological parameters in Eq. (1.6) were precisely determined through the
Planck CMB observations, although some discrepancies persist among results from
different cosmological probes (as discussed in Sect. 1.1.3). By combining information
from temperature and polarisation maps, as well as lensing reconstruction, and adopting
a spatially flat ACDM model (K = 0), Planck Collaboration et al. (2020) constrained
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Hy = 67.36 +0.54 km s~! Mpc_l, Qo = 0.6847 +0.0073, Qpno = 0.3153 £ 0.0073,
and Qg0 < 1074,

1.1.2 Structure evolution

An entirely homogeneous and isotropic Universe would not spontaneously form the
complex cosmological structures we observe today. The existence of these large-scale
structures, such as groups and clusters of galaxies, implies the presence of initial density
fluctuations. These early cosmological inhomogeneities, serving as the seeds of our
current observed structures, grew due to gravitational instability. While the origin of
these primordial density fluctuations remains a subject of debate — with the current
popular theories suggesting quantum fluctuations associated with inflation or topological
defects from early-time Universe phase transitions — the evolution of these fluctuations
is well-described by the current standard cosmological model. In fact, when these
primordial cosmological perturbations are considered as initial conditions, the standard
ACDM model accurately predicts both the observed anisotropy in the CMB and the
matter distribution in the late-time Universe. We briefly review some key aspects of
structure formation within the framework of the standard ACDM model in this section.

Density fluctuations and two-point statistical measures

Typically, the cosmological density fluctuations are described by a perturbation field, ¢,
defined as the contrast between the local density and the mean background density as
follows:

§(x) = PR (1.7)

(o)
Here, (---) denotes the averaging operator, and x represents the comoving spatial
coordinate. It is also convenient to consider the perturbation field as a superposition
of many signal modes, which in a flat comoving geometry, is quantified by the Fourier
transform:

o(x) = Zék exp(ik - x) ; Ok = %‘/d3x exp(—ik - x) 6(x) , (1.8)
k

where V denotes the volume of a sufficiently large box, inside which the perturbations
are assumed to be periodic, and k represents the wavevector. The cosmological principle
implies that while the perturbation field characterises inhomogeneities, its statistical
properties should exhibit homogeneity and isotropy like the background density field
(see Chapter 16 of Peacock 1999 for a detailed discussion). This enables us to simplify
calculations by reducing the three-dimensional coordinates of x and the wavevector k to
single dimensions, x and k respectively.

Given the stochastic nature of the initial fluctuations, the meaningful predictions
about the cosmological structure concern its statistical properties. Thus, it is necessary to
introduce some statistical measures of the perturbation field. One of the basic measures
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is the two-point correlation function, defined as

£(r) =(6(x)o(x+7)) . (1.9)

where r denotes the separation between two spatial points in comoving units. This
correlation function quantifies the clumpiness of the density field, and thus can serve
as a means to characterise the cosmological structure. An equivalent measure in the
Fourier space is the power spectrum, which is the Fourier transform of the two-point
correlation function:

sin(kr)

kr

P(k) = V{|6¢|*) =47r/ dr &(r) r, (1.10)
In this equation, we integrated the angular coordinates in the 3D Fourier transform (as
defined in Eq. 1.8), based on the assumption that the perturbation field is homogeneous
and isotropic.

Assuming that the initial fluctuations follow a Gaussian random field, a condition
which aligns with current observational data and the predictions of the popular inflation
theory, the power spectrum or two-point correlation function entirely captures the
statistical properties of the field. However, for non-Gaussian random fields, which could
develop at later times due to non-linear dynamics, higher-order correlation functions
become necessary. For the sake of brevity, we shall not extend our discussion to these
higher-order statistics in this short introduction.

Linear evolution in the early stage

During the early stage of structure evolution, fluctuations are typically small (03 < 1).
In these circumstances, we can employ a perturbative approach to analytically solve the
evolution problem, subject to certain approximations. The choice between Newtonian
mechanics or a relativistic treatment is influenced by the properties of the matter
content and the size of the perturbation. The simplest case involves sub-horizon
perturbations—fluctuations on scales much smaller than the horizon size—in pressureless
matter, which comprises cold dark matter and non-relativistic baryons.

In this scenario, the Newtonian perturbation theory is applicable. Moreover, if
we disregard the entropy perturbation, the evolution of each Fourier mode of these
perturbations can be described by the equation:

5k+2H(l‘)5k =47G{p)0y . (1.11)

In this equation, a damping term 2H (¢)Jy arises due to the cosmological expansion,
resulting in the growth of the fluctuations following a power law in time, rather than an
exponential growth. This slow growth rate enables probing the primordial fluctuations
using observations from the present epoch, as the evolved matter distribution still retains
significant information about the initial state.
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Non-linear evolution and gravitational collapse

4 dark matter-only (N-body) dark matter + baryons (hydrodynamical) ¥
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zoom (details)

ELVIS

Dark Sky

large volume (statistics)

B

» Horizon-AGN

\ /

Figure 1.2: Visual representations of some numerical simulations. The simulations
are categorised into large-volume simulations, which statistically represent large-scale
structures, and zoom-in simulations, focusing on resolving smaller scales. Each of these
types is further classified into two classes: dark matter-only N-body simulations, which
consider only gravitational effects, and hydrodynamical simulations, which also include
non-gravitational processes such as gas cooling and feedback mechanisms. [Credit:
Vogelsberger et al. (2020)]

As the fluctuations continue to grow, the linear approximation becomes less and less
accurate, and eventually a full non-linear treatment of gravitational collapse is required to
effectively study galaxy formation. While the underlying physical principles remain the
same, finding analytical solutions becomes increasingly challenging or even impossible
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due to the complexity of these non-linear dynamical systems. This is where numerical
simulations prove indispensable. Figure 1.2 showcases visual representations from
some recent simulations. Such cosmological simulations are essential for understanding
the intricate process of structure and galaxy formation, and they serve as key tools in
interpreting observations from modern cosmological surveys.

While non-linear dynamics are complex, valuable insights can still be drawn from
simplified analytical models. Comparing non-linear results with their linear counterparts
can provide a qualitative understanding of the evolution of cosmic structures. A useful
example involves the evolution of spherically symmetric, sub-horizon fluctuations
in pressureless matter. For these small-scale fluctuations, the Newtonian equation
# = —GM /r? is applicable, where r is the radius of a given mass shell, and M is the
mass enclosed within that shell. Assuming that M remains constant over time and that
the mass shell initially expands but ultimately collapses due to a negative net energy,
we can solve the Newtonian equation to find the times of maximum expansion (7 = 0)
and collapse (r = 0). Substituting these times into the formula derived from the linear
treatment gives corresponding linear perturbation values of approximately 1.06 and 1.69,
respectively. While these values do not match the actual amplitude of the fluctuations,
they allow us to use linear perturbation theory to predict the timing of the turn-around
and collapse.

The final density of the collapsed objects cannot be directly estimated from the
aforementioned simplified model because the Newtonian equation diverges when r — 0.
This divergence arises because the assumption of a constant M breaks down when r is
small and particles move across different mass shells. Ultimately, the kinetic energy
from the random motion of particles balances the gravitational potential energy, and the
collapsed system reaches virial equilibrium. Consequently, the virial theorem can be
used to estimate the final overdensity of the collapsed system. Under the assumption of
a matter-dominated Universe, the overdensity of the collapsed system in the spherical
collapse model is found to be A, = 187> ~ 178. Although this value is dependent on the
idealised assumptions of the spherical collapse model, it implies that virialised regions
can be effectively described by a sphere with an average density roughly 200 times the
mean density of the Universe. This definition of virialised objects continues to be widely
used in contemporary studies.

Smoothed perturbation filed and Press-Schechter formalism

A notable application of the aforementioned simple spherical collapse model is the
Press-Schechter formalism proposed by Press & Schechter (1974). This method predicts
the mass function of collapsed objects from the initial perturbation field, bypassing
the need for detailed non-linear dynamic calculations. The basic idea is to evolve the
perturbation field using linear theory and connect it to the mass function of collapsed
objects. This connection is established by using a smoothed version of the perturbation
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field, defined as
A(x;R)E/d3x’ S(X)W(x+x";R) ; /d3x W(x;R) =1, (1.12)

where W (x; R) is a spherical window function with a characteristic radius R. One of
the most commonly used window functions is the top-hat window function defined as

-1
(%”R3) if |x| < R

W(x;R) = (1.13)

0 otherwise

With this window function, it is straightforward to establish a connection between
the characteristic radius and the average mass contained within the window volume:
M =4rR3*(p)/3. A similar correlation between the characteristic radius and mass can
be established for any chosen window function.

In practice, a top-hat window function with a radius of 82~! Mpc is often used
because the variance of the cosmic structure at present day, when smoothed with this
function, approximates one. This window function, when applied to smooth the present
linear perturbation field—computed by evolving the initial perturbation field to the
present day using the linear treatment—yields a root-mean-square measure known as
03, which is commonly used to quantify the strength of cosmic density fluctuations.

The Press-Schechter formalism assumes that the probability A(R) > &, denoted as
P(>d.), is equivalent to the fraction of collapsed objects with a mass greater than M,
represented as F'(>M). Here, ¢, is the overdensity of collapsed objects inferred from the
linear treatment. In the spherical collapse model discussed earlier, 6. = 1.69. However,
this assumption contains an inherent flaw due to the limits of linear treatment, which
suggest only the regions initially overdense can result in collapsed objects. Consequently,
this leads to a loss of half the total mass when transitioning from £ (>6.) to F(>M).

To remedy this issue, Press & Schechter (1974) assumed without proof that the
remaining mass in the underdense regions will be accreted into the collapsed objects,
resulting in doubling all collapsed object masses but keeping the shape of the mass
function unchanged, thus, F(>M) = 2P (>6.). In the case of A(x;R) following a
Gaussian random field, the resulting Press-Schechter mass function is as follows:

62 \|dInoy,
- dm , 1.14
eXp( 2(71%4)’ dinM (1.14)

240) o
T M? oy

n(M)dM =

where o represents the dispersion of the smoothed overdensity field, as filtered by a
window function corresponding to mass M.

Despite its reliance on several idealised assumptions and some unjustified ansatz,
the Press-Schechter mass function effectively captures the general behaviour of the true
mass function. Specifically, it correctly predicts the exponential decrease at the high
mass end and the power-law increase at the low mass end. Further refinements of the
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Press-Schechter formalism, including the extended Press-Schechter formalism by Bond
et al. (1991) and the merger-tree method (e.g. Lacey & Cole 1993), continue to play
significant roles in current hierarchical models of galaxy formation and serve as the
backbone of modern semi-analytical models of galaxy formation.

1.1.3 Testing the standard cosmological model

Apart from theoretical developments, which primarily focus on parametrising the
Universe with cosmological models and understanding structure formation, another
crucial aspect of cosmological studies is the use of astronomical observations to test
and refine these models. These observational endeavours play a significant role in
falsifying established cosmological theories. With the advent of increasingly powerful
cosmological surveys and the new observational window opened by the detection of
gravitational waves, we can anticipate significant advancements in the coming decades.
In this section, we provide a brief overview of some key cosmological probes that have
played — and will continue to play — a central role in shaping our current standard
cosmological model.

Determining the Hubble constant

The start of observational cosmology can be traced back to the pioneering work of Hubble
(1929), who observationally confirmed the expansion of the Universe by measuring
the recession of galaxies, as had been theoretically predicted by Lemaitre (1927). The
slope of the relationship between the distance to a galaxy and its recession velocity is
now termed the Hubble constant Hy, which quantifies the current expansion rate of the
Universe.

Accurately determining the value of Hy remains an active area of research in
observational cosmology. Figure 1.3 provides a summary of the current constraints on Hy
derived from various indirect and direct methods. The indirect method typically involves
using CMB measurements to infer Hy values based on assumed cosmological models.
The direct method currently involves three approaches: the ‘standard candle’ method,
which is based on bright objects with absolute luminosity that can be inferred from
non-distance-related measurements; the ‘standard siren’ method based on gravitational
waves, which enables a direct measurement of Hy without forming any ‘cosmic distance
ladder’; and time-delay measurements from strongly lensed quasars.

Beyond the impressive precision of the current constraints from these varied methods,
the most striking finding is the 40 to 60 discrepancy between the results from the
indirect method and those from the direct method. This statistically significant Hy
tension triggered extensive interest in exploring potential systematic effects inherent in
either method or in refining the current cosmological model (see Di Valentino et al. 2021
for a recent review).
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Figure 1.3: A summary plot showing the constraints on Hy derived from various indirect
and direct cosmological probes. The error bars denote the 68% credible intervals. The
y-axis labels show the sources of the measurements, which are grouped based on their
respective methods. [Credit: Di Valentino et al. (2021)]
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Cosmic microwave background

The discovery of the CMB by Penzias & Wilson (1965) served as a crucial piece of
evidence in support of the ‘Big Bang’ theory. The properties of the CMB observed today
are consistent with predictions from this theory. According to the ‘Big Bang’ theory,
the early Universe was extremely hot and dense, resulting in ionisation of all atoms and
frequent photon scattering. This intense scattering resulted in a blackbody spectrum.
As the Universe expanded, its temperature decreased, eventually reaching a point where
protons and electrons could combine to form neutral atoms. This ‘recombination epoch’
rendered the Universe transparent, as neutral atoms could no longer scatter photons
via Thomson scattering. This allowed photons to travel freely through space. The
photons emitted from this ‘last scattering surface’ are what we now observe as the CMB,
providing invaluable insights into the early stages of the Universe.

The pattern of CMB anisotropies is influenced by all cosmological parameters,
making it an extremely powerful tool for constraining these parameters. Currently,
the most precise constraints on the majority of cosmological parameters are provided
by the Planck CMB measurements (Planck Collaboration et al. 2020). The Atacama
Cosmology Telescope (Fowler et al. 2007) and South Pole Telescope (Carlstrom
et al. 2011) experiments continue these efforts, with a focus on achieving higher
angular resolution in CMB measurements and increasing sensitivity in detecting CMB
polarisations. Such advances will not only further refine the constraints on cosmological
parameters, but also aid in studying distant galaxy clusters and their environments by
leveraging the interactions between CMB photons and the hot ionised gas within these
clusters, a phenomenon known as the Sunyaev-Zeldovich effect (Sunyaev & Zeldovich
1972).

Measuring large-scale matter distribution

Another major class of observational methods involves the direct measurement of matter
distribution in the late-time Universe, using techniques such as galaxy clustering and
weak gravitational lensing, with the latter being the primary focus of this thesis. As
detailed in Sect. 1.1.2, the evolution of cosmic structure within an expanding Universe
encodes valuable information about initial density fluctuations. According to the
standard ACDM model, the current matter distribution is mainly determined by the
initial perturbation field and the horizon scale at the time of matter-radiation equality
(Pm = Prad)- This horizon scale, as shown by Bardeen et al. (1986) and Sugiyama (1995),
is characterised by the parameter 2,/ and to a lesser extent, the baryonic mass fraction.
Consequently, observations of the large-scale structure offer direct constraints on the
cosmological parameters Q;, and og. A standard approach to simplify the comparison
of cosmological results from different probes is the introduction of a structure growth
parameter, Sg = 0gy/Qm/0.3.

Galaxy clustering operates on the assumption that galaxy locations trace the cosmic
matter distribution. However, galaxies, being the outcome of complex, non-linear
processes, can deviate from this assumption, resulting in a statistical difference between
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Figure 1.4: Constraints on Sg from different cosmological probes. The label 3 x 2pt
refers to results from a joint analysis combining three sets of two-point statistics: galaxy
position-position correlations (galaxy clustering), galaxy shear-position correlations
(galaxy-galaxy lensing), and galaxy shear-shear correlations (cosmic shear). Other labels
represent the respective survey teams and the probes used. The error bars correspond to
the 68% credible intervals. [Credit: Heymans et al. (2021)]

the galaxy and underlying matter distributions (see Desjacques et al. 2018 for a review).
This galaxy bias complicates the interpretation of measured galaxy clustering signals.
Furthermore, constructing a 3D galaxy distribution depends on galaxy redshift estimates,
which encapsulate both the cosmological expansion and the line-of-sight peculiar
velocity, thus introducing contamination from intricate dynamical effects.

On the other hand, the weak lensing effect, which directly correlates with the
gravitational field of foreground matter, provides an unbiased trace of the large-scale
structure. However, the minute distortions induced by the weak lensing effect are
challenging to measure and susceptible to various systematic errors associated with the
measurement process. Despite advances in high-quality imaging surveys and innovative
shear measurement algorithms, careful control of systematic effects remains essential as
survey statistical power increases.

A promising approach entails a joint analysis of these two methods, as they
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probe the same underlying large-scale structure of the Universe. This method can
break the degeneracy between cosmological parameters found in individual observables,
significantly increasing the precision of cosmological parameter constraints. Furthermore,
because different observables are affected by different systematic effects, a joint analysis
permits some degree of self-calibration, leading to more accurate cosmological results.

Figure 1.4 presents the Sg constraints from a recent joint analysis by the Kilo-
Degree Survey (KiDS, Heymans et al. 2021), comparing results with the Planck CMB
measurements and other contemporary galaxy surveys such as the Baryon Oscillation
Spectroscopic Survey (BOSS, Alam et al. 2015), the Dark Energy Survey (DES,
Dark Energy Survey Collaboration et al. 2016), and the Hyper Suprime-Cam (HSC)
survey (Aihara et al. 2018). It shows that the precision of the current joint analysis
of galaxy clustering and weak lensing is already comparable to the Planck CMB
measurements. Interestingly, a mild 20 to 30 discrepancy exists between the Sg
values measured from large-scale matter distribution and those inferred from CMB
measurements. Explaining this mild Sg tension is more subtle than resolving the more
significant Hy tension. Given the high precision of modern surveys, any slight systematic
residuals in any probe could induce such level of difference, underscoring the importance
of identifying and controlling measurement and astrophysical systematic errors. More
detailed discussions on this aspect will be presented in the following sections and
throughout this thesis.

1.2 Weak gravitational lensing

The deflection of light by massive objects due to the curvature of space-time induced
by their gravity is a common phenomenon in modern astronomical observations and is
well-grounded in the theory of general relativity. Cosmological lensing effects can be
broadly divided into two categories depending on the prominence of the lensing effect,
as illustrated in Fig. 1.5: strong lensing, which produces substantial arcs or multiple
images; and weak lensing, which causes gravitational distortions to the source galaxy
images that are not visually detectable and thus require a statistical analysis.

This section provides a concise overview of gravitational lensing theory, emphasising
weak lensing effects. We begin with a brief introduction to the fundamental concepts
of lensing theory in Sect. 1.2.1, which is followed by discussions on the two primary
weak lensing configurations: galaxy-galaxy lensing and cosmic shear in Sect. 1.2.2 and
Sect. 1.2.3, respectively. The section concludes with a summary of major challenges
related to the measurement and modelling of weak lensing for cosmological applications,
presented in Sect. 1.2.4.

1.2.1 Fundamentals of gravitational lensing

For the study of gravitational lensing, we typically deal with lens objects that are much
smaller than the Hubble length cH; I"and have peculiar velocities much smaller than the
speed of light. In such cases, the lensing effects can be represented by introducing small
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Figure 1.5: Simulated images illustrating the two lensing regimes. The bottom left
part of the left panel plot concerns the strong lensing regime, where giant arcs and
multiple images are produced. As the radial distance of source galaxies from the lens
centre increases, the lensing effect decreases, and eventually lensing-induced distortions
become smaller than the intrinsic ellipticity of the source galaxies. The right panel offers
a zoomed-in view of this weak lensing regime, where the contours represent galaxy
shapes as determined from their second moments. [Credit: Mellier (1999)]

perturbations to the FLRW metric (Eq. 1.1) as
20 20
ds® = (1+—2) czdtz—(l——z)az(t)dlz, (1.15)
c c

where @ is the Newtonian potential, which is assumed to be weak (@ <« ¢?) and satisfies
the Poisson equation:
V20 =4nGp . (1.16)

Here, p represents the mass density of the lens objects, and the gradient operator, V,
operates on the physical, or proper, coordinates.

This perturbed FLRW metric, in combination with the light geodesic equation
(ds = 0), forms the theoretical foundation for solving gravitational lensing problems
that meet the weak gravitational field requirements. However, deriving a general
analytical solution from these equations is challenging and often requires approximations.
Therefore, a more practical approach would be to find specific solutions for individual
problems based on their unique conditions. We shall adopt this approach, starting with a
simple case known as the geometrically-thin lens to introduce some general concepts
associated with gravitational lensing theory. More practical examples concerning the
cosmological applications of weak gravitational lensing will be discussed in subsequent
sections.
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Figure 1.6: A sketch illustrating the geometry of a thin gravitational lensing system.

The deflection angle and lens equation

A geometrically-thin lens corresponds to a lens whose size is much smaller than the
distances between the observer, lens, and source. This is a valid assumption for most
astrophysical objects, such as galaxies and clusters of galaxies. Under such circumstances,
we can use a geometric relationship to describe the effects of gravitational lensing on
light propagation, as illustrated in Fig. 1.6. Here, the lens is located at an angular
diameter distance D4, while the source object is located at an angular diameter distance
D;. The angular diameter distance between the lens and source is denoted as D .

Locally, we can construct source and lens planes that are perpendicular to a straight
line (referred to as the optical axis in the figure) extending from the observer to the
lens, and onwards to infinity. These planes intersect the optical axis at the centres of the
source and lens, respectively. Then, the smoothly curved trajectory of light, which is
the reality under gravitational lensing, can be approximated by two straight lines that
intersect at a point in the lens plane, forming a kink. The magnitude and direction of
this kink are described by a deflection angle, &, which quantifies the extent of light
deflection due to the gravitational lensing effect.

The simplest lens model under this configuration involves a point mass M serving as
the lens. As long as the impact parameter—defined as the distance between the kink and
the lens—is much larger than the Schwarzschild radius of the lens (|§ | > R, =2GMc™?),
the weak gravitational field approximation remains valid, and the deflection angle can
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be found as (see e.g. Narayan & Bartelmann 1997):

4GM
c2€ '

An extended lens object can be treated as a collection of point masses. The resulting
deflection angle is then calculated as the vector sum of the deflections due to each
individual point mass. Each point mass element has a mass dM = pdV, where p is the
mass density of the lens and dV is a volume element. If we denote the three-dimensional
location of the kink as (&1, &2, 73) and that of the mass element dM as (7,7, 73), then the
impact vector is E - 5 ’, independent of r3 due to our assumption of a geometrically-thin

lens. The total deflection angle can be obtained as (see e.g. Bartelmann & Schneider
2001):

g”p(é?) =

(1.17)

. . 4G L E-E .
&@):7/&5’2(5')%; 2(§)s/dr3p(§1,§z,r3), (1.18)

&= ¢

where Z(g? ) is the surface mass density.

Once we determined the deflection angle, mapping from the source plane to the lens
plane becomes straightforward using the geometric relations illustrated in Fig. 1.6. Let
77 represent the two-dimensional source position in the source plane, we have

= —f D (@) . (1.19)

We can simplify this equation by introducing angular coordinates, defined as B =177/ D;
and 6 = £/Dy, and a scaled deflection angle

. - D PP
a(6) = dh&(Dde)_—/dze k(0)—=——=—, (1.20)
Dy 16— 0|2

where K(é) = Z(Ddé) /2 is the dimensionless surface mass density, often called
convergence, with X = 2Dy /(4nGDyDgs) representing the critical surface mass
density. With these definitions, Eq. (1.19) simplifies to

- -

B=0-a(0). (1.21)

This relation, known as the lens equation, provides the mapping from a sky position
in the source plane to a posmon in the lens plane. In physical terms, this means that a
source situated at a position ﬁ in the sky will appear at position 6 due to the gravitational
lensing effect. Notably, this mapping from the source plane to the lens plane may not
be one-to-one. Indeed, Eq. (1.21) can yield more than one solution for certain ,é In
physical terms, these multiple solutions correspond to multiple images of the same
source object being detected by the observer, a phenomenon commonly referred to as
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strong lensing.

The Fermat potential and time delay

Equation (1.20) implies the existence of a deflection potential, defined as
.1 . .
W) = — / d*0’ k(0" In|6 - 6], (1.22)
/4

which satisfies @ = Vgi. Here, Vg4 represents the two-dimensional gradient operator in
respect to 6, acting on the lens plane. This deflection potential can be interpreted as
a two-dimensional analogue of the Newtonian potential, given that it also satisfies the
two-dimensional Poisson equation:

2%
Viy =2k = s (1.23)

cr

Building on this, we can define a Fermat potential

I o
7(6;p) = 5(0—,8)2 —y(0), (1.24)

and the condition that its gradient V47 equals to zero is equivalent to the lens equation
given in Eq. (1.21).

As demonstrated by Schneider (1985), the Fermat potential 7(5; ﬁ), subject to an
affine transformation, represents the light travel time from the source to the observer,
accounting for the lensing effect. Thus, the lens equation can be interpreted as another
manifestation of Fermat’s principle, which states that light follows a path where the
travel time is stationary, i.e., a local minimum, maximum or saddle point. Given the
generality of the Fermat potential and its connection to the light travel time, it proves
valuable in understanding the properties of lens systems, including the study of multiple
images and time delays in strong lensing (e.g., Blandford & Narayan 1986).

The Jacobian matrix and image distortion

Until now, we have focused on the mapping of a single source position. In reality, source
objects like galaxies have an extended shape, and light emitted from different parts of
these sources will be deflected differently. This results in distortions in the observed
images. In general, quantifying this image distortion involves solving the lens equation
for each point within an extended source. However, when a source is relatively small
and the lens properties do not change significantly within its angular scale, the image
distortion can be linearly represented by the Jacobian matrix:

3/3:(1—K—71 -7

A6) = (1.25)

80 Y2 l—k+y1)’
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where

967 965

Y1

10> %y 0%y
. . = 1.2
2 ( ’ 72 00100, ° (1.26)

represent the two components of the shear parameter y = y; +1iy,. The convergence «,
introduced earlier, is connected to the deflection potential through Eq. (1.23).

According to Liouville’s theorem, surface brightness is conserved before and after
gravitational lensing, assuming no photon emission or absorption occurs during the
process. As a result, the Jacobian matrix contains all information about changes in the
local shape and flux of the source pre- and post-lensing distortion. To better grasp how
the parameters in the Jacobian matrix relate to the distortions of the source image, we
can re-formulate the Jacobian matrix as

3 l-g1 -8
AG) = (1 K)( e, 1+g1) , 1.27)
by introducing the reduced shear parameter: g = y/(1 — k).

With Eq. (1.27), it is evident that the factor (1 — ) influences the image isotropically,
affecting only the size and apparent flux of the observed image without altering its
shape. In the context of weak lensing, since the intrinsic properties of source objects are
unknown, this isotropic magnification effect cannot be directly measured for individual
lens systems!. On the other hand, the anisotropic distortions are entirely determined by
the reduced shear g, making it the central quantity in the study of weak gravitational
lensing.

1.2.2 Galaxy-galaxy lensing

After establishing the general principles of gravitational lensing, we can now explore
some practical examples of weak lensing that are vital in observational cosmology. Our
first example involves lens systems where individual massive objects, such as galaxies, or
groups/clusters of galaxies, serve as the lens. Such lens systems are commonly referred
to as ‘galaxy-galaxy lensing’ in contemporary weak lensing studies. Considering that
a typical galaxy cluster is only a few Mpc in size, while the cosmological distances
involved are usually several hundred to a few thousand Mpc, the geometrically-thin
lens condition is well satisfied. Thus, the results derived in the previous section can be
directly implemented in galaxy-galaxy lensing studies.

The key element in galaxy-galaxy lensing studies involves the correlation between the
surface mass density and the lensing effect, as illustrated in Eq. (1.18). This correlation
enables a range of applications such as estimating the total lens mass, mapping the matter
distribution, and more. Although the convergence « is directly linked to the surface
mass density by its definition, it is challenging to measure in practice. Conversely, the

'However, we can statistically measure the magnification effect, for example, by evaluating changes in
the local source number density (e.g. Broadhurst et al. 1995; Schneider et al. 2000; Hildebrandt et al. 2009)
or in the size-magnitude-redshift relation of galaxies (e.g. Alsing et al. 2015).
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shear parameter vy is relatively easier to measure from observed source images. Hence,
establishing a connection between convergence and shear is crucial.

Assuming the surface mass distribution of the lens is axisymmetric, this connection
can be readily derived from their relations to the deflection potentials (Eqs. 1.23 and
1.26):

v(0) = k(<6) —«(6) , (1.28)

where «(<8) represents the average value of x within a radius of 8. We also introduced the
tangential shear: y, = —y; cos(2¢) —y> sin(2¢), where ¢ represents the relative position
angle of the source with respect to the lens centre. Remarkably, this relationship holds
for general matter distributions as long as we replace local y(6) and x(6) estimations
with their azimuthally-averaged counterparts (y{(6)) and («x(6)) (Bartelmann 1995).
In practical terms, this implies that we can determine the azimuthally-averaged
mass profile of a lens object by measuring the azimuthally-averaged tangential shear,
irrespective of whether the density distribution is axisymmetric. This method can be
used to map the projected matter distribution of lens objects or to estimate the total
mass of the lens, provided the density profile of the lens is available. This application of
galaxy-galaxy lensing with real-world data will be the topic of Chapter 5.

1.2.3 Cosmic shear

Another primary application of the weak lensing effect is its use in directly probing the
large-scale structure of the late-time Universe. This method, known as ‘cosmic shear’,
considers all matter distributions between the source and the observer as the lens. As
mentioned in Sect. 1.1.3, the study of large-scale structures provides powerful constraints
on cosmological models, and cosmic shear is one of the few methods capable of such
examination. Therefore, cosmic shear plays a central role in modern cosmological
surveys.

On the theoretical side, ‘the lens’ of cosmic shear, spanning the entire space between
the source and the observer, breaks the geometrically-thin lens condition and requires an
extension of the classical lens theory. Furthermore, given the lack of a concrete lens
in this context, cosmic shear measurements depend on statistical analyses to establish
a connection with the statistical properties of the cosmic density field. Covering all
these aspects with careful derivations would exceed the scope of this introductory
section. Therefore, we will only outline the key elements of cosmic shear without
detailed derivation, focusing on the second-order statistical measures, namely, the
two-point correlation function and power spectrum as defined in Sect. 1.1.2. For a more
comprehensive discussion, we refer to Bartelmann & Schneider (2001) and Kilbinger
(2015).

Although the geometrically-thin lens condition no longer holds, the assumption of
weak gravitational perturbations remains applicable. Thus, the perturbed FLRW metric
and the Poisson equation, as defined in Egs. (1.15) and (1.16), are still valid. Considering
2®/c? as a small parameter, we can identify an effective deflection potential expressed
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as
) U

n 2 “Nnp ’
lﬁeﬂ?(e,W) = CTA dw m@[f[((w )9, w ] (129)

Here, w represents the comoving distance, fx (w) is the comoving angular diameter
distance, which equals w in a spatially flat Universe, and the integral is performed from
the observer to a target source.

Using this definition of g, we can apply Eq. (1.23) to introduce an effective
convergence parameter, formulated as

ke (6, W) = . (1.30)

3H2Qum0 /w dy JEOV SO0 =) 6] fx (W8, w']
2¢? 0 frk(w) a(w’)

where we used the Poisson equation (1.16) and replaced p with the overdensity 9, as
defined in Eq. (1.7). This equation reveals the correlation between the cosmic shear
effect and cosmological parameters. The effective convergence parameter is essentially
a line-of-sight integral of the cosmic perturbation field, with the scale factor a(w”) and
a combination of comoving angular diameter distance factors acting as a weighting
function. The combination of the Hubble constant and matter density parameter only
influences the amplitude of Keﬁ(é, w).

In practice, cosmic shear measurements from a collection of source galaxies are
averaged to enhance the signal-to-noise ratio. If these sources have a redshift distribution
such that p,(z)dz = G(w)dw, we can derive an averaged effective convergence,
expressed as

3HZQ WH o S ’ 5 ’
Rer = —20 2‘“’0/ aw’ Tw') fic (w) LLIE OO W] (1.31)
2c 0 a(w’)
Here, the weighting function, also known as the lensing efficiency factor, is defined as
_ WH !
W(w') = / dw Gw) KW =) (1.32)
w’ fK(W)

In these equations, the upper limit of integration corresponds to the horizon distance,
equivalent to infinite redshift.

To connect the cosmic shear measurements to the statistical properties of the cosmic
overdensity field, we use the power spectrum and apply the Limber’s equation, which links
the two-point statistical measures of a projected field to its original three-dimensional
field (Limber 1953). Following this approach, we can derive

402 —2
OH QL /WH dw W (w) k y
4t Jo 2w\ fxw) )
which links the power spectrum of convergence field to the power spectrum of the cosmic

matter distribution.
However, as mentioned earlier, convergence is challenging to measure in weak

Po(k) = (1.33)
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lensing studies, necessitating a connection to the shear parameter. Fortunately, in the
weak lensing limit, the two-point statistical properties of convergence and shear are
identical: P, = P, (Blandford et al. 1991). This relationship can be straightforwardly
demonstrated in Fourier space by considering the relations of convergence and shear
to the deflection potential, as defined in Egs. (1.23) and (1.26). Hence, we can use the
observed shear statistics to directly study the cosmic matter distribution, adhering to the
same relationship as in Eq. (1.33).

The line-of-sight integral in Eq. (1.31) implies that cosmic shear primarily measures
two-dimensional projections of the three-dimensional cosmic matter distributions. To
mitigate the signal loss from this integration, contemporary cosmic shear analyses often
include an additional layer of correlations along the line of sight by binning galaxies
based on their redshifts, a method known as tomographic analysis. This technique has
proven highly effective in enhancing the statistical power of cosmic shear for constraining
cosmological parameters (e.g. Hu 1999). Furthermore, it enables cosmic shear to
constrain properties of dark energy by facilitating measurements of the evolution of
cosmic structure (e.g. Huterer 2002). Chapter 4 presents an application of this cosmic
shear tomography using real-world data.

1.2.4 Challenges in weak lensing analysis

By now, it should be evident that the theory of weak lensing is well-established and
has shown itself to be extremely powerful in studying the matter distribution of both
individual objects and large-scale cosmic structures. However, applying it to real-world
data presents substantial challenges that warrant further investigation. This is particularly
true given the advancements of current and upcoming cosmological surveys, and the
intriguing disagreements found among different cosmological probes, as discussed
in Sect. 1.1.3. This section provides a brief overview of some key systematic issues
encountered during the measurement and modelling of weak lensing. Chapters 2 and 3
will delve deeper into these systematics, exploring their impact and discussing strategies
for their control in real-world applications.

Shear measurement and selection biases

The initial challenge in weak lensing studies arises when attempting to measure subtle
weak lensing distortions from noisy, faint galaxy images. This complexity is amplified
by distortions caused by the point spread function (PSF), resulting from instrumental
and observational conditions (e.g. Paulin-Henriksson et al. 2008; Massey et al. 2013),
the detection or selection bias during the identification of faint objects (e.g. Hartlap et al.
2011; Chang et al. 2013; Hoekstra et al. 2021), and the blending effects that occur when
two or more objects are in close proximity on the sky (e.g. Hoekstra et al. 2015; Dawson
et al. 2016; Hoekstra et al. 2017; Mandelbaum et al. 2018; Samuroff et al. 2018; Euclid
Collaboration et al. 2019). These factors not only introduce shear measurement bias but
also modify the selection function of the source sample, complicating the interpretation
of the measured shear signals. Therefore, managing shear measurement and selection
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biases is a crucial first step in any weak lensing studies.

Following two decades of development, the state-of-the-art shear measurement meth-
ods are capable of controlling measurement biases at a sub-percent level (e.g. Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al. 2012; Mandelbaum
et al. 2015). In addition, the use of realistic pixel-level image simulations helps address
residual biases and account for selection biases (see Chapter 3). This progress paints a
promising picture for controlling shear biases in future high-requirement weak lensing
surveys. Further investigation into blending effects and the interplay between shear
and redshift measurements could still provide benefits (e.g. MacCrann et al. 2022; Li
et al. 2023b). However, the shear measurement alone does not appear to pose the major
challenge for future surveys. More demanding are tasks such as careful modelling of
the PSF and improving the realism of image simulations (e.g. Li et al. 2023a,b). These
improvements, related to the shear measurement and calibration, seem to be the more
challenging aspects and warrant further study.

Photometric redshift uncertainties

Determining the distances of source galaxies presents a significant challenge for current
and future weak lensing surveys. This distance estimation relies on observing the
electromagnetic spectral energy distribution (SED) of a galaxy. The cosmological
expansion stretches the observed SED towards longer wavelengths by a factor (1 + z),
where z is the redshift. Therefore, the redshift can be related to a proper distance,
assuming a cosmological model. To measure the stretch of the SED, we need to identify
some characteristic features in it, such as emission and absorption lines. These features
are easy to identify if the observed wavelength resolution is high, i.e., if we obtain the
spectra of galaxies.

However, for deep imaging surveys, the fraction of galaxies with observed spectra is
very low. Fortunately, weak lensing analyses do not require precise redshift estimates
for each source galaxy. The source redshifts enter the calculation through an integral,
as shown in Eq. (1.32). Therefore, as long as the average redshift of the ensemble of
source galaxies is accurately estimated, the analysis yields unbiased results. This allows
for the use of so-called photometric redshifts, which are less precise.

This method measures the flux of distant galaxies in a few broader wavelength filters,
thereby obtaining a sparse sampling of the SED. It estimates the redshift based on broad
features such as the Lyman and Balmer breaks. Nevertheless, the raw estimates from
this process have large uncertainties that exceed the requirements of current and future
weak lensing analyses (e.g. Hildebrandt et al. 2010; Salvato et al. 2019). Therefore,
an additional step of redshift calibration, using more precise spectroscopic reference
samples, is necessary. However, this calibration process introduces its own biases, for
instance caused by incompleteness or non-representative sampling of the samples with
spectroscopic redshifts. This results in another layer of residual bias correction that also
relies on realistic simulations.

The first-step calibration is currently undergoing rapid development with the rise
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of machine learning-based techniques, such as self-organising maps (e.g. Kohonen
1982; Masters et al. 2015). The focus now is on enhancing the spectroscopic reference
samples and gaining a better understanding of the transfer function in both samples,
which describes how intrinsic photometry maps to measured ones and its correlation
with redshifts. This progress is crucial as colour-based redshift calibration methods
rely on the assumption that galaxy colour and redshift are closely correlated, and that
the spectroscopic calibration sample and the faint photometric target sample share
similar underlying properties (e.g. Hildebrandt et al. 2021; Myles et al. 2021; Rau et al.
2022). Simulations can aid this understanding, but the current absence of simulations
for the spectroscopic reference sample, and the complexity of the transfer function in
spectroscopic measurements, make this a challenging endeavour. Therefore, further
explorations in this direction are critical.

For the second step, residual bias correction, realism in simulations is pivotal, much
like in shear calibration (e.g. Hoyle et al. 2018; van den Busch et al. 2020; DeRose
et al. 2022). Recent advancements in multi-band image simulations appear promising
(e.g. Li et al. 2023b). These simulations naturally account for the transfer function
in the photometric sample and the blending effect, an aspect previously overlooked
in catalogue-level simulations. Furthermore, multi-band image simulations enable
a joint calibration of both shear and redshift estimates, leading to a full end-to-end
calibration, that is beneficial for both processes. The development of such multi-band
image simulations will be the focus of Chapter 3.

Baryonic effects and Intrinsic alignment

Even after achieving robust shear and redshift measurements, interpreting the weak
lensing signal, particularly the cosmic shear signal, remains a complex task. This
complexity arises from the fact that cosmic shear probes the matter distribution in the
late-time Universe, which undergoes non-linear evolutions, as discussed in Sect. 1.1.2.
Additionally, measured statistical signals include contamination from the intrinsic
alignment (IA) of galaxies, a non-lensing-induced coherent alignment of galaxies,
originating from tidal effects between neighbouring galaxies. Therefore, a crucial aspect
of weak lensing studies involves enhancing modelling accuracy to account for these
non-linear and astrophysical effects.

Regarding non-linear evolution, cosmological numerical simulations offer a promis-
ing solution. Advances in simulation algorithms and computational power now make it
possible to create gravitational-only N-body simulations that meet the requirements for
interpreting future weak lensing measurements (e.g. Heitmann et al. 2009; Nishimichi
et al. 2019; Euclid Collaboration et al. 2021). However, baryonic processes, such as
feedback from star formation and active galactic nuclei, also alter matter distributions
on scales relevant to cosmic shear studies (e.g. van Daalen et al. 2011; Semboloni et al.
2011). These non-gravitational processes cannot be captured by N-body simulations,
necessitating hydrodynamic simulations that include baryonic processes. However,
constructing hydrodynamic simulations that capture all astrophysical processes is compu-
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tationally demanding. More cost-effective alternatives, such as simplified hydrodynamic
simulations with fixed subgrid physics or semi-analytical models, require a sufficient
understanding of the astrophysical processes that are not included in the original simu-
lations, and this remains an active research area (e.g. Schaye et al. 2023; Kugel et al.
2023).

The issue of IA contamination is notably challenging to resolve due to our currently
limited understanding of its properties (see e.g. Joachimi et al. 2015; Troxel & Ishak
2015 for reviews). The prevailing approach introduces empirical models with nuisance
parameters to mitigate the IA impact (e.g. Hirata & Seljak 2004; Bridle & King 2007;
Blazek et al. 2019). However, these IA parameters were found to correlate with other
nuisance parameters, such as those related to redshift calibration (see Chapter 2). This
issue is further complicated by the fact that different types of galaxies exhibit varying
IA behaviours, which complicates the interpretation of a mixed-colour weak lensing
sample (e.g. Johnston et al. 2019; Fortuna et al. 2021b; Samuroff et al. 2022). In
this regard, a strategy of splitting the source samples based on their colours would be
beneficial, a method we employ in our Chapter 2 study. Moreover, advancements in
cosmological simulations allow for the study of IA within these simulations, providing
valuable insights into the underlying mechanisms of IA signals and aiding in refining
our modelling approach (e.g. Tenneti et al. 2014; Chisari et al. 2015; Hilbert et al. 2017;
Kurita et al. 2021).

1.3 This thesis

The rest of this thesis delves into the real-world applications of weak lensing as a
cosmological probe. We focus on two main aspects of weak lensing applications: cosmic
shear and galaxy-galaxy lensing, as previously introduced. Our goal is to enhance
constraints on cosmological parameters and deepen our understanding of the connection
between dark matter halos and galaxies. Throughout this work, we devote considerable
attention to identifying, testing, and controlling systematic effects that arise during weak
lensing measurements and modelling, recognising this aspect as critical for current and
future weak lensing studies.

In Chapter 2, we conduct an internal consistency test for cosmic shear analysis
using data from the Kilo-Degree Survey (KiDS). We split source galaxies based on their
colours and assess the robustness of the current KiDS pipeline when handling samples
with varied galaxy properties. Our findings confirm that the existing KiDS pipeline
effectively accounts for various systematic residuals. However, we identify a correlation
between IA parameters and nuisance parameters associated with redshift calibrations,
emphasising the need for improved IA models. Notably, the consistency test method
we use is insensitive to assumed cosmological models, making it an effective tool for
verifying the robustness of cosmic shear analysis before drawing any cosmological
conclusions.

Chapter 3 introduces a suite of multi-band image simulations for shear and redshift
calibration of KiDS weak lensing analysis. These newly developed simulations enable a
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joint calibration of shear and redshift, enhancing the realism and accuracy over previous
efforts. By integrating cosmological simulations with high-quality imaging data, we
generate a large volume of simulated galaxies, accurately mirroring realistic galaxy
properties to an adequate depth. We improve the realism of image simulations by
carefully addressing various observational and instrumental effects, including noise
background, point spread function, and stellar density. Furthermore, we study blended
systems at different redshifts by introducing variable shear fields into the simulations.
Our study reveals a correlation between shear and redshift biases due to blending
effects, underscoring the importance of joint shear and redshift calibration. We also
identify a minor but noteworthy impact of PSF modelling errors on shear bias. After
conducting sensitivity tests, we confirm the robustness of the current KiDS fiducial shape
measurement algorithm, within the requirements of the KiDS weak lensing analysis. For
future weak lensing surveys with stricter requirements, we recommend further studies on
blending effects, refinement of PSF modelling, and improvements to shape measurement
techniques to reduce their sensitivity to variations in galaxy properties.

In Chapter 4, we conduct a cosmic shear analysis, incorporating improvements
in cosmic shear measurements and calibrations facilitated by the work conducted in
Chapter 3. Moreover, we take into account recent advancements in cosmological
inference and investigate the influence of prior information on IA modelling on the final
cosmological results. We propose treating the statistical and systematic uncertainties
from the shear calibration separately, given their distinct origins. Our final cosmological
results align with previous KiDS studies and other weak lensing surveys, showing a
tension of approximately 2.30- with the Planck cosmic microwave background constraints
on Sg.

Finally, in Chapter 5, we investigate the connection between dark matter haloes
and galaxies using galaxy-galaxy lensing. We measure galaxy-galaxy lensing signals
around galaxy groups identified by the Galaxy And Mass Assembly (GAMA) project
using KiDS data. We interpret these statistical lensing signals through the halo model
formalism to infer the total halo mass associated with these galaxy groups. By adopting
optical observables provided by GAMA, we constrain the scaling relation between the
halo mass and the total luminosity of the groups. We assess the robustness of our halo
mass estimates by varying the treatment of halo model parameters not well-constrained
by the current data. These sensitivity tests help us identify critical model components
and guide future improvements. Given the increased statistical power of the measured
signals, this exploration and future enhancement of our current model are considered
necessary.
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ChapTER 2
CHAPTER

KiDS+VIKING-450: An
internal-consistency test for cosmic shear
tomography with a colour-based split of
source galaxies

ABSTRACT

We performed an internal consistency test for the KiDS+VIKING-450 (KV450) cosmic
shear analysis, focusing on the colour-based split of source galaxies. Using the same
measurements and calibrations across both sub-samples, we evaluated the properties of
the shear measurements and the efficiency of the calibration pipelines. On the modelling
side, we explored the observational nuisance parameters, particularly those associated
with redshift calibration and intrinsic alignments, using a Bayesian analysis equipped
with specific test parameters. Our study confirmed that the current nuisance parameters
adequately capture residual systematic deviations in the KV450 data, albeit with minor
discrepancies observed in the second and third redshift bins. Our results additionally
revealed the degeneracy between the apparent amplitude of intrinsic alignments and
redshift uncertainties in low redshift bins. Given the relative insensitivity of our test to
the assumed cosmological model, it can be implemented in the cosmic shear analysis
prior to drawing any cosmological conclusions.

S.-S. Li, K. Kuijken, H. Hoekstra,
H. Hildebrandt, B. Joachimi, and A. Kannawadi
Astronomy & Astrophysics, 646, A175
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2.1 Introduction

Cosmic shear, a coherent distortion of distant galaxy shapes due to weak gravitational
lensing by large-scale structures, is sensitive to the amplitude of matter density fluc-
tuations (quantified by o, which is the standard deviation of linear-theory density
fluctuations in a sphere of radius 84! Mpc, where Hy = 1007 km s~! Mpc™') and
the mean matter density (€2,,). As a result, cosmic shear surveys commonly report a
derived parameter Sg = 03(Q1,/0.3)%. Alternatively, cosmic microwave background
(CMB) measurements can infer local density fluctuations by extrapolating the measured
amplitude of temperature fluctuations at recombination, based on a cosmological model.
By comparing results from these two distinct probes, we can test cosmological models.

The latest Planck Legacy analysis of CMB measurements predicts an Sg = 0.832 +
0.013 (68% credible region), assuming the standard A cold dark matter (ACDM)
model (Planck Collaboration et al. 2020). This results is slightly higher than the results
from the recent cosmic shear surveys, such as the Dark Energy Survey (DES; Troxel

etal. 2018, Sg = 0.782f%%2277), the Hyper Suprime-Cam Subaru Strategic Program (HSC;

Hikage et al. 2019, Sg = 0.780t%%3§g), and especially the Kilo-Degree Survey (KiDS;
Hildebrandt et al. 2020, hereafter H20, Sg = 0.737+0040).

It is crucial to consider potential systematic effects associated with observations
when interpreting results from different surveys. Internal consistency tests are thus a
standard part of any cosmological probe. Cosmic shear studies often base these checks
on a split of the estimated two-point shear correlations (Kohlinger et al. 2019; or Sect. 7.4
of H20). By assigning duplicate model parameters to each subset, one can perform
theoretical modelling of the reconstructed data vector and assess data consistency by
comparing these duplicate parameters. This approach aids in verifying the consistency
of a specific sample of source galaxies, but it only tests at a late stage in the analysis.
Moreover, doubling cosmological parameters incurs a significant computational cost,
which hinders further splitting of the source sample in practice. However, additional
splits could be particularly interesting, as systematics may vary among them.

Source galaxy properties present two main challenges to calibration pipelines: shape
measurements and redshift estimates. First, different galaxy samples typically exhibit
varying ellipticity distributions, with red, early-type galaxies tending to have rounder
shapes than their blue, late-type counterparts (Hill et al. 2019; Kannawadi et al. 2019,
hereafter K19). This leads to a correlation between shear bias and the underlying galaxy
sample, primarily because shape measurements are sensitive to ellipticity distributions.
For instance, the lensfit algorithm used in the KiDS survey assigns weights to measured
ellipticities, resulting in a bias towards intermediate ellipticity values (Fenech Conti et al.
2017). Second, both the accuracy and precision of photometric redshift estimates depend
on a galaxy’s broad spectral features, such as the Balmer break below 4000 (Salvato
et al. 2019). The prominence of these broad spectral features varies by galaxy spectral
type. Generally, galaxies with an older stellar population appear red at rest-frame optical
wavelengths and exhibit a pronounced 4000 break. The more young stars a galaxy
contains, the bluer it appears, causing the Balmer break and other broad spectral features
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to be washed out. Consequently, errors in photometric redshifts correlate with galaxy
spectral type (Mo et al. 2010).

In this chapter, we consider these sample-related systematic effects, specifically
focusing on photometric redshift uncertainty. We divided the KiDS source galaxies into
two mutually exclusive sub-samples based on their spectral types and applied the same
measurement and calibration pipelines to each sub-sample. By doing this, we explored
how sample-related systematics can affect measurements and assessed the effectiveness
of calibration pipelines in mitigating these effects. This split also has implications for
modelling intrinsic alignments, which must be explicitly accounted for. To quantify
consistency, we performed a Bayesian analysis using dedicated test parameters that
describe the relative deviations of nuisance parameters between the two sub-samples.
By examining their posterior distributions, we can determine if the original settings are
sufficient to capture residual biases. The analysis code is publicly available!.

Our approach complements other studies that assess the consistency of inferred
cosmological parameters by removing tomographic bins or by splitting the sample by
galaxy type, while marginalising over the corresponding nuisance parameters (Kohlinger
et al. 2019; Samuroff et al. 2019). Instead, we focused on a different aspect: keeping
cosmological parameters fixed while examining changes in the nuisance parameters. We
found that our method can effectively test for inconsistencies in redshift distributions and
highlight the degeneracy between redshift uncertainties and apparent intrinsic alignment
signals, all while remaining insensitive to cosmological assumptions.

The remainder of this chapter is organised as follows. In Sect. 2.2, we provide a brief
overview of the cosmic shear catalogues under consideration. We present the redshift
calibration in Sect. 2.3 and the shear bias calibration in Sect. 2.4. Next, we introduce the
measurement and modelling of the shear signal in Sect. 2.5. We discuss the covariance
matrix and consistency tests in Sect. 2.6. Our main results are presented in Sect. 2.7,
and we conclude with a summary in Sect. 2.8.

2.2 Data

Our test is based on the first release of optical and infrared KiDS cosmic shear data,
known as KiDS+VIKING-450 (KV450; Wright et al. 2019, hereafter W19). This data
set includes four-band optical photometry (ugri) from the first three data releases of
KiDS (de Jong et al. 2015, 2017) and five-band near-infrared photometry (ZYJHK)
from the overlapping VISTA Kilo-Degree Infrared Galaxy Survey (VIKING, Edge et al.
2013).

Details on the derivation and verification of this cosmic shear catalogue can be
found in the main KiDS cosmic shear papers (Hildebrandt et al. 2017; H20) and their
companion papers (Fenech Conti et al. 2017; W19). The public catalogue provides all
the necessary information for conducting a tomographic cosmic shear analysis. Among
the most important columns are the photometric redshifts (photo-zs, or zg as in the
catalogues) and the galaxy shapes (described by two ellipticity components, €] and ).

thttps://github.com/1shuns/CosmicShearRB
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The zp values are estimated using the Bayesian photometric redshift code (Bpz, Benitez
2000; Coe et al. 2006) with an improved redshift prior from Raichoor et al. (2014) and
the nine-band photometry from W19. The galaxy shapes are measured from the r-band
images (median seeing of 0/7) using the /ensfit algorithm (Miller et al. 2007; Kitching
et al. 2008; Miller et al. 2013) with a self-calibration for noise bias (Fenech Conti et al.
2017).

Throughout this study, we only use sources with valid nine-band photometry
(GAAP_Flag_ugriZYJHKs==0). This mask reduces the original area by approximately
5% and retains around 13 million objects, which is identical to the choice made by
the main KV450 cosmic shear analysis. Following H20, we bin source galaxies into
five tomographic bins defined as 0.1 < zg < 0.3, 0.3 < zg < 0.5, 0.5 < zg < 0.7,
0.7 < zg £0.9, 09 < zg < 1.2. To check for systematic effects caused by galaxy
properties, we further split the whole sample into two sub-samples based on the spectral
types of source galaxies. This is achieved by using the Ty values reported by the Bpz code
during the photo-z estimation procedure (see Benitez 2000, for a detailed discussion).
Briefly, the T value is calculated within a Bayesian framework using six templates of
galaxy spectra (Coleman et al. 1980; Kinney et al. 1996). We define our two sub-samples
as Tg < 3 (a combination of E1, Sbc, Scd types, labelled as ‘red’) and T > 3 (a
combination of Im and two starburst types, labelled as ‘blue’). This cut is chosen to
ensure similar statistical power in the two sub-samples (see Fig. 2.1). Source properties
of these two sub-samples are summarised in Table 2.1.

2.3 Calibration of redshift distributions

One of the most challenging tasks in a tomographic cosmic shear study is estimating
the source redshift distribution for each tomographic bin. Since these intrinsic redshift
distributions vary with galaxy samples, we need to calibrate the photo-z estimates for the
two sub-samples separately. We employed the technique from the fiducial KV450 cosmic
shear analysis, known as DIR in H20, for this task. This method directly estimates
the underlying redshift distributions of a photometric sample using deep spectroscopic
redshift (spec-z) catalogues that overlap with the photometric survey. In this section,
we briefly discuss our implementation of this method and refer interested readers to the
original papers for more details (Lima et al. 2008; Hildebrandt et al. 2017, 2020).

The DIR method necessitates that the calibration sample (the spec-z sample) spans,
at least sparsely, the full extent of the multi-band magnitude space covered by the target
sample (the photo-z sample), and that the mapping from magnitude space to redshift
space is unique. Consequently, the coverage of the spec-z sample is essential for this
method’s accuracy. We used the same set of spec-z catalogues as employed in the
fiducial KV450 cosmic shear analysis. This includes the zZCOSMOS survey (Lilly et al.
2009), the DEEP2 survey (Newman et al. 2013), the VIMOS VLT Deep survey (Le
Fevre et al. 2013), the GAMA-G15Deep survey (Kafle et al. 2018), and a combined
catalogue provided by ESO in the Chandra Deep Field South area. These independent
spec-z surveys, with different lines-of-sight and depths, minimise shot noise and sample
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Figure 2.1: Cumulative /ensfit-weighted distributions of 7g values. The dashed line
indicates the ideal equal split in each tomographic bin, which is closely approximated by
our split at 7g = 3.

variance in the calibration sample.

Since the spec-z catalogues cannot fully represent the photometric sample, it
is necessary to weight spec-z objects to ensure an appropriate match between the
spectroscopic and photometric distributions. The method, based on a kth nearest
neighbour (kNN) approach, is detailed in Sect. 3 of Hildebrandt et al. (2017). In brief, it
assigns weights to the spec-z objects by comparing the volume densities of the spec-z
and photometric objects in the nine-band magnitude space (ugriZYJHK). As a result,
KiDS+VIKING-like observations are required in the same areas as the aforementioned
spec-z surveys. H20 have constructed these photometric observations from multiple
sources, depending on the availability of specific data sets in those spec-z survey fields.
We adopted the same sample and split it with the same criterion as used for the main
KV450 sample to build two representatives of our two sub-samples.

The resulting redshift distributions of the two sub-samples are shown in Fig. 2.2. Also
presented are the mean and median differences between these two redshift distributions
(see Table 2.1 for separate values). The importance of photo-z calibration is demonstrated
by the tails of the DIR redshift distributions compared to the ranges selected by the
photo-z cuts (shaded regions). These differences between the DIR results and photo-z
estimates are more significant in the red sub-sample, where an overall bias towards
overestimating photo-z is shown. This may seem counter-intuitive at first, given the
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Figure 2.2: Redshift distributions for the two sub-samples, estimated using the DIR
technique. Shaded regions correspond to photo-z cuts for the tomographic binning.
Mean and median differences were calculated as 0Zmean/median = Zmean/median,blue —

Zmean/median,red-

discussion presented in Sect. 2.1, which states that young stars can wash out spectral
features for photo-z estimation, resulting in larger errors in bluer galaxies. However,
we emphasise that the ‘red’ sub-sample defined in Sect. 2.2 is not purely red, but also
includes Sbc and Scd types (see Sect. 2.2), which could worsen the photo-z estimates. For
our purposes, we are interested in the redshift difference between the two sub-samples.
As can be seen, the differences are significant, with the median differences as high as
~0.13 and the mean differences ~0.24 in certain bins. This level of difference will result
in considerably different cosmic shear signals for the two sub-samples (see Sect. 2.5).
In practice, the DIR method is susceptible to various systematic effects, primarily
induced by the incompleteness of the spec-z sample, due to selection effects and sample
variance in the different spectroscopic surveys that comprise the spec-z catalogue
(see Wright et al. 2020a for an updated method that is more robust against such
incompleteness). To account for these potential systematic effects, H20 introduced
five nuisance parameters ¢, in their model to allow for linear shifts of the redshift
distributions n;(z) — n;(z+ ;) (see Table 2.2). Priors for these parameters are obtained
using a spatial bootstrapping approach. In our consistency tests described below, we
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focus on an extension of these nuisance parameters to the colour-split sub-samples (see
Sect. 2.6).

2.4 Calibration of shape measurements

The shape measurements are susceptible to various biases due to the noise of galaxy
images, the complexity of galaxy shapes, selection effects, and so on (see Sect. 2 of K19
for a theoretical discussion). The weak lensing community has conducted several blind
challenges to test the performance of shape measurement pipelines (see, e.g. Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al.
2015). These tests, based on simplified image simulations, are useful for understanding
common sources of shear bias but cannot eliminate biases in a specific survey. In
particular, differences in selection criteria between surveys affect the shear bias. These
residual biases need to be calibrated with dedicated, tailor-made image simulations (see,
e.g. Hoekstra et al. 2015). Following Heymans et al. (2006), we quantify these residual
biases using a linear parameterisation:

obs true

g =(1+m)g ™ +ci, 2.1)

where g?bs and g™ are the observed and true gravitational shears, respectively, with

i = 1,2 referring to the two different components. In practice, we found isotropy in the
m results, meaning that m| ~ my, so we simply adopt m = (m +my)/2.

The two types of biases, m (the multiplicative bias) and ¢ (the additive bias or c-term),
have distinct sources and properties. The former is typically determined from image
simulations, while the latter can be inferred directly from the data. As demonstrated
in K19, shear biases depend not only on the selection function but also on the overall
population of galaxies. Consequently, shear calibrations should be performed separately
for samples containing different galaxy populations. This was the case for the various
tomographic bins in the KV450 analysis and is even more relevant for our split analysis.

We therefore re-estimated the multiplicative biases in the two sub-samples using the
COllege simulations (COSMOS-like lensing emulation of ground experiments, K19),
which were also employed in the fiducial KV450 cosmic shear analysis. The main
features of the COllege simulations are the observation-based input catalogue and the
assignment of photometric redshifts. The input catalogue contains information on
galaxy morphology and position from Hubble Space Telescope observations (Griffith
et al. 2012) of the COSMOS field (Scoville et al. 2007). The photometric redshifts
of simulated galaxies are assigned by cross-matching the input catalogue to the KiDS
catalogue. This setup ensures a high level of realism in the simulated catalogue and
allows us to analyse the simulated data using the same pipelines as for the real data.
K19 have demonstrated that the simulated catalogue faithfully matches the full KV450
catalogue in all crucial properties, including galaxy shapes, sizes, and positions.

As anticipated, we observed significant differences in galaxy properties between the
two sub-samples. We showcase one of these comparisons in Fig. 2.3, which compares
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Figure 2.3: Normalised /ensfit-weighted distributions of ellipticities for galaxies in the

two sub-samples. The ellipticity is defined as € = /612 + e%. We note that the differing
distributions reflect distinct galaxy populations and suggest different shear biases in the
two sub-samples.

the distributions of galaxy ellipticities. As previously mentioned in Sect. 2.1, ellipticity
variance is one of the main sources of shape measurement biases (see also Viola et al.
2014) and thus serves as an indicator of the variance in shear biases between the two
sub-samples.

Our calibration approach is identical to that used in the fiducial KV450 cosmic shear
analysis. It adopts a re-weighting scheme referred to as ‘Method C’ in Fenech Conti et al.
(2017) to account for slight differences between the observations and the simulations.
The m value is reported per tomographic bin, using a weighted average of individual
galaxies belonging to the corresponding tomographic bin. We direct readers to Sect. 6
of K19 for further details.

We present our estimates of multiplicative biases for the two sub-samples in Fig. 2.4,
comparing them with the results from the whole sample. The five sections from top to
bottom correspond to the five tomographic bins, ranging from lower to higher redshifts.
We noticed some significant differences in the m values, particularly for the higher
tomographic bins; these differences mainly arise from the ellipticity distributions shown
in Fig. 2.3. However, when considering their impact on the cosmic shear signals, the
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Figure 2.4: Multiplicative biases for the two sub-samples and the whole sample in each
tomographic bin. Errors shown were estimated from bootstrapping. The hatched regions
indicate the 0.02 error budget adopted by H20.

adjustments induced by these m-value differences are much smaller than those caused by
the redshift differences, as demonstrated in Fig. 2.5. Therefore, we assume that residual
systematics from the shear calibration are secondary and focus our consistency tests on
the redshift calibration.

The treatment of additive bias in the fiducial KV450 cosmic shear analysis is
sophisticated (see Sect. 4 of H20 for details). Briefly, the treatment can be summarised in
three aspects: First, the value of c; in each tomographic bin and in each patch is estimated
by averaging over the measured galaxy ellipticities. These ¢; values are then subtracted
from the galaxy ellipticities before the shear correlation functions are calculated (Eq. 2.2).
Second, a nuisance parameter ¢ is introduced into the model to account for a potential
offset of the empirically determined c; values. The result from forward-modelling
suggests that ¢, is very close to 0 (see Table 2.2). Third, a position-dependent additive
bias pattern in the € ellipticity component is introduced to account for an imperfection in
the OmegaCAM detector chain. This pattern is publicly available as a supplementary file
along with the main cosmic shear catalogues. Furthermore, another nuisance parameter
A is introduced to allow an overall scaling of this 2D pattern (see Table 2.2).

We primarily adhered to this strategy for the additive bias calibration. We corrected
the c-term per tomographic bin and per patch using the same empirical approach
mentioned above. We also incorporated the 2D c-term pattern into our models. However,
we excluded the two nuisance parameters d. and A, from our model, as they do not have
a significant impact on the fit.
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2.5 Cosmic shear signal

The cosmic shear signal is encoded in the measured shapes of source galaxies as minor
coherent distortions. Therefore, proper statistical measures and models are essential
for a cosmic shear study. We delve into these processes in this section: Section 2.5.1
presents the construction of the joint data vector for the two sub-samples using the shear
correlation functions; while Section 2.5.2 discusses the modelling of the measured data
vector while taking into account various astrophysical and cosmological effects. Our
analysis builds on the fiducial cosmic shear analysis of H20 but includes adjustments to
accommodate our testing objectives.

2.5.1 Statistical measures

The shear signal is quantified by two-point shear correlation functions. These can be
calculated from two tomographic bins i and j as follows

S Waws |ef (xa)e! (o) + ek (xa) el (y)|

(L+m")(1+mJ) ¥ waWs

J(0) = ; (2.2)
where ¢, » represent the tangential and cross ellipticities concerning the vector x, — yp
between a pair of galaxies (a, b), and w is the lensfit weight. The summation runs
over all galaxy pairs within a designated spatial bin A6 for each 8 = |0, — 0,|. The
multiplicative biases m’, obtained in Sect. 2.4 for each tomographic bin i, are factored in.

We computed Eq. (2.2) separately for the two sub-samples using the publicly available
TrREeECORR code? (Jarvis et al. 2004). The spatial binning scheme is identical to the one
used in H20, featuring nine logarithmically spaced bins within the [0/5,300"] interval.
We used the first seven bins for £, and the last six bins for £_. These selection criteria
help mitigate the impact of baryonic feedback on small scales and additive shear biases
on large scales (for details, see H20). The joint data vector (£21'¢, £7°d) that we created
through these measurements comprises (7 +6) X 15 x 2 = 390 data points.

Our estimates of the data vector are presented in Fig. 2.5, with differences defined
as A&y = £81ve — ¢4 The accompanying error bars were derived from the analytical
covariance matrix, as discussed in Sect. 2.6.1. The two sets of data vectors correspond
to the results obtained with and without the multiplicative shear calibration. The
discrepancy between them is minor, as anticipated given the relatively small m values
(refer to Table 2.1). Some bins show non-zero trends, which can be attributed to
the differing redshift distributions of the two sub-samples, as depicted in Fig. 2.2.
The influence of the redshift distributions in explaining these measurements is further
elaborated in the subsequent section.

2https://github.com/rmjarvis/TreeCorr


https://github.com/rmjarvis/TreeCorr

38 CHAPTER 2. INTERNAL-CONSISTENCY TEST FOR COSMIC SHEAR

4r15 r2-5 r3-5 r45 5,55, ¢
L L ] | ey’ | e el
2 | | N | | ®  raw measurement
B L L . L . L L L . L with shear calibration
4ri1-4 r2-4 r3-4 F4-4; 1 10 100
] e e —— KV450 cosmology
s ! L | ¢ 1 -=-=- Planck cosmology
- 1 1 1 1 1 1 1 1
_ 4ris,, r2-3 r3-3 1 10 100 55 L1 -
2 o} R s ; =i £
= [} ] g
% —4r 1 1 [ 1 [ 1 1 L] %
<« 4F1-2 ) 1 10 100 44 , 145 S
Y o e bl eetd] L
- i
*:; —4r 1 1 [ 1 1 P L] u\‘/
D oabn Tl 10 100 33 134 , 135 17
0 ® Sl B el
—4F 1 1 1 1 P P L]
1 10 100 224 1 123 124 , 25 1
0 [arcmin)] Fun ar wn an s B e S0 "”"“‘""
1 M P P L]
| 12 113 114 115¢ 1
1 7 1 7 1 7 1 7 mI ]

1 1 1 1 1
10 100 10 100 10 100 10 100 10 100

6 [arcmin]

Figure 2.5: Differences between two-point shear correlation functions for the two sub-
samples (A& = 21”6 - fd). The error bars are defined as o¢ = \/Cb,D + Cip — 2Cu: D,
where the subscript ‘D’ refers to the diagonal of a matrix, and the three unique parts of the
complete covariance matrix are denoted as Cy, for the blue sub-sample, C; for the red sub-
sample, and Cy, for their cross-covariance. These errors closely match the measurement
errors reported by the TREECORR code (0 easure/0c = 0.8), suggesting that the diagonal
elements of the covariance matrix are predominantly influenced by measurement noise.
The overall consistency between the two sets of data vectors—with and without shear
calibration (represented by orange crosses and black dots, respectively)—implies that
the multiplicative bias exerts a minimal effect in this study.

2.5.2 Theoretical modelling

The measured correlation functions §ij (0) are connected to the lensing convergence
power spectrum P,/ (£) through (see e.g. Bartelmann & Schneider 2001)

Vo) =5, [ aeer oo, 23)

where ¢ signifies the angular wavenumber in the Fourier domain. The terms Jo,4(£6)
represent Bessel functions of the first kind, where Jy corresponds to the zeroth-order
(applied in the case of &), and J4 denotes the fourth-order (used for £_). Using the
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Kaiser-Limber approximation (Limber 1953; Kaiser 1992, 1998; Loverde & Afshordi
2008), P,/ (¢) is in turn related to the physical matter power spectrum P, via

TN X qi(x)q;(x) (€+1/2 )
P (6) /0 dy TAOIE Ps fK()()’X ; 2.4

where y represents the comoving radial distance, and fx(y) denotes the comoving
angular distance. The integration is carried out up to yy, which is the comoving horizon
distance. The lensing efficiency g;(y) for a given tomographic bin i can be defined as

3H{Om fi(x) [, q ,)fK(X’—)()
2¢2 aly) Jy ’ felx)

which is dependent on the redshift distribution of galaxies, represented as n; (y)dy =
n;(z)dz, as well as various other cosmological parameters. This implies that variances
in the redshift distributions between two sub-samples can lead to differences in their
shear signals.

We used the Boltzmann-code CLASS (Blas et al. 2011) to compute the matter
power spectrum, incorporating non-linear corrections from HMCobk (Mead et al. 2016).
In line with H20, we adopted a ACDM model comprising five primary cosmological
parameters and an additional parameter representing baryonic feedback processes on
smaller scales. These parameters include the densities of cold dark matter and baryons
(QcpMm and Qyp), the amplitude and the index of the scalar power spectrum (In( 1010As),
ns), the scaled Hubble parameter (%), and the amplitude of the halo mass-concentration
relation (B).

For consistency tests, it is not necessary to traverse the entire cosmological parameter
space since these parameters remain the same for both sub-samples. Therefore, we
set the aforementioned cosmological parameters to two distinct sets of best-fit values
derived from KV450 (Hildebrandt et al. 2020) and Planck (Planck Collaboration et al.
2020) (see Table 2.2). This approach allows us to simplify our theoretical models while
concurrently investigating potential dependencies on cosmology.

The final piece of information necessary for modelling the observed correlation
functions is the intrinsic alignment (IA) of galaxies (Troxel & Ishak 2015; Joachimi et al.
2015). In the KiDS analyses, this effect is accounted for by incorporating a ‘non-linear
linear’ IA model into the measured shear signal (Hirata & Seljak 2004; Bridle & King
2007):

qi(x) = (2.5)

Eo=gar el v &0 (2.6)

where &, and &, represent the measured shear signal and the pure cosmic shear signal,
respectively. The IA signals are incorporated in the form of ¢! and £81. The term

f_rl represents the ‘intrinsic-intrinsic’ correlation, that is, the correlation between the
intrinsic ellipticities of nearby galaxies. The term £S! stands for the ‘gravitational-
intrinsic’ correlation, which refers to the correlation between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a background galaxy. These two IA
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terms can be calculated using the same formula as given in Eq. (2.3), but with the power
spectra defined as

ij A n: (x)nj(x) {+1/2
J f) = d 2 J ( ’ ), 27
Fu) fo O eor T\ R X @D
ij xH qi () (x) +q;(x)ni(x) (€+1/2 )
J(6) = d vl 2.8
PG = [k T o\ Tt X @8
where o
F(z) = _AIACPcrit,OD—I(nZ) : (2.9)

The normalisation constant is given by C = 5 X 10‘14h‘1M51MpC3, and pgrito 1S the
critical density today. The linear growth factor D, (z) is normalised to unity today.
Consistent with H20, we disregarded the redshift or luminosity dependence of intrinsic
alignments, assigning one nuisance parameter Aja to account for these effects (for a
more detailed treatment, see Fortuna et al. 2021a).

Equipped with all the necessary data, we can now forward-model the shear correlation
functions. For illustrative purposes, we first maintained all model parameters constant,
using the redshift distributions estimated in Sect. 2.3 to predict the combined data vector
of the two sub-samples. The outcomes are depicted in Fig. 2.5. Two distinct predictions
arise from two separate sets of cosmological parameters: the red solid line represents
the KV450 best-fit values, and the black dashed line symbolises the Planck best-fit
values. All other nuisance parameters align with the best-fit KV450 results as indicated
in Table 2.2. Even with this simplified approach, the predicted results generally mirror
the trends observed in the data, underscoring the redshift difference as the primary
factor for the dissimilar shear correlation functions in the two sub-samples. Another
notable characteristic is the resemblance between the two predictions derived from
two distinct sets of cosmological parameters. This suggests that our test model is not
significantly influenced by the adopted cosmological parameters. However, to accurately
assess the goodness of fit and verify the robustness of the pipelines, we require a more
meticulous Bayesian analysis, implementing appropriate test models and taking into
account correlations between measurements.

2.6 Consistency tests

Quantifying internal consistency is no trivial task, given the correlations between
measurements and the challenge of comparing different models. On the one hand, over-
looking intrinsic correlations between measurements can lead to unreliable conclusions.
As demonstrated by Kohlinger et al. (2019), failing to consider these correlations can
confound residual systematics with the overall goodness of fit. On the other hand, null
tests based on global summary statistics, such as Bayesian evidence, are practically
challenging for high-dimensional models (see e.g. Trotta 2008). Furthermore, vary-
ing prior choices between hypotheses can complicate the interpretation of the final
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Table 2.2: Model parameters and their best-fit values from KV450 cosmic shear
analysis (Hildebrandt et al. 2020) and the Planck CMB analysis (Planck Collaboration
et al. 2020).

Parameter KV450 Planck Definition

Qcpmh? 0.058 0.120 CDM density today

Qph? 0.022 0.022 Baryon density today

In(10'0Ay) 4.697 3.045 Scalar spectrum
amplitude

s 1.128 0.966 Scalar spectrum index

h 0.780 0.673 Hubble parameter

B 2.189 - Baryon feedback
amplitude

Ala 0.494 - IA amplitude

5o % 10° 2.576 - c-term offset

A 1.143 - 2D c-term amplitude

0z -0.006 - Bin 1 offset

Oz, 0.001 - Bin 2 offset

Oz 0.026 - Bin 3 offset

Oz, —-0.002 - Bin 4 offset

Ozs 0.003 - Bin 5 offset

The first five parameters are the standard cosmological parameters. The remaining
parameters are nuisance parameters introduced by Hildebrandt et al. (2020) to account
for various effects associated with cosmic shear analysis. The KV450 best-fit values are
derived from the primary Monte Carlo Markov Chain, which is publicly available at
http://kids.strw.leidenuniv.nl/cosmicshear2018.php. The Planck best-fit
values correspond to the TT, TE, EE+lowE+lensing results with the P1ik likelihood
(Table 1 of Planck Collaboration et al. 2020).

results (Handley & Lemos 2019b; Lemos et al. 2019).

In this section, we address these challenges. First, we construct an analytical
covariance matrix to account for all the correlations between measurements (Sect. 2.6.1).
Then, we conduct a Bayesian analysis using dedicated test parameters to quantify
potential discrepancies between measurements from the two sub-samples (Sect. 2.6.2).
Our conclusions are based on the posterior distributions of these test parameters. This
approach allows us to strike a balance between model accuracy and simplicity.

The modelling pipeline described below is publicly available3. It is a modified

3https://github.com/1shuns/montepython_Kv450
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version of the MoNTEPYTHON package (Audren et al. 2013; Brinckmann & Lesgourgues
2018) using the PyMuLTINEsT algorithm (Buchner et al. 2014), which is a Python
wrapper of the nested sampling algorithm MuLTINEsT (Feroz et al. 2009). The original
MonTePYTHON package was used for the KV450 cosmological analysis in H20 and for
the consistency tests with a split of data vector (Kohlinger et al. 2019).

2.6.1 Covariance matrix

We estimated the covariance matrix for the joint data vector assembled in Sect. 2.5.1
using the analytical model developed in Hildebrandt et al. (2017), H20, and Joachimi
et al. (2021). This analytical approach represents an advancement over traditional
numerical or Jackknife methods, offering benefits in managing noise effects and finite
survey areas. Here, we provide a brief overview of the key aspects of this analytical
approach, while detailed discussions can be found in Sect. 5 of Hildebrandt et al. (2017)
and Joachimi et al. (2021).

The analytical model consists of three components: a Gaussian term related to
sample variance and shape noise, a non-Gaussian term originating from in-survey
modes, and a third term, also non-Gaussian, derived from super-survey modes (known as
super-sample covariance, or SSC). The Gaussian term is calculated following Joachimi
et al. (2008), with a transfer function taken from Eisenstein & Hu (1998) and non-linear
corrections from Takahashi et al. (2012). The information about the sources used
is detailed in Table 2.1; it includes the effective galaxy number density (n.¢) and
the weighted ellipticity dispersion (o¢ ;). The second non-Gaussian term is derived
using the formalism proposed by Takada & Hu (2013), incorporating the halo mass
function and halo bias from Tinker et al. (2010). The halo profile is described using a
Fourier-transform version of the NFW model (Navarro et al. 1996; Scoccimarro et al.
2001), with the concentration-mass relation taken from Duffy et al. (2008). The final
SSC term is modelled once again using the formalism from Takada & Hu (2013). The
survey footprint is modelled with a HEALP1x map (Goérski et al. 2005).

The shear calibration outlined in Sect. 2.4 also entails uncertainties. Following the
approach used in H20 and Wright et al. (2020b), we considered a systematic uncertainty
om = 0.02 for the multiplicative biases as estimated by K19. This uncertainty is
propagated into the covariance matrix using the relation C¢ ;.‘1 = 4§in,T‘0'2m +C;j, where
&7 is the joint data vector predicted with the KV450 best-fit values and the DIR redshift
distributions (refer to Sect. 2.3 for more details). The error associated with the additive
biases was neglected due to its minimal impact. For a more detailed discussion on this
topic, please refer to Appendix D4 of Hildebrandt et al. (2017).

The final correlation matrix for the joint data vector is presented in Fig. 2.6.
There are noticeable contributions from the off-diagonal regions, which highlight the
significant correlations within each individual sub-sample as well as between the two
sub-samples. The importance of potential correlations between parts of a split was
previously emphasised in Kohlinger et al. (2019), but here we provide a more direct
confirmation. By incorporating the complete covariance matrix into our consistency
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Figure 2.6: Analytical correlation matrix for the joint data vector. To highlight the
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tests, we automatically account for all the data correlations.

We examined the relative contributions of the Gaussian and non-Gaussian terms to the
complete covariance matrix. Generally, the Gaussian term dominates the diagonal parts
of the covariance matrix, while the non-Gaussian term contributes more significantly to
the off-diagonal regions. This pattern is also clearly outlined in Joachimi et al. (2021).

Given that our test model is especially sensitive to the difference A¢ between the
two sub-samples, we built the covariance matrix of A¢ as Ca = Cppue + Cred — 2Ceross-
We then compared this to the covariance matrices of the individual data vectors (&ppye
or &red). Our findings indicate that the non-Gaussian contributions are significantly
diminished in C,, with an overall reduction of < 75% compared to Cpjye. The Gaussian
contributions are also slightly reduced, primarily in the off-diagonal regions. These
reductions in the covariance matrix Cp can be explained by the cancellation of sample
variance. Hence, we confirmed that our test model is robust against uncertainties in the
sample variance and alterations in the cosmological parameters.

2.6.2 Test setup

With the covariance matrix in place, we can explore the parameter space using a Bayesian
analysis. Our main goal is to evaluate whether a unified set of nuisance parameters could
adequately account for the residual systematics in the two sub-samples. Consequently,
we opted to hold all cosmological parameters constant, under the assumption that the
two sub-samples should intrinsically have identical values for these parameters.
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To substantiate this assumption, we ran an additional test where we allowed cosmo-
logical parameters to vary. The results are in an agreement with our fixed-cosmology
framework, revealing minimal degeneracy between cosmological parameters and test
parameters. Therefore, we maintained our approach of fixing cosmological parame-
ters, simplifying the likelihood function and preventing the unnecessary traversal of a
high-dimensional parameter space.

To ensure robustness against any possible residual effects stemming from an
inaccurate selection of cosmological parameters, we implemented two different settings.
One setting used cosmological parameters derived from the KV450 cosmic shear analysis,
while the other employed parameters from the Planck CMB results (see Table 2.2). This
approach enabled us to factor in potential discrepancies in our choice of cosmological
parameters.

Our test model, Hj, contains six test parameters besides the nuisance parameters
used in H20. These test parameters are a shift in IA amplitude, denoted as Aja s,
and shifts in redshift offsets, represented as 6., s. They are implemented in the two
sub-samples as

Xblue/red =X+X, (2.10)

where X stands for either the Aja or ¢, parameters, while X, designates the corresponding
test parameters. The blue sub-sample is characterised by the positive sign, while the red
sub-sample is associated with the negative sign.

While a discrepancy in the IA signal is anticipated, differences in the redshift
offsets should be non-existent if the calibration pipeline is impervious to sample-
related systematics. Any non-zero values for ¢, would indicate the presence of
residual systematics that are not fully encompassed by the common nuisance parameters.
Therefore, our conclusions are primarily grounded on the posterior distributions of these
test parameters.

For control purposes, we also established a base model, Hp, with the same set of
nuisance parameters as in H20, to model the joint data vector derived from our two
sub-samples. It contains six free nuisance parameters: the amplitude of the IA signal
Apa (refer to Sect. 2.5.2) and the redshift offset ¢, for each tomographic bin i (refer to
Sect. 2.3).

However, it is important to note that this assumption is stronger than what is mandated
by data consistency. Given that the IA signal is dependent on the galaxy population, it is
not expected to be identical across the two sub-samples.

The prior distributions for all free parameters are detailed in Table 2.3. The common
nuisance parameters leverage the priors from H20. Specifically, A;4 employs a wide flat
prior, while ¢, adopts Gaussian priors, the variance of which is determined using a spatial
bootstrapping technique during the redshift calibration process (refer to Sect. 3.2 of H20).
For the six new test parameters in the test model H;, we selected wide, uninformative
priors. These choices, as demonstrated in Sect. 2.7, incorporate prior knowledge of
redshift uncertainties into the common nuisance parameters, while simultaneously
enabling a comprehensive exploration of the test parameters. We emphasise that the
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main objective of our test is to ascertain whether the KV450 nuisance parameters are
adequate for capturing any residual systematics.

Our testing method, which does not rely on Bayesian evidence to identify ten-
sions, avoids the ‘suspiciousness’ issue associated with common model-selection
methods (Lemos et al. 2019). In this regard, our approach is akin to the second tier of
the Bayesian consistency tests proposed by Kohlinger et al. (2019). However, rather
than duplicating the cosmological parameters and drawing conclusions from the pos-
terior distributions of differences in these parameters, we concentrate on the nuisance
parameters, particularly those tied to redshift calibration.

Another key difference lies in our approach to data splitting. We performed a
colour-based split of the source galaxies, repeating measurements and calibrations for
the sub-samples, whereas Kohlinger et al. (2019) based their analysis on a split of the
measured correlation functions. Consequently, our method is more attuned to potential
inconsistencies within the source samples, while their approach offers a more global test
of residual systematics and their impact on the ultimate cosmological results. Thus, our
test serves as a complementary examination of pipeline robustness alongside theirs.

2.7 Results

The primary outcomes of our consistency tests are depicted in Fig. 2.7, where we
present the marginal posterior constraints of the five test parameters, 6, s, introduced in
Sect. 2.6.2. Each of the five sections in the plot corresponds to one of the five tomographic
bins. The two sets of results, drawn from the KV450 best-fit cosmology (represented by
red lines) and the Planck best-fit cosmology (black lines), are in agreement, reinforcing
the notion that our test model is not sensitive to the specific choice of cosmological
parameters.

All of the values are consistent with zero within approximately 1.50-, which suggests
that the KV450 calibration pipelines are effectively correcting for these sample-related
systematics. This finding further implies that there is no need to introduce additional
nuisance parameters for the current analysis.

The two tomographic bins that exhibit slightly non-zero differences are the second
bin (approximately 1.20°) and the third bin (approximately 1.30"). The interpretation
of such a level of difference is nuanced, given the statistical power of current data.
We emphasise that the 6., ¢ parameters we constrained here represent the shifts in the
redshift offsets within the two sub-samples. These shifts are expected to be larger than
the mean redshift offsets (¢, ), considering the notable redshift differences between the
two sub-samples and the breadth of the DIR redshift distributions (refer to Fig. 2.2).

As demonstrated in Table 2.3, all 6, values are less than the width of the
underlying redshift distributions and are approximately zero within the uncertainties.
This observation attests to the overall precision of the DIR redshift distributions.

Table 2.3 presents the posterior results for all free parameters, as well as the best-fit
12 values for all models. While we do not base our conclusions strictly on the y? test,
due to the complex nature of Bayesian models where dimensionality is not directly
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defined by the number of free parameters (see, for example, Handley & Lemos 2019a),
it is still informative to compare these values. Upon considering the number of free
parameters, it appears that the test model | is statistically on par with the control model
Hp. This further reinforces our initial conclusion regarding the suitability of the current
nuisance parameters in accounting for any remaining systematic errors.

Figure 2.8 shows the contour plot for the test model, with a notable feature being
the pronounced degeneracy between A s and ¢, ¢ in the lower redshift bins (refer to
Fig. 2.8). This correlation primarily contributes to the ambiguity in the test parameters.
The complex relationship between the IA signal and redshift uncertainties was also
observed in Wright et al. (2020b), where an updated redshift calibration of the KV450
data resulted in a negligible IA amplitude. Our observation underlines the complexity
inherent in deciphering the apparent IA signal.

We performed an additional test in which we constrained 6, s = 0 in the test model
H,. The result was a significantly positive Aja s value, suggesting Aja plue > AIA red-
This contradicts established IA studies (see Joachimi et al. 2015 for a review), implying
that IA parameters could potentially mask issues with redshift estimates. Therefore, we
must exercise caution when interpreting the IA parameters.

To further investigate the influence of the IA parameters in our test model, we
executed an additional test, 71, where Aja s was held constant at zero. This approach
maximises the shifts of the redshift offsets by disregarding the IA difference in the two
sub-samples. Even with this conservative estimate, the shifts are < 2.10 for all redshift
bins, with the most significant values still appearing in the third bin (refer to Table 2.3).

2.8 Summary and discussion

We conducted an internal consistency test on the KV450 cosmic shear analysis by
dividing source galaxies based on colour, yielding two statistically equivalent sub-
samples comprising distinct galaxy populations (refer to Figs. 2.1, 2.2, and 2.3). Uniform
measurements and calibrations were applied to these sub-samples, and we evaluated
changes in the two-point correlation functions due to known variations in redshift
distributions and multiplicative biases (see Fig. 2.5). With cosmological parameters
fixed, we used a Bayesian analysis and specific test parameters to scrutinise the internal
consistency of observational nuisance parameters, focusing on those related to redshift
distributions. We noticed a degeneracy between redshift uncertainties and the inferred IA
amplitude for lower redshift bins. However, we found no signs of internal inconsistency
in the KV450 data, affirming the adequacy of the current approach—utilising a common
set of nuisance parameters to linearly shift redshift distributions—for addressing residual
systematics in redshift calibration.

The internal consistency test we introduced is resilient to uncertainties in background
cosmology and cosmic variance. It can be employed in upcoming cosmic shear surveys
prior to making any cosmological inference. This weak sensitivity to cosmology aligns
with the ‘shear-ratio’ test (Jain & Taylor 2003; Schneider 2016; Unruh et al. 2019),
which has been used to verify the precision of redshift distributions in current cosmic
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Figure 2.7: Constraints on J, ; for each tomographic bin under the H; model. The
errors depicted represent the 68% credible intervals derived from the MCMC analysis.
For contextual comparison, the vertical blue lines indicate half of the mean differences
between the reconstructed DIR redshift distributions of the two sub-samples (as seen in
Fig. 2.2).

shear surveys (Heymans et al. 2012; H20; Giblin et al. 2021). The ‘shear-ratio’ test, a
cross-correlation method, relies on the galaxy-galaxy lensing signals from two or more
source samples at varying redshift bins. Consequently, these two tests are sensitive to
different systematics, making them complementary tools.

While our discussion primarily focused on redshift calibration, we discovered that
the test is also contingent on our assumptions about IA signals (refer to Fig. 2.8). Without
an extensive exploration of IA models, our test is already capable of identifying the
degeneracy between the 1A signals and redshift uncertainties, a concept previously hinted
at in other studies(see Sect. 6.6 of Hildebrandt et al. 2017). Recently, Samuroff et al.
(2019) conducted an analysis similar to ours, but based on DES data. Their focus was
the IA signal and cosmological parameters, while they marginalised over observational
nuisance parameters. While this differs from our approach, it links to our test via the IA
signals, which both tests examined. They achieved more precise constraints on the A
signals in sub-samples by employing a range of IA models. We can similarly enhance
our test model to glean deeper insights into IA signals and their correlation with other
nuisance parameters in future cosmic shear data.
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in the lower redshift bins is an artefact of the substantial degeneracy between Aja s and
0z s- This degeneracy dissipates in the 77 test setting, wherein Ay s is held constant at
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KiDS-Legacy calibration: Unifying shear
and redshift calibration with the SKiLLS
multi-band image simulations

ABSTRACT

We present SKiIiLLS, a suite of multi-band image simulations for the weak lensing
analysis of the complete Kilo-Degree Survey (KiDS), dubbed KiDS-Legacy analysis.
The resulting catalogues enable joint shear and redshift calibration, enhancing the
realism and accuracy over previous efforts. By integrating cosmological simulations
with high-quality imaging data, we created a large volume of simulated galaxies, faithfully
mirroring the realistic galaxy properties to a sufficient depth. We accounted for point
spread function (PSF) variability across CCD images, while also considering variations
in stellar density and noise levels between different pointings. Using variable shear fields,
we studied blended systems at different redshifts. Our results show a discernible redshift-
shear bias correlation, underscoring this subtle yet noticeable higher-order blending
effect. Additionally, we detected a minor but noteworthy impact of PSF modelling errors
on shear bias. Finally, we conducted sensitivity tests, affirming the robustness of our
fiducial shape measurement algorithm, lensfit, within the KiDS weak lensing analysis
requirement. For future, more stringent weak lensing surveys, we recommend further
study into blending effects, refinement of PSF modelling, and improvement of shape
measurement techniques to minimise their sensitivity to variations in galaxy properties.

S.-S. Li, K. Kuijken, H. Hoekstra et al.
Astronomy & Astrophysics, 670, A100
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3.1 Introduction

Weak gravitational lensing, the small deflection of light rays caused by inhomogeneous
matter distributions, is a powerful tool for observational cosmology as an unbiased tracer
of gravity (see Bartelmann & Schneider 2001, for a review). It allows us to study the
underlying distribution of both baryonic and dark matter (see Refregier 2003; Hoekstra
& Jain 2008; Kilbinger 2015, for some reviews). Together with redshift estimates
for the sources, the cosmological lensing signal can even quantify the growth of the
cosmic structure and infer the properties of dark energy (e.g. Hu 1999; Huterer 2002).
Recent weak lensing surveys, including the Kilo-Degree Survey + VISTA Kilo-degree
INfrared Galaxy (KiDS+VIKING) survey (de Jong et al. 2013; Edge et al. 2013)!, the
Dark Energy Survey (DES, Dark Energy Survey Collaboration et al. 2016)2, and the
Hyper Suprime-Cam (HSC) survey (Aihara et al. 2018)3, provided some of the tightest
cosmological constraints on the clumpiness of matter in the local Universe (Heymans
et al. 2021; Abbott et al. 2022; Hamana et al. 2020). The upcoming so-called Stage
IV surveys, such as the ESA Euclid space mission (Laureijs et al. 2011)#, the Rubin
Observatory Legacy Survey of Space and Time (LSST, Ivezi¢ et al. 2019)3, and the
NASA Nancy Grace Roman space telescope (Spergel et al. 2015)¢, will advance the
field significantly by increasing the statistical power of weak lensing measurements by
more than an order of magnitude.

While promising, measuring the weak lensing signals to the desired accuracy in
practice is demanding (see Mandelbaum 2018, for a recent review). In particular, the
observed images of distant galaxies are smeared by the point spread function (PSF) and
contain pixel noise, biasing the measurements of galaxy shapes (e.g. Paulin-Henriksson
et al. 2008; Massey et al. 2013; Melchior & Viola 2012; Refregier et al. 2012). These
issues drove the early development of many shape measurement methods and triggered
a series of community-wide blind challenges based on image simulations, including the
Shear TEsting Programme (STEP, Heymans et al. 2006; Massey et al. 2007) and the
Gravitational LEnsing Accuracy Testing (GREAT, Bridle et al. 2010; Kitching et al.
2012; Mandelbaum et al. 2015). These early efforts illuminated some crucial issues
and paved the way to calibrate the systematic biases for an actual survey using image
simulations.

Early applications of simulation-based calibration have already demonstrated that
the calibration accuracy depends on how well the simulation matches the survey under
consideration, especially the observational conditions and the galaxy properties (e.g.
Miller et al. 2013; Hoekstra et al. 2015, 2017; Samuroff et al. 2018). Therefore, recent
implementations carefully mimic the data processing procedures and use morphological
measurements from deep imaging surveys to reproduce the measured galaxy properties

Thttps://kids.strw.leidenuniv.nl
2https://darkenergysurvey.org
3https://hsc.mtk.nao.ac.jp/ssp/
4https://sci.esa.int/web/euclid/
Shttps://www.lsst.org/
Shttps://roman.gsfc.nasa.gov/


https://kids.strw.leidenuniv.nl
https://darkenergysurvey.org
https://hsc.mtk.nao.ac.jp/ssp/
https://sci.esa.int/web/euclid/
https://www.lsst.org/
https://roman.gsfc.nasa.gov/

3.1. INTRODUCTION 53

for a specific survey (e.g. Mandelbaum 2018; Kannawadi et al. 2019 hereafter K19;
MacCrann et al. 2022). Alternately, newer methods, such as the Bayesian Fourier
Domain (Bernstein & Armstrong 2014) and MetracaLiBraTiON (Huff & Mandelbaum
2017; Sheldon & Huft 2017), seek an unbiased estimate of the shear either using deeper
data as a prior or directly calibrating the measurements using the observed data.

Recent studies highlighted the effect of blending. The blending effect occurs when
two or more objects are close together in the image plane, so their light distributions
overlap. It introduces biases during both the selection and measurement processes. For
example, Hartlap et al. (2011) found that the rejection of recognised blends alters the
selection function of the final sample (see also Chang et al. 2013). In some circumstances,
blended systems are so close that they appear as single objects. These unrecognised
blends increase the shape noise by decreasing the number density and widening the
measured ellipticity dispersion (e.g. Dawson et al. 2016; Mandelbaum et al. 2018). Even
if the blended objects are below the detection limit, they still introduce correlated noise
that affects the detection and measurement of the adjacent bright galaxies (e.g. Hoekstra
et al. 2015, 2017; Samuroff et al. 2018), an effect that becomes even more dramatic
when the clustering of galaxies is considered (Euclid Collaboration et al. 2019). Given
all of these concerns, it is essential for image simulations to contain faint objects and
physical clustering features.

More concerns arise when considering a tomographic analysis, which is at the
core of current and future weak lensing surveys. From the shear estimate side, the
tomographic binning approach introduces further selections that link the shear bias to
redshift estimates (K19, MacCrann et al. 2022). From the redshift estimate side, redshift
calibration methods need mock photometric catalogues to verify their performance.
These mock catalogues must resemble the target data in object selections and photometric
measurements, which are challenging to address at the catalogue level (Hoyle et al. 2018;
Wright et al. 2020a; van den Busch et al. 2020; DeRose et al. 2022).

All these issues become even more challenging for the KiDS-Legacy analysis, the
weak lensing analysis of the complete KiDS. It covers the entire 1350 deg? survey area,
a ~35% increase over the latest KiDS release (KiDS-DR4, Kuijken et al. 2019). More
importantly, thanks to the deeper i-band observations and dedicated observations in
spectroscopic survey fields, the KiDS-Legacy analysis aims to unleash the power of
high-redshift samples (up to a redshift of z~2). The improved statistical power, however,
makes a higher demand on the shear and redshift calibrations, including an assessment
of the cross-talk between the systematic errors in the shear and redshift estimates.

In this chapter, we present SKiLLS (SURFS-based KiDS-Legacy-Like Simulations),
the third generation of image simulations for KiDS following SCHOo! (Simulations
Code for Heuristic Optimization of lensfit, Fenech Conti et al. 2017, hereafter FC17)
and COllege (COSMOS-like lensing emulation of ground experiments, K19). By
simulating multi-band imaging that includes realistic galaxy evolution and clustering in
terms of colour, morphology and number density, SKiLLS allows for the simultaneous
measurement of shear and photometric redshifts from the same simulation. This study,
therefore, provides the first joint calibration of these two key observables for cosmic
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shear analyses. With our approach, we provide a natural solution to address the expected
cross-talk between shear and redshift bias, accounting for the impact of blends that
carry different shears (Dawson et al. 2016; Mandelbaum et al. 2018; MacCrann et al.
2022). We also release our simulation pipeline, which contains customisable features
for general use by other surveys”.

The remainder of this chapter is structured as follows. In Sect. 3.2, we build
input catalogues for image simulations. Then in Sect. 3.3, we detail the creation and
processing of the KiDS-like multi-band images, starting from instrumental setups and
ending with photometric catalogues. Section 3.4 reviews our fiducial shape measurement
algorithm, /ensfit (Miller et al. 2007; Kitching et al. 2008; Miller et al. 2013), with some
improvements introduced for the KiDS-Legacy analysis. The shear calibration results
for the updated lensfit measurements are presented in Sect. 3.5, and the sensitivity test is
conducted in Sect. 3.6. Finally, we conclude in Sect. 3.7.

Throughout the chapter, we define the complex ellipticity of an object as

1-
€E=¢€ +ig = (_q) exp(2i¢) , 3.1
1+¢g
where g and ¢ denote the axis ratio and the position angle of the major axis, respectively.
In terms of the quadrupole moments of the measured surface brightness Q;;, this
definition equals
_ 011 -0»n+2i01n
€= 2312
O11+02+2 (01102 -07,)

As stated by Bartelmann & Schneider (2001), this ellipticity definition is convenient
because it directly links to the weak lensing shear signal < via the estimator

(3.2)

iWi €
y=ZiVWis (3.3)

i Wi
where w; is a weight assigned per object to account for individual measurement
uncertainties®. Although the cosmic shear analysis uses higher-order statistical measures,
such as the two-point correlation functions (e.g. Kaiser 1992), the simple estimator
presented in Eq. (3.3) is commonly used for constraining the shear bias from image
simulations (e.g. Heymans et al. 2006).

3.2 Input mock catalogues

To generate mock images, we need input catalogues of galaxies and stars with realistic
morphology, photometry and clustering. We detail our procedure for building these
catalogues in this section. Section 3.2.1 describes how we create the mock galaxy
catalogue by combining deep observations with up-to-date cosmological and galactic

"https://github.com/KiDS-WL/MultiBand_ImSim.git
8Strictly speaking, the expectation value of the ellipticity is /(1 — k), where « is the convergence. But
as k < 1 in the weak lensing regime, we can safely neglect this term.


https://github.com/KiDS-WL/MultiBand_ImSim.git

3.2. INPUT MOCK CATALOGUES 55

simulations. Section 3.2.2 shows how we generate stellar multi-band magnitude
distributions from a population synthesis code.

3.2.1 Galaxies: SURFS-Shark simulations with COSMOS morphology

Our input galaxy catalogue, a compilation of simulations and observations, is crafted to
achieve a balance between considerable sample volume and realistic galaxy morphology.
In the subsequent parts of this section, we first review the simulation part, which
includes the clustering and multi-band photometry. Next, we introduce our specifically
designed algorithm, which learns galaxy morphology from observations and applies
this knowledge to simulated galaxies — a crucial step towards ensuring accurate shear
calibration.

Generating synthetic galaxies from simulations

To jointly calibrate the shear and redshift estimates, we must base the image simulations
on wide and deep (z > 2) cosmological simulations, where the true redshift is known. In
the previous KiDS redshift calibration, van den Busch et al. (2020) used the MICE Grand
Challenge (MICE-GC) simulation, an N-body light-cone simulation that covers an octant
of the sky (Fosalba et al. 2015a). However, the MICE simulation has a redshift limit of
z~1.4, preventing its use for calibrating the high-redshift samples in the KiDS-Legacy
analysis (up to z~2). Therefore, we switched to another public N-body simulation from
the Synthetic UniveRses For Surveys (SURFS, Elahi et al. 2018).

The SURFS simulation we adopted has a box size of 210 2~ 'cMpc (cMpc stands for
comoving megaparsec), containing 1536° particles with a mass of 2.21 x 108 2~ 'M,,
and a softening length of 4.5 h~!ckpc (ckpc stands for comoving kiloparsec). It assumes
a ACDM cosmology with parameters from Planck Collaboration (2016). The final halo
catalogues and merger trees are constructed from 200 snapshots starting at redshift
z = 24, using the phase-space halo-finder code VELOCIrAPTOR (Cailas et al. 2019;
Elahi et al. 2019a) and the halo tree-builder code TREEFROG (Elahi et al. 2019b). We refer
to Lagos et al. (2018) for details on the building and Poulton et al. (2018) for validating
the halo catalogues and merger trees.

The galaxy properties, including the star formation history and the metallicity
history, are from an open-source semi-analytic model named SHARk® (Lagos et al.
2018). The model parameters are tuned to reproduce the z = 0, 1 and 2 stellar-mass
functions (Wright et al. 2018), the z = 0 black hole-bulge mass relation (McConnell &
Ma 2013) and the mass-size relations at z = 0 (Lange et al. 2016). Any other observables
are predictions of the model, which also match well with observations (see Lagos et al.
2018 for more details). As for weak lensing calibration, the most crucial property is the
redshift evolution of the galaxy number density (e.g. Hoekstra et al. 2017), which we
checked in detail in Appendix 3.A and found it to be sufficient for KiDS.

The light cones from the SHARK outputs are created using the code STINGRAY

Shttps://github.com/ICRAR/shark
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(Chauhan et al. 2019), an improved version of the code used by Obreschkow et al. (2009).
It first tiles the simulation boxes together to build a complex 3D field along the line
of sight, then draws galaxy properties from the closest available time-step, resulting
in spherical shells of identical redshifts. A possible issue would be the same galaxy
appearing once in every box but with different intrinsic properties due to cosmic evolution.
To avoid this problem, sTINGRAY randomises galaxy positions by applying a series of
operations consisting of 90 deg rotations, inversions, and continuous translations. We
refer to Chauhan et al. (2019) for more details about the light-cone construction.

The final mock-observable sky covers ~108 deg? with minimum repetition of the
large-scale structure. The sample variance bias caused by the replicating structure is
negligible for our direct shear and photometric redshift calibration. Since we learn
galaxy morphology from deep observations, our input galaxy sample is still limited
mainly by the observational data we have, which only covers ~1 deg? (see Sect. 3.2.1
for details). We test the robustness of our calibration results against this sample variance
bias using the sensitivity analysis detailed in Sect. 3.6.

The multi-band photometry is drawn from a stellar population synthesis technique
implemented in the PRoSpecT!® and VipERFISH!! packages. PRoSPECT (Robotham et al.
2020) is a high-level package combining the commonly used stellar synthesis libraries
with physically motivated dust attenuation and re-emission models; while VIPERFISH
is a light wrapper to aid the interface with the SHARK outputs. We refer to Lagos et al.
(2019) for detailed predictions, validations and a demonstration that the predicted results
agree with observations in a broad range of bands from the far-ultraviolet to far-infrared,
without any fine-tuning with observations.

For our purpose, we care most about the nine-band photometry covered by the
KiDS+VIKING data, so we compared the synthetic near-infrared and optical magnitude
distributions to observations from the COSMOS2015 catalogue (Laigle et al. 2016).
Figure 3.1 shows the magnitude distributions of eight filters available in both SHARK
and COSMOS2015 catalogues, together with an analytical fitting result from Eq. (4)
of FC17. The counts in the original simulations are ~35% lower than the observations
with some variation between filters. As this affects the blending level and then the shear
bias (Hoekstra et al. 2015, 2017), we calibrated the original synthetic photometry for
a better agreement. The technical details are presented in Appendix 3.A. In short, we
found that the differences in the magnitude distributions stem from the difference in
stellar mass-to-light ratio between the simulations and observations. Therefore, we
scaled the original SHARK magnitudes using a modification factor derived from the stellar
mass-to-light ratio difference. The modification is the same for all bands, preserving the
intrinsic colours of individual galaxies. The modified magnitudes now agree with the
observations within ~3%.

We later noticed that Bravo et al. (2020) proposed a similar fine-tuning method when
working with the panchromatic Galaxy And Mass Assembly (GAMA) survey. They
used an abundance matching method by comparing the number counts between SHARK

Ohttps://github.com/asgr/ProSpect
Uhttps://github.com/asgr/Viperfish
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Figure 3.1: Number of galaxies per square degree per 0.1 magnitude in the input
apparent magnitudes. The green dashed lines represent data from the original SURFS-
SHARK mock catalogue, while the blue solid lines indicate the modified results. The
red solid lines correspond to the COSMOS2015 observations, factoring in flags for the
UltraVISTA area within the COSMOS field after the removal of saturated objects and
problematic areas (yielding a 1.38 square degree effective area, as per Table 7 in Laigle
et al. 2016). The black dahsed linne depicts the analytical fitting result in the r-band,
derived from FC17. The g-band photometry, absent from the COSMOS2015 catalogue,
is not displayed here. We note that the COSMOS2015 catalogue lacks completeness at
K > 24.5 (Laigle et al. 2016).

and GAMA after fine binning in redshift and r-band apparent magnitude. They tuned
magnitudes for all SHARK galaxies with r<21.3 to match the number counts in GAMA.
Their modifications are consistent with our results, albeit targeting different magnitude
ranges.

Learning galaxy morphology from observations

Simulating galaxies with realistic morphology is essential for accurate shear calibration.
Following K19, we represent the galaxy morphology using the Sérsic profile (Sérsic
1963) with three parameters: the effective radius determining the galaxy size (also known
as the half-light radius), the Sérsic index describing the concentration of the brightness
distribution, and the axis ratio determining the galaxy ellipticity. We learned these
structural parameters from deep observations accounting for their mutual correlations
and their correlations to galaxy photometry and redshift. Figure 3.2 shows the workflow
for the learning algorithm.
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VST + VISTA spec + photo ACS-GC synthetic snapshotted N-body
photometry redshift morphology photometry redshift clustering
COSMOS SURFS-Shark
observations simulations
’ redshift & magnitude binning ‘ ’ redshift & magnitude binning ‘
training sample target sample
vine copulas ‘ ’ in order of colour

learned property in order of colour SKiLLS inputs

Figure 3.2: Flowchart summarising the algorithm employed in constructing the SKiLLLS
input mock catalogue. The SKILLS galaxies inherit the synthetic multi-band photometry
and 3D positions from the SURFS-SHaRrRk simulations, while their morphology is
learned from the observations in the COSMOS field using a vine-copula modelling-
based algorithm (see the detailed explanation in Sect. 3.2.1)

We start with a ‘reference’ sample comprising morphology, photometry and redshifts
from several deep observations. The structural parameters are adopted from the catalogue
produced by Griffith et al. (2012), who fitted Sérsic models to the galaxy images taken
by the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope
(HST). We used their results derived from the COSMOS survey and cleaned the sample
by only preserving objects with a good fit (FLAG_GALFIT_HI = 0) and reasonable
size (half-light radius between (0’701 and 10””) to avoid contamination. We note that this
catalogue was also used by K19 and proved to be sufficient for KiDS-like simulations.

The r-band photometry is derived from a deep VST-COSMOS catalogue using 24
separate VST observations of the COSMOS field taken from KiDS and the SUpernova
Diversity And Rate Evolution (SUDARE) survey (Cappellaro et al. 2015; De Cicco
et al. 2019). These observations have a maximum seeing of 082, close to the KiDS
r-band image qualities. To ensure consistent measurements, we conducted the stacking
and detection processes using the same pipeline as the standard KiDS data processing.
The stacked image has an average seeing of 0”/75 and a total exposure time of 42 120
seconds, which is a factor of ~23 over a standard KiDS observation. The limiting
magnitude of the final deep catalogue is more than one magnitude deeper than usual KiDS
catalogues. To include colour information, we also used the K-band photometry from
the COSMOS2015 catalogue (Laigle et al. 2016), as it originates from the UltraVISTA
project (McCracken et al. 2012) that shares the same instruments with the VIKING
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near-infrared observations.

The redshifts are taken from the catalogue compiled by van den Busch et al.
(2022). It contains observations from several spectroscopic and high-quality photometric
surveys in the COSMOS field. The spectroscopic redshifts were collected from G10-
COSMOS (Davies et al. 2015), DEIMOS (Hasinger et al. 2018), hCOSMOS (Damjanov
et al. 2018), VVDS (Le Fevre et al. 2013), LEGA-C (van der Wel et al. 2016), FMOS-
COSMOS (Silverman et al. 2015), VUDS (Le Fevre et al. 2015), C3R2 (Masters et al.
2017, 2019; Euclid Collaboration et al. 2020; Stanford et al. 2021), DEVILS (Davies
et al. 2018) and zCOSMOS (private comm. from M. Salvato), while the photometric
redshifts were from the PAU survey (Alarcon et al. 2021) and COSMOS2015 (Laigle
et al. 2016). For sources with multiple measurements, a specific ‘hierarchy’ was defined
with orders based on the quality of measured redshifts to choose the most reliable redshift
estimates (see Appendix A in van den Busch et al. 2022, for details). Given the high
quality of the redshift estimates, we treated them as true redshifts.

All catalogues mentioned above overlap in the COSMOS field, so we can combine
them by cross-matching objects based on their sky positions. The final reference catalogue
has 75403 galaxies with all the necessary information. It has a limiting magnitude
of 27 in the r-band but suffers incompleteness after m, > 24.5. We verified that the
incompleteness at the faint end does not bias the overall morphological distribution by
comparing it to measurements from the Hubble Ultra Deep Field observations (Coe et al.
2006).

We aim to inherit not only the individual distributions of structural parameters but
also their mutual dependence and possible correlations with redshifts and magnitudes.
To achieve this goal, we developed a learning algorithm based on a statistical inference
technique, dubbed vine-copulas (e.g. Joe 2014; Czado 2019). A brief introduction to the
technique is presented in Appendix 3.B. In short, a copula-based method models joint
multi-dimensional distributions by separating the dependence between variables from
the marginal distributions. It is popular in studies concerning dependence modelling,
given its flexibility and reliability. In practice, we first divided galaxies into 30 x 40 bins
based on their redshifts and r-band magnitudes. Each bin contains a similar number of
reference galaxies. Then in each bin, we built a data-driven vine-copula model from the
measured r — K colour and morphological parameters using the public pyvinecopulib
package'?. The learned vine-copula model can be sampled to produce an arbitrary
number of vectors of parameters from the constrained multi-dimensional distributions.
We decided to generate the same number of vectors as the available SHARK galaxies
and assign them to the SHARK galaxies in the order of r — K colour. This approach
allows us to mimic observations from the underlying distributions rather than repeatedly
sampling from the measured values.

Figure 3.3 shows the correlations between the magnitude and the two critical
structural parameters: half-light radius and ellipticity, in several redshift bins. We see
that the learned sample follows the average trends of the reference sample. Figure 3.4
presents two-dimensional contour plots in several magnitude bins to better inspect the

2Zhttps://github.com/vinecopulib/pyvinecopulib
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underlying distributions of morphological parameters. We again see agreements in
correlations between the size and ellipticity and between the size and concentration,
proving that our copula-based algorithm captures the multi-dimensional dependence
from the reference sample.

3.2.2 Stars: Point objects with synthetic photometry

We treated stars as perfect point objects. Their multi-band photometry was obtained
from the population synthesis code, TRILEGAL (Girardi et al. 2005, with version 1.6 and
the default model from its website!?). We generated six stellar catalogues at galactic
coordinates evenly spaced across the KiDS footprint to capture the variation of stellar
densities between KiDS tiles. Each catalogue spans 10 deg?. When simulating a specific
tile image covering 1 deg?, we selected the stellar catalogue whose central pointing is
closest to the target tile, then randomly drew ten per cent of stars from that catalogue
as the input. Figure 3.5 shows the r-band magnitude distributions of the six stellar
catalogues compared to the catalogue used by the COllege simulations. The broader
coverage of stellar densities is noticeable, marking one of the improvements in SKiLLS.
Also, stars in SKiLLS have nine-band magnitudes consistently predicted from a library
of stellar spectra (see Girardi et al. 2005, for details), while in COllege, stars only have
r-band magnitudes.

3.3 KiDS+VIKING nine-band image simulations

This section details the creation and processing of the multi-band mock images. We start
with the creation of KiDS-like optical images (Sect. 3.3.1) and VIKING-like infrared
images (Sect. 3.3.2), then summarise the SKiLLS fiducial setups in Sect. 3.3.3. We end
the section with the measurement of colours and photometric redshifts (Sect. 3.3.4).

3.3.1 KiDS-like optical images

Each KiDS pointing consists of four-band optical images taken with the OmegaCAM
camera at the VLT Survey Telescope (Kuijken 2011): u, g, r and i. The r-band images
are the primary products used for the shear measurement, while the remaining bands
are only for photometric measurements. The science array of the OmegaCAM camera
has a ~1° x 1° field of view covered by 8 x 4 CCD images, each of size 2048 x 4100
pixels with an average resolution of 0”7214. Although the CCDs are mounted as closely
as possible, a narrow gap between the neighbouring CCDs is technically inevitable. The
average gap sizes between the pixels of neighbouring CCDs are:

* between the long sides of the CCDs: 1.5 mm (100 pixels)

* central gap along the short sides: 0.82 mm (55 pixels)

Bhttp://stev.oapd.inaf.it/cgi-bin/trilegal
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Figure 3.3: Comparison of the overall magnitude-morphology relationships across
several redshift bins. The training and target samples are represented by red solid and
blue dashed lines, respectively. The top panel illustrates the average half-light radius as
a function of r-band magnitude, while the bottom panel depicts the average ellipticity
as a function of r-band magnitude. Statistical uncertainties displayed are calculated
from 500 bootstrap iterations. The top panel also includes histograms of normalised
magnitude distributions, indicating that the bright galaxies at higher redshifts from the
simulation contribute minimally to the overall population.
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Figure 3.5: The r-band input magnitude distributions for the six stellar catalogues
utilised by SKGiLLS. Labels represent the pointing centres (RA, Dec), with the exception
of ‘COllege’, which signifies the stellar catalogue employed by K19.

» wide gap along short sides: 5.64 mm (376 pixels)

To avoid ‘dead zones’ caused by these gaps, each tile image incorporates multiple
dithered exposures (five in the g, » and i bands, four in the # band). The dithers form
a staircase pattern with steps of 25”” in RA and 85" in declination to match the gaps
between CCDs (de Jong et al. 2013).

KiDS raw observations are processed with two independent pipelines: the AsTro-
WISE pipeline designed for the photometric measurements (McFarland et al. 2013; de
Jong et al. 2015)*, and the THELI pipeline optimised for the shape measurements (Erben
et al. 2005; Schirmer 2013; Kuijken et al. 2015)15. While the former is applied to all
four-band observations, the latter is only used for the r-band observations, as KiDS only
measures galaxy shapes for lensing in the r-band images. The main difference between
the AsTro-WISE and THELI pipelines is in the co-addition process, where the former
resamples all exposures to the same pixel grid with a uniform 0’720 pixel size, while the
latter preserves the original pixels to maintain image fidelity as much as possible.

We kept all these features in mind when generating SKiLLLS optical images. We
created raw exposures using the GaLSim pipeline!® (Rowe et al. 2015), with galaxies
and stars from the mock catalogues described in Sect. 3.2. The underlying canvas
mimicked the science array of the OmegaCAM camera, including pixels and gaps.

Uhttp://www.astro-wise.org/
Bhttps://www.astro.uni-bonn.de/theli/
https://github.com/GalSim-developers/GalSim
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SKiLLS KiDS tile 133.0.0.5

Figure 3.6: Comparison of the THELI weight image generated by SKiLLS (shown in the
left panel) with a randomly chosen example from KiDS (depicted in the right panel).
The 8 x 4 CCDs span a sky area of approximately one square degree. The shallow
regions are attributed to gaps in individual exposures. A similar level of agreement is
also observed in the AsTro-WISE co-added images.

Galaxies and stars were mapped to the canvas using the gnomonic (TAN) projection
of their original sky coordinates. Following the KiDS image processing, we stacked
exposures using the SWarp software (Bertin 2010), with the identical setups as in the
KiDS pipelines, including AsTro-WISE-like images re-gridded to a uniform 0”720 pixel
size and THELI-like images preserving the original 07214 pixel size. Figure 3.6 compares
a co-added THELI weight image from SKiLLS to a randomly selected tile from KiDS. It
shows that the SKiLLS images contain the main features of KiDS images, including
the gaps and dither patterns, albeit lacking subtle features, such as the inhomogeneous
backgrounds between CCDs and masks of satellites.

Besides the image layout, we need information on the pixel noise and point spread
function (PSF) to mimic observational conditions. We extracted this information from
the fourth public data release of KiDS (KiDS-DR4, or DR4 for short, Kuijken et al. 2019).
It has a total of 1006 square-degree survey tiles with stacked ugri images along with their
weight maps, masks and source catalogues. We selected a representative sample of 108
tiles and replicated their properties in our image simulations (see Sec. 3.3.3 for details).
For the raw pixel noise, we adopted Gaussian distributions with variances estimated from
the Astro-WISE weight maps corrected with a boost factor of ~1.145 [: (0.214/ 0.2)2]
to account for the re-gridding effect. For the PSF, we used two approaches, depending
on the different usages of the images.

For the r-band images from which galaxy shapes are measured, we used the position-
dependent PSF models for individual exposures. These PSF models, constructed from
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well-identified stars, are in the form of two-dimensional polynomial functions and can
recover a PSF image in the pixel grid for any given image position (see Miller et al. 2013;
Kuijken et al. 2015; Giblin et al. 2021 for details). In practice, we recovered 32 PSF
images for each exposure using the centre positions of the CCD images. The recovered
PSF images contain modelling uncertainties, which can introduce artificial spikes when
being used to simulate bright stars. Therefore, we applied a cosine-tapered window to
the original PSF image to suppress the modelling noise at its outskirts. The two edges
of the window function are defined at 5 and 10 times the full-width half-maximum
(FWHM) of the target PSF to preserve features in the central region as much as possible.
With these recovered PSF images, we can treat the 32 CCD images separately using
their own PSFs, a significant improvement from the constant PSF used in previous work.
The recovered PSF image is also superior to a Moffat profile as it captures more delicate
features of complex PSFs, such as ellipticity gradients.

For other optical bands where only photometry is measured, we still adopted the
Moffat profile, given that the photometric measurement is insensitive to the detailed
profile of PSF. We estimated the Moffat parameters by modelling bright stars identified
in the AsTro-WISE images. Since the photometry is measured from the stacked images
and is less sensitive to the gentle PSF variation within a given tile, we kept the PSF
model invariant for all exposures for simplicity. To alleviate the Moffat fitting bias
introduced by the pixelisation of CCD images, we applied the first-order correction to
the measured Moffat parameters using image simulations. Specifically, we simulated
the pixelated PSF image using measured Moffat parameters and then remeasured them
with the same fitting code. The difference between the remeasured and input values is
the correction factor and is subtracted from the initially measured value. Our test shows
that this correction can suppress the original percent-level bias down to a sub-percent
level, which is sufficient for our photometry-related purpose.

3.3.2 VIKING-like infrared images

To improve the accuracy of photometric redshifts, KiDS includes near-infrared (NIR)
measurements from the VISTA Kilo-degree Infrared Galaxy (VIKING) survey (Edge
et al. 2013). The two surveys share an almost identical footprint. We refer to Wright et al.
(2019) for details of the VIKING imaging and its usage in KiDS. Briefly, the VIKING
data have three levels of products: exposures, paw-prints, and tiles. Given the complex
NIR backgrounds, the VIKING survey first takes multiple exposures in quick succession
with small jitter steps for reliable estimation of the noisy background. These exposures
are then stacked together to create the second level of product: the ‘paw-print’. A
paw-print still contains gaps between individual detectors, so six paw-prints with a dither
pattern are used to produce a contiguous tile image. However, these co-added tiles have
non-contiguous PSF patterns caused by the large dithers between successive paw-prints.
Therefore, in the KiDS+VIKING analyses, photometry is done on individual paw-prints
instead of the co-added tiles. The dither pattern of paw-prints causes multiple flux
measurements per source (typically four in the case of the J-band and two in the other
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bands). The final flux estimate for each source is a weighted average of the individual
measurements with the weights derived from individual flux errors.

Given the complexity of the VIKING observing strategy, we simplified the NIR-
band observations in SKiLLS with single images per square degree of KiDS tile. To
compensate for the simplified images, we considered the overlap between individual
paw-prints when estimating the observational conditions. As we show in Sect. 3.3.4, this
simplified approach can still achieve realistic photometry, which is the only important
quality we seek from the NIR-band images.

Specifically, we created a ‘flat-field image’ for each paw-print with the same size
and pixel scale. Its pixel value equals the absolute standard deviation of the background
pixel values on the corresponding paw-print. For each KiDS pointing, we selected all
VIKING paw-prints that overlap in the given one square-degree sky area and stacked their
flat-field images with shifts accounting for the different sky pointings of the paw-prints.
We took the median pixel value of the co-added flat-field image as the final pixel noise
of the corresponding KiDS pointing. In doing so, we captured various overlapping
VIKING paw-prints in individual KiDS pointings. Following the typical situations of
the KiDS+VIKING data (Wright et al. 2019), we only preserved KiDS pointings with
at least two paw-prints in the ZY HK ;-bands and at least four paw-prints in the J-band.
This requirement reduced the number of pointings from 1006 to 979, which is still
plentiful for our purpose. As for the PSF, we employed a constant Moffat profile for
each KiDS pointing. The PSF FWHM is a weighted average from overlapping VIKING
paw-prints with the weights determined by their noise levels. In order to determine
the Moffat concentration index for a given FWHM value, we fitted Moffat profiles to
bright stars in some representative paw-prints. The Moffat fitting bias introduced by the
pixelisation is corrected using the same method introduced in Sect. 3.3.1. We found the
relationship between the Moffat index n and FWHM (arcsec) in VIKING images to be:
In(n) = 66.56 exp (—6.36 FWHM) + 0.90. This empirical formula is used to pair each
FWHM with a unique Moffat index.

3.3.3 SKIiLLS fiducial setup

Since we have 108 deg® of SHARK galaxies as described in Sect. 3.2.1, we selected 108
KiDS pointings for the SKiLLS fiducial run. Figure 3.7 shows the sky locations of the
selected 108 tiles along with the 979 KiDS-DR4 tiles that have the nine-band noise and
PSF information. Clusters of the selected blocks pair with the six stellar catalogues
generated from TRILEGAL so that SKIiLLS captures the stellar density variation across
the whole KiDS survey (see Sect. 3.2.2).

Figure 3.8 compares the r-band noise and PSF properties between the SKiLLS
selected tiles and all usable KiDS-DR4 tiles. We measured the PSF size and ellipticity
using the weighted quadrupole moments with a circular Gaussian window of dispersion
2.5 pixels, the typical galaxy size in the KiDS sample. The PSF size is defined as

rpse = (011022 — 03)'*, (3.4)
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Figure 3.7: Sky distribution of the KiDS-DR4 tiles. The tiles marked in blue are
incorporated in the SKILLS fiducial run, accounting for a total of 108 tiles. The grey
blocks represent all KiDS-DR4 tiles, amounting to 979, for which nine-band noise and
PSF information are available. The black stars signal the centres of the stellar catalogues
generated using TRiLEGAL (Girardi et al. 2005).

where Q;; are the weighted quadrupole moments, and the PSF ellipticity is defined by
Eq. (3.2). Figure 3.8 shows that the selected tiles represent the KiDS-DR4 data well.
Because we vary PSF for individual CCD images and exposures, the 108 SKiLLLS images
cover 17 280 different PSF models, a significant extension of the 65 PSF models used
by FC17 and K19. That also explains the smooth distributions of the PSF parameters.
Figure 3.9 shows similar comparisons for other bands. Again we see fair agreements
across all bands. As KiDS-DR4 already covers ~75% of the whole survey, we expect a
similar agreement to the KiDS-Legacy data. The wide coverage of the noise and PSF
properties also makes the SKiLLS results more robust than previous simulations and
simplifies sensitivity tests (see Sect. 3.6 for details).

3.3.4 Photometry and photometric redshifts

With the simulated multi-band images, we can measure colours and estimate photometric
redshifts (photo-zs) for simulated galaxies using the same tools developed in KiDS with
minor adjustments.

For galaxy colours, we used the GAAP (Gaussian Aperture and PSF) pipeline
(Kuijken et al. 2015, 2019). It provides accurate multi-band colours by accounting
for PSF differences between filters and optimises signal-to-noise ratio (S/N) by down-
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Figure 3.8: Comparison of normalised histograms for pixel noise (top left), PSF size
(top right), and PSF ellipticity (bottom left) between KiDS-DR4 (depicted in red) and
SKILLS (in blue) within the r-band images. Both PSF size and ellipticity are measured
from the recovered PSF image employing a circular Gaussian window of a sigma value
of 2.5 pixels.

weighting the noise-dominated outskirts. The latter is possible because the photo-z
estimation only needs the ratio of the fluxes from the same part of a galaxy in the given
bands rather than the total light. A prerequisite for the GAAP pipeline is a detection
catalogue with source positions and aperture parameters, which we measured from the
THELI-like r-band images using the SExTRAcTOR code (Bertin & Arnouts 1996). Once
the detection catalogue is ready, we can obtain the list-driven photometry by running the
GAAP algorithm on the u, g, r and i AsTro-WISE-like images and the Z, Y, J, H and
K simple images. In short, the GAAP method includes three major steps:

1. Homogenising PSFs by convolving the whole image with a spatially variable
kernel map modelled from high S/N stars. The resulting image has a simple
Gaussian PSF, for which estimating the PSF-independent Gaussian aperture flux is
possible. The main side effect is that the convolution process introduces correlated
noise between neighbouring pixels, complicating the estimation of measurement
uncertainties. GAAP handles this by tracking the noise covariance matrix through
the whole process.

2. Defining an elliptical Gaussian aperture function for each source using the size and
shape parameters measured by SExTrRACTOR on the r-band detection images. In
practice, users must customise the minimum and maximum GAAP aperture sizes



3.3. KIDS+VIKING NINE-BAND IMAGE SIMULATIONS

69

Probability density

Probability density

A

o N E= o N S o N £y
T T T T T T

S

SO N P~ O N B~ O N B>

] =1 SKILLS fiducial

H
1= «iDS DRr4
1 T SKILLS fiducial
05 1.0 15 05 1.0 15
Pixel noise / median value
U g 1
Z :Iﬁ[l%_ |
H K,
1 11 KiDS DR4

08 12
PSF FWHM [arcsec]

08 1.2

Figure 3.9: Comparison of normalised histograms for pixel noise (top) and PSF FWHM
(bottom) across bands used solely for photometry, contrasting KiDS-DR4 (red) with
SKiLLS (blue). The equivalent comparisons for the lensing r-band images are illustrated
in Fig. 3.8. To facilitate comparison in the same range, pixel noise values are normalised
by their median values in each band.
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Figure 3.10: Differences in the median 10 GAAP limiting magnitudes across the nine
bands (simulation - data). The three lines represent the 16, 50 and 84 percentiles derived
from the 108 tiles incorporated in the SKIiLLS fiducial run. The larger scatters in the
NIR bands can be partially attributed to the adoption of a simplified simulation strategy.

to balance the S/N and the effect of blending. Following the KiDS fiducial setup,
we set the maximum aperture to 2’ to avoid contamination from neighbouring
sources. We conducted two separate runs by setting the minimum aperture to 0”7
and 1’70. When used as the input for the photo-z estimation, a source-by-source
decision was made to optimise the flux errors across the nine bands (see Kuijken
et al. 2019 for details).

3. Performing the aperture photometry on the PSF-Gaussianised images for each
band using the defined aperture functions. It is worth stressing that GAAP aims to
provide robust colours for the high S/N parts of galaxies; it underestimates the
total fluxes for extended sources by design.

Figure 3.10 compares the nine-band 100 GAAP limiting magnitudes between the
KiDS-DR4 data and SKILLS fiducial results. We calculated the median limiting
magnitudes for tiles in both KiDS and SKiLLS and then compared their differences.
We see a general agreement for all the bands, verifying our noise and PSF modelling.
Noticeably, even for the NIR bands where we simplified the VIKING observations
with single images, the differences are still tolerable, albeit with larger uncertainties.
Figure 3.11 compares the GAAP photometric distributions between the simulation and
data. Once again, we see a decent agreement in both magnitude and colour distributions.

For the photo-z estimation, we implemented the public Bayesian Photometric
Redshift (Bpz, Benitez 2000) code with the re-calibrated template set from Capak (2004)
and the Bayesian redshift prior from Raichoor et al. (2014). We closely followed the
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Figure 3.11: Comparison of the GAAP magnitudes (top panel) and colours (bottom
panel) for KiDS-DR4 (red) and SKiIiLLS (blue). The displayed results incorporate all
galaxies possessing valid photometric measurements (with the GAAP flags equating to
zero across nine bands). No shape-measurement-related filters have been applied at this

stage.
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Figure 3.12: Photometric versus true redshifts distributed across several apparent 7-band
magnitude bins. The annotated statistics are: the normalised median-absolute-deviation
(o) of the variable Az/(1 + z), the proportion of sources with |Az/(1+z)| > 30,
(173) and the proportion of sources with |Az/(1+ z)| > 0.15 ({o.15). The dashed lines
represent the one-to-one correlation, while the dotted lines indicate |Az/(1 + z)| = 0.

settings in the KiDS-DR4 analysis (Kuijken et al. 2019) unless it conflicts with the
simulation input. For example, we set ZMAX to 2.5, the limiting redshift of SKiLLLS
galaxies, instead of 7.0 as in the data. We tested the choice of ZMAX in the simulations
and found that only 0.1% of the test sample resulted in estimates differing more than
0.1, which means most of the objects have similar photo-z estimates and end up in the
same tomographic bins for these two choices. Moreover, the SHARK photometry in the
u, g, r,i and Z bands is based on the Sloan Digital Sky Survey (SDSS) photometric
system, which is slightly different from the KiDS/VIKING system (Kuijken et al. 2019).
We corrected these slight differences in the measured GAAP magnitudes in order to use
the KiDS/VIKING filters to run the Bpz code. The detailed procedures and comparisons
are described in Appendix 3.C. Overall, the modification is minor and has a negligible
impact on the magnitude, colour distributions, and final shear biases. Still, it improves
the agreement between the simulation and the data in the photo-z distributions. Unless
specified otherwise, we base our fiducial results on the transformed photometry.

Figure 3.12 compares the estimated photo-z to the true redshift from the input
SURFS-SHARK simulations in several measured magnitude bins. It shows the photo-z vs.
true redshift distributions, along with annotated statistics based on the distributions of
(zB — Ztrue) / (1 + zyrue) = Az/(1 + z) values. We see the Brz code works well in SKiLLS
and is at the same level as in KiDS (Wright et al. 2019). More detailed verification of
the SKiLLS photo-z performance is presented in the companion redshift calibration
paper (van den Busch et al., in prep).

As for the redshift calibration, our end-to-end approach, which starts with image
simulation followed by object detection, PSF homogenisation, forced multi-band pho-
tometry, and photo-z estimation, is a significant improvement compared to previous
catalogue-level simulations (e.g. Hoyle et al. 2018; van den Busch et al. 2020; DeRose
et al. 2022). The image-simulation-based approach not only yields more realistic
observational uncertainties but also naturally accounts for the blending effect, which
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is hard to address at the catalogue level. As for the shear calibration, these photo-z
estimates are essential for performing tomographic selections (K19). Our approach that
directly measures the photo-zs from simulated images accounts for various measurement
uncertainties of photo-zs, hence a tomographic selection consistent with how it is done in
the data. Moreover, using the same mock catalogue in both shear and redshift calibration
unites these two long-separated processes in the KiDS-Legacy analysis.

3.4 Shape measurements with the updated lensfit

The primary task of any weak lensing survey is to measure the shapes of galaxy
images. Previous KiDS analyses tackled this task using a likelihood-based code, dubbed
lensfit (Miller et al. 2007; Kitching et al. 2008; Miller et al. 2013). It is the default shape
measurement algorithm for the KiDS-Legacy analysis, with some updates described in
this section. We test SKiLLS using this updated lensfit code!’.

3.4.1 The self-calibration version of lensfit

The lensfit code, first developed for CFHTLenS (Heymans et al. 2012), follows a Bayesian
model-fitting approach. We refer to Miller et al. (2013) for its detailed formalism. In
brief, it first performs a joint fit to individual exposures using a PSF-convolved galaxy
model, which yields a likelihood distribution of seven parameters: 2D position, flux,
scalelength, bulge-to-total flux ratio and complex ellipticity. Then it deduces the
ellipticity parameters from the likelihood-weighted mean values by marginalising other
parameters with priors as described by Miller et al. (2013). For each ellipticity estimate,
an inverse-variance weight is also determined from (Miller et al. 2013)
2 2 -1
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where o ; is the uncertainty of the measured ellipticity, o¢ pop is the ellipticity
dispersion of the galaxy population (intrinsic shape noise), and €y« is the maximum
allowed ellipticity in the lensfit model-fitting. As for KiDS data, we adopted ¢, pop =
0.253 and €pax = 0.804.

The code has evolved as KiDS progressed. The most significant is a self-calibration
scheme for noise bias, as detailed in FC17. The pixel noise in a given image skews the
likelihood, which biases the estimate of individual galaxy ellipticities. It is a complex
function of the signal-to-noise ratio, galaxy properties and PSF morphology, making it
difficult to predict accurately. Thus, lensfit conducts an approximate correction using the
measurements themselves, that is a self-calibration. The basic idea is to simulate a test
galaxy with parameters measured from the first run, then remeasure the test galaxy using
the same pipeline. The difference between the remeasured and input values serves as a

7Nevertheless, we note that SKiLLS can also calibrate other algorithms, such as the KiDS METacaLI-
BRATION catalogue (Yoon et al., in prep.).
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correction factor for the corresponding parameter. Since its introduction, self-calibration
has been a standard part of lensfit, given its promising overall performance (Mandelbaum
et al. 2015; FC17; K19). We keep this feature for the KiDS-Legacy analysis.

3.4.2 Updates for KiDS-Legacy analysis

A long-standing mystery of all previous /ensfit analyses has been the presence of a small
but significant residual bias in € that is uncorrelated with the PSF and the underlying
shear (Miller et al. 2013; Hildebrandt et al. 2016; Giblin et al. 2021). We now understand
that this feature arises from an anisotropic error in the original likelihood sampler, which
has been corrected in our algorithm. However, we found that this correction inadvertently
increases the fraction of residual PSF contamination in the weighted average signal (see
the discussion in Giblin et al. 2021). Besides, object selection and galaxy weights are
also known to introduce bias (e.g. Kaiser 2000, Bernstein & Jarvis 2002, Hirata & Seljak
2003, Jarvis et al. 2016 and FC17). These selection biases can be more severe than the
raw measurement bias and hence cannot be ignored even for a perfect self-calibration
measurement algorithm.

FC17 presented a method to isotropise weights using an empirical correction scheme,
which has been adopted in previous KiDS studies to mitigate these biases. Unfortunately,
we found this approach to be insufficient for the improved lensfit algorithm. Furthermore,
we found the approach to be sensitive to the sample volume, and therefore hard to apply
consistently to the data and simulations. So, we introduce a new empirical correction
scheme that mitigates the PSF contamination to the weighted shear signal.

Weight correction

We begin by investigating the impact of PSF leakages on the reported weight. For
galaxies of similar surface brightness, those oriented in the same direction as the PSF
tend to exhibit a higher integrated signal-to-noise ratio compared to those perpendicular
to the PSF. This orientation bias introduces an asymmetry in the measurement variance
(the 0'5’ ; term in Eq. 3.5), which can be quantified using a first-order linear function:

S; = asepsF, i, prioj + N [(S), o] . (3.6)

Here, S; = o-g’ ; signifies the measurement variance, while €psF, ;, proj denotes the scalar
projection of the PSF ellipticity along the direction of the galaxy ellipticity. The term
as quantifies the degree of PSF contamination in the measurement variance. The noise,
denoted by N [(S), o], is assumed to follow a Gaussian distribution with a mean of
(S) and a standard deviation of o.

Following FC17, we estimate the PSF contamination as a function of the integrated
signal-to-noise ratio (vsn) reported by lensfit and the resolution, which is defined as

2

’
- PSF
R = ﬁ ) (3.7)
Foep +7
PSE " "ab
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Figure 3.13: PSF leakage in the measurement variance as a function of signal-to-noise
ratio and the resolution parameter R. We note that, according to the definition in
Eq. (3.7), a larger R corresponds to a lower resolution.

where ryp, = req/q is the circularised galaxy size with r. and g denoting the scalelength
along the major axis and the axis ratio, respectively. The PSF size rpgsr is defined by
Eq. (3.4). By construction, the resolution R has a value between 0 and 1, with a larger
value corresponding to a more poorly resolved object.

When estimating as, we first divide galaxies into an irregular 20 X 20 grid of vgn
and R, each containing the same number of objects. Then in each bin, we perform a
linear regression using Eq. (3.6) to measure ag. Figure 3.13 shows the measurements
for the KiDS-DR4 re-run with the updated /ensfit. It demonstrates a clear correlation
between the estimated as and the vgny and R. We derive the corrected measurement
variance for individual galaxies through O'z’ i corr = 0'3’ ; — @SEPSF, i, proj, Where the
value of ag is determined based on which vgn-R bin the target galaxy is assigned to.
The corrected lensfit weight is then calculated with

2 2 -1
_ O-e, i, corr €max 2
Weorr, i = 5 5 + O, pop s (38)
2ex. — 40
max €, I, corr

following Eq. (3.5). We verified that this approach is sufficient to remove the overall
weight bias and is robust against the binning scheme.
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Figure 3.14: PSF leakage in the measured ellipticity after the weight calibration, plotted
as a function of signal-to-noise ratio and the resolution parameter R. We note that,
according to the definition in Eq. (3.7), a larger R corresponds to a lower resolution.

Ellipticity correction

In addition to the weight bias, there is still some residual PSF leakage in the measured
ellipticity because of the residual noise bias and selection effects. To first order, this
residual PSF bias can be formulated as

€obs, i = Etrue, i + X €psE, i +C+ N [0, o] , (3.9)

where €., ; 1S the measured ellipticity, €y, ; 1S the underlying true ellipticity, « is the
fraction of the PSF ellipticity epgF, ; that leaks into the measured ellipticity, and c is
an additive term uncorrelated with the PSF. N [0, o] denotes the noise in individual
shape measurements, which are assumed to follow a Gaussian distribution of mean
0 and standard variation o.. We note that all parameters in Eq. (3.9) are complex
numbers (o« = a; +iap). We focus on the a term, as the ¢ term with the improved
likelihood sampler is now small in practice, and the N [0, o] vanishes for an ensemble
of galaxies.

Like the weight bias correction, we first estimate & in the 20 X 20 grid of vgy and R
using a linear regression of Eq. (3.9). Figure 3.14 shows the amplitude of « in the 2D
vsn and R plane. We see modest values in most situations, except for the low vgyn cases,
where it drops abruptly to negative values. We confirmed that the negative tail is mainly
from the selection effects by measuring the PSF leakage using the input ellipticity in
simulations. This non-trivial negative tail prevents us from using the direct correction
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approach introduced in the weight bias correction section. Therefore, we propose a
hybrid approach, with a fitting procedure for the overall trend and a direct correction for
residuals. Specifically, we first fit the measured « as a function of vgn and R, using a
function of the form

ap(vsn, R) =ap+ alvgf, + “2"5_131 +b1R+c1R Vs_1\21 , (3.10)

whose coeflicients are constrained using the weighted mean results from the 20 x 20
grid. Then, we correct the raw measurements of individual galaxies using €ops, i, tmp =
€obs, i — &p(VsN, i» Ri) €psr, i, where the polynomial &, (vsn, i, R;) is determined
from the target galaxy’s vsn,; and R;. After removing the overall trend, we use
the corrected €gps, i, tmp t0 measure the residual «;, which changes mildly across
the 2D vgn and R plane. Therefore, we can conduct the direct correction through
€obs, i, corr = €obs, i, tmp — &r EPSF, ;> Where the values of «; for individual galaxies are
determined based on which vgn-R bin they are assigned. This two-step approach
balances performance and robustness. We verified that the corrected measurements have
negligible PSF leakages and the results are robust against the binning scheme.

3.4.3 Comparison between KiDS and SKiLLS

We applied the updated lensfit code to KiDS-DR4 and SKiLLS r-band images. The
object selections after the measurements are detailed in Appendix 3.D. In short, we
largely followed the selection criteria proposed in Hildebrandt et al. (2017), with an
additional resolution cut introduced to mitigate the PSF contamination. We applied the
same selections to the KiDS data and SKiLLS simulated catalogue to ensure a consistent
selection effect, even though SKiLLS does not contain artefacts like asteroids and binary
stars.

Figure 3.15 compares the weighted distributions of some critical observables reported
by the updated lensfit. The SKiLLS results match the KiDS-DR4 data reasonably well.
We also checked the properties of the close pairs. Specifically, we show the magnitude
difference and the projected distance between close pairs in the measured catalogues.
Both properties agree well between the data and simulations, implying SKiLLLS has
realistic clustering features. These realistic neighbouring properties are essential for an
accurate shear calibration, especially when considering the shear interference between
blended objects (see Sect. 3.5 for details).

3.5 Shear biases for the updated lensfit

The central task of image simulations is to quantify the average shear bias for a selected
source sample. This is done by comparing the inferred shear b, to the input shear
Yinput- Which have a linear correlation to the first order (Heymans et al. 2006)

Yobs = (1 +m) Yinpue + €, (3.11)
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Figure 3.15: Comparison of the updated lensfit measurements between KiDS (rep-
resented in red) and SKiLLS (in blue). All distributions are normalised using lensfit
weights, with the exception of the /ensfit weight distribution itself. Neighbour properties
are based on the nearest neighbour identified in the measured catalogue. The magnitude
difference is calculated by subtracting the primary target’s neighbour magnitude from
that of the neighbour. The absence of closely paired galaxies with a distance less
than ~1 arcsecond results from the conservative blending cut used by KiDS (refer to
Appendix 3.D). This cut effectively mitigates the most severe blending bias.
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where m is known as the multiplicative bias, and c is the additive bias. The simulation-
based calibration focuses on the multiplicative bias, as the additive bias is usually
corrected empirically (for example, the correction scheme proposed in Sect. 3.4.2).
So we use the term ‘shear bias’ and ‘multiplicative bias’ interchangeably throughout
the paper. We note that all parameters in Eq. (3.11) are in complex forms, such as
m = mj +1imy. However, we found m; and m, to be consistent in our analysis, so unless
specified, we only report the amplitude m.

The shear calibration methodology keeps evolving as our understanding of system-
atics deepens. Early studies demonstrated that the shear bias correlated with galaxy
properties and PSFs, especially the signal-to-noise ratio and resolution (e.g. Miller
et al. 2013; Hoekstra et al. 2015; Mandelbaum et al. 2018; Samuroff et al. 2018). So
the first lesson is to avoid using one averaged result from the whole simulation as a
scalar calibration to the entire data unless the simulations perfectly represent the data. A
natural procedure then attempts to estimate the shear bias as a function of the galaxy and
PSF properties (e.g. Miller et al. 2013; Jarvis et al. 2016). Nevertheless, we can only
derive the relation of the bias to the noisy, measured properties, as the true properties
are unknown in actual data. FC17 found that the relation derived from the measured
properties introduces biases because of the correlations between observed quantities,
an effect referred to as the ‘calibration selection bias’. So the second lesson is that we
should be cautious about object-based shear calibrations that rely on the relation to the
noisy properties. That is why the recent simulations try to resemble the data and only
provide a mean correction for an ensemble of galaxies (e.g. K19). The latest lesson,
stressed by MacCrann et al. (2022), is the interplay between shear estimates of blended
objects at different redshifts, a higher-order effect that the traditional constant shear
simulations cannot capture. It becomes more important as the precision of surveys
improves.

Our shear calibration method builds on all these lessons. We created constant shear
simulations following the previous KiDS tomographic calibration method but with
improvements to the photo-z estimates by taking advantage of the simulated multi-band
images (Sect. 3.5.1). Using additional blending-only variable shear simulations, we
applied a correction to account for the interplay between blends containing different
shears (Sect. 3.5.2). When testing the PSF modelling algorithm in image simulations,
we detected a small but noticeable change of shear bias, which was also corrected in our
fiducial results (Sect. 3.5.3).

3.5.1 Results from the constant shear simulations

Our constant shear simulations largely followed FC17 and K19 with some simplifications
for better usage of computational resources. Table 3.1 lists the main changes we made
compared to our predecessor. Given the 108 deg? of unique synthetic galaxies we built
in Sect. 3.2, we mimicked 108 KiDS pointings, where we vary the PSF, noise level
and stellar density as detailed in Sect. 3.3. To reduce the shape noise, we copied each
tile image with galaxies rotated by 90 degrees. We created four sets of constant shear
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simulations with input shear: (0.0283,0.0283), (0.0283, —0.0283), (—0.0283, —0.0283),
(—0.0283,0.0283). The total simulated area is 864 (= 108 x 4 x 2) deg?, which
is equivalent to ~5170 deg? after accounting for the shape noise cancellation (=
864 X (0 ¢ raw/ UG,SNC)Q, where 0 ¢ raw and o ¢ sne denote the weighted dispersion of the
mean input ellipticities before and after the shape noise cancellation), which is roughly
four times the final KiDS-Legacy area.

For a tomographic analysis, we need to estimate the bias for each redshift bin
separately, given that the galaxy properties vary between bins. This requires photo-z
estimates for the simulated galaxies. For SKiLLS, we can follow the KiDS processing
steps to directly measure photo-zs, thanks to the simulated nine-band images. We
conducted the detection from the THELI-like r-band images, the PSF Gaussianisation and
forced multi-band photometry using the GAAP pipeline, and the photo-z estimates with
the BPz code (see Sect. 3.3.4 for details). This consistent data processing ensures that
SKiLLS embraces realistic photometric properties, marking one of the most significant
improvements over the previous image simulations.

Table 3.1: Differences between the COllege (K19) and SKiLLS simulations.

COllege (K19) SKiLLS (this work)

Galaxies Morphology  Sérsic models with pa- Sérsic models with pa-
rameters taken directly rameters learned from
from the HST-ACS mea- the HST-ACS measure-
surements (Griffith et al. ments (Sect. 3.2.1)
2012)

Photometry  Single-band  magni- Nine-band synthetic
tudes from the Subaru magnitudes based
r*-band observations on a semi-analytic

model (Sect. 3.2.1)

Depth Limited by the HST- Extending to 27th mag-
ACS measurements nitude in the r band

Position Based on the observed Based on the SURFS N-
locations in the COS- body simulations (Elahi
MOS field et al. 2018)

Stars Photometry  Single-band synthetic Nine-band synthetic
magnitudes from the magnitudes from the
Besancon model (Robin  TriLEGAL model (Gi-
et al. 2003; Czekaj et al. rardi et al. 2005)
2014)

Images Band the r-band images only the full nine-band im-

ages

Continued on next page
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Table 3.1 continued from previous page

COllege (K19) SKiLLS (this work)

Layout 32 CCDswithevengaps 32 CCDs with variable
in between gaps as in the actual

camera (Fig. 3.6)

PSF 13 sets of spatially con- 108 sets of spatially
stant Moffat profiles, varying  polynomial
with each containing models, with each
five different models containing 5 X 32
corresponding to the different models
five exposures

Noise One fixed noise level for 108 different noise lev-
all tiles els

Stack Only TtHELI-like stacks Both THELI-like and As-
for shape measurements TRO-WISE-like stacks

for shape and photomet-
ric measurements, re-

spectively
Measure Shape From the self- From the updated /ensfit
calibration version with the AlphaRecal
of lensfit with the method detailed in

weight bias correction Sect. 3.4.2

of FC17

photo-z Assigned with the KiDS  Measured from the

observations of the
COSMOS field

simulated nine-band
images following
the KiDS photomet-
ric processing steps
(Sect. 3.3.4)

Sample variance

Identical input cata-
logues of galaxies and
stars for all the 13 reali-
sations

Different galaxy cata-
logues for the 108 re-
alisations and six stel-
lar catalogues for the
selected sky blocks
(Fig. 3.7)

Continued on next page
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Table 3.1 continued from previous page

COllege (K19) SKILLS (this work)
Input shears Eight sets of constant Four sets of constant
shears shears in the baseline

simulations and a vari-
able shear field for the
blended objects (Ap-
pendix 3.E)

Shape noise cancellation” Each tile has three coun- Each tile has one coun-
terparts with galaxies terpart with galaxies ro-
rotated by 45, 90 and tated by 90 degrees
135 degrees

Total simulated area 416 deg? 864 deg? in the constant
shear simulations plus
7776 deg® of blending-
only simulations for
the correction of the
‘shear interplay’ effect
(Sect. 3.5.2)

(@) We verified that the four sets of input shears are sufficient to recover the previous
results.

(P) Although more rotations suppress shape noise more efficiently (FC17), the
selection effects diminish the actual performance of the shape noise cancella-
tion (K19).

As shown in Fig. 3.15, SKILLS matches KiDS generally well but not perfectly. K19
argued that an accurate estimate of the shear bias must account for any mismatches
between the simulations and the target data. Therefore, we followed FC17 and K19 to
reweight the simulation estimates using the lensfit reported vsy and resolution factor R
(Eq. 3.7). Specifically, for each tomographic bin, we first divided simulated galaxies
into 20 X 20 bins of vgy and R, each containing equal lensfit weight. Then we estimated
the multiplicative bias for each vgn-R bin using Eq. (3.11). Galaxies in the target data
were assigned the bias based on the vsn-R bin they fall in, and the final bias for each
tomographic bin was the lensfit-weighted average of these individual assignments. This
procedure ensures the estimated bias accounts for any vgy and R differences between the
simulations and the data while also minimising the impact of the calibration selection
bias.

Table 3.2 and Figure 3.16 show the multiplicative bias estimates for the KiDS-DR4
re-run with the updated lensfit from our constant shear simulations. The quoted errors
only contain the statistical uncertainties from the linear fitting. Compared to Table 2 of
K19, we reduced the statistical uncertainties by about half because of the larger sky area
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Figure 3.16: Multiplicative bias across tomographic bins for KiDS-DR4, with the
updated lensfit. The red diamonds represent our final results, including corrections
for the shear-interplay effect (Sect. 3.5.2) and PSF modelling bias (Sect. 3.5.3). The
grey points, on the other hand, display the raw results from the idealised constant
shear simulations (Sect. 3.5.1). The hatched regions denote the proposed nominal error
budgets, intended for comparison (refer to Sect. 3.6 for more details).

simulated. Direct comparisons between the calibration values quoted in Table 3.2, cannot
be made to those in K19 and Giblin et al. (2021). We updated the shape measurement
algorithm /ensfit and calibrated the raw measurement against PSF contamination in our
analysis (see Sect. 3.4.2). These changes modify the effective size and signal-to-noise
ratio distribution of the samples and hence the overall calibration in each tomographic
bin. Furthermore, Giblin et al. (2021) accounts for the Wright et al. (2020a) ‘gold’
selection for photometric redshifts, which reduces the effective number density by ~20%,
compared to the sample simulated in this analysis.

3.5.2 Impact of blends at different redshifts

MacCrann et al. (2022) recently highlighted a complication that arises from blended
objects at different redshifts, which are, therefore, sheared by different amounts. It stems
from the fact that when objects are blended, a shear measurement of one object responds
to the shear of the neighbouring object. This higher-order effect, which we refer to as
‘shear interplay’ through this paper, cannot be captured by the aforementioned constant
shear simulations. So, we built an extra suite of variable shear simulations to account
for this effect.

Since the shear interplay only happens when objects are blended, we built a blending-
only input catalogue for these additional simulations to save some computing time. This
blending-only catalogue only contains bright galaxies with bright neighbours, assuming
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Table 3.2: Shear bias for the six tomographic bins.

Zp range Ratio of Nef Dsw_u_m:&:m AmpsF Mraw Mfinal
(blending / whole)

0.1<zg <03 0.345 -0.012+0.034 +0.002 +0.001 -0.012+0.006 -0.013+0.017
03<z8 <05 0.332 —-0.003 +£0.014 +0.004 +£0.001 -0.021 +£0.004 -0.018 +0.007
0.5<z8 <07 0.365 —0.021 £0.012 +0.004 +£0.001 -0.006 +0.004 —-0.008 = 0.007
0.7<zg <09 0.366 —0.018 £0.008 +0.003 +0.001 +0.022 +0.004 +0.019 + 0.006
09<zg<12 0.370 —0.013+£0.007 +0.005+0.001 +0.033 +0.005 +0.034 +0.006
1.2 <z <20 0.358 +0.000 £ 0.008 +0.007 £0.002 +0.064 +=0.007 +0.072 £ 0.008

The ratio of Neg between the blending-only simulation and the whole simulation is calculated from the measured catalogue with the
lensfit weight taken into account. The Aritpjending 1 the mean residual bias introduced by the shear-interplay effect, estimated from the
blending-only simulations (see Sect. 3.5.2 for details). The correction to the whole sample should also account for the Neg ratio and the
correlation with the signal-to-ratio and resolution (see Sect. 3.5.2 for details). The Ampgr is the residual bias introduced by the PSF
modelling errors (see Sect. 3.5.3 for details). The m,y results are derived from the idealised constant shear simulations (Sect. 3.5.1), and
the mgnq are our final estimates with the corrections for the shear-interplay effect and PSF modelling bias (Sect. 3.5.4). The uncertainties
quoted along with individual m values are reported by the linear regression fitting, thus only reflecting the statistical power of SKiLLS
simulations. All results are based on the KiDS-DR4 re-run with the updated lensfit before any redshift calibration. They only indicate the
general performance of the updated lensfit.
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that the blending effects caused by the faint objects are sufficiently accounted for by
our main constant shear simulations, which include galaxies down to magnitude 27.
It means we only ignore the higher-order shear-interplay effect from the faint objects,
which is valid as long as the excluded faint galaxies are below the measurement limit of
the survey. In practice, we selected all galaxies with an input 7-band magnitude < 25.
The choice of this magnitude cut meets the overall sensitivity of the KiDS survey. We
further discarded those isolated galaxies whose nearest neighbour is 4’/ away based
on their input positions (see Fig. 3.20). The final selected sample covers ~10% of the
entire input catalogue. But after the lensfit measurements, this blending-only simulation
covers ~35% of the objects measured in the whole simulation (see Table 3.2 for the
exact values). The higher fraction in the measured catalogue is because most objects
fainter than 25 in the r-band magnitude are not measurable for KiDS.

To properly account for the shear-interplay effect, we need realistic shear fields
with proper correlations between the shear and the environment of galaxies. We refer
to Appendix 3.E for technical details of our approach to creating such variable shear
fields. In short, we considered two primary contributions to the weak lensing signal: the
cosmic shear due to the large-scale structure and the tangential shear induced by the
foreground objects (also known as the galaxy-galaxy lensing effect). The cosmic shear
was learned from the MICE Grand Challenge (MICE-GC) simulation (Fosalba et al.
2015b), whilst the tangential shear was calculated analytically by assuming Navarro-
Frenk-White (Navarro et al. 1995) density profiles for the underlying dark matter halos.
Figure 3.17 shows the average shear signals as a function of redshift. We see a roughly
linear relationship between the mean signals and redshift. On average, the cosmic shear
contributes more than the tangential shear. However, we note that the importance of
the tangential shear varies between systems depending on the host halo mass of the
foreground galaxies.

To increase the constraining power, we used 32 variable shear fields generated from
the same learning algorithm but with different choices for the direction of the shear.
Specifically, we created four variable shear fields with directions of the cosmic shear
that differ by 90°. Then, we made eight copies for each shear field by rotating the final
shear by 45° each time. We also created an extra suite of blending-only constant shear
simulations to serve as a reference. The final sky area of these additional simulations is
7776 deg®(= 108 x 36 x 2). Except for the input shear, these blending-only simulations
use the same pipeline, observational conditions and random seeds as the full simulations
detailed in Sect. 3.5.1 so that we can directly correct the constant shear results using the
extra bias estimated from these additional simulations.

While estimating the shear bias for constant shear simulations is straightforward by
directly conducting the linear least squares fitting to all measurements using Eq. (3.11),
given that the input shear values do not depend on the underlying sample. The situation
is more complicated for variable shear simulations. The crucial caveat is that the

. . . . Sh .
shear bias is now correlated with redshift [mtv)?én dfrf;(ztrue)] due to the shear-interplay
effect. Owing to the realistic shear field we built, we can measure mgferﬁgf;g (Ztrue)

directly from simulations by performing the least squares fitting to sub-samples of
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Figure 3.17: Variation of the shear field with respect to redshift. The solid black line
represents the average amplitude of the final utilised shears, comprising two components:
the cosmic shear (dashed magenta line) and the tangential shear (dotted orange line).
For more information, see Appendix 3.E.

galaxies split based on their true redshift. The same approach can also be applied
to the blending-only constant shear simulations to get mg‘l’:rfgl}l‘gear(ztrue); only, in that
case, we would expect a negligible correlation with the true redshift, except for some
fluctuations stemming from the different signal-to-noise ratios between true redshift bins.
Figure 3.18 shows the difference Amplending (Zirue) = mlv)f‘;slgfna;(ztrue) - m;?;j;?fgw, which
is a direct measure of the impact of the shear-interplay effect, as the only difference
between the simulations is the input shear value. It demonstrates evident residuals that
correlate with redshift, indicating the non-trivial impact of the shear-interplay effect.
Interestingly, the high-redshift outliers, which have an estimated photo-z much lower
than their true redshifts, show the most noticeable residuals across all tomographic bins,
implying that the blends with objects from different redshifts are likely responsible for
those outliers. This coupling between the photo-z and shear biases in blended systems
warrants a dedicated future study.

To correct the raw shear bias derived in Sect. 3.5.1, an average correction Afiplending

is necessary, which takes into account zy via the equation:

Amblending = / dZirue 1(Zirue) A7”’lblending(ztrue) . (3.12)
0

Here, n(zyue) signifies the weighted number density related to redshift (as represented
by the dashed lines in Fig. 3.18). The averaged results for individual tomographic bins
are presented in Table 3.2 and Fig. 3.19.

In practice, the blending fraction, which is associated with the signal-to-noise ratio



3.5. SHEAR BIASES FOR THE UPDATED LENSFIT 87

1.5

01<25<03 0.3<25<05 0.5 <25 <07
Lof 1F 1F 1
/4‘ "“ ,'\\
1\ A i\
1 i [
05001 ) 1F 13 1L Iy ]
— [ I’ \ /7
+ U /A Rl
) S 1 - L2 S 1 " \ 2 Mo o
@ (.0
!
g
= 1o T T T T T T T T
g 0.7<25<0.9 09<zg<1.2 12<25<20
Lof A 1t N T ]
1 \‘ [} ‘\ / N
05F i 1t Y 1t / \ ]
[ I \ / \
T ’ \ ’ e
U 0 1 —/ l\“P L 1 —/ 1 Al . 1 -'——P"ll 1 =
’ 1 2 0 1 2 0 1 2

True redshift

Figure 3.18: Shear bias residuals caused by the shear-interplay effect (orange points)
as a function of true redshift, as estimated from the blending-only simulations. The

: : . — ,,,varShear _ _ constShear varShear
residuals are derived from Ampiending = My lending ~ Mblending > where My lending refers

to the shear bias from the blending-only variable shear simulations, and mg?éleé?r}fgear
refers to the shear bias from the blending-only constant shear simulations. The error
bars correspond to the fitting uncertainties reported by the linear regression. These
uncertainties are influenced by two factors: the number of objects used in the fitting
and the amplitude of the input shear value. The dashed lines represent the normalised

number density with respect to redshift.

and resolution—much like the bias itself—should also be accounted for. Hence, we
implement the correction in each vgn-R bin, adhering to the binning approach proposed
for reweighting the simulation (refer to Sect. 3.5.1). Specifically, within each vgn-R
bin, we calculate the average correction Affiplending and the blending fraction. The
blending fraction is measured as the ratio of the effective number counts between the
blending-only simulation and the complete simulation. Subsequently, we adjust the raw
bias in each vsn-R bin with the product of A#ipjending and blending fraction. The final
corrected bias is the lensfit-weighted average of these adjusted biases. This correction
methodology can be easily merged with the reweighting procedure, as they employ the
same binning strategy.

Another more direct way to inspect the blending effect is to check the relation between
the shear bias and the nearest neighbour distance in the input catalogue. Figure 3.20
demonstrates such estimations for both constant shear and variable shear simulations. We
see a clear correlation between the bias and the neighbour distance in both simulations,
indicating the significant impact of the blending effect. It also confirms our choice of 4"
to define blended systems, as we barely see any correlation after this threshold. The
other important finding is that the traditional constant shear simulations can already
capture the dominant contributions from the blending effect. The higher-order impact
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Figure 3.19: Mean residual multiplicative bias induced by the shear-interplay effect,
as computed from Eq. (3.12). We emphasise that these results are derived from the
blending-only simulations. When applying to the entire sample, we must also account
for the blending fraction (the third column of Table 3.2).

we study in this section, shown as the bias difference between the variable shear and
constant shear simulations, contributes relatively minor except for the very close blends.
The aggressive treatment of the blending in /ensfit can partially explain this finding, as it
throws away most of the recognised blends (Hildebrandt et al. 2017).

We note that our variable shear simulations and the correction methodology differ
from those of MacCrann et al. (2022). In their study, the simulated shear changes as
a function of redshift, but, per redshift slice, it remains constant across the field of
view. The chosen redshift intervals and adjusted shear have no physical meaning in their
setups. But they built four sets of simulations by choosing different redshift intervals, so
they were able to fit a smooth model to the simulated results, obtaining a continuous
redshift-bias relation. In our approach, we computed the variable shear fields using a
more physical model that accounts for the shear correlations to both the redshift and
clustering of galaxies (see Appendix 3.E). Thanks to these realistic shear fields, we can
measure the redshift-bias relation directly from the simulations without additional model
fitting procedures. Our direct measurements confirmed the non-trivial impact of the
shear-interplay effect (see Fig. 3.18). By design, our method results in large uncertainties
for low redshift bins due to the small input shear values. Fortunately, these low redshift
bins carry little cosmic shear signals, making the overall downgrade tolerable. Albeit
following a different approach, our final result is consistent with MacCrann et al. (2022)
finding that the overall correction due to the shear-interplay effect is negligible for the
current weak lensing surveys. However, it will potentially impact the next-generation
surveys.
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Figure 3.20: Multiplicative bias as a function of the distance to the nearest neighbour.
The distance is measured in the input catalogue after exclusion of faint galaxies with
r-band input magnitude >25. The values on the x-axis correspond to the weighted
average of each sub-sample selected for the estimation of the multiplicative bias shown
on the y-axis. The top panel displays the individual biases measured from the blending-
only variable shear simulations (magenta points) and the blending-only constant shear
simulations (dark green points). The vertical dashed lines denote the threshold we set
when creating the blending-only simulations. Two additional dark green points beyond
the threshold are calculated from the complete constant shear simulations. The bottom
panel shows the difference between these two estimates (varShear - constShear).

3.5.3 PSF modelling bias

So far, we have ignored the PSF modelling errors, given the expected accuracy of PSF
models relative to the requirement of the current weak lensing surveys (see e.g. Giblin
et al. 2021). We used the input PSF for shape measurements (i.e. assuming perfect
PSF modelling). However, as the requirement of systematics becomes more stringent, it
becomes necessary to check the impact of PSF modelling errors. This section quantifies
this impact by including the PSF modelling procedure in the simulations.

The SKiIiLLS images have realistic stellar populations and variable PSFs across the
field, so we can apply the PSF modelling code directly to the simulated images using
similar setups as for the data. We refer to Kuijken et al. (2015) for detailed descriptions of
the PSF modelling algorithm used by KiDS. In short, it describes the position-dependent
PSFs at the detector resolution using a set of amplitudes on a 48 x 48 pixel grid. The
spatial variation of each pixel value is fitted with a two-dimensional polynomial of order
n, with additional flexibility for allowing the lowest order coefficients to differ from CCD
to CCD. This extra freedom allows for a more complex PSF variation between CCDs and,
in principle, allows for discontinuities in the PSF between adjacent CCDs. When fitting
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Figure 3.21: Adjustments in multiplicative bias when adopting modelled PSFs instead
of the input PSFs. The hatched regions represent the nominal error budgets designated
for comparison (refer to Sect. 3.6 for additional details).

to individual stars, the flux and centroid of each star are allowed to change, and a sinc
function interpolation is used to align the PSF model with the star position. Following
Giblin et al. (2021), we set n = 4 and allow the polynomial coefficients up to order 1
to vary between CCDs. We skipped the complicated star-galaxy separation procedure
with an implicit assumption that the point-source sample used by KiDS is sufficiently
pure as verified using NIR colours in Giblin et al. (2021). Instead, we built a perfect star
sample by cross-matching the detected catalogue with the input star catalogue. However,
we still applied the same magnitude and signal-to-noise ratio cuts as used in the data to
ensure a similar noise level in the modelled stars.

We selected 30 tiles from the available 108 fiducial tiles to test the influence of PSF
modelling uncertainty on the multiplicative bias. These selected tiles cover the whole
range of the PSF size, including the minimum and maximum. We performed the PSF
modelling on the selected tiles and re-ran lensfit using the modelled PSFs. Since all
the images and detection catalogues are unchanged, the shift of the shear bias directly
quantifies the contribution of the PSF modelling errors. Figure 3.21 and Table 3.2 show
the shifts for the six tomographic bins. We find the PSF modelling procedure does
introduce small yet noticeable biases. Our fiducial results take these additional biases
into account.

3.5.4 Results

The final results after accounting for both the shear-interplay effect and PSF modelling
errors are listed as mgp,) in Table 3.2 and shown as the red points in Fig. 3.16. Within the
current statistical uncertainties, the average shifts due to the shear-interplay effect and
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PSF modelling errors are insignificant across all redshift bins, as indicated in Fig. 3.16
between the grey points and the red points. A more noticeable change is the increased
uncertainty introduced by the correction of the shear-interplay effect, especially in
the low redshift bins where the input shear values are overall small in the variable
shear simulations. Our proposed systematic error budgets account for these additional
uncertainties (the hatched regions in Fig. 3.16).

3.6 Sensitivity analysis

Given the resemblance between the SKiLLS and KiDS images and the reweighting in
the signal-to-noise ratio and R when estimating the shear biases, it is reasonable to
assume that the estimates from SKiLLS can be used to correct the actual measurements.
Nevertheless, it is still worth testing the robustness of SKiLLLS results and accounting for
any potential systematic uncertainties. We start with tests proposed by FC17 and K19
in Sect. 3.6.1. Thanks to the broad coverage of observational conditions in SKiLLS,
we can quickly achieve these analyses without dedicated test runs. Additionally, we
test how sensitive the lensfit results are to the changes in the input galaxy morphology
(Sect. 3.6.2). For comparison reasons, we propose some nominal error budgets based on
the general performance of SKiLLS and the overall requirements of lensing analyses with
KiDS. Specifically, we set an error budget of 0.02 for the first and sixth tomographic bins
and 0.01 for the remaining bins. We found these nominal error budgets are conservative
enough that our results are robust within them. Nevertheless, we note that these nominal
error budgets can be over-conservative for cosmic shear analyses. In which case, we
can estimate more accurate systematic uncertainties following other more aggressive
approaches proposed by previous KiDS analyses (Giblin et al. 2021; Asgari et al. 2021).

3.6.1 Impact of observational conditions

When developing SKiLLS, we improved most of the critical sources of uncertainty
in the previous KiDS simulations. For instance, we based our input galaxy catalogue
on N-body simulations, so it has reasonable clustering features and is complete down
to 27 in the r-band magnitude. We learned realistic morphologies from observations
using a powerful technique, dubbed vine copulas, which captures the multi-dimensional
correlations between ellipticities and other galaxy properties. We included six stellar
catalogues to account for the varying stellar densities across the survey sky. We covered
more variations of the PSF models and background noise levels. Above all, we measured
photo-zs directly from the simulated multi-band images to properly account for the
correlation between the measurement uncertainties on the redshift and shear estimates.
Consequently, most of the sensitivity analyses proposed by FC17 and K19 are either
trivial or redundant for the SKiLLS results.

Still, we examine the robustness of the lensfit results against some crucial properties
by comparing between sub-samples. The basic idea is to split the fiducial simulations
into three sub-samples based on a targeted property and examine the consistency of
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Figure 3.22: Variations in multiplicative bias when the fiducial simulations are divided
into three subsets, each reflecting different observational conditions. From left to right
and top to bottom, the panels present results when the division is based on PSF ellipticity,
PSF size, background noise level in r-band images, and stellar density. The hatched
regions denote the proposed nominal error budgets for comparison (refer to Sect. 3.6 for
additional details). We note that these shifts represent the maximum possible systematic
biases in our results (see Sect. 3.6.1 for further clarification).

their bias estimates to the fiducial results. These sub-samples contain roughly equal
numbers of measured objects while covering different ranges of the targeted property.
After applying the overall shear correction from the whole sample to the sub-samples,
we calculate their residual biases to quantify the impact of the variations of the targeted
property. We note that the estimated residuals are not systematic biases in our fiducial
results, but they indicate the robustness of the shape measurement algorithm against
the tested properties. Ideally, if the simulations fully match the data in the distributions
of the targeted property, we would still expect an accurate bias estimate even if the
estimated residuals are large. For that account, the estimated residuals are conservative
upper limits of the systematic biases in our results.

Figure 3.22 shows the estimated residuals for the variations in four critical properties
of the simulated images: the PSF ellipticity, PSF size, background noise level in r-band
images, and stellar density. It indicates that our fiducial results are robust within the
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Figure 3.23: Variations in multiplicative bias due to increased morphological parameters
of all input galaxies. Top panels show shifts in bias for increased factors of 1 + 10~ (dark
red), 1 + 20 (dark orange), and 1 + 30 (dark green), where o indicates median relative
uncertainties from Griffith et al. (2012). Hatched regions represent the nominal 0.01
error budget. Bottom panels show normalised histograms of parameter distributions
before and after the alterations. The shift of entire distributions depicts extreme cases,
as mean shifts across all galaxies would typically be smaller.

nominal error budgets, considering the shifts shown in the plots are the upper limits of
possible deviations.

3.6.2 Impact of the input galaxy morphology

We learned the galaxy morphology from Griffith et al. (2012) based on Sérsic models
fitted to the HST observations. We have shown that our copula-based learning algorithm
captures the properties of the reference sample (see Sect. 3.2.1). However, the reference
sample itself contains measurement errors. This section examines how sensitive the
lensfit measurements are to the changes in the input galaxy morphology.

We focus on the three morphological parameters used to describe the Sérsic profile:
the half-light radius, axis ratio and Sérsic index. To get some indication of the overall
accuracy of the reference sample, we first checked the fitting uncertainties. We found that
the median relative uncertainties for these three parameters are < 5%, < 5% and < 10%,
respectively. We took these values (quoted as o below) as the benchmark for changing
the input galaxy morphology. We built new input catalogues by increasing a certain
parameter with 10-, 20~ and 30 each time while keeping the other parameters unchanged.
We generated test simulations using these new input catalogues and measured the bias
difference with respect to the fiducial simulations.

Figure 3.23 presents the test results from 10 tiles of simulations. We find minor
residuals in most cases, with the most significant shifts seen when changing the Sérsic
index. We note that we shifted all galaxies with the same amount of fractions, resulting
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in an overall shift of the whole distribution, as shown in the bottom panels of Fig. 3.23.
Given that the entire distribution’s uncertainty is much smaller than the individual
measurement uncertainties, we are testing the most extreme cases. Hence, the measured
residuals only indicate the sensitivity of /ensfit towards the input galaxy properties but
cannot be seen as systematics in our fiducial results. To achieve tighter requirements
for future surveys, we will need a shape measurement method that is less susceptible
to the galaxy properties, as the fidelity of image simulations will always be limited by
the realism of the input galaxy catalogue. For the upcoming KiDS-Legacy analysis,
we will, therefore, also explore an alternative method based on the METACALIBRATION
technique (Huff & Mandelbaum 2017; Sheldon & Huff 2017), which is expected to be
more robust against the galaxy properties (Yoon et al., in prep.).

3.7 Discussion and conclusions

Achieving an unbiased measurement of the ensemble shear signal is crucial for maintain-
ing the integrity of precision cosmology studies using weak lensing surveys. Contempo-
rary shape measurement techniques attained an accuracy level of one percent, or even a
fraction thereof. However, as the statistical powers of weak lensing surveys continue to
expand, the demand for systematics control intensifies. This resulted in an increased
focus on higher-order effects that differ from the shape estimation bias, such as selection
bias, PSF modelling errors, and shear-interplay bias. These effects present a challenge
to eradicate merely by refining shape measurement algorithms. Alternatively, image
simulations offer promising capabilities for calibrating these higher-order effects.

In this chapter, we introduced the third-generation image simulations for the KiDS
survey, termed SKiLLS, following SCHOo! (FC17) and COllege (K19). These simula-
tions incorporate several substantial enhancements to meet the calibration requirements
of the KiDS-Legacy analysis, which utilises an updated lensfit. Among the key im-
provements are the simulation of full nine-band images and the creation of a joint
shear-redshift mock catalogue. Balancing the sample volume and realism of galaxy
morphology, we combined cosmological simulations with deep imaging observations
as input. Additionally, we augmented the image realism by incorporating variations
in PSF between CCDs, stellar density, and noise levels between pointings. We closely
mirrored the entire KiDS procedure for photometric measurements, encompassing
r-band detection, PSF Gaussianisation, forced multi-band photometry, and photo-z
estimation. The large volume of simulated galaxies and their realistic photometric
properties will enhance not only shear calibration but also redshift calibration, providing
a valuable resource for further study (van den Busch et al., in prep.).

We extended our investigations to consider the impact of galaxy blends at varying
redshifts by generating realistic shear fields that take into account both redshift and
galaxy clustering. We also accounted for PSF modelling errors by implementing the PSF
modelling procedures on the image simulations. Additionally, we conducted sensitivity
tests, including changing the input galaxy properties, demonstrating the robustness
of SKiLLS-calibrated measurements for future KiDS lensing studies. The final shear
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calibration results for the updated lensfit are outlined in Table 3.2 and Fig. 3.16. Based
on our statistical uncertainties and sensitivity tests, we believe that the shear bias
estimated from SKiLLS is within the nominal error budget of 0.02 for the first and sixth
tomographic bins and 0.01 for the others. Furthermore, our studies provide valuable
insights for calibrating future weak lensing surveys.

The success of image simulations heavily depends on the realism of the input
galaxy population in terms of photometry, morphology, and clustering. Recent image
simulations used high-quality imaging observations as input, but these have limitations
in sample volume and depth, which may soon prove inadequate for next-generation
weak lensing surveys. While there is an alternative approach that uses input galaxy
populations from cosmological simulations, these simulations are currently unable to
fully replicate observed galaxy morphology — a crucial feature in image simulations.

In our study, we explored the feasibility of an integrated approach that combines the
advantages of cosmological simulations with high-quality imaging observations. We
introduced a copula-based learning algorithm designed to mimic and establish a link
between observed morphology and synthetic galaxies from cosmological simulations.
The results indicate that this hybrid methodology shows promise for future image
simulations requiring a substantial volume of galaxies.

Recent studies have already indicated the necessity for shear calibration to consider
redshift-related selections. This requires simulating multi-band observations to account
for the measurement of photometric redshifts (e.g. K19; MacCrann et al. 2022). We
extended this to demonstrate that multi-band image simulations, with a sufficiently large
volume of galaxies, not only improve shear calibration but also redshift calibration.
By performing the full procedure for photometric measurements, we achieved realistic
photometric properties in the mock catalogue. This comprehensive approach advances
over previous catalogue-level simulations (e.g. Hoyle et al. 2018; van den Busch et al.
2020; DeRose et al. 2022). In addition, image simulations allow us to examine the
impact of blending on redshift estimates, which is challenging to account for at the
catalogue level. Given the importance of blending, we believe that integrating shear
and redshift calibrations with multi-band image simulations will be crucial for future
high-accuracy tomographic analyses.

MacCrann et al. (2022) recently investigated the effects of blended systems in which
galaxies experience varying shears, a phenomenon we refer to as ‘shear interplay’
throughout this paper. We extended their work by creating realistic variable shear
fields that account for both the redshift and clustering of galaxies, explicitly including
galaxy-galaxy lensing contributions. Although our final results confirmed its relatively
minor impact on current weak lensing surveys (see Fig. 3.16), we detected a significant
correlation between redshift and shear bias from our blending-only variable shear
simulations. This correlation underscores the presence of the shear-interplay effect
and its contributions (see Fig. 3.18). Furthermore, we observed that photo-z outliers
demonstrate the most pronounced shear interplay, implying a mutual origin of the shear
and redshift biases. A focused study is needed to further investigate this correlation in
blended systems, as it will become increasingly important for the next generation of
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weak lensing surveys.

Typically, image simulations bypass the PSF modelling process, due to the PSF
validation conducted in data (see e.g. Giblin et al. 2021). However, thanks to the
realistic SKiLLS images, we are able to evaluate the impact of PSF modelling errors
by applying the PSF modelling code directly on simulated images. By comparing the
shear biases derived from runs with and without PSF modelling, we discerned residual
biases from PSF modelling errors, albeit below one percent. Despite being negligible
for current requirements, this will be a point of concern for upcoming weak lensing
surveys. Therefore, we underscore the necessity of refining the PSF modelling algorithm
or incorporating it into image simulations for future surveys.

Lastly, we investigated the sensitivity of our simulation to the characteristics of the
input galaxy population. By altering the input values of morphological parameters, we
determined that our current standard shape measurement method, /ensfit, is somewhat
sensitive to the input galaxy shapes, but this sensitivity falls within an acceptable range
for KiDS analysis. Despite this, we aim to implement an alternative approach based on
the METACALIBRATION technique (Huff & Mandelbaum 2017; Sheldon & Huff 2017) for
KiDS-Legacy analysis, which has proven to be more robust against variations in galaxy
properties (Yoon et al., in prep.). For future weak lensing surveys, it will be crucial to
develop methods less susceptible to galaxy properties, as image simulations may never
fully capture the observed galaxy population due to limitations in the input catalogue.
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3.A An empirical modification to the synthetic photometry

We detail the proposed empirical modification of the SHARK photometry in this appendix.
It intends to improve the agreement of the magnitude counts between the simulations
and observations, which is critical for the redshift and shear calibrations.

We took the COSMOS2015 catalogue as the benchmark under an implicit assumption
that the COSMOS field is representative. The COSMOS2015 catalogue is a near-infrared-
selected photometric catalogue containing 30-band photometry, precise photometric
redshifts and stellar masses for more than half a million objects (Laigle et al. 2016). We
note that measurement uncertainties and modelling errors are inevitable for observations,
especially for faint objects. Therefore, the COSMOS2015 catalogue cannot, in principle,
be treated as the truth. Nevertheless, these uncertainties are tolerable for calibrating a
KiDS-like sample. Following this reasoning, we tuned the simulated properties solely
based on the COSMOS2015 measurements for the sake of simplicity, but caution any
physical interpretation of our modified results.

First of all, we must locate the cause of the discrepancy. As the SHARk free
parameters were tuned using the observed stellar mass functions, we would expect the
number density of the SHARK galaxies is realistic. This is confirmed by Figure 3.24,
where we see a good agreement of the stellar mass distributions between the data and
simulations. As a next step, we inspected the stellar mass-to-light ratio (Y ), for which
took the K-band photometry as an indicator of the total luminosity as it is least affected
by the dust extinctions. Figure 3.25 shows the comparing results as a function of the
stellar mass in several redshift bins. Noticeably, the SHARK Y, is systematically higher
than the COSMOS2015 one, especially in the low stellar mass and low redshift ranges.
It can, at least partially, explain the discrepancy seen in the magnitude distributions.
Fortunately, this Y, difference is easy to calibrate without changing other intrinsic
properties, such as the colours, redshifts, and positions.

We, therefore, conducted an empirical modification of the simulated magnitudes
to account for the Y, difference. We divided SHaArRk and COSMOS2015 galaxies into
24 x 23 evenly spaced small bins based on their redshifts and stellar masses. In each
bin, we calculated the median Y, for the SHARK and COSMOS2015 galaxies, separately.
To mitigate the observational uncertainties, we only used the COSMOS2015 galaxies
with good stellar mass estimations (6M, < 0.15M,). For bins that lack observations,
we extrapolated Y, bs as a function of M, for each redshift slice. After inspecting the
general trend, we found a good fit by combining an exponential descending function
in the low M, end and a linear ascending function in the high M, end. From these
estimates, we constructed a magnitude modification factor Amag as

median[ Yy, syark]

Amag = -2.5log,, (3.13)

median[ Y4, ops]

Figure 3.26 demonstrates the estimated Amag values in the 2D redshift-stellar mass
plane. Following the difference seen in Fig. 3.25, substantial modifications happen in
the low mass and low redshift bins. Therefore, the magnitude modification reduces the
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Figure 3.24: Comparison of stellar mass functions. The COSMOS2015 catalogue
(represented by red solid lines) utilises the median values derived from the marginalised
likelihood distributions. On the other hand, the SHARk catalogue (represented by green
dashed lines) operates under the assumption that the total stellar mass is equivalent to
the combined stellar masses of the bulge and the disc.

range of magnitudes of SHARK galaxies. We note that the different bands share the same
Amag values, so the colours of individual galaxies are preserved.

3.B Modelling multivariate distributions with vine copulas

We outline some necessary background on the vine-copula modelling in this appendix.
For a comprehensive introduction, we refer to Joe (2014) and Czado (2019).

A copula is simply a multivariate cumulative distribution function (CDF) with
uniformly distributed margins. The Sklar (1959) theorem states that any d-dimensional
CDF F(x), with univariate margins Fi(xy), ..., F4(x4), can be described as F(x) =
Ci,. a(F1(x1),.... Fg(xq)), where Cy 4 1s the corresponding copula function. Therefore,
given a joint probability distribution function (PDF) f(x) with d-dimensional variables

.....

x = (x1,...,xq), we can always find a copula density ¢ _4 thatis the partial differentiation
of the copula C;__4, such that
f(x) =cia(Fi(x1),... Fa(xq)) - fi(x1) - fa(xa) . (3.14)

It means we can divide the modelling of any joint multi-dimensional PDF into
two parts: one for the independent distributions of the individual random variables
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Figure 3.25: K, -band stellar mass-to-light ratio as a function of stellar mass. The red
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Figure 3.26: Distribution of the magnitude modification factor Amag in the redshift-
stellar mass plane. Negative values are denoted in red, while positive values are denoted
in blue. The definition of Amag is given in Eq. (3.13). For each galaxy, the same Amag
value is added to the apparent magnitudes across all available bands.
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{fi(x;)}, and the other for their mutual dependence captured by the copula density
ct,..a(F1(x1), ... Fa(xq)).

The restriction of the classical copula method is that most of the flexible copula
families available in the literature are bivariate, making it tricky to deal with high-
dimensional distributions. In this aspect, the vine copula method stands out as an
effective approach (Bedford & Cooke 2002; Aas et al. 2009). A vine copula is a
graphical model organising a set of bivariate copulas, called pair-copulas. The chain
rule states that any PDF f(x) can be decomposed as

f(x) = f(xq) - f(xa-1lxa) - f(xa-2lxa-1,xq) - - - f(x1]x2, ..., xa) , (3.15)

with f(.|.) being the conditional PDF. Aas et al. (2009) further states that each term
in Eq. (3.15) can be decomposed into an appropriate pair-copula times a conditional
marginal density as described by the following general formula

J(x|) = cxyjjo_; (F(xlv-j), F(vjlo-j)) - f(x[o-)) . (3.16)

where v stands for a d-dimensional vector, v is an arbitrary component of v, and v_;
denotes the v-vector excluding this component. Therefore, the multiple dependence can
be captured by a product of pair-copulas acting on underlying conditional probability
distributions. Since the decomposition shown in Eq. (3.15) is not unique, there is
a significant number of possible pair-copula constructions. These possibilities are
organised by the graphical models, that is the vines.

3.C Transformation of the SDSS filters to the KiDS/VIKING filters

This appendix details the transformation of the Sloan Digital Sky Survey (SDSS)
photometric system to the KiDS/VIKING system. The SDSS photometric system
comprises five colour bands (u, g, r, i, z) that cover wavelengths ranging from ultra-violet
at 3000 to near-infrared at 11 000 (Fukugita et al. 1996), whilst the KiDS/VIKING system
contains optical filters (u, g, r, i) mounted on the VST OmegaCAM camera (Kuijken
2011) and near-infrared filters (Z, Y, J, H, K;) mounted on the VISTA infrared
camera (Gonzdlez-Ferndndez et al. 2018). Figure 3.27 compares the filter curves from
these two systems. The differences are noticeable, especially for the Z filter, where the
KiDS/VIKING system cuts the tail towards long wavelengths. We used the following
relation to correct these differences:

Xxips/VIKING = Xspss + J (Zuue) (Xspss — Wspss) + A(Zrue) (3.17)

where X corresponds to the target filter, whilst W is another filter, helping to define the
colour. Given the superior depth of the r-band measurement, we picked it as the Y filter
whenever possible. When the r band is the target filter, we chose the g band as the Y
filter. The coefficients j(Ziue) and i (zyue) are correlated with the redshift, for which we
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Figure 3.27: Comparison of normalised transmission curves. The curves represent the
ugriZ filters in the SDSS photometric system (green dashed lines) and the KiDS/VIKING
system (red solid lines).

took values from the ProSpEcT web-portal®. For the redshift, we used the true redshift
from the input SURFS-SHARK simulations.

As for the SKILLS measured photometry, we need to correct six measurements:
the five u-, g-, r-, i-, Z-band magnitudes measured in the AstrRo-WISE images
(MAG_GAAP_X) and the r-band magnitudes measured in the THEL1 images (MAG_AUTO).
There is no need to correct the remaining YJHK bands as SKIiLLS also uses VISTA
filters for them. Figure 3.28 shows the distributions of the magnitude modification
as a function of the initially measured magnitude. The modifications are generally
small, especially for the # and g bands. Even for the r and Z bands with the most
significant differences, the majority of objects has a modification < 0.05. Accordingly,
the changes in the overall magnitude and colour distributions are negligible. Still, we
get a better agreement with the data in the photo-z distributions after transforming to the
KiDS/VIKING filters, as shown in Fig. 3.29.

3.D Selection criteria for the updated lensfit catalogue

This appendix details all selections we propose to the updated lensfit shear catalogue.
Most of the selection criteria were taken from earlier KiDS analyses, documented in
Hildebrandt et al. (2017). These include:

1. Several lensfit fitclass cuts to discard:

(a) objects without sufficient data, for example, those fall near the image edge

Bhttps://transformcalc.icrar.org/
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Figure 3.28: Joint distributions of the initially measured magnitude and the magnitude
modifications. The dashed lines indicate the 16 and 84 percentiles. ‘MAG_GAAP_X’
magnitudes are those measured by the GAAP in the AsTro-WISE images, while
‘MAG_AUTO’ represents magnitudes measured by SEXTRACTOR in the r-band THELI
images (refer to Sect. 3.3 for more details).
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Figure 3.29: Distributions of the photometric redshift estimates. The KiDS-DR4 results
are represented by the red histogram. The initial measurements in the SDSS filters are
shown by the green histogram, while the blue histogram presents results corrected to the
KiDS/VIKING filters. Most of the improvement is visible around zg~0.55 and 1.55.
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Figure 3.30: PSF leakage and effective number density based on the resolution factor.
Top panel: PSF leakage; Bottom panel: effective cumulative distribution. Measurements
for weighted average ellipticity €; (dark-red triangle) and €, (dark-orange triangle) were
taken before PSF contamination correction. The vertical red dashed line indicates the
proposed resolution cut (R < 0.9), resulting in a 2% loss in effective number density.

or a defect (fitclass = —1),
(b) objects classified as duplicates (fitclass = —10),

(c) objects poorly fitted by the given bulge plus disc galaxy model (fitclass =
-4,

(d) objects identified as stars and star-like point sources (fitclass =1 and 2),

(e) objects whose fitted centroid is more than 4 pixels away from the input
centroid (fitclass = -7),

(f) objectsthatare unmeasurable, usually because of being too faint (fitclass =
-3).
2. A magnitude cut to remove bright objects (MAG_AUTO > 20).

3. A contamination radius cut to mitigate blending effects (contamination_radius >
4.25 pixels)

4. Removing asteroids based on the object colours (MAG_GAAP_g — MAG_GAAP_r <
1.5 or MAG_GAAP_i — MAG_GAAP_r < 1.5).

5. Removing unresolved binary stars by requiring objects with ellipticity > 0.8 to
have a measured scalelength

> 0.5 X 10(24.2—MAG_GAAP_I‘)/3.5 piXelS .
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6. A non-zero weight cut using the weight bias corrected weight (Sect. 3.4.2).
7. A resolution cut to remove poorly resolved objects (R < 0.9).

The resolution cut is a new criterion proposed in this work. When developing
our empirical correction method for the PSF contamination (Sect. 3.4.2), we noticed
that objects with poor resolution contain very high PSF leakages, as demonstrated in
Fig. 3.30. These poor-resolution outliers contribute little to the effective number density
but introduce significant bias. So we propose a new selection using the resolution factor
defined in Eq. (3.7). We found the proposed cut of R < 0.9 can remove most outliers
while only decreasing the effective number density by ~2 per cent.

3.E Building the variable shear field

In this appendix, we detail the creation of a realistic shear field accounting for the shear
dependence on the redshift and clustering of galaxies. We considered the two main
contributions to the weak lensing signals: the cosmic shear from the large-scale structure,
and the tangential shear from the foreground objects (also known as the galaxy-galaxy
lensing effect).

We split the blending-only sample into two classes based on their relative line-of-sight
distances to their brightest neighbours. Those more distant than their brightest neighbours
are referred as the background galaxies, whilst the remaining are the foreground galaxies.
This classification is necessary to quantify the shear correlations within the blended
systems. We found a roughly equal number of foreground and background galaxies in
our sample.

For the cosmic shear effect, we learned it from the galaxy lensing mocks associated
with the MICE Grand Challenge (MICE-GC) simulation (Fosalba et al. 2015b). The
MICE-GC simulation is a large volume N-body light-cone simulation developed by the
Marenostrum Institut de Ciencies de 1I’Espai (MICE) collaboration (Fosalba et al. 2015a).
It contains ~6.9 x 10'° dark matter particles with a mass of ~2.9 x 10! 1~'Mg and a
softening length of 50 2~ 'kpc, in a box of 3072 h~'Mpc aside. The simulation starts
at zi = 100 and produces the light-cone in 265 steps from z = 1.4 to 0. It builds halo
catalogues using the Friends-of-Friends algorithm (Crocce et al. 2015), and subsequently
populates galaxies using halo occupation distribution recipes along with the subhalo
abundance matching technique (Carretero et al. 2015). The construction of all-sky
lensing maps follows the Onion Universe approach, which reaches a sub-arcminute
spatial resolution up to z = 1.4 (Fosalba et al. 2015b). Here we used the second version
of the catalogue, named MICECAT?2, from the CosmoHub web-portal (Carretero et al.
2017; Tallada et al. 2020)%.

Following the building of the blending-only sample for SKiLLS, we selected blended
objects and classified foreground and background galaxies for MICECAT?2 under the
same conditions expect for the magnitude cut. We first estimated the relationship between

Bhttps://cosmohub.pic.es/
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the mean cosmic shear amplitude and redshifts by averaging individual shear values of
galaxies in redshift bins defined with a width of 0.1. These redshift-dependent mean
amplitudes are good approximations for cosmic shears experienced by the foreground
galaxies. It is more intricate to get proper cosmic shears for the background galaxies.
Because of the overlapping line-of-sights of the blended objects, we expect the cosmic
shear experienced by the background galaxy (<) to correlate with that in its neighbour
(vr). Based on our tests, the correlation can be described by a linear formula

v8(zB, 2F) = A(zB, 2F) - YF + (28> 2F) (3.18)
with the scaling factor

Dep—0.5Dcr  Der
Dep Dep—0.5Dcf

A(zB,zF) = (3.19)

and an offset y1(zg, zr) = N [0, o1(zB, zr)] following the Gaussian distribution with a
mean of zero and variance depending on redshifts of both galaxies. The D.p and D.r
denote the comoving distances to the background galaxy and its neighbour, respectively.
The scaling factor A reflects the geometrical relation between the blended objects; whilst
the offset <1 specifies contributions from the intermediate structures between blended
galaxies. We estimated the redshift-dependent variance of 7 again from MICECAT?2 by
measuring the dispersion of g — A - F in each redshift bin. Because the MICECAT?2
stops at z = 1.4, we linearly extrapolated measured values to z = 2.5, which is the limit of
SKILLS. Figure 3.31 shows the learned cosmic shear as a function of redshift. The black
solid line indicates the mean amplitude of the yr component; whilst the coloured lines
present the dispersion of the 9 component. It illustrates that the linear extrapolation
captures the general trends towards the high redshift for both components.

We note that MICECAT?2 assumes a ACDM cosmology with parameters from the
Wilkinson Microwave Anisotropy Probe five-year data (WMAPS, Dunkley et al. 2009),
whilst our base SURFS-SHARK simulation uses cosmological parameters from Planck
Collaboration (2016). Therefore, the cosmic shear field we learned from MICECAT2
does not necessarily match the galaxy mock we are using. But, since the current
calibration still adopts one-point statistics (see Eq. 3.11), our calibration results are
robust against detailed galaxy populations or underlying cosmologies and even more so
to the higher-order correlation between galaxy populations and cosmology. We defer
the proper treatment using a ray-tracing approach with consistent properties from the
underlying cosmological simulations to future studies.

Besides the cosmic shear, a background galaxy also suffers from the tangential
shear induced by the host dark matter halo of its neighbour. We calculated this effect
analytically by assuming Navarro-Frenk-White (NFW) density profiles for dark matter
halos presented in the SURFS-Suark simulation. The NFW profile, proposed by
Navarro et al. (1995), is the most popular analytical model for dark matter halos, given
its ability to describe the radial matter distribution of dark matter halos over a wide range
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Figure 3.31: Cosmic shear signals learned from MICECAT? (as described in Eq. 3.18).
The black solid line and points represent the mean amplitude of the g component,
while the coloured lines and points denote the -y dispersion for various redshifts of the

foreground galaxies. The points are direct measurements from MICECAT?2, while the
lines represent linear extrapolations.

of masses (Navarro et al. 1996, 1997). Its mass density is described by the formula

Per Oc
(”/”s)(l"'r/"s)2 ’

where 0. and rg are two free parameters known as the characteristic overdensity and the
scale radius, respectively. We set the normalisation to the critical density at the redshift
of the halo p.; = 3H?(z)/(87G) with H(z) the Hubble parameter at that same redshift
and G the gravitational constant. With the definition of the virial radius, rygoc, the
radius inside which the mean mass density of the halo equals 200p.;, we can construct a
so-called concentration parameter ¢ = rygo./7s and relate it to §. through

p(r) = (3.20)

3 In(l+c)—-c/(1+c¢) "’

O0c = (3.21)
In practice, we used mvir_subhalo, the virial mass of the subhalo from the SURFS-

SHARK simulation?9, to calculate the virial radius for each lens. For the concentration

parameter, we adopted the concentration—mass relation from Duffy et al. (2008)

M vir

=785 [——vr
¢ (2>< 1012 - TM,

-0.081
) (1+2)77, (3.22)

20https://shark-sam.readthedocs.io/en/latest/output_files.html
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We note that Eq. (3.22) is estimated from N-body simulations based on a WMAPS5
cosmology (Komatsu et al. 2009), which has slightly different parameter values from the
Planck Collaboration (2016) cosmology used by the SURFS simulations. Nevertheless,
the weak-lensing shear amplitude is dominated by the enclosed mass of the lens but has
minor sensitivity to the concentration (e.g., Viola et al. 2015). Therefore, we ignored
any potential WMAP5-to-Planck cosmology correction to Eq. (3.22).

Recognising the spherically symmetric feature of the NFW profile, we can derive
the radial-dependent tangential shear as (Bartelmann 1996; Wright & Brainerd 2000):

0. 1
i) = e () (3.23)
Cr
where x = Rgg/r is a dimensionless radial distance factor defined as the ratio of Rgg,
the projected radial separation between the lens and the source, to the scale radius of the

lens. The critical surface mass density

c? D,p

> -
°r 47TG Da,F Da,FB

(3.24)

is a geometric term depending on the angular diameter distances to the source D, g, to
the lens D, r and between the lens and the source D, rg. The radial dependence of the
shear is captured by the function g(x) as

gx) = %ln ()—C)

2
2 8 — 12x? [1-x
— 2 + (122 arctanh Tox x<1
+410/3 (x=1)

2 .\ 12x2 -8 . /x—l o> 1)
arctany | —
1-x2 x2(x2-1)3/2 l+x *

With all these ingredients in hand, we can now assign galaxy a specific shear value
based on its redshift and neighbouring conditions. In summary, those identified as
foreground galaxies only contain the redshift-dependent mean amplitude yg(zg), whilst
the background galaxies combine the cosmic shear from Eq. (3.18) and the tangential
shear from Eq. (3.23). This treatment accounts for not only the redshift-shear dependence
but also the correlations between the blended objects.
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CHAPTER

KiDS-1000: Cosmology with improved
cosmic shear measurements

ABSTRACT

We present refined cosmological parameter constraints derived from a cosmic shear
analysis of the fourth data release from the Kilo-Degree Survey (KiDS-1000). Our
refinements are driven by enhanced galaxy shape measurements using an updated version
of the /ensfit code, and improved shear calibration achieved with a newly developed suite
of multi-band image simulations. Additionally, we incorporate recent advancements
in cosmological inference from the joint Dark Energy Survey Year 3 and KiDS-1000
cosmic shear analysis. Assuming a spatially flat standard cosmological model, we
constrain Sg = 0g(Qy/0.3)%3 = 0.776t%%2297t069(?()23, where the second set of uncertainties
accounts for the systematic uncertainties within the shear calibration. These systematic
uncertainties stem from minor deviations from realism in the image simulations and the
sensitivity of the shear measurement algorithm to the morphology of the galaxy sample.
Despite these changes, our results align with previous KiDS studies and other weak
lensing surveys, and find a ~2.30 level of tension with the Planck cosmic microwave

background constraints on Sg.

S.-S. Li, H. Hoekstra, K. Kuijken et al.
Astronomy & Astrophysics, submitted
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4.1 Introduction

Weak gravitational lensing by large-scale structure, also known as cosmic shear, is a
powerful technique for studying the matter distribution in the Universe without assuming
a specific correlation between dark and baryonic matter (e.g. Blandford et al. 1991;
Miralda-Escude 1991; Kaiser 1992)'. Owing to its remarkable potential in exploring
the cosmic matter distribution, cosmic shear analysis gained popularity since its first
detection over twenty years ago (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al.
2000; Wittman et al. 2000). When distance information for source galaxies is also known,
we can differentiate them along the line of sight and perform a tomographic analysis,
which entails reconstructing the three-dimensional matter distribution from multiple
two-dimensional projections. This tomographic cosmic shear analysis is especially
effective for constraining dark energy properties, as it sheds light on the evolution of
cosmic structures (e.g. Hu 1999; Huterer 2002).

Recent surveys, such as the Kilo-Degree Survey (KiDS, de Jong et al. 2013), the Dark
Energy Survey (DES, Dark Energy Survey Collaboration et al. 2016), and the Hyper
Suprime-Cam (HSC) survey (Aihara et al. 2018), primarily focus on constraining the
amplitude of matter density fluctuations. Conventionally, this quantity is characterised
by the parameter Sg = 0g(Qm/0.3)%>, where Q, is the matter density parameter and og
is the standard deviation of matter density fluctuations in spheres of radius 82~ Mpc,
computed using linear theory, where the Hubble constant Hy = 1004 km s~' Mpc~!.
Interestingly, the Sg values derived from these weak lensing surveys are consistently
lower than those predicted by cosmic microwave background (CMB) observations from
the Planck satellite.

Specifically, the latest cosmic shear analyses from KiDS (0.759t%%22‘§, Asgari et al.
2021, A21 hereafter), DES (0.759*09%, Amon et al. 2022; Secco et al. 2022), and
HSC (0.769*0%31 . Li et al. 2023c; 0.776*%.92  Dalal et al. 2023) provide Sg values that
are roughly 20~ lower than the Planck predictions (0.832 + 0.013, Planck Collaboration
et al. 2020) based on the standard spatially flat A cold dark matter (ACDM) cosmological
model. Most recently, a joint cosmic shear analysis of the DES Y3 and KiDS-1000 by
the two survey teams (DES and KiDS Collaboration et al. 2023, DK23 hereafter) yields
an Sg constraint of 0.790t%_%11§‘, which is closer to the Planck results, but still shows a
level of 1.70 difference. This mild difference in the Sg constraints between the weak
lensing surveys and CMB observations triggered extensive discussions from various
perspectives, encompassing potential systematic errors in the data (e.g. Efstathiou &
Lemos 2018; Kohlinger et al. 2019), the influence of the baryonic physics (e.g. Schneider
et al. 2002; Amon & Efstathiou 2022; Preston et al. 2023), and a potential deviation from
the standard ACDM model (see Perivolaropoulos & Skara 2022 for a recent review).

Here, we focus on the control of systematics in the cosmic shear analysis, particularly

However, with increasing precision in weak lensing observations, the impact of baryonic processes,
such as radiative cooling and feedback from star formation and active galactic nuclei, on the observed matter
distribution can no longer be ignored for small-scale structures (e.g. van Daalen et al. 2011; Semboloni
etal. 2011).
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those arising during the KiDS shear measurement process. Measuring lensing-induced
shear from noisy pixelised galaxy images is a challenging task, complicated further
by distortions caused by the point spread function (PSF) resulting from instrumental
and observational conditions, as well as blending effects that arise when two or more
objects are close on the sky (see Mandelbaum 2018 for a review). These factors can
introduce significant measurement biases (e.g. Paulin-Henriksson et al. 2008; Melchior
& Viola 2012; Refregier et al. 2012; Massey et al. 2013; Dawson et al. 2016; Euclid
Collaboration et al. 2019) and alter the selection function of the source sample, leading
to selection bias (e.g. Hartlap et al. 2011; Chang et al. 2013; Hoekstra et al. 2021).
Therefore, obtaining unbiased shear measurements relies on careful calibration, which
can be performed using either pixel-level image simulations (e.g. Miller et al. 2013;
Hoekstra et al. 2015; Fenech Conti et al. 2017, FC17 hereafter; Samuroff et al. 2018;
Mandelbaum et al. 2018) or the data themselves (e.g. Huff & Mandelbaum 2017;
Sheldon & Huff 2017; Sheldon et al. 2020).

Additionally, in the case of large-area imaging surveys, determining the distance
information for individual source galaxies depends on redshifts derived from broad-band
photometric observations. These photometric redshift estimates, which are subject
to significant uncertainty, require careful calibration using spectroscopic reference
samples (e.g. Hoyle et al. 2018; Tanaka et al. 2018; Hildebrandt et al. 2021). Furthermore,
recent studies showed that the blending of source images results in the coupling of
shear and redshift biases (e.g. MacCrann et al. 2022; Li et al. 2023b, L.23 hereafter).
Consequently, a joint calibration of these two estimates becomes essential, necessitating
the use of multi-band image simulations for future cosmic shear analyses.

In light of all these concerns, we implemented several improvements to the cosmic
shear measurements in KiDS, as detailed in L23. We enhanced the accuracy of the
galaxy shape measurements by using an upgraded version of the /ensfit code (Miller
et al. 2007, 2013; Kitching et al. 2008), complemented by an empirical correction
scheme that reduces PSF contamination. More notably, in L23 we introduced SKiLLS
(SURFS-based KiDS-Legacy-Like Simulations), a suite of multi-band image simulations
that enables joint calibration of shear and redshift estimates. This is an important
element for the forthcoming weak lensing analysis of the complete KiDS survey, known
as the KiDS-Legacy analysis (Wright et al. in prep.).

In this chapter, we take an intermediate step towards the forthcoming KiDS-Legacy
analysis by applying the improvements from L.23 to a cosmic shear analysis based on the
fourth data release of KiDS (KiDS-1000, A21). In contrast to previous KiDS cosmic
shear analyses, which used shear calibration methods developed in FC17 and Kannawadi
et al. (2019, K19 hereafter) based on single-band image simulations, the current analysis
adopted SKILLS, marking the first instance of multi-band image simulations being
used for KiDS cosmic shear analysis?. We also incorporated recent advancements in
cosmological inference and updated the current cosmological parameter constraints
from KiDS. In particular, we updated the code for the non-linear evolution of the matter

2K19 did attempt to assign photo-z estimates from data to simulations, but the actual photo-z
measurements were not simulated.



112 CHAPTER 4. COSMOLOGY WITH COSMIC SHEAR

power spectrum calculation from HMcoDE to the latest Hmcopg-2020 version (Mead et al.
2021). We also investigated the impact of the intrinsic alignment model by incorporating
amplitude priors inspired by Fortuna et al. (2021a).

The remainder of this chapter is structured as follows. In Sect. 4.2, we introduce and
validate the updated KiDS shear catalogue, followed by the shear and redshift calibration
in Sect. 4.3. We describe our cosmological inference method in Sect. 4.4 and present
the results in Sect. 4.5. Finally, we summarise the results in Sect. 4.6.

4.2 Updated weak lensing shear catalogue

Our shear catalogue is based on the KiDS-ESO-DR4 data release (Kuijken et al. 2019),
which combines optical observations in the ugri bands from KiDS using the ESO VLT
Survey Telescope (de Jong et al. 2013) and near-infrared observations in the ZY JHK
bands from the ESO VISTA Kilo-degree INfrared Galaxy (VIKING) survey using
the VISTA telescope (Edge et al. 2013). The data set covers 1006 deg® survey tiles
and includes nine-band photometry measured using the GAAP technique (Kuijken
et al. 2015). The photometric redshifts (photo-zs) for individual source galaxies were
estimated using the Bpz code (Benitez 2000). After masking, the effective area of the
data set in the CCD pixel frame is 777.4 deg? (Giblin et al. 2021). To perform the
cosmic shear analysis, we divided the source sample into five tomographic bins based
on the BPz estimates (zg). The first four bins have a spacing of Azg = 0.2 in the range
0.1 < zg < 0.9, while the fifth bin covers the range 0.9 < zg < 1.2, following the
previous KiDS cosmic shear analyses.

4.2.1 Galaxy shapes measured with the updated /ensfit

When preparing the shear measurements for the upcoming data release of KiDS, we
upgraded the /ensfit code (Miller et al. 2007, 2013; Kitching et al. 2008) from version
309c¢ to version 321 (see .23 for details). The latest version includes a correction to an
anisotropic error in the original likelihood sampler, which previously caused a small
yet noticeable residual bias that was not related to the PSF or underlying shear (Miller
et al. 2013; Hildebrandt et al. 2016; Giblin et al. 2021). We used the new code to
re-measure the galaxy shapes in the KiDS-ESO-DR4 data set, resulting in a new shear
catalogue. Throughout the paper, we refer to the new shear catalogue as KiDS-1000-v2
to distinguish it from the previous KiDS-1000(-v1) shear catalogue.

The raw measurements from the /ensfit code suffer from biases primarily due to
the PSF anisotropy, but also because of the object selection and weighting scheme. To
address these biases, FC17 introduced an empirical correction scheme to isotropise
the original measurement weights, which was used in previous KiDS studies (see also
K19). However, this approach is insufficient for the current version of the lensfit code.
Furthermore, L.23 found that the method was susceptible to variations in the sample size,
posing challenges for consistent application to both data and simulations.

Therefore, a new correction scheme was introduced by L23 that modifies both the
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measured ellipticities and weights to ensure the average PSF leakage, defined as the
fraction of the PSF ellipticity leaking into the shear estimator, is negligible in each
tomographic bin. For further details, we direct readers to L23. In summary, the new
correction scheme first isotropises the measurement weights, then adjusts the measured
ellipticities to eliminate any remaining noise bias and selection effects. We note that
this correction scheme is not designed to refine the shape measurements of individual
galaxies; rather, it aims to ensure that the collectively weighted shear signal is robust
against PSF leakage. In this paper, we applied this newly developed empirical correction
to the KiDS-1000-v2 shear catalogue.

4.2.2 Validation of the shear estimates

In order to use the weak lensing shear catalogue for cosmological inference, it is crucial to
first verify the accuracy of the shear estimation and ensure that the residual contamination
from systematic effects is within the acceptable level for scientific analysis. To achieve
this, Giblin et al. (2021) proposed a series of null-tests to assess the robustness of the
KiDS-1000-v1 shear catalogue. With the updated galaxy shape measurements in the
KiDS-1000-v2 catalogue, it is necessary to repeat some of these tests to confirm the
reliability of the new catalogue.

As the KiDS-1000-v2 catalogue updates only the galaxy shape measurements while
maintaining the established photometry and PSF models, we did not repeat tests related
to photometry and PSF modelling. We started by examining the PSF leakage in the
weighted lensfit shear estimator, using the first-order systematics model proposed by
Heymans et al. (2006). This model takes the form (Giblin et al. 2021)

ezbs =(1 +mk)(6,i<nt +vr) + ake,ESF +cr, [k=1,2], 4.1
where €°® denotes the measured galaxy ellipticity, m is the multiplicative shear bias3,
€™ refers to the intrinsic galaxy ellipticity, y stands for the cosmic shear signal (which
is the parameter of interest), « is the PSF leakage factor, and ¢ is an additive term
comprising residual biases unrelated to the PSF or underlying shear. The subscript
k = 1,2 denotes the two ellipticity components. We note that we did not include PSF
modelling errors in Eq. (4.1), as we used the same PSF model as Giblin et al. (2021),
who had already confirmed its accuracy. Assuming that (e}(n‘ + 1) averages to zero for a
large galaxy sample (a property validated with the KiDS data; see, for example, Sect. 3
in Giblin et al. 2021), we can determine the @ and ¢ parameters from the data using a
simple linear regression method.

Figure 4.1 presents the measured PSF leakage o and the additive term c for the KiDS-
1000-v2 catalogue, alongside the measurements from the KiDS-1000-v1 catalogues
for comparison. As expected, the KiDS-1000-v2 catalogue exhibits a mean a-term
consistent with zero for all redshift bins, owing to the empirical correction scheme

3Throughout this paper, we interchangeably use ‘multiplicative bias’ and ‘shear bias’, as our simulation-
based shear calibration only addresses this parameter. Conversely, PSF leakage and the additive term are
empirically corrected.
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Figure 4.1: PSF contamination « (top panels) and additive term ¢ (bottom panels)
as a function of tomographic bin labelled by the central zg value. The measurements
are obtained from a weighted linear fitting using Eq. (4.1). The red points represent
measurements from the KiDS-1000-v2 catalogue, while the grey points show the
measurements from the KiDS-1000-v1 catalogue. The red/grey coloured bars correspond
to results from the entire sample without tomographic binning.

outlined in Sect. 4.2.1 (see also Sect. 4 in L.23). The upgraded lensfit code has reduced
the overall c,-term by half, reaching a level of c; ~ (3 + 1) x 107# for the entire sample.
However, despite this improvement, the ¢ term has not been eliminated, particularly in
distant tomographic bins where a small but noticeable ¢ term still persists, which was
not seen in the simulations.

To correct for these residual small additive c-terms, we used the same empirical
correction method as in previous KiDS analyses. Specifically, we subtracted the weighted

average ellipticity from the observed ellipticity for each redshift bin as €205, = €°°5 — eobs,
Nevertheless, we caution that subtracting the mean c-term does not guarantee the removal
of all additive biases, especially when detector-level effects, such as ‘charge transfer
inefficiency’ (e.g. Rhodes et al. 2007; Massey 2010) and ‘pixel bounce’ (e.g. Toyozumi
& Ashley 2005), can introduce position-dependent bias patterns. Although we have
detected such effects in KiDS data (Hildebrandt et al. 2020; Giblin et al. 2021), their
level does not affect the current cosmic shear analysis. More specifically, Asgari et al.
(2019) demonstrated that even if current detector-level effects were increased by a factor
of ten, they would not cause significant bias for KiDS-like analyses.

The cosmic shear signal is conventionally measured using the two-point shear
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Figure 4.2: Ratio of the PSF contamination £}”°, computed using Eq. (4.3), to the
predicted amplitude of the cosmic shear signal £2PM across all 15 tomographic bin
combinations. The red lines represent results derived from the KiDS-1000-v2 catalogue,
while the grey lines correspond to those obtained from the KiDS-1000-v1 catalogue.
The blue shaded regions denote +10% of the standard deviation of the measured cosmic
shear signal, determined from the covariance matrix based on the statistics from the

KiDS-1000-v2 catalogue.



116 CHAPTER 4. COSMOLOGY WITH COSMIC SHEAR

correlation function, defined as#

S wawn | € (xa)e] () + €l (xa) €l () |

£7(0) = : (4.2)

2abWaWh

where 6 represents the separation angle between a pair of galaxies (a, b), the tangential
and cross ellipticities €; x are computed with respect to the vector x, — y;, that connects
the galaxy pair, and the associated measurement weight is denoted by w. Therefore, it is
crucial to examine the systematics in the two-point statistics. Following the method of
Bacon et al. (2003), we estimate the PSF leakage into the two-point correlation function
measurement using

sys < eobs EPSF>2

= 7 <EPSF6PSF> > (4.3)

where the (-) represents the correlation function.

In Fig. 4.2, we present the ratio of the measured &}”" to the theoretical predictions of
the cosmic shear signal. The blue shaded region denotes +10% of the standard deviation
of the cosmic shear signal, extracted from the analytical covariance. This covariance is
calculated using an independent implementation of the methodology of Joachimi et al.
(2021), and it incorporates the sample statistics of the updated catalogue. We compare the
results from the KiDS-1000-v2 catalogue with those from the KiDS-1000-v1 catalogue.
We observe general improvements, particularly in the high-redshift bins, where the PSF
contamination is now negligible. The only exceptions are found in some large-scale bins
(6 > 60 arcmin), where the expected fiducial cosmic shear signal is relatively small and
overwhelmed by high statistical noise.

To leading order, the weak lensing effect introduces only curl-free gradient distortions
(E-mode signal), which makes the curl distortions (B-mode signal) a useful null-test
for residual systematics in the shear measurement>. Following the convention of
KiDS (Hildebrandt et al. 2017; Giblin et al. 2021), we use the complete orthogonal sets
of E/B-integrals (COSEBIs, Schneider et al. 2010) to measure the B-mode signal. The
COSEBIs provide an optimal E/B separation by combining different angular scales from
the £, measurements.

Figure 4.3 presents the measured B-mode signals for all combinations of tomographic
bins in our analysis, alongside the B-mode measurements from the KiDS-1000-v1
catalogue for comparison. To enable direct comparison, we used the same scale range of
(075,300") as in Giblin et al. (2021) for calculating the COSEBIs B-mode®. Assuming

4In this study, all measurements of the two-point shear correlation function are conducted using the
TreeCorr code (Jarvis et al. 2004; Jarvis 2015).

5Some higher-order effects from lensing, such as source redshift clustering (e.g. Schneider et al. 2002),
and intrinsic alignment of nearby galaxies (e.g. Troxel & Ishak 2015; Joachimi et al. 2015) can also
introduce B-mode signals. However, these contributions are expected to be negligible for current weak
lensing surveys (e.g. Hilbert et al. 2009)

6We also evaluated an alternate scale range of (2,300’), consistent with our fiducial cosmic shear
analysis. As anticipated, the B-mode signal was more negligible in this scenario due to reduced small-scale
contamination.
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Figure 4.3: Measurements of the B-mode signals using COSEBIs for the KiDS-1000-v2
catalogue (red points) compared to the KiDS-1000-v1 catalogue (grey points). The
error bars originate from the diagonal of an analytical covariance matrix, accounting
solely for measurement noise. For the KiDS-1000-v2 catalogue, we re-calculated the
covariance using the method introduced by Joachimi et al. (2021), incorporating the
updated statistics. The p-values for the KiDS-1000-v2 catalogue, shown in the top right
corner of each panel, were calculated with 20 degrees of freedom, which corresponds to
the number of modes used in each correlation.

a null signal, we computed the p-value for each B-mode measurement, setting the
degrees of freedom equal to the number of modes in each measurement (n = 20). The
covariance matrix, accounting only for shot noise, was estimated using an analytical
model from Joachimi et al. (2021) applied to the updated catalogue. It is noteworthy that
our covariance matrix differs from the one used in Giblin et al. (2021). This is due to
the changes in sample statistics resulting from the updated shape measurement code and
redshift calibration relative to the KiDS-1000-v1 catalogue used in Giblin et al. (2021).
Most diagonal entries in our matrix show reduced uncertainties, ranging from a level
of per cent to ten per cent. Therefore, if the absolute systematic levels are comparable
between the two catalogues, our test would likely show a slight increase in the final
p-values compared to those in Giblin et al. (2021). As indicated in the top right corner
of each panel, the estimated p-values suggest that the measured B-mode signals align
with a null signal across all bin combinations. The lowest p-value, p = 0.02, was found
in the cross-correlation between the first and third tomographic bins.
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After conducting all these tests, we can conclude that the KiDS-1000-v2 catalogue
has reduced systematics when compared to the results from the KiDS-1000-v1 catalogue.
These improvements are largely attributed to the updated version of the lensfit code, as
well as the implementation of a new empirical correction scheme for PSF contamination.
These results give us the confidence to use the updated catalogue for cosmological
inference.

4.3 Shear and redshift calibration

The main improvement in our calibration comes from the use of SKiLLLS multi-band image
simulations, as developed in L23. These simulations fuse cosmological simulations
with high-quality observational data to create mock galaxies with photometric and
morphological properties closely resembling real-world galaxies. The observational
data used by SKiLLS, drawn from the catalogue of Griffith et al. (2012), is identical to
that used in K19. In L23, we developed a vine-copula-based algorithm that learns the
measured morphological parameters from this catalogue and assigns them to the SURFS-
Shark mock galaxies (Elahi et al. 2018; Lagos et al. 2018). We verified that the learning
procedure maintains the observed multi-dimensional correlations between morphological
parameters, magnitude, and redshifts. Nevertheless, both the observed catalogue from
Griffith et al. (2012) and the learning algorithm possess inherent limitations, resulting in
unavoidable uncertainties in our simulation input catalogue. These uncertainties are
addressed in our shear calibration in Sect. 4.3.2.

To create KiDS+VIKING-like nine-band images, SKiLLLS replicated the instrumental
and observational conditions of 108 representative tiles selected from six sky pointings
evenly distributed across the KiDS-DR4 footprint. The star catalogue was generated for
each sky pointing using the TRILEGAL population synthesis code (Girardi et al. 2005) to
account for the variation in stellar densities across the footprint. For the primary r-band
images, on which the galaxy shapes were measured, SKiLLS included the correlated
pixel noise introduced by the stacking process and the PSF variation between CCD
images.

On the data processing side, SKiLLS followed the entire KiDS procedure, including
object detection, PSF homogenisation, forced multi-band photometry, photo-z estimation,
and shape measurements. The end result is a self-consistent joint shear-redshift mock
catalogue that matches KiDS observations in both shear and redshift estimates. By
taking this end-to-end approach, we accounted for photo-z-related selection effects in
our shear bias estimation and enabled redshift calibration using the same mock catalogue.
While our current analysis focuses on the improvement in shear calibration, it represents
an intermediate step towards the KiDS-Legacy analysis, which will implement joint
shear and redshift calibrations facilitated by the SKiLLLS mock catalogue.
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4.3.1 Calibration

To correct for shear bias in our measurements, we followed the method used in previous
KiDS studies (FC17, K19). We applied an average shear bias correction factor, denoted
as mi, to each tomographic bin i. This factor was calculated by averaging the individual
m values of all sources within the bin, with each individual m value obtained using
Eq. (4.1). In order to better align the simulations with the target data, we adhered to
KiDS conventions by re-weighting the simulation estimates using the /ensfit reported
model signal-to-noise ratio and resolution, which is defined as the ratio of the PSF size
to the measured galaxy size. More information on the re-weighting procedure can be
found in Sec. 5.1 of L23.

Although the averaging method addresses the noise in individual source’s m es-
timation, it does not account for correlations involving shear bias. Thus, we have
([L+mi(O)][1+m/ (@ +6)]) = (1+mi)(1+mJ), with 6 and ¢ representing dif-
ferent separation angles between galaxy pairs. To test this assumption, we directly
measured ([1+m'(6)][1 +m/ (6’ +6)]) from image simulations and compared it to
(1+ %) (1+ ﬁ). Further details on this test can be found in Appendix 4.A. In summary,
we found a negligible difference between the two estimators, a result that falls well within
the current KiDS requirements. This validates the assumption for the KiDS analysis.

Given that the updated galaxy shape measurements also lead to changes in the sample
selection function, it is necessary to repeat the redshift calibration for the KiDS-1000-v2
catalogue, even though our primary focus is to improve shear calibration. To quantify the
changes in galaxy samples introduced by the modifications in shape measurements from
the KiDS-1000-v1 to KiDS-1000-v2 catalogues, we compared their effective number
densities before applying any redshift calibration. The observed percentage differences
in each tomographic bin, from low to high redshift bins, are —1.8%, —0.4%, 0.2%,
1.3%, and 3.2%. Here, negative values indicate a decrease in density from the v1 to the
v2 catalogue, while positive values signify an increase. These differences are largely
attributed to changes in the weighting scheme from lensfit version 309¢ to version 321,
as well as the implementation of the new empirical correction scheme for PSF leakage,
as discussed in Sect. 4.3 and in L23. For this, we employed a methodology identical
to the one used by Wright et al. (2020b), Hildebrandt et al. (2021) and van den Busch
et al. (2022) (vdB22 hereafter). It is based on a direct calibration method (Lima et al.
2008) implemented with a self-organising map (SOM, Kohonen 1982; Masters et al.
2015). More information on our implementation is provided in Appendix 4.B, while
Wright et al. (2020b), Hildebrandt et al. (2021) and vdB22 offer more comprehensive
discussions.

The SOM-based redshift calibration method uses a ‘gold selection’ criterion to
filter out sources that are not represented in the spectroscopic reference sample (see
Appendix 4.B). However, this process influences shear biases as it alters the selection
function of the final sample. To ensure a consistent estimation of shear biases, we created
the SKiLLS-gold catalogue by mimicking this quality control on the SKiLLLS mock
catalogue, using the same SOM trained by the spectroscopic reference sample as the real
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Table 4.1: Data properties for the KiDS-1000-v2 catalogue.

Bin  neg [arcmin_z] Oe,i 0Z = Zest — Ztrue Mraw Mfinal Om
1 0.68 0.27 0.000 +£0.0096 —0.023 -0.021 0.019
2 1.30 0.26  0.002+0.0114 -0.025 -0.023 0.008
3 1.97 0.28 0.013+0.0116 -0.013 -0.015 0.007
4 1.39 0.27 0.011 +£0.0084  0.018 0.015 0.006
5 1.35 0.29 -0.006 + 0.0097 0.032  0.031 0.006

Comparable summary statistics for the KiDS-1000-v1 catalogue can be found in Table 1
of A21. We note that the differences in summary statistics between our work and A21
stem from both the updated /ensfit code and the enhanced redshift calibration outlined
in vdB22. The effective number density n.g and the ellipticity dispersion per ellipticity
component o ; are calculated using the formulae provided in Appendix C of Joachimi
et al. (2021). The nes values in this table are derived from an effective area of 777.4
square degrees in the CCD pixel frame, making them directly comparable to the values
in Table 1 of A21. The correlated Gaussian redshift priors are based on the differences
between the estimated and true redshifts, 6z = Zest — Ztrue, as reported in vdB22. The
priors are denoted as u; + o, where y; represents the mean shift and o; corresponds to
the square root of the covariance matrix’s diagonal elements. The m,, results are
derived from idealised constant shear simulations, while the m gy, results, our fiducial
outcomes, include corrections for the shear-interplay effect and PSF modelling bias.
Statistical uncertainties, determined by the simulation volume, are directly computed
from the fiducial simulations and denoted as o,.

data. We derived the appropriate shear bias correction factors from this SKiLLL.S-gold
catalogue for individual tomographic bins, and present these values in Table 4.1. It is
worth noting that the shear bias estimates presented in this work differ slightly from
those in L23, which did not include the gold selection procedure. Despite this, the
differences in the estimated shear biases are relatively minor across all tomographic bins,
with the first tomographic bin showing the most noticeable change of 0.008.

Our fiducial results, mgn,), account for the impact of PSF modelling uncertainties
and the ‘shear interplay’ effect, which occurs when galaxies from different redshifts
are blended together. For more details on these effects, we refer to L23 and MacCrann
et al. (2022). Additionally, we provide the idealised .,y results, which do not consider
these higher-order effects. By comparing the cosmological constraints obtained from
these two cases, we aim to evaluate the robustness of previous KiDS results with respect
to these higher-order effects, which were not taken into account in the earlier shear
calibration (FC17, K19).
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4.3.2 Calibration uncertainties

Systematic uncertainties arising from redshift and shear calibrations can propagate into
cosmological analyses, potentially leading to biased results. Therefore, it is crucial to
adequately address these uncertainties in the analysis. In this section, we outline our
approach to managing these calibration uncertainties.

The uncertainties in redshift calibration were addressed by introducing an offset
parameter for the estimated mean redshift of galaxies in each tomographic bin. This offset
parameter, described as correlated Gaussian priors, serves as a first-order correction
to both the statistical and systematic uncertainties associated with redshift calibration.
Table 4.1 lists the exact values for these parameters, which we obtained from vdB22 and
Hildebrandt et al. (2021). They determined these prior values using spectroscopic and
KiDS-like mock data generated by van den Busch et al. (2020). We consider the current
priors to be conservative enough to account for any potential changes in the redshift
biases from KiDS-1000-v1 to KiDS-1000-v2, given that both catalogues use the same
photometric estimates. However, for the forthcoming KiDS-Legacy analysis, we plan to
re-estimate these values based on the new SKiLLS mock data.

We improved our approach to handling uncertainties related to the shear calibration.
In L23, nominal uncertainties were proposed for each tomographic bin based on
sensitivity analyses. This aimed to ensure the robustness of the shear calibration within
the specified uncertainties, but at the cost of reducing statistical power. In this work, we
aim to improve this approach by separately accounting for the statistical and systematic
uncertainties within the shear calibration.

The statistical uncertainties, as presented in Table 4.1, are computed directly from
simulations and are limited only by the volume of the simulations, which can be increased
with more computing resources’. These uncertainties are also easily propagated into
the covariance matrix for cosmological inference. Although increasing the simulation
volume could, in principle, reduce these uncertainties, we found that the current values
already comfortably meet the KiDS requirements, thus further efforts in this direction
were considered not necessary.

If the SKIiLLS simulations perfectly match KiDS data, these statistical uncertainties
would be the only contribution to the final uncertainty from the shear calibration.
However, since our simulations are not a perfect replica of the real observations, residual
shear biases may still be present in the data even after calibration. These biases,
referred to as systematic uncertainties, are typically the primary source of error in shear
calibration. Increasing the simulation volume cannot improve these uncertainties as they
are determined by the realism of the image simulations. The level of these uncertainties
can only be roughly estimated through sensitivity analyses.

Since the systematic residual shear biases directly scale the data vector, accurately
quantifying their impact using the covariance matrix is challenging. Therefore, we use
a forward modelling approach to capture the impact of these systematic uncertainties.
Instead of incorporating these uncertainties into the covariance matrix, we examine how

"However, the finite volume of the input galaxy sample prevents an indefinite increase.
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the final estimates of the cosmological parameters change due to the shift in signals
caused by the systematic residual shear biases. This forward modelling approach can be
easily implemented using simple optimisation algorithms since the shift is small, and
the covariance remains unchanged. More details on how to determine residual shear
biases and implement the forward modelling approach are provided in Appendix 4.C.

4.4 Cosmological inference

The cosmological inference in this study largely aligns with the approach used in the
KiDS-1000-v1 analyses (A21; vdB22), with minor modifications primarily influenced
by the recent joint DES Y3+KiDS-1000 cosmic shear analysis (DK23). In this section,
we outline the configurations and reasoning behind these choices in our fiducial analysis.
For certain notable changes, we also conduct extended analysis runs with different
configurations to evaluate the impact of these modifications. Our analysis code is
publicly accessible?.

Our code builds upon the Cat_to_Obs_K1000_P1° and the KiDS Cosmology
Analysis Pipeline (KCAP)© infrastructure, as developed in Giblin et al. (2021),
Joachimi et al. (2021), A21, Heymans et al. (2021) and Troster et al. (2021). The
Cat_to_Obs_K1000_P1 pipeline converts KiDS shear and redshift measurements into
various second-order statistics, with the assistance of the TREECorRr code (Jarvis et al.
2004; Jarvis 2015). Meanwhile, KCAP estimates cosmological parameters using the
CosmoSIS framework, which bridges the likelihood function calculation pipelines with
MCMC samplers (Zuntz et al. 2015).

We measure the shear field using Complete Orthogonal Sets of E/B-Integrals
(COSEBISs, Schneider et al. 2010). As reported by Asgari et al. (2020), COSEBIs offer
enhanced robustness against small-scale effects on the shear power spectrum, which
primarily stem from complex baryon feedback. Furthermore, we account for baryon
feedback when modelling the matter-matter power spectrum, using HMcopEg-2020 (Mead
et al. 2021) within the camB framework with the version 1.4.0 (Lewis et al. 2000; Howlett
et al. 2012).

HMcoDE-2020, an updated version of HMcobpE (Mead et al. 2015, 2016), models the
non-linear matter-matter power spectrum, incorporating the influence of baryon feedback
through an enhanced halo-model formalism. This updated model is empirically calibrated
using hydrodynamical simulations, following a more physically informed approach.
Unlike its predecessor calibrated with OWLS hydrodynamical simulations (van Daalen
etal. 2011), this newer version uses the updated BAHAMAS hydrodynamical simulations
for calibration (McCarthy et al. 2017). These simulations, in turn, are calibrated to
reproduce the observed galaxy stellar mass function and the hot gas mass fractions of
groups and clusters. This calibration ensures that the simulation accurately reflects the
impact of feedback on the overall distribution of matter (refer to McCarthy et al. 2017 for

Shttps://github.com/1shuns/CSK1000LF321
Shttps://github.com/KiDS-WL/Cat_to_Obs_K1000_P1
Ohttps://github.com/KiDS-WL/kcap
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further details). Furthermore, Hmcopg-2020 improves the modelling of baryon-acoustic
oscillation damping and massive neutrino treatment, achieving an improved accuracy of
2.5% (compared to the previous version’s 5%) for scales k < 10h Mpc™! and redshifts
z < 2 (Mead et al. 2021).

The model incorporates a single-parameter variant, Tagn, representing the heating
temperature of active galactic nuclei (AGN). Higher Thgn values correspond to more
intense AGN feedback, leading to a lower observed matter power spectrum. Following
DK23, we use a uniform prior on log;,(7agn) ranging from 7.3 to 8.0. This choice is
motivated by the findings from the BAHAMAS hydrodynamical simulations (McCarthy
et al. 2017; van Daalen et al. 2020).

Given the characteristics of COSEBIs and the implementation of the HmMcoDE, the
KiDS-1000-v1 analyses included small-scale measurements down to O, = 0’5. This
strategy was, however, re-evaluated in DK23, which suggested more stringent scale
cuts for the KiDS COSEBIs data vector, determined by the baryon feedback mitigation
strategy proposed by Krause et al. (2021). Following this recommendation, we apply a
scale cut of Oy, = 2’ in our fiducial analysis.

We use the non-linear linear alignment (NLA) model to describe the intrinsic
alignment (IA) of galaxies. This model combines the linear alignment model with a
non-linear power spectrum and contains a single free parameter Ajs to describe the
amplitude of IA signals (Hirata & Seljak 2004; Bridle & King 2007). It is also common
to include a power law, with an index denoted as 71a, to capture potential redshift
evolution of the IA strength. To distinguish it from the redshift-independent NLA model,
we refer to this variant as the NLA-z model.

In line with previous KiDS analyses, we take the redshift-independent NLA model
as our fiducial choice since introducing 71a has a minimal effect on the primary Sg
constraint (A21), and current direct observations of IA signals show little evidence of
substantial redshift evolution (e.g., Joachimi et al. 2011; Singh et al. 2015; Johnston
et al. 2019; Fortuna et al. 2021b; Samuroff et al. 2022). However, Fortuna et al. (2021a)
suggests that the selection of galaxy samples resulting from the redshift binning may
introduce a detectable redshift variation in the IA signal, although its impact remains
negligible for current weak lensing analyses. To assess the impact of 1715 on our results,
we perform an extended run using the NLA-z model, following the same prior selection
as in DK23.

The KiDS-1000-v1 analyses adopted a broad and uninformative prior for Aja,
ranging from [—6, 6], considering that the data can constrain it and that an incorrect
informative prior could bias the final cosmological results. Although uncertainties
regarding IA signals remain large, recent developments in the field have improved our
knowledge of the expected IA signal strength. For instance, Fortuna et al. (2021a) used
a halo model formalism, incorporating results from the latest direct IA measurements,
and predicted Aja = 0.44 + 0.13 for the redshift-independent NLA model targeted
for KiDS-like mixed-colour lensing samples!. This prediction aligns well with the

UFortuna et al. (2021a) also examined the NLA-z model under similar conditions, but found the fits were
predominantly driven by the low-redshift bins, resulting in less accurate recovery of large-scale alignments
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constraints from recent cosmic shear analyses (A21; Secco et al. 2022; Li et al. 2023c;
Dalal et al. 2023). Moreover, recent studies revealed that other nuisance parameters in
such analyses, especially those related to redshift calibration uncertainties, can result
in misleading Ajs values (Hikage et al. 2019; Wright et al. 2020b; Li et al. 2021;
Fischbacher et al. 2023).

Given these considerations, we consider it is necessary to explore the prior for the
Ara parameter. As an initial step towards a fully informed As approach, we begin by
simply narrowing the previously broad prior, leaving a more comprehensive exploration
of the IA model setups for the forthcoming KiDS-Legacy analysis. In our fiducial
analysis, we choose a flat yet narrower prior of [—0.2, 1.1], which corresponds to the
5o credible region of predictions by Fortuna et al. (2021a). We note that our new
prior will not significantly impact the sampling results, provided that the final posterior
distributions fall within the set prior range. For comparison purposes, we also conduct a
test run using the wider [—6, 6] prior.

Sampling the high-dimensional posterior distribution is a challenging task. In the
KiDS-1000-v1 analyses, an ellipsoidal nested sampling algorithm, MULTINEST (Feroz
et al. 2009), was used. However, recent studies demonstrated that MULTINEST systemati-
cally underestimates the 68% credible intervals for Sg by about 10% in current weak
lensing analyses (Lemos et al. 2023; DK23; Li et al. 2023c). A promising alternative
is the sliced nested sampling algorithm, PoLyCHorp (Handley et al. 2015a,b), which
provides more accurate estimates of parameter uncertainties. However, PoLyCHORD is
almost five times slower than MULTINEST. As a result, we opt to use PoLyCHorp for our
main analysis, while retaining MuLTINEST for our testing purposes.

When presenting point estimates and associated uncertainties for parameter con-
straints, we adhere to the recommendations of Joachimi et al. (2021). We derive our
best-fit point estimates from the parameter values at the maximum of the joint posterior
(MAP). Given that the MAP reported by the sampling code can be affected by noise due
to the finite number of samples, we enhance the precision of the MAP by conducting
an additional local optimisation step. This process initiates from the MAP reported
by the sampling code and utilises the Nelder-Mead minimisation method (Nelder &
Mead 1965), a method also employed by A21. To represent uncertainties linked to these
estimates, we compute the 68% credible interval based on the joint, multi-dimensional
highest posterior density region, projected onto the marginal posterior of the parameter
of interest (PJ-HPD). This hybrid approach is more robust against projection effects
stemming from high-dimensional asymmetric posterior distributions than traditional 1D
marginal summary statistics (refer to Sect. 6 in Joachimi et al. 2021 for a comprehensive
discussion). To facilitate comparison with results from other surveys, we also provide
constraints based on the traditional mean and maximum of the 1D marginal posterior,
along with their respective 68% credible intervals.

It is worth noting that, as systematic uncertainties from shear calibration are excluded
in the construction of our covariance matrix (see Sect. 4.3.2), the uncertainties derived
from the main sampling chains do not fully account for the true uncertainties. To

at high redshifts.
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Table 4.2: Fiducial model parameters and their priors.

Parameter Symbol Prior

Density fluctuation amp.  Sg (0.1, 1.3]
CDM density We [0.051, 0.255]
Baryon density Wp [0.019, 0.026]
Hubble constant h [0.64, 0.82]
Scalar spectral index ng [0.84, 1.1]
AGN heating temperature  log,o(Tagn[K]) [7.3, 8.0]
Intrinsic alignment amp.  Aja [-0.2, 1.1]
Redshift offsets S5, N(u; 0?)

The first section lists the primary cosmological parameters describing the ACDM model
assumed, while the second section contains nuisance parameters related to baryon
feedback, intrinsic alignments, and redshift biases. The values in square brackets
indicate the limits of top-hat priors. The notation N (p; 2) refers to a normal prior
with mean ¢ and (co-)variance o2, as specified in Table 4.1.

compensate for the additional uncertainties arising from residual shear biases, we employ
a forward modelling approach. This method involves shifting the data vector and
subsequently the likelihood, based on the estimated residual shear biases, followed by
recalculating the MAP. As the adjustment is minor and the covariance matrix remains
static, it is not necessary to re-sample the posterior distribution. Instead, we simply need
to repeat the previously mentioned local optimisation step. Starting with the original
MAP and using the updated likelihood, we can determine the new MAP corresponding to
each shift in the data vector. The variation in these MAP estimates represents additional
uncertainties introduced by the systematic uncertainties arising from shear calibration.
Further details on this process can be found in Appendix 4.C.

Table 4.2 summarises the model parameters and their priors as used in our fiducial
analysis. These parameters can be broadly classified into two categories: the first
category includes five cosmological parameters, which describe the spatially flat ACDM
model we employ. We fix the sum of the neutrino masses to a value of 0.06 eV ¢ 2,
where c is the speed of light. This choice is based on Hildebrandt et al. (2020)’s finding
of the negligible influence of neutrinos on cosmic shear analyses. The second category
encompasses three nuisance parameters, accounting for astrophysical and measurement
uncertainties as previously discussed. We note that all parameters, with the exception
of Tagn and Apa, retain the same priors as those used in the KiDS-1000-v1 cosmic
shear analyses. The Tagn parameter replaces the previous baryon feedback amplitude
parameter associated with the preceding version of EMcoDE, while the Ajp parameter
adopts a narrower prior for reasons previously discussed.
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4.5 Results

In this section, we present our cosmological parameter constraints and evaluate the
robustness of our findings against a variety of systematic uncertainties. We begin
by presenting the outcomes from our fiducial analysis in Sect. 4.5.1. We then assess
the impact of shear biases in Sect. 4.5.2, by quantifying the shifts in final constraints
resulting from different shear bias scenarios. This highlights the main development
of our work. Additionally, since we implemented several changes to the cosmological
inference pipeline, we evaluate the effects of these adjustments by comparing results
from multiple setup variations in Sect. 4.5.3.

4.5.1 Fiducial analysis results

Our fiducial model has a total of twelve free parameters: five are cosmological parameters
specifying the spatially flat ACDM model with a fixed total neutrino mass, and the
remaining seven are nuisance parameters addressing astrophysical and redshift calibration
uncertainties, as detailed in Sect. 4.4. However, not all of these parameter are constrained
by the cosmic shear analysis. In this section, we focus on the primary parameters that
our analysis constrains. Meanwhile, the posterior distributions for all free parameters
are displayed as contour plots in Appendix 4.D for reference.

Table 4.3 provides the point estimates along with their corresponding 68% credible
intervals for the primary parameter as constrained by our fiducial analysis using the
PoLyCHorbp sampling code. We display results using three summary statistics: MAP and
PJ-HPD, the mean of the 1D marginal posterior, and the maximum of the 1D marginal.
As discussed in DK23, each of these approaches has its own advantages and limitations.
Specifically, the accurate determination of MAP and PJ-HPD can be challenging, while
marginal constraints for multi-dimensional posteriors are prone to projection effects.
Aligning with the KiDS convention, we choose the MAP and PJ-HPD constraints as
our headline results, but caution against direct comparisons with results from other
surveys that might use different summary statistics. The uncertainties we report include
additional contributions from the systematic uncertainties associated with our shear
calibration, as detailed in Sect. 4.5.2. These additional uncertainties are overall small
compared to the main sampling uncertainties, so when plotting the posterior distributions
or conducting extended runs for test purposes, we do not incorporate these uncertainties.

Figure 4.4 shows the projected 2D posterior distributions for the parameters €2, and
Sg, as derived from our fiducial setups employing PoLyCHorD and MULTINEST. We see
that MULTINEST results yield a roughly 10% narrower width of the posterior distribution
compared to PoLyCHORD, aligning with previous findings (Lemos et al. 2023; DK23;
Li et al. 2023c). However, as expected, the results from the two sampling codes show
consistency in terms of best-fit values. In addition, we compare these results with
those from the cosmic microwave background (CMB) analysis by the Planck satellite,
using their baseline ACDM chains with the P1ik likelihood from their most recent
Planck-2018 results (Planck Collaboration et al. 2020). An offset is evident between
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Table 4.3: Primary parameter constraints from our fiducial analysis, based on the
KiDS-1000-v2 catalogue, as determined using the PoLyCHORD sampling code.

Parameter MAP & PJ-HPD Marginal

Mean Maximum
S OTICGEN 0TS0 076970,
Gn 02 0s024R 0273
s 0mortE 07l
A OMEUIIS 0400450 0397703

Our headline results, based on the MAP & PJ-HPD statistics, include additional
uncertainties that account for systematic uncertainties within the shear calibration.
These uncertainties, originating from minor deviations from realism in the image
simulations and the shear measurement algorithm’s sensitivity to the morphology of the
galaxy sample, are estimated using a forward modelling approach (as detailed in

Sect. 4.5.2). On the other hand, the statistical uncertainties within the shear calibration,
determined by the simulation volume, are folded into the main uncertainties through
their inclusion in the covariance matrix used for the cosmological inference. The
mean-marginal is determined through postprocess within CosmoSIS using the
default settings (Zuntz et al. 2015); while the max-marginal is calculated using the
ChainConsumer with the settings of statistics=‘max’ and kde=1.0 (Hinton 2016). The
indicated uncertainties correspond to the 68% credible intervals.

our cosmic shear results and those from Planck-2018. Adopting the Hellinger distance
tension metric (Beran 1977; Heymans et al. 2021; DK23), we detected a 2.350 tension in
the constrained Sg values. For the constrained parameter set (Ss, ), a similar level of
tension, 2.300", was found using the Monte Carlo exact parameter shift method (Raveri
et al. 2020; DK23).

Figure 4.5 presents our primary Sg constraints and compares them with those from
other contemporary cosmic shear surveys and the Planck CMB analysis. For ease of
comparison, we show all three summary statistics for our fiducial results, while for
other surveys, we display their headline values, as per their preferred summary statistics.
Overall, our results align well with those from all major contemporary cosmic shear
surveys.

We note that our fiducial analysis pipeline is similar to the DK23 Hybrid pipeline
with one notable difference: while DK23 included a free neutrino parameter, we kept
the total neutrino mass fixed. DK23 showed that this additional degree of freedom in
the cosmological parameter space can slightly increase the projected marginal Sg values
relative to an analysis with a fixed neutrino mass. However, since we refer to their
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Figure 4.4: Comparison of projected 2D posterior distributions for the parameters Qy,
and S as derived from our fiducial setups using two sampling codes: PoLyCHorD (solid
black line) and MuLTINEST (dashed grey line), against the Planck-2018 results (solid red
line). The contours correspond to the 68% and 95% credible intervals and are smoothed
using a Gaussian Kernel Density Estimation (KDE) with a bandwidth scaled by a factor
of 1.5, made possible by the ChainConsumer package (Hinton 2016).

MAP & PJ-HPD results in Fig. 4.5, the comparison should not be influenced by these
projection effects (for more details, refer to the discussion in DK23).

It is interesting to note that our fiducial results align almost identically with the
KiDS-1000-v1 re-analysis conducted by DK23, which used the A21 redshift calibration.
This alignment arises from a balance of several effects in our analysis. Our improved
shear calibration tends to increase Sg, while the enhanced vdB22 redshift calibration
tends to lower it. Moreover, our analysis does not show a significant increase in Sg
when introducing scale cuts, as seen in the KiDS-1000-v1 Hybrid analysis. This helps
reconcile the minor difference between our results and those of A21. We explore these
changes in more detail in the following sections.



4.5. RESULTS 129

KiDS-1000-v2 | e ——
DES Y3: Fiducial —
HSC Y3: ¢ —
© DES Y34KiDS-1000-v1 Hybrid | - ——
DES Y3 Hybrid —
KiDS-1000-v1 Hybrid —
o S
0.70 0.75 0.80 0.85

Sg = 05(Q2,/0.3)0°

Figure 4.5: Marginalised constraints on Sg derived from our fiducial analysis with
PoLyCHoRrD, compared with those from other contemporary cosmic shear surveys and
the Planck CMB analysis. Three sections, separated by dotted horizontal lines, indicate
results of different origins. The first section includes results from individual cosmic
shear surveys with their own analysis pipelines. The second section presents results
from a collaborative effort between DES and KiDS teams, which built a hybrid pipeline
for analysing the data from both groups (DK23). The final section displays results from
the Planck CMB analysis. Different labels are used for different statistical methods: the
diamond represents results using the MAP & PJ-HPD statistics, the square denotes the
mean-marginal statistics, and the circle shows the maximum-marginal statistics. The
error bars correspond to the 68% credible intervals.

4.5.2 Impact of shear biases

The primary aims of this study are to assess the impact of higher-order shear biases on
the final parameter constraints and to develop a methodology for effectively addressing
shear calibration uncertainties. Both of these aims can be achieved by examining the
shifts in the constrained cosmological parameters resulting from different shear bias
scenarios. As discussed in Sect. 4.4 and Appendix 4.C, the residual shear biases have
only a minor effect on the measured data vector. This allows us to determine the shifts
in the best-fit values of the constrained parameters using a local minimisation algorithm,
such as the Nelder-Mead method (Nelder & Mead 1965). These shifts in the best-fit
values indicate the additional uncertainties stemming from systematic uncertainties in
shear calibration.

Figure 4.6 shows shifts in our primary Sg constraints for different residual shear bias
scenarios. For comparison, we also include a shaded region denoting different levels
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of PJ-HPD credible intervals, as derived from our fiducial PoLyCHORD chain. Apart
from the extreme case where no shear calibration is applied, all other residual shear bias
scenarios result in shifts less than 10 per cent of the initial sampling uncertainties. Notably,
neglecting the higher-order correction for the shear-interplay effect and uncertainties
in PSF modelling results in a negligible shift of only —0.03¢". This finding reinforces
the reliability of previous KiDS cosmic shear analyses, which did not consider these
higher-order effects.

The Sg shifts, resulting from the input morphology test simulations, indicate
additional systematic uncertainties within our shear bias calibration. The generation of
these test simulations is detailed in Appendix 4.C. Briefly, we generated six sets of test
simulations, where the input values of three morphological parameters of the adopted
Sérsic profile - the half-light radius (labelled as ‘size’ in the figure), axis ratio (labelled
as ‘q’), and Sérsic index (labelled as ‘n’) - were shifted up and down. We observe that
shifts in the input galaxy axis ratio lead to the most significant changes in Sg: a —0.100
shift for increased input axis ratio and a +0.060 shift for decreased input axis ratio. This
behaviour aligns with our expectations for the lensfit code employed in our analysis. As
it incorporates prior information on measured galaxy ellipticities during its Bayesian
fitting process, it is more sensitive to changes in the distributions of sample ellipticities.

These Sy shifts, obtained from the test simulations, provide a quantitative measure
of the potential impact of inaccuracies in the input morphology and the sensitivity of the
lensfit code to the underlying sample morphology distributions. When presenting the Sg
constraints, we account for these systematic uncertainties by including the maximum
shifts into the reported uncertainties. In other words, we consider the shifts corresponding
to the changes in input axis ratio (represented as dashed lines in Fig. 4.6), from the
six sets of test simulations, as additional systematic uncertainties. These are reported
alongside the original statistical uncertainties from the main sampling chain. It should
be noted that these additional systematic uncertainties are specific to the SKiLLLS image
simulations and the /ensfit shape measurement code used in our analysis. To reduce these
uncertainties, future advancements in shear measurements should focus on improving
the realism of image simulations and enhancing the robustness of the shear measurement
algorithm.

4.5.3 Impact of altering inference setups

Although our main updates revolve around the shear measurement and calibration, we
have also implemented several modifications to the cosmological inference pipeline,
drawing upon recent developments from DK23. As such, it is beneficial to conduct
some extended runs with various setup configurations.

For these test runs, we employ MULTINEST as our sampling code, as it operates
approximately five times faster than PoLyCHoRrD, but at the cost of underestimating the
width of the posterior distributions and thus the reported uncertainties by about 10%.
However, the best-fit values from MULTINEST are not biased (as evident in Fig. 4.4).
Thus, comparisons made using MuLTINEST will yield conservative but unbiased results.
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Figure 4.6: Shifts in best-fit values of Sg under different residual shear bias scenarios.
The shift, ASs, is calculated as ASg = Sg™ — Sgd“Cial, where Sg™ represents the best-fit
values in the test scenarios determined by a local minimisation method using the
best-fit values from the fiducial analysis (Sgd”Cial) as a starting point. The grey shaded
regions represent different percentiles of the credible intervals derived from our fiducial
PoLyCHoRrDp run. From the innermost to the outermost region, these percentiles are
6.8%, 20.4%, and 34%, corresponding to 0.1, 0.3, and 0.5 fractions of the reported
sampling uncertainties. The dashed lines display the maximum shifts encountered in
the six sets of morphology test simulations. These maximum shifts are used as the
additional uncertainties in the reported best-fit values to account for the systematic
uncertainties arising from shear calibration.

Priors for the NLA model

We begin by testing the prior for the NLA model. As discussed in Sect. 4.4, our
fiducial analysis implemented a redshift-independent NLA model with a narrow flat
prior for the amplitude parameter Ajs. This model, motivated by the work of Fortuna
et al. (2021a), serves as an alternative to the uninformative broad prior previously
used. To investigate the impact of this change on our final results, we performed two
additional runs: one employing a redshift-independent NLA model with a broad Ara
prior ranging from [—6, 6], in line with KiDS-1000-v1 analyses, and another allowing
for a redshift-dependent IA amplitude, i.e., the NLA-z variant. The redshift evolution is
modelled using a power-law of the form [(1 +z)/(1+0.62)] ™4, with priors of [-5, 5]
for both Agp and 714, in line with DK23.

Figure 4.7 presents a comparison of the posterior distributions obtained from the
different NLA prior setups, and Table 4.4 lists the point estimates for the critical S
parameter. We see consistent constraints on Sg across all setups. The constrained Agp
under our narrower prior setup also aligns with those from the broad priors, albeit
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Figure 4.7: Comparison of projected posterior distributions for the parameters Sg, Aja,
and 7y, derived from three different NLA prior setups. The contours correspond to
the 68% and 95% credible intervals and are smoothed using Gaussian KDE with a
bandwidth scaled by a factor of 1.5.

spanning a narrower range due to the constrained prior range, validating the prior range
used in our fiducial analysis. Additionally, we observe that the 14 parameter is not
constrained by the data, suggesting that the use of the NLA-z model may not be necessary
for current weak lensing analyses.

Different scale cuts

In our fiducial analysis, we adopted a scale cut for the measured data vectors, ranging
from 2’ to 300’, as suggested by DK23. This is a change from the KiDS-1000-v1
analyses, which used a range of 05 < 6 < 300’. A re-analysis of KiDS-1000-v1 with
this new scale cut by DK23 led to a 0.7 — 0.8 increase in the Sg constraint. Using mock
analyses, they found that this offset could arise from noise fluctuations 23% of the time.

In light of the updates to our shear measurement, we revisited this test. Interestingly,
we observed a smaller difference between the two scale cuts than what was reported by
DK23. Specifically, we observed shifts of —0.170", —0.400", and —0.310, corresponding
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to the MAP & PJ-HPD, mean marginal, and maximum marginal summary statistics,
respectively (refer to Table 4.4 for exact values).

We attribute this increased robustness against small scale fluctuations to our improved
empirical corrections of the PSF leakages into shear measurement. This is supported
by Figs. 4.2 and 4.3, where we see that the shear signals measured from the KiDS-
1000-v2 catalogues exhibit overall smaller systematic errors. We note that Giblin et al.
(2021) performed a mock test using the two-point correlation function and identified
a change of less than 0.10 in the Sg constraints when the detected PSF residuals were
incorporated into the KiDS-1000-v1 mock data. Nevertheless, it is plausible that these
systematic effects have a more significant influence on COSEBIs, given their use of more
sophisticated weighting functions (Schneider et al. 2010). To quantify the improvements
brought about by the updated shear measurements regarding the robustness of the
COSEBIs, a similar mock analysis based on the COSEBISs statistic is warranted. We
consider this an important topic for future study. For the current analysis, the test results
simply affirm the robustness of our primary Sg constraints.

KiDS-1000-v1 setups

To draw a direct comparison with the KiDS-1000-v1 results and evaluate the impact
of our improved shear measurements and calibration, we performed a test run using
the same inference pipeline and parameter priors as in the KiDS-1000-v1 analyses
conducted by A21 and vdB22. The differences compared to our fiducial analysis setup
include: measurements from scales of 0’5 to 300/, use of the older version of HMCODE,
sampling with the MuLTINEST code, and a broad A prior ranging from [—6,6]. As
shown in Fig. 4.8, our test results are well-aligned with the outcomes of the analyses by
A21 and vdB22. Notably, our new results show an increase in the Sg value relative to
vdB22, bringing it closer to the result obtained by A21.

We re-emphasise that our redshift calibration aligns with that of vdB22, who
expanded the redshift calibration sample to more than double the size used by A21 (see
Appendix 4.B for details). This means that our redshift-related selection function closely
mirrors that used in the vdB22 sample. However, due to changes in the weighting and
selection scheme between the KiDS-1000-v2 catalogue and the KiDS-1000-v1 catalogue,
our sample cannot be considered as directly comparable to theirs.

To provide a more quantitative understanding of the sample differences among the
three analyses, we compared the effective number density of the source sample in our
analysis to those used in A21 and vdB22. The differences for each tomographic bin
are 9.6%, 9.8%, 6.1%, 10.6%, and 2.8% when compared to A21; and —1.8%, —1.3%,
—0.7%, 0.7%, and 3% when compared to vdB22. Here, positive values signify an
increase, while negative values denote a decrease. The differences between our catalogue
and that of A21 stem from both shear measurement and redshift calibration, whereas the
difference between ours and that of vdB22 arises mainly from the shear measurement, as
we used the same SOM for the ‘gold’ selection (see Appendix 4.B). As such, comparing
our results directly with those of vdB22 can provide clearer insights into the impact of
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Figure 4.8: Comparison of projected posterior distributions for parameters y,, Sg, and
Aja from our analysis (grey dashed lines) based on the KiDS-1000-v2 catalogue, to those
from vdB22 (orange solid lines) and A21 (green dotted lines), both of which are based
on the KiDS-1000-v1 catalogues. The cosmological inference pipeline and parameter
priors are identical across all three analyses presented here. In terms of measurements,
vdB22 and A21 use the same shear measurements and calibration, while vdB22 and our
analysis share the same redshift calibration. The contours correspond to the 68% and
95% credible intervals and are smoothed using Gaussian KDE with a bandwidth scaled
by a factor of 1.5.

our improvements in shear measurements. It is also worth noting that the increased
effective number density in high redshift bins compared to vdB22 is largely due to the
increased weighting of faint objects in the updated version of lensfit code. However, this
comes at the cost of increased sample ellipticity dispersion, with a maximum increase
of 6% found in the fifth bin. These subtle differences in the source catalogues change
the noise properties of the samples. Consequently, even with perfect calibration in
each study, we would not expect to derive identical cosmological constraints from each
analysis.
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4.6 Summary

We conducted a cosmic shear analysis using the KiDS-1000-v2 catalogue, which is an
updated version of the public KiDS-1000(-v1) catalogue with respect to shear measure-
ments and calibration. Under the assumption of a spatially flat ACDM cosmological
model, we derived constraints on Sg = 0.776t%%2297t0(')9(?023 based on the MAP & PI-HPD
summary statistics. The second set of uncertainties were incorporated to account for the
systematic uncertainties within our shear calibration. The mean-marginal and maximum-
marginal values obtained from the same sampling chain are 0.765t%%2293 and 0.769t%%2279,
respectively. Our results are consistent with earlier results from KiDS-1000-v1 and other
contemporary weak lensing surveys, but show a ~2.30" level of tension with the Planck
cosmic microwave background constraints.

The main improvements in our analysis, relative to the KiDS-1000-v1 cosmic shear
analyses, are attributed to the enhanced cosmic shear measurement and calibration.
These enhancements were achieved through the updated version of the lensfit shape
measurement code, a new empirical correction scheme for PSF contamination, and the
newly developed SKiLLS multi-band image simulations, as detailed in L23. We verified
the reliability of the new measurement via a series of catalogue-level null tests proposed
by Giblin et al. (2021). The results indicate that the KiDS-1000-v2 catalogue shows
overall better control over measurement systematics compared to the KiDS-1000-v1
catalogues. This improvement in reducing measurement systematics assists in reducing
noise in small scale measurements, thereby enhancing the robustness of our cosmological
parameter constraints against varying scale cut choices.

Our methodology for shear calibration largely aligns with the one detailed in L23,
where we account for higher-order blending effects that arise when galaxies from different
redshifts are blended, as well as the uncertainties in PSF modelling. However, when
comparing the outcomes from the shear calibration with and without these higher-order
adjustments, we found that these effects have a negligible impact on the present weak
lensing analysis, a conclusion that is in line with the findings of Amon et al. (2022).

We recommend treating the statistical and systematic uncertainties from the shear
calibration separately, given their distinct origins. The statistical uncertainties, which are
determined by the simulation volume, can be reduced and are readily incorporated into
the covariance matrix used for cosmological inference. On the other hand, systematic
uncertainties, associated with the realism of image simulations and sensitivity of the
shape measurement algorithm, can be more effectively addressed when considered as
residual shear biases post-calibration. Assuming these residual shear biases are small, a
forward modelling approach, combined with a local minimisation method, can be used to
estimate their impact on the final parameter constraints. In our analysis, these additional
systematic uncertainties contribute roughly 8% of the final uncertainty on Ss. However,
ongoing efforts to enhance shear measurement and calibration, such as increasing the
realism of image simulations through Monte-Carlo Control Loops (Refregier & Amara
2014) and leveraging new techniques like METACALIBRATION/METADETECTION (Huff &
Mandelbaum 2017; Sheldon & Huff 2017; Sheldon et al. 2020; Hoekstra et al. 2021) to
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improve measurement robustness against underlying sample properties, may well lead to
a reduction in these additional systematic uncertainties.

In our fiducial analysis, we opted for a redshift-independent NLA model with a
narrow flat prior for the IA amplitude parameter, A1, motivated by the work of Fortuna
et al. (2021a). However, we also investigated two alternative scenarios: one with a
broad Aja prior for the redshift-independent NLA model, echoing the KiDS-1000-v1
analysis by A21, and the other, the NLA-z variant, allowing for redshift evolution of
the IA amplitude, as per the recent joint DES Y3+KiDS-1000 cosmic shear analysis
(DK23). In all three scenarios, we found fully consistent constraints for Sg and Aja,
indicating that the impact of the variations among these scenarios is negligible. To
better understand the IA signals and their impact on cosmic shear analyses, future tests
need to implement more substantial variations in IA models, for instance, the halo
model formalism introduced by Fortuna et al. (2021a). Such exploration would not
only enhance our understanding of the measured IA signals, but also help mitigate
correlations between nuisance parameters, thereby improving the precision of future
cosmic shear analyses.
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4.A Shear bias in two-point statistics

When calibrating the shear measurements in the two-point correlation function, it is
usually assumed that the correlations involving the shear bias can be ignored, which
includes correlations between different tomographic and spatial angular bins. This
simplification leads to the following relationship between the true correlation function
of cosmic shear in tomographic bins i, j, denoted as &'/, and the measured signal £/

ET(0) = (7(0') 3/ (6’ +6))
=([1+m" ()] [L+m! (8’ +0)] y'(6') ¥/ (' + )
=([1+m"(6")] [L+m! (8’ +0)]) £7(0)
~ (1+mi) (1+mi) £9(0)

4.4)

where m’ is estimated by averaging over all sources in a given tomographic bin 7, and
we use {-) to denote the correlation function. We also assumed that the shear bias is
independent of the underlying shear to simplify the equation. The result of Eq. (4.4)
allows us to average the multiplicative biases over all the galaxies in a given tomographic
bin to mitigate the individual noisy bias estimation.

However, in principle, the shear bias can be scale dependent due to spatial fluctuations
in source density (e.g. Samuroff et al. 2018). With SKiLLS, we can directly examine
these correlations by measuring the shear bias in the two-point estimators. We measured
the shear correlation function in the SKiLLS mock catalogue using Eq. (4.2). Since
we know the true £/ (9) = yiznput in simulations, where yinpu is the amplitude of the
constant input shear, we can estimate the shear bias in the two-point correlation function
directly by comparing the measured £’ to the input &’ following Eq. (4.4).

Figure 4.9 shows the difference between the shear biases with and without considering
its correlations, defined as Amg = ([1+m'(0")] [1+m/ (6’ +6)]) — (1 +%) (1 +W).
It shows that the difference is negligible across all scales and tomographic bins, in
agreement with the statistical uncertainties of our shear calibration, which are represented
by the shaded regions. These findings confirm that we can neglect the correlations
between shear biases in the current KiDS weak lensing analysis.

4.B SOM redshift calibration

This appendix provides information on the redshift calibration reference sample and
SOM configurations used in our analysis. For a more comprehensive overview and
validation of the SOM redshift calibration method in the KiDS analysis, we refer to
Wright et al. (2020b), Hildebrandt et al. (2021) and vdB22.

We employed the fiducial spectroscopic sample described in vdB22 as our calibration
reference sample. This sample comprises spectroscopic redshift estimates (spec-zs)
from various spectroscopic surveys that overlap with KiDS fields, enabling us to assign
KiDS photometric measurements to objects in the reference sample. In cases where an
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Figure 4.9: Two-point correlations between the multiplicative shear biases. The
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correlation is estimated as Amg = & /yinput —(1+m') (1+m/). The 15 panels

represent the different combinations of the five redshift bins utilised in our cosmic shear

analysis. The shaded regions within each panel denote the statistical uncertainties of our

shear calibration for each tomographic bin, as outlined in Table 4.1.

object had multiple spectroscopic measurements, vdB22 defined a specific hierarchy
to select the most reliable redshift estimates based on the quality of the measurements.
For further details on the adopted spectroscopic samples and the compilation procedure,
readers are referred to Appendix A of vdB22.

For our calibration, we used a 101 x 101 hexagonal SOM trained on the 7-band magni-
tude and 36 colours derived from the PSF-matched, list-driven nine-band ugriZYJHK
photometry from the KiDS+VIKING surveys. This SOM is identical to the fiducial
SOM constructed in vdB22. We segregated the reference and target samples into the
trained SOM cells separately for each tomographic bin, allowing us to create comparable
groupings between the spectroscopic and photometric sources in each bin. During
this process, we further categorised the original SOM cells using a hierarchical cluster
analysis implemented by the ‘hclust’ function within the R Stats Package!? to increase
the number of galaxies per grouping. We adopted the same number of clusters per

2https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
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bin (4000, 2200, 2800, 4200, and 2000) as Wright et al. 2020b, who determined these
numbers using simulations produced by van den Busch et al. (2020).

To mitigate the effects of photometric noise and the incompleteness of the reference
sample, we applied an additional selection step to the SOM groupings. We excluded any
grouping where the mean spectroscopic redshift of the reference sample Zgpec and the
mean photometric redshift of the target sample zg exhibited a significant discrepancy,
defined as |Zspec — ZB| > 50 mad. Here, oinaq represents the normalised median absolute
deviation of all SOM groupings, which we calculated to be 0.122 in our case. This step
allowed us to define the KiDS ‘gold’ sample, which we used to compute the redshift
distributions and perform the cosmic shear analysis.

4.C Systematic uncertainties from the shear calibration

In this appendix, we outline our approach to address the systematic uncertainties arising
from shear calibration. Our methodology involves two primary steps: In Sect. 4.C.1,
we quantify the potential residual biases after implementing our simulation-based shear
calibration. In Sect. 4.C.2, we propagate these systematic uncertainties into the final
uncertainties of the estimated cosmological parameters.

We propose a separate accounting of the shear calibration uncertainties, as it is
considered more accurate and informative than the traditional approach, which uses
nominal shear calibration uncertainties that are deliberately overestimated to encompass
potential systematic uncertainties arising from shear calibration. Our approach clearly
illustrates the extent to which the final cosmological parameters of interest are influenced
by these systematic uncertainties from shear calibration.

Furthermore, as mentioned in Sect. 4.3.2, these systematic uncertainties have funda-
mentally different origins from the statistical uncertainties incorporated in the covariance
matrix. They represent the fundamental limitations of current simulation-based shear
calibration methods. The limitations inherent in these systematic uncertainties cannot
be eliminated by merely increasing the scale of image simulations. However they
can be mitigated by empirically enhancing the realism of the image simulations, for
example, using the Monte-Carlo Control Loop method (Refregier & Amara 2014), or by
improving the robustness of the shear measurement algorithm, such as the METACALI-
BRATION/METADETECTION method (Huff & Mandelbaum 2017; Sheldon & Huff 2017;
Sheldon et al. 2020; Hoekstra et al. 2021).

4.C.1 Quantifying residual shear biases with sensitivity analysis

Residual biases may persist after simulation-based shear calibration due to imperfect
alignment between simulations and data, as elucidated by K19. These discrepancies pose
challenges for shear calibration methods dependent on image simulations and underscore
the need for re-weighting simulations to more closely align with the data. However,
given that intrinsic galaxy properties in real data are unknown, this re-weighting process
relies on noisy measured properties, rendering it vulnerable to calibration selection
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Figure 4.10: Changes in input morphological parameter values for assessing residual
biases after simulation-based shear calibration. From left to right, the order is half-light
radius, axis ratio, and Sérsic index. Top panels: The relationship between relative fitting
uncertainties and the r-band magnitude, as measured from the catalogues of Griffith
et al. (2012). The values shown are calculated using the median values of the binned
samples. Middle panels: The overall distributions of input morphological parameters.
Comparisons are drawn among the fiducial (grey shades), the test sample with input
values increased by an amount corresponding to the relative uncertainties (red lines), and
the test sample with input values decreased by the same amount of relative uncertainties
(blue lines). Bottom panels: The shifts in multiplicative biases in tomographic bins
resulting from changes in input morphological parameter values. Both fiducial and
test simulations are re-weighted using the same data set, with the method detailed in
Sect. 4.3.1.
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biases as discussed by FC17. The uncertainties linked with the measured properties
cause galaxies to be intermixed among defined bins, leading to the up-weighting or
down-weighting of certain galaxies. As a result, even if the re-weighted sample aligns
with the data in terms of the distribution of measured properties, it does not ensure
identicality in terms of intrinsic properties. In other words, shear biases can still vary
between two samples with identical distributions of apparent measured properties. Our
aim is to quantify these residual biases and incorporate them into the final uncertainties
of cosmological parameters.

The SKiLLS multi-band image simulations used in this analysis incorporate several
enhancements, informed by insights gathered from previous KiDS simulation stud-
ies (FC17, K19). These improvements include: reproducing variations in star density,
PSF, and noise background across the KiDS footprint; incorporating faint galaxies
down to an r-band magnitude of 27 to account for correlated noise from undetected
objects (e.g. Hoekstra et al. 2017); including realistic clustering from N-body simulations
to address blending effects (e.g. K19); and adopting an end-to-end approach for photo-z
estimation to account for photo-z measurement uncertainties. These improvements
augment the robustness of the shear biases estimated from SKiLLS against various
observational conditions.

In an investigation on the propagation of observational biases in shear surveys,
Kitching et al. (2019) demonstrated that the measured shear power spectrum is, to first
order, predominantly influenced by the mean of the multiplicative bias field across a
survey. This suggests that if the shear bias estimated from simulations accurately reflects
the mean value of the targeted sample, the shear calibration will be robust enough for
KiDS-like cosmic shear analyses. Therefore, we conclude that potential residual biases
related to observational conditions have negligible influence on our shear calibration,
and we focus on systematic uncertainties arising from galaxy morphology uncertainties,
specifically the assumed Sérsic profile and its parameters derived from Hubble Space
Telescope observations (Griffith et al. 2012). For a model-fitting shape measurement
code like lensfit, these galaxy morphology uncertainties are the main sources of residual
shear biases after implementing the simulation-based shear calibration.

The deviation from the Sérsic profile is challenging to address for the current SKiLLS
simulations, as our copula-based learning algorithm requires a parameterised model for
its application. However, the Sérsic model has been validated as sufficient for KiDS-like
analyses by K19, who used the same morphology catalogue as our work. Thus, we focus
on the measurement uncertainties of the Sérsic parameters: half-light radius, axis ratio,
and Sérsic index. We first examined the fitting uncertainties reported by Griffith et al.
(2012) to assess the accuracy of these parameters in our input catalogue. We found that
the median relative uncertainties for these parameters are a smooth function of galaxy
magnitude, as shown in the top panels of Fig. 4.10. This allows us to capture these
correlations through simple linear interpolation.

We interpreted these relative uncertainties as indicators of the systematic uncertainties
in our input morphology. We assumed the most extreme scenarios, in which these
measured statistical uncertainties are all caused by a coherent bias in the same direction.
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Consequently, we adjusted all galaxies in our input sample in the same direction, with
the amplitude of the adjustment determined based on their 7-band magnitude using a
simple linear interpolation of the measured median correlations. We examined shifts
towards both larger and smaller values and considered the three Sérsic parameters
separately. This resulted in six test simulations corresponding to the six different sets of
variations in input morphology parameter values. The input parameter distributions for
these test simulations, as shown in the middle panels of Fig. 4.10, are compared to the
distributions of the fiducial simulations. A clear shift of the entire distribution is evident,
suggesting that our test simulations represent the most extreme scenarios in which the
measured statistical uncertainties are coherently biased in the same direction, a situation
that is unlikely in reality. Therefore, the residual biases we identified from these test
simulations provide a conservative estimate.

We applied the same data analysis procedures to the test simulations as we did to the
fiducial simulations, including shear and redshift estimates. We also followed the same
re-weighting procedure for the test simulations as for the fiducial simulations, ensuring
that the calibration selection biases are also captured. The differences in shear biases
between these test simulations and our fiducial simulation are illustrated in the bottom
panels of Fig. 4.10. The small differences indicate that the residual shear biases, after
implementing our fiducial shear bias calibration, are insignificant.

4.C.2 Propagating residual shear biases with forward modelling

Accurately incorporating the systematic uncertainties from shear calibration into the
covariance matrix presents a challenge, as residual shear biases directly scale the data
vector, as shown in Eq. (4.4). A more direct approach is to assess the shift in the measured
shear signal caused by the residual shear biases and evaluate how these data vector
shifts influence the constrained cosmological parameters. Given the minor residual
shear biases illustrated in Fig. 4.10 and the unchanged covariance, it is not necessary
to reiterate the sampling of the posterior distributions for each shift. Instead, we can
implement a local minimisation algorithm to find nearby best-fit values for each shift,
using starting points from the fiducial sampling chain. The range of these new best-fit
values, each associated with a shift, indicates the additional systematic uncertainties
introduced by the residual shear biases.

This approach naturally integrates with our existing cosmological inference method,
as outlined in Sect. 4.4, which already requires an additional local optimisation step
to refine the best-fit values identified by the sampling code. We simply replicated this
optimisation step, using the original best-fit value as the starting point and the shifted
likelihood to determine the best-fit values associated with various alterations in measured
signals. The variability in these test best-fit values provides an expanded credible
region for the inferred parameters, thereby representing the systematic uncertainties
from shear calibration. We included these additional uncertainties when presenting the
point estimates of our primary parameters (see Sect. 4.5.2 for details).
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Figure 4.11: Posterior distributions of cosmological and baryonic parameters from
our fiducial analyses, as generated by PoLyCHorbD (black solid lines) and MULTINEST
(grey dashed lines). The contours represent the 68% and 95% credible intervals and are
smoothed using a Gaussian KDE with a bandwidth scaled by a factor of 1.5. We note
that Sg is the only parameter that our data robustly constrains.

4.D Contour plots for all free parameters

In this appendix, we provide two supplementary contour plots that display the posterior
distributions of all twelve free parameters from our fiducial analyses, as produced by
both the PoLyCHorD and MuLTINEST sampling codes. The overall concordance between
the results generated by PoLyCHorD and MULTINEST is evident.
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Figure 4.12: Posterior distributions of Sg and nuisance parameters from our fiducial
analyses, as generated by PoLyCHoRrD (black solid lines) and MuLTiNEsT (grey dashed
lines). The contours represent the 68% and 95% credible intervals and are smoothed
using a Gaussian KDE with a bandwidth scaled by a factor of 1.5. We note that the
Gaussian priors we have set, as outlined in Table 4.2, strongly influence the redshift
offset parameters. The dotted lines represent the central values of these Gaussian priors.
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Weak lensing mass-luminosity scaling
relations for galaxy groups: Testing the
robustness of the halo model formalism

ABSTRACT

Understanding the relation between baryonic observables and dark matter haloes is crucial
for studying galaxy formation and evolution, and for deriving accurate cosmological
constraints from galaxy surveys. In this chapter, we study this galaxy-halo connection
by conducting a galaxy-galaxy weak lensing analysis on galaxy groups identified by
the Galaxy and Mass Assembly survey, using galaxy shape catalogues from the fourth
data release of the Kilo-Degree Survey. We interpreted the measured signals using a
halo model formalism, employing a conditional luminosity function to describe the
connection between halos and galaxies. Consistent with previous work, we found that the
halo mass scales with the total r-band luminosity of the group according to a power law,
with a slope of 1.251%.11%. To assess the robustness of the current halo model formalism,
we conducted sensitivity analyses. These revealed that the treatment of mis-centring
in our model might introduce biases into the scaling relation constraints, which could
exceed acceptable limits for future, more precise weak lensing measurements. To
remedy this, it would be important to leverage insights from large-volume hydrodynamic
simulations to develop a more physical model.
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5.1 Introduction

According to the current standard model of cosmology, galaxies form within cold
dark matter haloes, which originate from small initial density perturbations amplified
by gravitational instability. This framework predicts a strong correlation between
galaxy properties and the properties of their host dark matter haloes (see Wechsler
& Tinker 2018, for a review). Dark matter haloes dominate the local gravitational
potential, impacting matter clustering and providing the environment for the formation
and evolution of galaxies (e.g. Blumenthal et al. 1984; Davis et al. 1985). On the flip side,
various baryonic processes associated with galaxy formation, particularly the energetic
feedback processes from supernovae (SNe) and active galactic nuclei (AGN), reshape
the matter distribution on small scales (e.g. van Daalen et al. 2011; Hellwing et al. 2016;
Chisari et al. 2018; van Daalen et al. 2020). Therefore, obtaining an accurate and precise
understanding of the galaxy-halo connection is not only essential for studying galaxy
formation and evolution, but also crucial for ensuring the accuracy of cosmological
constraints derived from observations of large-scale structures (e.g. Semboloni et al.
2011; Schneider et al. 2020; Castro et al. 2021; Debackere et al. 2021).

Given that dark matter haloes typically host multiple galaxies, catalogues of galaxy
groups and clusters are important in studying the galaxy-halo connection. Although
massive galaxy clusters serve as a powerful tool for constraining cosmological models
(see Allen et al. 2011, for a review), they are relatively rare and represent extreme
conditions. On the other hand, galaxy groups, which host the majority of present-day
galaxies and a significant portion of baryonic matter, offer a more representative view of
galaxy formation (e.g. Robotham et al. 2011). They also contribute significantly to the
cosmic shear signal (e.g. Semboloni et al. 2011; Debackere et al. 2020). Moreover, the
gravitational binding energy of galaxy groups is comparable to the energy released by
feedback processes from SNe and AGN, making galaxy groups particularly valuable
for studying the impact of baryonic feedback (e.g. McCarthy et al. 2010; Kettula et al.
2015).

However, the robust identification of galaxy groups is a complex task that requires
spectroscopic surveys with high spatial and redshift completeness. The Galaxy and Mass
Assembly project (GAMA, Driver et al. 2011) represents one such effort. Achieving a 95
per cent spectroscopic completeness down to the r-band magnitude of 19.65 and covering
approximately 250 deg? of sky area, GAMA currently offers the highest available redshift
density over such an extensive area (Driver et al. 2022). As a result, it produced a reliable
galaxy group catalogue with accurate estimations of group properties (Robotham et al.
2011).

The next challenge lies in measuring the dark matter properties of galaxy groups.
This complexity becomes evident even when estimating basic properties like the mass
of the dark matter haloes. For massive galaxy clusters, the X-ray measurement of the
intracluster medium is commonly used for estimating the masses of individual clusters,
under the assumption of hydrostatic equilibrium (see Ettori et al. 2013, for a review).
However, when this method is applied to galaxy groups, its effectiveness diminishes
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significantly due to their faint X-ray signals (e.g. Eckmiller et al. 2011; Pop et al. 2022;
Bahar et al. 2022). Furthermore, various baryonic processes, including cooling, star
formation, and feedback processes, can cause deviation from hydrostatic equilibrium,
biasing the mass estimation that are based on this technique (e.g. Rasia et al. 2006; Biffi
et al. 2016; Barnes et al. 2021; Logan et al. 2022).

Weak gravitational lensing provides an alternative approach to directly determining
halo mass (e.g. Tyson et al. 1990; Hoekstra et al. 2001; Mandelbaum et al. 2006;
Leauthaud et al. 2010; Hudson et al. 2015; Zacharegkas et al. 2022). It measures the
subtle yet coherent distortions in the shapes of background galaxies, caused by the
gravitational field of a foreground lens (see Bartelmann & Schneider 2001, for a review).
These distortions directly trace the matter distributions in the foreground lenses, enabling
the inference of total halo mass without requiring assumptions about their dynamical
state.

However, the weak lensing signals produced by individual galaxy groups have low
signal-to-noise ratios, which limits the precision of mass determinations for individual
groups. To overcome this, we typically use an averaged measure from a collection of
galaxy groups, which are selected and stacked based on narrowly binned observable
properties. This method enables us to create a statistical description of the scaling
relation between these observable properties and the masses of dark matter haloes
(e.g. Viola et al. 2015; Rana et al. 2022).

To interpret stacked weak lensing measurements, we need a robust statistical model.
The halo model combined with halo occupation statistics offers such a theoretical
framework (e.g. Seljak 2000; Cooray & Sheth 2002; van den Bosch et al. 2013; Berlind
& Weinberg 2002; Yang et al. 2003; Vale & Ostriker 2004; Cooray 2006). This
approach statistically describes the properties of dark matter haloes and how galaxies
inhabit them, thus creating a link between the underlying matter distributions and the
statistical measures of weak lensing signals. In practice, the halo model contains several
theoretically motivated or empirically required components, which are not always well
constrained by the data. Combined with the intricate interplay and degeneracy among
various parameters, this makes the selection of appropriate priors and interpretation of
the parameters for the halo model a non-trivial task.

In this chapter, we study the scaling relation between group luminosity and halo
mass, and assess the robustness of the current halo model formalism. We measure
the weak lensing signals around galaxy groups identified by the GAMA survey, using
the galaxy shape catalogue from the Kilo-Degree Survey (KiDS, de Jong et al. 2013;
Kuijken et al. 2015). With the complete coverage of the three equatorial GAMA fields
provided by the fourth data release of KiDS (KiDS-DR4, Kuijken et al. 2019; Giblin
et al. 2021), our analysis has nearly double the sample volume compared to Viola et al.
(2015). Moreover, we update the empirical modelling approach used by previous studies
by adopting a more theoretically driven conditional luminosity function (e.g. Yang et al.
2003; Vale & Ostriker 2004; Cooray 2006). We evaluate the robustness of our current
halo model framework by investigating its sensitivity to various adjustments in model
setups. These sensitivity tests help identify crucial model ingredients and guide future
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improvements. Considering the increased statistical power of the measured signals, such
exploration and future enhancement of our current model are deemed necessary.

The rest of this chapter is structured as follows: Section 5.2 provides an overview
of the data used in our analysis. Section 5.3 describes the measurements of weak
lensing signals and the associated covariance matrix. The current modelling approach is
introduced in Sect. 5.4, and the results derived from it are presented in Sect. 5.5. The
sensitivity tests are discussed in Sect. 5.6. Finally, we conclude the chapter in Sect. 5.7.
Throughout this chapter, we adopt a spatially flat A cold dark matter (ACDM) model,
with parameters constrained by Planck Collaboration et al. (2020), for any calculations
that require a cosmological framework: Qp = 0.3158, og = 0.8120, ng = 0.96605,
Qp, =0.04939, and i = 0.6732. When we report values that are dependent on Hubble’s
constant, Hy, we include this dependency via & = Hy/100 km s~' Mpc~!, which
facilitates comparison of results derived from different surveys and simulations.

5.2 Data

The data for our analysis originate from two surveys: the GAMA survey, which produced
the galaxy group catalogue including baryonic observables such as stellar mass and
luminosity; and the KiDS survey, which provided the shape measurements of background
galaxies. In this section, we provide a concise overview of the catalogues used in our
study. For further technical details, we direct interested readers to the relevant data
release papers.

5.2.1 Lenses: GAMA groups

GAMAA is a high-density, high-completeness spectroscopic survey conducted using the
AAOmega instrument on the Anglo-Australian Telescope (Driver et al. 2011). Our
analysis involves data from three equatorial fields of the GAMA 1I phase (G09, G12,
G15), each covering a sky area of 60 square degrees (Liske et al. 2015). The GAMA
data in these fields have a spectroscopic completeness of approximately 98 per cent for
galaxies within the observed magnitude limit of » < 19.8. In particular, we use three
key GAMA products: the G3C group catalogue! (version 10, Robotham et al. 2011), the
StellarMassesLambdar catalogue? (version 24, Taylor et al. 2011), and the random
catalogue3 (version 2, Farrow et al. 2015).

The G3C group catalogue (version 10) consists of 26 194 groups identified using
a friends-of-friends (FoF) algorithm. This method establishes connections between
galaxies based on their three-dimensional separations. The algorithm has been validated
on mock catalogues derived from semi-analytic simulations and has been found robust
against outliers and linking errors. In our study, we only consider groups with a minimum
of five identified members to reduce the impact of interlopers (Robotham et al. 2011).

lwww . gama- survey.org/dr4/schema/dmu.php?id=115
2www . gama- survey .org/dr4/schema/dmu.php?id=1010
3www . gama-survey.org/dr4/schema/dmu.php?id=109


www.gama-survey.org/dr4/schema/dmu.php?id=115
www.gama-survey.org/dr4/schema/dmu.php?id=1010
www.gama-survey.org/dr4/schema/dmu.php?id=109
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After applying this selection, we are left with a total of 2752 groups.

In our analysis, we consider the Brightest Cluster/group Galaxy (BCG) as the
central galaxy. Another commonly used method for selecting the central galaxy involves
iteratively removing group members that are furthest from the group’s centre of light.
However, Robotham et al. (2011) found that, for groups with more than five members,
this iterative procedure converges on the BCG 95% of the time. For weak lensing
analyses, the subtle difference between these two methods becomes even more statistically
negligible, as illustrated in Appendix A of Viola et al. (2015).

The stellar masses of the BCGs are obtained from the StellarMassesLambdar
catalogue (version 24). It estimates galaxy stellar masses using stellar population
synthesis models from Bruzual & Charlot (2003), assuming a Chabrier (2003) initial
mass function. The model fits are applied over a fixed rest-frame wavelength range
(300 — 11000 ) using matched aperture photometry derived from the Lambda Adaptive
Multi-Band Deblending Algorithm in R (LAMBDAR, Wright et al. 2016). We utilise
the logmstar value from the catalogue, which represents the total mass of all luminous
material and remnants, but excluding mass recycled back into the interstellar medium.
We do not correct the aperture-photometry-based stellar mass, as the flux-based scaling
factor has been removed from the latest GAMA stellar mass catalogue, and not all
galaxies in the GAMA survey have an accurate total flux estimation.

The GAMA random catalogue (version 2) is employed in our analysis to quantify
additive shear biases in the weak lensing signals. This catalogue comprises randomly
distributed points, designed to reflect the same selection function as the main spectro-
scopic survey. For our analysis, we randomly select 1 million points from this catalogue
for each of the GAMA fields under consideration. Since these random points do not
correspond to any actual matter distribution in the field, performing equivalent weak
lensing measurements around them illuminates potential systematic errors in our process.

5.2.2 Sources: KiDS galaxies

KiDS is a wide-field imaging survey, specifically designed to measure weak gravitational
lensing effects (de Jong et al. 2013; Kuijken et al. 2015). It spans 1350 square degrees
of the sky, with optical images in the ugri bands taken from the ESO VLT Survey
Telescope. Among these, the r-band images, offering the highest imaging quality, are
used for measuring galaxy shapes. In collaboration with the VISTA Kilo-degree INfrared
Galaxy survey (VIKING, Edge et al. 2013) using the nearby ESO VISTA telescope, the
KiDS shear catalogue also incorporates photometry from five ZYJH K near-infrared
bands. This additional data significantly enhances the accuracy of photometric redshift
estimates.

For our analysis, we employ the public KiDS-1000 shear catalogue from the fourth
data release of KiDS (Kuijken et al. 2019; Giblin et al. 2021). This catalogue fully
covers the three equatorial fields of GAMA, as illustrated in Fig. 5.1. Thanks to this
complete coverage, we are now able to measure weak lensing signals around all 2752
selected GAMA groups, approximately doubling the number used in previous similar
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Figure 5.1: KiDS-DR4 coverage across the three equatorial GAMA fields (G09, G12,
G15). The grey boxes represent KiDS tile images, each covering 1 square degree. The
red circles indicate the selected GAMA groups, each consisting of at least five members.
The size of these circles corresponds to the logarithm of the group richness. With the
KiDS-DR4 data, we have achieved complete coverage of weak lensing measurements
across the three equatorial GAMA fields.

analyses by Viola et al. (2015) and Rana et al. (2022).

The galaxy shapes in the KiDS-1000 catalogue are measured using the lensfit
code (Miller et al. 2013; Fenech Conti et al. 2017) applied to the r-band images.
These shear measurements are further calibrated using image simulations developed by
Kannawadi et al. (2019). The photometric redshift estimates are derived from nine-band
photometry using the Bpz code (Benitez 2000), and are calibrated with a spectroscopic
reference sample as detailed in Hildebrandt et al. (2021).

5.3 Galaxy-galaxy weak lensing signals

The lensing effect introduces coherent tangential distortions in the apparent shapes of
background galaxies. These distortions, known as the tangential shear, vy, correlate
with the projected mass density contrast of the foreground lens* (e.g. Bartelmann &
Schneider 2001):

AZ(R) = Z(< R) - Z(R) = Zani(R) (5.1

where the mass contrast, AX(R), is also commonly referred to as the excess surface
density (ESD). The X(R) represents the local surface mass density at a projected
comoving separation, R, between the lens and source, while £(< R) denotes the mean
surface density within this radius. X, known as the critical surface density, serves as a
measure of lensing efficiency and is defined as

s = c? D(zs)
“ " 47G D(2)D(21, z)

(5.2)

where G and ¢ denote the gravitational constant and the speed of light, respectively.
D(z) is the angular diameter distance at redshift z.

4Throughout this work, we do not distinguish between the original shear y and the reduced shear
g = v/(1 —«), given that the convergence « is much less than one in the weak lensing regime.
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Therefore, by measuring the ESD profile for foreground objects, we can infer their
masses, assuming a certain density profile for the object. In this section, we detail
how we estimate ESD for the selected GAMA galaxy groups from the KiDS shear
measurements (Sect. 5.3.1) and the corresponding covariance matrix necessary for
modelling (Sect. 5.3.2).

5.3.1 ESD measurements

We estimated the tangential shear by calculating the azimuthal average of the tangential
projection, €, of the lensfit measured ellipticities of the KiDS source galaxies. This is
—cos(2¢) —sin(2¢)

defined as
€t . €]
€x sin(2¢) —cos(2¢)| |e

where ¢ denotes the relative position angle of the source in relation to the lens. The
azimuthal average of the cross projection, denoted as €, can serve as a useful indicator of
potential systematic contamination, given that the lensing effect only induces tangential
shear to the leading order.

To account for both measurement and geometric effects, a weight was assigned to
each lens-source pair during the computation of the azimuthal average. This weight is
given by

(5.3)

Wis = wg .2 (5.4)

cr,l ?

where wy is the lensfit weight, which accounts for shape measurement uncertainties,
and icr,l is the ‘effective critical surface density’. The latter is used to down-weight
lens-source pairs that are close in redshift and thus carry fewer lensing signals. This
‘effective critical surface density’ was calculated for each lens, by integrating the
redshift distribution of the source galaxies behind the given lens to statistically represent
the source distance. This approach is designed to mitigate the potential impact of
uncertainties in the source redshift estimates. Following Eq. (5.2), the ‘effective critical
surface density’ was calculated as

g-1_4nG - D(z, zs)

-1
= ——D(z1) dz;
crl c? 2+6 ’ D(zs)

n(z) , (5.5

where the source redshift distribution n(zs) was determined from a deep spectroscopic
reference catalogue that was re-weighted to closely match the KiDS-1000 sources (see
Hildebrandt et al. 2021 for details). Following Dvornik et al. (2017), we introduced a
redshift difference threshold, 6, = 0.2, to mitigate contamination from group members.
This redshift cutoff, zg > z; + §,, was applied to the source galaxies involved in the
calculation as well as to the reference spectroscopic sample used for determining the
source redshift distribution.

The median velocity dispersion of the GAMA galaxy groups used in our study
is ~300 km s~!, which is not massive enough for measuring lensing signals from
individual groups. Therefore, we used a stacking process to boost the signal-to-noise
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Figure 5.2: Distribution of the group total r-band luminosity underlying our binning
strategy for the measurement of stacked ESD profiles. The vertical lines represent the
boundaries of the bins, with their corresponding values detailed in Table 5.1. Objects
falling within the hatched regions are excluded from our stacked analyses.

ratio. Following Eq. (5.1) and considering the weighting scheme mentioned above, the
stacked ESD profile for an ensemble of galaxy groups can be estimated as

€ 2 1
AZ(R) _ [le Wis €t Zecr,l , (56)
le Wig 1+K
where the correction
K= 2V (5.7)
le Wis

accounts for the multiplicative shear biases in the /ensfit shape measurements. The
correction factor was derived from image simulations developed by Kannawadi et al.
(2019), who estimated an average m value for each redshift bin used in the KiDS-1000
cosmic shear analyses (Giblin et al. 2021; Asgari et al. 2021). We directly assigned these
average m values to the galaxies used in our analysis based on their redshift, ignoring
potential deviations in the galaxy size and signal-to-noise ratio distribution between
the samples selected for our analysis and those used in the KiDS-1000 cosmic shear
analyses. The overall correction factor is small, with K approximately equal to 0.001,
and remains independent of the angular scale at which it is computed.

The additive shear biases were addressed by conducting weak lensing measurements
around one million random points selected from the GAMA random catalogue (version
2, Farrow et al. 2015). These additive biases are both scale-dependent, with substantial
biases on scales larger than 14~ Mpc, and patch-dependent (see Appendix A of Dvornik
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Table 5.1: Summary of the binning limits, number of groups, mean redshift of the
groups, and the mean stellar mass of the BCGs for each bin used in the stacked ESD
measurements.

Observable Range Ngroups  Zmean Mffnc‘ean
Lgrp (104, 10.9] 628 0.12 10.59

(10.9,11.1] 477  0.17 10.79
(11.1, 11.3] 528  0.21 1091
(11.3,11.5] 432 026 11.00
(11.5,11.7] 312 029 11.08
(11.7,12.2] 267 032 11.18

The units for luminosity and stellar mass are given as log(Lgp/ [h~%Lo]) and
log(M,/[h~*Mg]), respectively.

et al. 2017). Thus, we performed the correction separately for three GAMA patches
(G9, G12, and G15). The overall corrections remain minor, with values at the sub-
percent level, attributable to the complete coverage of the GAMA fields by the KiDS
observations.

In our analysis, we divided the GAMA groups into six bins, based on their total
r-band luminosity (Lgp). We set lower and upper limits to exclude the tails of the
distributions, as demonstrated in Fig. 5.2. This approach helps to mitigate group
detection effects and prevents the estimates from being overly influenced by a small
number of outliers within each bin. The boundaries for each bin were chosen to maintain
similar signal-to-noise ratios across all bins in the measured ESDs. The statistical details
of our defined bins are outlined in Table 5.1.

We measured the ESD profiles over 10 logarithmically-spaced radial bins, within
a range of 0.03 to 2 ~~'Mpc. This range was determined by taking into account the
signal-to-noise ratio at larger separations and the blending effects at smaller ones. The
measured ESD profiles are illustrated in Fig. 5.3. The additive and multiplicative shear
biases present in the original measurements were corrected using methods discussed
earlier. The overall signal-to-noise ratios for the ESD measurements were found to be
approximately 27.

5.3.2 Covariance matrix estimation

The ellipticity measurements of source galaxies can be used multiple times for AX(R)
estimates across various radial bins and lenses, leading to correlations between the
stacked ESD estimates. To account for these correlations in our modelling, we employed
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Figure 5.3: Excess Surface Density (ESD) profiles for selected GAMA groups, binned
into six groups according to their total r-band luminosity (Lgy). The error bars
correspond to the square root of the covariance matrix’s diagonal elements. The black
lines depict the best-fit results obtained from our halo model, as detailed in Sect. 5.4.
The dark and light blue shaded regions represent the 68% and 95% credible intervals
of the fitting, respectively. The figure title shows the reduced y? value of the best-fit
results, calculated assuming 54 degrees of freedom (six independent fitting parameters
to 60 data points).

the covariance matrix estimation technique as developed by Viola et al. (2015). This
approach, proven valid in previous KiDS+GAMA analyses (e.g. Sifén et al. 2015;
Brouwer et al. 2016), takes into account the shape noise of source galaxies and
incorporates information about the survey geometry. However, it does not account for
cosmic variance. Viola et al. (2015) demonstrated that this simplification is valid for
measurements conducted within the range of R < 2k~ 'Mpc, which is consistent with
the range we adopt for our analysis.

5.4 Halo model and occupation statistics

From a statistical perspective, the projected mass surface density, £(R), of an ensemble
of lenses is related to the galaxy-matter cross-correlation function, &gy, (1), through the
Abel transform:

S(R) =2 pm /R dr [£an(r)+1] (5.8)

r
where we assume that the stacked density profile of the lenses is spherically symmetric.
This is a valid assumption, given that our measurements are derived from stacking data
from multiple lenses with varied orientations. Therefore, we can interpret the measured
AX(R) signals if we have a model to describe &gy (7). The halo model, complemented
by halo occupation statistics, offers such a theoretical framework (e.g. Seljak 2000;
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Cooray & Sheth 2002; Peacock & Smith 2000; Berlind & Weinberg 2002; Yang et al.
2003; van den Bosch et al. 2013).

In this section, we detail how we employ this framework to interpret our stacked
ESD measurements. We begin with a concise overview of the halo model formalism in
Sect. 5.4.1, largely adhering to the notations used by van den Bosch et al. (2013) and van
Uitert et al. (2016). Then, we specify our choice of the model ingredients in Sect. 5.4.2.
Our approach to halo occupation statistics is detailed in Sect. 5.4.3. Finally, we outline
our fitting procedure in Sect. 5.4.4.

5.4.1 Halo model formalism

The halo model assumes that all dark matter resides within virialised haloes, the sizes
of which are determined by a chosen overdensity threshold. In line with conventions
in weak lensing studies, we define this threshold such that the average density within a
certain radius is 200 times the mean density of the Universe, denoted as p,,. As a result,
the mass of a specific halo can be formulated as

4
R

My = =

00 5 7300 - (5.9)
Using a formalism that encapsulates the internal density profile of these haloes, such
as the widely used Navarro-Frenk-White (NFW) profile (Navarro et al. 1997), we can
describe the matter-matter power spectrum of the Universe, using a theoretical approach
based on the correlations between dark matter haloes (e.g. van den Bosch et al. 2013).

With a statistical understanding of how galaxies populate dark matter haloes, often
referred to as halo occupation statistics, we can extend the halo model framework to
include calculations for both the galaxy-galaxy power spectrum and the galaxy-matter
power spectrum. Using the notation of van den Bosch et al. (2013) and van Uitert et al.
(2016), we can concisely express the three types of power spectra as

Py (k) = P (k) + P2 (k) (5.10)

where
PR = [ aMy (ke M) H K M) () (5.11)

and

P (k) =/ dMny Hx(k, Mn1) nn(Mn,1)
(5.12)
/ dMno Hy(k, Mnp) nn(Mn1) Pn(k|Mp1, Mp2) .

The terms P;}; (k) and Pi}; (k), known as the one-halo and two-halo terms, describe the

correlations within a single halo and between different haloes, respectively. Here, k
represents the wavenumber, n, (M) denotes the halo mass function, and Py (k| My 1, My 2)
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stands for the halo power spectrum associated with the mass values My ;1 and My . This
spectrum serves as a biased tracer of the linear dark matter power spectrum Pi"(k):

P (k|M1, Mn2) = by(Mn1) bn(Mn2) PE(k), (5.13)

where by, (My,) refers to the large-scale halo bias. The subscripts, x and y, either refer to
‘g’ for galaxies or ‘m’ for matter, corresponding to different forms of H, (k, Mpy):

Ho(k, My) = ? i (k| My) (5.14)
. (gl M)
n
Hy(k, M) = —= D g (kM) . (5.15)
g

In these equations, iy, (k| My) describes the normalised density profile of dark matter
haloes in Fourier space. The term iig(k|My) describes the galaxy distributions within
the halo, and its form depends on the types of galaxies. The term (ng|My) refers to the
average number of galaxies that reside in a halo of mass My, i.e., the halo occupation
distribution (HOD), and 7 is the average number of galaxies integrated over all halo
masses, given by

ng = / dMy, <ng|Mh) np(My) . (5.16)

The desired galaxy-matter cross-correlation function, &g, is simply a Fourier
transform of the galaxy-dark matter power spectrum Py, (k):

sin(kr)

- k2. (5.17)

1 (o)
fgm(”) = m[} dk Pgm(k)

5.4.2 Model ingredients

For the internal density distribution of dark matter haloes, we adopted the Navarro-
Frenk-White (NFW, Navarro et al. 1997) profile, with a mass-concentration relation
from Dulffy et al. (2008):

) M, -0.081 o
cm = fo x10.14 (m) (1+2z1) , (5.18)
where f; is a scaling parameter, which we allowed to vary during the model fitting. The
redshift dependence in this equation was derived from the results of a high-resolution
N-body simulation conducted under the concordance ACDM cosmology (Bullock et al.
2001). Although more complex redshift dependencies are anticipated theoretically, they
predominantly apply to redshifts greater than one (e.g. Muifioz-Cuartas et al. 2011),
exceeding the highest lens redshift in our study.

To account for the mass contribution from central galaxies residing in the innermost
region of the dark matter halo, we incorporated a point mass into the NFW density
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profile. This mass was set to the mean stellar mass of the selected central galaxies for
each stacked bin (see Table 5.1). Considering the scales of our ESD measurements,
which range from 0.03 to 2 4~ Mpc, our analysis is not sensitive to the detailed matter
distributions within the innermost part of the dark matter halo.

For the halo mass function and the halo bias, we employed the calibrated fitting
functions from Tinker et al. (2010), who derived parameters from a series of cosmological
N-body simulations within the framework of the ACDM cosmology. Given that we fit
the ESD profiles up to 2.0 2~ 'Mpc, and that the halo bias only enters our calculations
via the two-halo term (as shown in Eq. 5.12), our analysis is not sensitive to the precise
form of the halo bias function given the current statistical uncertainties of the observed
signals.

If the central galaxy (or in our case, the BCG) resides exactly at the centre of its host
halo, the i, (k| M}) term shown in Eq. (5.15) would consistently equate to one. However,
previous studies showed that BCGs often do not perfectly trace the centre of their host
dark matter halos (e.g. Skibba et al. 2011; George et al. 2012; De Propris et al. 2021;
Ahad et al. 2023). We statistically modelled this mis-centring following Viola et al.
(2015) (also see Oguri & Takada 2011; More et al. 2015), with an equation:

1
ﬁg(k|Mh) =1 — Doff + Poft X €Xp [_5 k2 (rsRoﬁ')z] s (5-19)

where r, represents the scale radius of the halo, as described by the NFW profile. This
model assumes that a fraction pg of BCGs is mis-centred, with the normalised radial
distribution of these mis-centred galaxies relative to the true halo centre following a
Gaussian distribution with a width of rsRg. It is clear that setting either pog or Rog to
zero results in a model without mis-centring. In our current fiducial model, we treated
both pog and Ry as uninformative free parameters.

Although the incorporation of these two mis-centring parameters seems physically
well-motivated, the data might not fully comply with the idealised assumptions of this
model, which imply an isotropic random mis-identification of group centres leading to a
Gaussian radial distribution of mis-centred galaxies, and also presume perfect group
identification. For example, Ahad et al. (2023) found that line-of-sight projections,
which result in a discrepancy between the projected and intrinsic luminosity, account for
approximately half of the identified mis-centred groups in their simulations. Furthermore,
the GAMA group-finding algorithm is susceptible to aggregation and fragmentation
effects (see Appendix A of Jakobs et al. 2018). Aggregation refers to the phenomenon
where two smaller groups, located in close proximity and linked by an intermediate
galaxy, are identified as a single larger group. On the other hand, fragmentation occurs
when a single, intrinsically large group is identified as several smaller groups. According
to Ahad et al. (2023), the aggregation effects cause mis-centring in roughly 5% of their
sample. Further complicating the issue is the high degeneracy observed between the
mis-centring parameters and the concentration scaling parameter, f. (see Sect. 5.1.2 of
Viola et al. 2015). All these factors make the practical handling and interpretation of the
mis-centring parameters challenging. We assess the robustness of the constrained halo
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masses against various setups of mis-centring parameters to guide future improvements,
in Sect. 5.6.

5.4.3 Halo occupation statistics

To extend the halo model framework for interpreting the galaxy-matter power spectrum
used in the analysis of measured ESD signals (Eqs. 5.8 and 5.17), we require a formalism
to describe the term (ng|My) in Eq. (5.15). This term, often referred to as the halo
occupation statistics or the halo occupation distribution (HOD), can be addressed in
two ways. One approach involves directly constructing models to represent the average
number of galaxies or groups associated with a dark matter halo of mass My, (e.g. Berlind
& Weinberg 2002). Alternatively, we can use the conditional stellar mass or luminosity
function (CLF) to express the number density of galaxies or groups, based on their stellar
mass or luminosity, given a halo mass (e.g. Yang et al. 2003). In our analysis, we opt
for the latter methodology due to its direct connection to the relation between baryonic
observable properties and halo mass, which is the focus of our study. It is worth noting
that our CLF-based HOD model differs from the previous analysis by Viola et al. (2015),
who defined the HOD directly based on the average number of groups as a function of
halo mass.

In our fiducial model, we adopted a log-normal distribution to describe the group
luminosity distribution given a halo mass. This has proven to be a validated CLF for
central galaxy properties (e.g. Yang et al. 2008; Cacciato et al. 2009; van den Bosch
et al. 2013; van Uitert et al. 2016):

CI)(Lgrpwwh) =

(5.20)

2
20'L

1 exp | — (log Lgrp —log Lgrp,m)2
V27 In(10) op, Lerp

This function consists of two free parameters: the scatter o7, and the mean Lgp , for a
given halo mass My,. In our current model, we considered o7, as a halo mass-independent
free parameter, following van Uitert et al. (2016). For the mean Ly, m, we assumed a
power-law scaling relation between Lgp i and the halo mass My:

Lgrp,m ( Mh ) ay,

L ol [ — 5.21
105 h2Ly & \ 104 1 1M, (5:21)

where Cy, denotes the amplitude and ay, is the index. Both are free parameters in our
fitting process.

Under the assumption of sample completeness, which is valid given the high
completeness of the GAMA survey and our exclusion of distribution tails (see Fig. 5.2),
we can calculate the mean number of groups per specific observable bin as follows:

Lgrp,max
<ng|Mh> = / dLgrp q)(Lgrleh) s (5'22)
L,

grp,min
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Table 5.2: Free parameters in our fiducial model, including their priors and derived
constraints.

Parameter Prior Constraints
fe [0.2,3]  1.23*03%
Poft [0, 1] 0.50+0.08
Roft [0,3.5]  3.13*%37
oL [0.01,2]  0.07*%97
Cr [0, 3] 0.98+0:12
ar [0, 5] 0.80*0397

The parameters can be categorised into two main groups. The first group contains the
standard halo model components (Sect. 5.4.2), while the second group includes
parameters associated with the halo occupation statistics (Sect. 5.4.3). The reported
constraints correspond to the marginalised median values of the sampling, with the
uncertainties indicating the marginalised 68% credible intervals.

where Lgipmin and Lgpp max denote the lower and upper boundaries of the binning,
respectively, as detailed in Table 5.1. We assess the impact of potential sample
incompleteness in Sect. 5.6.

5.4.4 Model fitting

We fitted the aforementioned halo model to the stacked ESD measurements and
sampled the posterior space using the emcee code (Foreman-Mackey et al. 2013),
which implements the affine invariant Markov Chain Monte Carlo (MCMC) ensemble
sampler (Goodman & Weare 2010). The convergence of the MCMC chains is evaluated
using the integrated autocorrelation time (e.g. Goodman & Weare 2010). For the halo
model calculations requiring lens redshifts, we used the mean redshifts from each stacked
bin, as presented in Table 5.1. Our fiducial model incorporates six free parameters,
all assigned broad, uninformative priors. The ranges for these priors are detailed in
Table 5.2.

5.5 Results from the fiducial model

The best-fit results for the ESD profiles, along with their 68% and 95% credible intervals,
are illustrated in Fig. 5.3. The reduced best-fit y? value for our current fiducial model
is approximately 1.06, assuming independence among the six free parameters in the
model. This suggests a reasonable fit of our fiducial model to the data. The constraints
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on the model parameters are presented in Table 5.2 as median values derived from the
marginalised distributions, accompanied by their uncertainties representing the 68%
credible intervals. The corresponding posterior distributions of these parameters are
visualised as contour plots in Appendix 5.A.

5.5.1 Stacked halo masses

While our CLF-based halo model offers a direct estimation of the scaling relation
between stacked properties and halo mass, via Eq. (5.21), it is instructive to estimate the
average halo mass (My,) for each stacked bin. We can calculate this using the following
equation:

(M) = / dMy P (My) My, , (5.23)

where

Lgrp,max

7)(]Wh) = / dLgrp p(Mhngrp) s (5-24)
Lgrp.min

is an integral of the conditional halo mass distribution $ (Mp|Lg,p) for a given observable

value of Ly, which can be derived from the components of the halo model using Bayes’

theorem: O(Lor | M) (M)
h) nh(Mh
P (M| Lgrp) = il . , (5.25)
g

where ®(Lgp|My) is the CLF presented in Eq. (5.20), iy, is the halo mass function from
Tinker et al. (2010), and 7i, is the average number of galaxies, as defined in Eq. (5.16).

Figure 5.4 shows the inferred halo mass distributions and the corresponding average
halo mass for each stacked bin. To demonstrate the scatter in the sampled halo mass
distributions, we randomly selected 100 sets of model parameter values from the sample
space and plotted the corresponding distributions. The vertical lines in the figure
represent the median values of the estimated average halo masses, with the shaded
regions indicating the 68% credible intervals. Most of the sampled distributions exhibit
well-defined peaks around the median values of the estimated average halo masses. As
we move towards bins with higher observable values, the overall distribution shifts
towards larger halo mass values. This scaling relation is quantified by the two parameters
presented in the power-law scaling function of Eq. (5.21).

5.5.2 Group luminosity-halo mass relation

One key advantage of our CLF-based halo mass model, in contrast to the model employed
by Viola et al. (2015), is its ability to directly constrain the scaling relation between the
stacked properties and halo mass during the main sampling procedure. Given that the
scaling relation is a part of our CLF-based model (Eq. 5.21), it obviates the need for an
additional linear regression process performed on the estimated mean halo masses and
stacked observable values, which can be challenging due to correlated measurement
errors and intrinsic scatter in these averaged properties (e.g. Kelly 2007).



5.5. RESULTS FROM THE FIDUCIAL MODEL 163

log[ L/ (hLo)]
€(10.4, 10.9]

100_

10~/

100_

P(log Mh)

10—1_

(11.7, 12.2]

100_

10—1_

12 13 14 1512 3 14 15
log[My,/(h™Ma)]

Figure 5.4: Halo mass distributions and average halo masses for each stacked bin. Grey
lines illustrate the distributions derived from 100 randomly selected sets of parameter
values from the sampling. Orange dashed vertical lines denote the median values of the
estimated average halo masses, and the shaded regions represent the corresponding 68%
credible intervals. These average halo masses were calculated from the sampled halo
mass distributions, according to Eq. (5.23).
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Figure 5.5: Relation between the r-band luminosity of galaxy groups and their halo
masses, as determined from our weak lensing analysis. The orange line represents results
derived from the median values of the estimated parameters, with the shaded regions
illustrating the corresponding 68% credible intervals; the parameter values are provided
in Table 5.2. The black points represent the average halo masses calculated in Sect. 5.5.1,
with the error bars denoting the 68% credible intervals. The corresponding Lg, values
for these points are derived as the median values of each stacked bin, with error bars
denoting the 16th and 84th percentiles of the distribution within the bin. Results from
previous weak lensing analyses based on HSC data (Rana et al. 2022), the first KiDS
weak lensing data (Viola et al. 2015), and SDSS data (Han et al. 2015) are represented
by blue, green, and magenta points, respectively. We note that our scaling relation is
directly extracted from our CLF-based halo model, rather than fitted the estimated mean
halo mass values, so the orange line is not expected to align perfectly with the black
points, due to different marginalisations of the high-dimensional parameter space.

Figure 5.5 presents the scaling relation between the r-band luminosity of galaxy
groups and their halo masses, as estimated from our current halo model. It also compares
these results with mean halo masses estimated in Sect. 5.5.1 and from previous weak
lensing analyses of the GAMA group sample, albeit with different source samples. These
analyses include recent studies based on weak lensing measurements from the Subaru
Hyper Suprime-Cam (HSC) survey (Rana et al. 2022), the first KiDS weak lensing
data (Viola et al. 2015), and the Sloan Digital Sky Survey (SDSS, Han et al. 2015).
Considering the differences in data sets and modelling procedures, the remarkable
consistency between the various analyses confirms the overall validity of our new
CLF-based halo model for galaxy group studies.
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5.6 Model sensitivity analyses

While our current halo model generally offers a good fit to the data, as evidenced by
a reduced y? value of 1.06 for the best-fit model, the physical interpretation of the
constrained parameters can be complex. This complexity arises primarily from the
idealised assumptions inherent in our model, which may not always align with the
realities of the data, particularly given the complexity of the group-finding procedure not
accounted for in our current idealised model. Furthermore, the degeneracy among model
parameters could introduce bias into the estimation of certain parameters when derived
from projected marginalisations. These factors complicate the interpretation of our
estimated model parameters and prompt questions about the robustness of our scaling
relation estimates. Acknowledging these challenges, we perform sensitivity analyses in
this section, focusing on two key areas of uncertainty: selection effects (Sect. 5.6.1) and
mis-centring parameters (Sect. 5.6.2). These tests serve to assess not only the robustness
of our current model but also to provide valuable insights for potential improvements in
our future modelling efforts.

5.6.1 Sensitivity to the incompleteness

An important assumption in our CLF-based halo model is that the analysed sample
is complete, implying that every halo with a specific halo mass My has a detected
central galaxy. This assumption facilitates the integration of Eq. (5.22) to estimate the
average number of galaxies for a given halo mass. Even though this is a reasonable
assumption for the highly complete GAMA sample, it is worth investigating potential
sample incompleteness. To address this, we introduced an incompleteness function into
the integration to account for cases where certain haloes might not include a detected
central galaxy:

Legrpmax
<ng|Mh> = / dLgrp q)(Lgrp|Mh) Fi(My) , (5.26)
L

grp,min

where the incompleteness function Fy(My,) is defined as:

1
Fi(My) = 5 (5.27)

1+erf(lOth —logMerf)] ’

Oerf

with erf(My) being an error function with a characteristic mass of M and scatter
oerf. This incompleteness model assumes that the sample incompleteness increases or
decreases monotonically with respect to the halo mass, an approach similar to those
used by van Uitert et al. (2016) and Tinker et al. (2013).

This test model comprises eight free parameters. Assuming parameter independence,
we obtained a reduced y? value of 1.04, which marginally surpasses the 1.06 derived
from our fiducial six-parameter model. Upon visualising the fitted ESD profiles, we
observed that most improvements occurred in the lowest luminosity bin, which is
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Figure 5.6: Shifts in the constrained average halo masses and scaling relation resulting
from our sensitivity analyses concerning sample incompleteness and mis-centring. The
shaded regions represent the 68% credible regions of the fiducial model’s constraints
on the scaling relation between the halo mass and group r-band luminosity. The points
indicate the shifts in the constrained average halo masses, while the lines denote the
shifts in the constrained scaling relations. The colour green corresponds to results from
the incompleteness test (Sect. 5.6.1), whereas magenta and cyan represent results from
the two mis-centring-related test models (Sect. 5.6.2). Results from the test model with
fixed pog = 1 are not shown due to the lack of convergence.

expected for a flux-limited survey. However, when examining the posterior distributions,
we found that the two incompleteness parameters are not constrained by the current
data. Furthermore, the average halo mass estimation and the scaling relation inferred
from this more complicated model closely align with the results from the fiducial model,
as illustrated in Fig. 5.6. Following the principle of Occam’s Razor, we conclude that
introducing two more incompleteness parameters into our current model is not necessary.

5.6.2 Sensitivity to the mis-centring parameters

As previously noted in Sect. 5.4.2, the causes of mis-centring in a group sample are
more intricate than what the idealised Gaussian distribution-based mis-centring model
accounts for. The simplicity of our model complicates the interpretation of the estimated
mis-centring parameters. This complication is further exacerbated by their degeneracy
with the concentration parameter, as demonstrated in the projected contour plot of Fig. 5.7.
Moreover, the posterior distribution of R,g shows a tendency to lean towards the higher
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limit of our already broad priors, suggesting that the simple Gaussian distribution model
has difficulty describing the complex mis-centring in our data. This raises questions
regarding its effect on our halo mass estimates and scaling relation constraints.

Therefore, we performed sensitivity analyses by varying the configurations of the
mis-centring parameters within the framework of the current model. The exploration
of more realistic mis-centring models will be left to our future analyses. We tested
three alternate setups of the mis-centring parameters: fixing pog = 1 and only varying
Rof to examine if a single Gaussian distribution suffices for describing the central
galaxy position distribution of the entire sample; fixing Ror = 1 and only varying
Poft to explore if altering the mis-centred fraction alone can adequately describe the
mis-centring scenario; and setting both p.g and Rog to zero to ascertain whether the
mis-centring effect can be ignored in the current analysis.

We first checked the posterior distributions of test runs and compared them to
those from the fiducial model, as shown in Fig. 5.7. Except for the case where we
fix posr = 1, the other two alternatives yield well-constrained model parameters. The
lack of convergence in the case with fixed pog = 1 indicates that a single Gaussian
distribution fails to describe the central galaxy position distribution of the entire sample,
suggesting that most central galaxies remain close to the group’s true centre and thus
follow a much sharper distribution. We also found that changes in the mis-centring
parameters affect the constraints on the concentration parameter f; due to their degeneracy.
Specifically, downplaying or disregarding mis-centring effects drives f. towards lower
values, warranting caution in interpreting the concentration parameter constrained in the
current model, a finding consistent with Viola et al. (2015).

Next, we examined the fitted ESD profiles and the best-fit x> values. The test models
yielded slightly sub-optimal fits, with reduced y? values of 1.34 and 1.35 for the cases
with Rog = 1 and without mis-centring, respectively. Upon visually inspecting the
fitted ESD profiles, we found that the noticeable degradation in fit occurs in the small
separation measurements in the higher L, bins. These results imply that a model
lacking proper consideration for the mis-centring of selected central galaxies would
struggle to accurately describe the innermost regions of the measured ESD signals.

Finally, we investigated the impact of these test models on the estimations of average
halo mass and scaling relations. As illustrated in Fig. 5.6, alterations in the setups of
the mis-centring parameters affect both constraints, particularly at the high mass end.
Interestingly, the scaling relation, directly constrained by our CLF-based halo model,
demonstrates a greater robustness against changes in the mis-centring parameters. The
most significant shift remains within the 68% credible regions of the fiducial constraints.
In contrast, the average halo mass exhibits shifts that slightly exceed the 68% credible
regions of the fiducial constraints. This outcome lends additional credence to our
approach of directly constraining the scaling relations from the model, as opposed to
fitting them to the measured average values.

These tests, which focus on the mis-centring parameters, underscore the importance
of properly accounting for mis-centring within the group sample. Our current fiducial
model appears to outperform all test models due to its better fit to the measured signals.
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However, the impact on the scaling relation constraints from these model variations is
concerning for upcoming, more precise measurements, and underscores the need for the
development of a more sophisticated mis-centring model. We plan to address this in our
future analyses, using hydrodynamic simulations as a tool for model refinement.

5.7 Conclusions

We conducted a galaxy-galaxy weak lensing analysis using the KiDS-1000 data, aiming
to constrain the scaling relation between the group luminosity and their halo masses for
galaxy groups identified by GAMA. The size of our sample is nearly double of that used
in the similar work conducted by Viola et al. (2015). Furthermore, we updated their
empirical Halo Occupation Distribution (HOD) model with a more physically motivated
Conditional Luminosity Function (CLF, Yang et al. 2003; Vale & Ostriker 2004; Cooray
2006). Our new CLF-based halo model incorporates six free parameters, compared
to the eleven free parameters in the previous model. Most importantly, it allows for
direct sampling of the scaling relation parameters during the main modelling procedure,
thereby bypassing the need for an additional regression process based on the average
halo mass estimates as required in previous studies. Despite having considerably fewer
free parameters, our current model still provides a good fit to the Excess Surface Density
(ESD) measurements, with a best-fit reduced y? value of 1.06.

Our current fiducial model yields a power-law relation between the halo mass and
the r-band luminosity of the group:

1.25+O.12

My _ 41022 Lgrp ~0.10
1014 h-'M, (1-02—0.14) m . (5.28)

These results align with previous findings from Viola et al. (2015), who reported a
normalisation of 0.95 + 0.14 and a power-law index of 1.16 + 0.13, and Rana et al. (2022),
who reported a normalisation of 0.81 + 0.04 and a power-law index of 1.01 + 0.07.

While our overall sample size is larger than that used by Viola et al. (2015), the
uncertainties of our final constraints are comparable to theirs. This is largely because we
applied a more stringent scale cut to alleviate blending effects on small scales—we used
a scale cut of 0.03 2~ 'Mpc compared to their 0.02 ~~'Mpc. Additionally, we excluded
the tails of the Ly, distributions to mitigate potential group detection effects, as shown
in Fig. 5.2. In this sense, we consciously traded some statistical power for increased
robustness. Crucially, our sensitivity tests revealed that uncertainties in certain elements
of our current halo model do have an impact on our results, although the impact is within
acceptable limits given the current measurement uncertainties. This underscores the
necessity for further model refinement to prepare for future analyses with more precise
measurements.

Most importantly, we acknowledge the limitations of the current model in accurately
representing the innermost regions of the ESD measurements. These small-scale
measurements exhibit strong sensitivity to both the mass-concentration and mis-centring
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parameters. Moreover, these parameters display similar impacts on the measured ESD
signals, leading to a degeneracy between them in the current model, a finding also
reported by Viola et al. (2015). Our sensitivity tests further revealed that alterations to
the configuration of the mis-centring parameters can impact the constraints on the scaling
relation to a degree that is only marginally acceptable for the current analysis. Given
the complex origins of mis-centring in a galaxy group sample, as noted in Sect. 5.4.2
and also in Ahad et al. (2023) and Jakobs et al. (2018), we believe the development of a
more realistic mis-centring model is one of the crucial aspects for future analyses.

Such advancement can be achieved through the analysis of galaxy-galaxy lensing
measurements and modelling within the context of cosmological simulations. With the
advent of new large-volume hydrodynamic simulations (e.g. Schaye et al. 2023; Kugel
et al. 2023), we are well-positioned to refine the current modelling framework. This
can be accomplished by replacing certain uninformative or idealised model elements
with treatments that are more informed by simulations. During these simulation-based
explorations, it is essential to ensure that data selection effects are accurately replicated
when constructing mock data from simulations (e.g. Jakobs et al. 2018). We plan to
pursue this direction in our future analyses.
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5.A Posterior distributions of all free model parameters

In this appendix, we present contour plots displaying the posterior distributions of all
free parameters derived from our fiducial model (Sect. 5.4), along with two test models
related to the mis-centring parameters (Sect. 5.6.2). We did not show results from the
test model with fixed pog = 1 due to its lack of convergence. Likewise, we did not
include the results from the incompleteness test as it yields constraints almost identical
to those of our fiducial model in the same parameters, and the two new incompleteness
parameters are not well-constrained.
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Figure 5.7: Posterior distributions of all free parameters derived from our fiducial model
(Sect. 5.4), along with two test models related to the mis-centring parameters (Sect. 5.6.2).
The black solid lines signify results from the fiducial six-parameter model, while the
magenta and cyan dashed lines represent results from the two mis-centring-related
test models. The contours denote the 68% and 95% credible intervals and have been
smoothed using a Gaussian kernel density estimation with a bandwidth scaled by a factor
of 1. These plots were generated using the CHAINConsUMER package (Hinton 2016).
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Nederlandstalige samenvatting

Het vaststellen van de fundamentele natuurkunde wetten die het ontstaan en de on-
twikkeling van het universum beschrijven, is een van de belangrijkste prestaties van
het kosmologisch onderzoek uit de twintigste eeuw. De theoretische en observationele
vooruitgangen die in het veld zijn geboekt, zijn werkelijk exceptioneel. Het standaard
kosmologische model, het ongekromde A ‘Cold Dark Matter’ (ACDM) model, dat
slechts van zes vrije parameters afhangt, kan met indrukwekkende nauwkeurigheid
diverse kosmologische sleutelobservaties voorspellen, zoals de uitdijing van het heelal,
de metingen van de kosmische achtergrondstraling, en de verdeling van materie binnen
de grootschalige structuren van het universum.

Ook in de 21e eeuw blijft het vakgebied van de kosmologie zich ontwikkelen.
Vooruitgangen in observationele technieken gaan gepaard met verbeteringen in de mod-
ellen om de steeds nauwkeurigere metingen accuraat te interpreteren. De verbeteringen
van verschillende kosmologische metingen, die mogelijk gemaakt worden door moderne
technologieén, leiden tot een ongekende precisie in onze voorspellingen. Deze vooruit-
gang biedt een unieke kans om de mysteries rondom sommige essentiéle elementen van
het huidige kosmologische model, zoals de oorsprong van initiéle dichtheidsfluctuaties en
raadselachtige aard van donkere materie en energie, te ontrafelen. Echter, de technische
ontwikkelingen gaan gepaard met de uitdagende taak om diverse systematische effecten,
die te maken hebben met bijvoorbeeld observationele omstandigheden, onder controle te
houden. Het implementeren van strategie€n om deze systematische effecten meester te
zijn, en zo het volledige potentieel van de metingen te benutten, is en blijft een centraal
onderwerp binnen de kosmologie van de 21e eeuw.

Een veelbelovende maar uitdagende methode om kosmologische modellen mee te
testen is de zwakke gravitatielenswerking. Volgens de algemene relativiteitstheorie
wordt het licht van verre sterrenstelsels afgebogen door de zwaartekrachtvelden die
veroorzaakt worden door de materie in het universum. Het meten van kleine maar
coherente vervormingen van de afbeeldingen van sterrenstelsels geeft ons hierdoor
een directe kijk op de verdeling van materie in de grootschalige structuren van het
universum, of in individuele massieve objecten, zoals groepen van sterrenstelsels of
clusters. Echter, in de praktijk wordt het robuust meten van deze door lenswerking
geinduceerde vervormingen bemoeilijkt door soortgelijke vervormingen die veroorzaakt
kunnen worden door meetomstandigheden en instrumentatie. De metingen worden
verder bemoeilijkt doordat de analyse sterk athangt van de afstanden tot de sterrenstelsels,
iets wat in de praktijk lastig nauwkeurig te meten valt voor grote groepen sterrenstelsels.
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Zelfs met accurate metingen van de zwakke lenswerking, is het extraheren van de
kosmologische informatie uit deze signalen niet triviaal. De interferentie wordt bovendien
bemoeilijkt door de intrinsieke oplijning van sterrenstelsels en door de precieze invloed
van supernova’s en superzware zwarte gaten op de verdeling van materie in het universum.

Deze thesis richt zich op de bijdrage van verschillende systematische effecten binnen
zwakke zwaartekrachtlenswerking analyses. In het bijzonder kijken we naar de invloed
van deze effecten op het afleiden van kosmologische parameters en het onderzoeken van de
eigenschappen van donkere materie halo’s. Ons primaire doel is om de nauwkeurigheid en
kallibratie van de zwakke gravitatielens analyses te verbeteren door de inferentiestappen
kritisch te onderzoeken met behulp van consistentieen gevoeligheidstests. Daarnaast
streven we ernaar om ons begrip van de relatie tussen donkere materie halo’s en
hun sterrenstelsels te verbeteren. Deze relatie is niet alleen cruciaal voor accurate
kosmologische inferenties, maar ook voor het vergroten van ons begrip wat betreft de
vorming en evolutie van sterrenstelsels.

In Hoofdstuk 2 voeren we een consistentietest uit voor de zwakke zwaartekracht-
lenswerking analyse met Kilo-Degree Survey (KiDS) metingen. We verdelen de
achterliggende sterrenstelsels op basis van hun kleuren en we beoordelen de robuustheid
van de huidige KiDS resultaten ten opzichte van het verwerken van subgroepen van ster-
renstelsels met verschillende eigenschappen. Onze resultaten bevestigen dat de huidige
KiDS analyse op een correcte manier rekening houdt met systematische onzekerheden.
Echter, we identificeren een correlatie tussen IA-parameters en parameters die horen
bij de roodverschuivingskalibratie. Deze correlatie onderschrijft de noodzaak voor
verbeterde IA-modellen voor toekomstige analyses. We vinden dat de consistentietest
die we gebruiken ongevoelig is voor het aangenomen kosmologische model, waardoor
deze bijzonder geschikt is om de robuustheid van zwaartekrachtlenseffect analyses te
verzekeren voordat de metingen gebruikt worden om enige kosmologische conclusies te
trekken.

Hoofdstuk 3 introduceert een reeks multi-band beeldsimulaties voor de kalibratie van
de KiDS zwakke gravitatielensanalyse. Deze nieuwe simulaties maken een gezamenlijke
kalibratie van het gravitatielenseffect en de roodverschuiving metingen mogelijk, wat
de correctheid en nauwkeurigheid ten opzichte van eerdere analyses vergroot. Door
de simulaties te combineren met hoogwaardige afbeeldingen van verre sterrenstelsels,
genereren we een grote set aan gesimuleerde sterrenstelsels met eigenschappen die
overeenkomen met de metingen. We verbeteren de accuraatheid van de afbeeldingen
door zorgvuldig verschillende observationele en instrumentele effecten mee te nemen,
zoals achtergrondruis, de punt-spreidingsfunctie (PSF), en de sterdichtheid.

Verder bestuderen we meng-effecten op verschillende roodverschuivingen door
variabele zwakke zwaartekrachtlens velden in de simulaties te introduceren. Onze
studie laat een correlatie tussen het gravitatielenseffect en roodverschuivingsfouten zien
als gevolg van meng-effecten. Deze correlatie geeft het belang van de gezamenlijke
kalibratie aan. We identificeren ook een kleine maar niet verwaarloosbare invloed
van PSF-modelleringsfouten op de gravitatielenseffect metingen. Met behulp van
gevoeligheidstests bevestigen we de robuustheid van het vormmetingsalgoritme binnen
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de vereisten van de huidge KiDS zwakke gravitatielensanalyse. Toekomstige zwakke
zwaartekrachtlensonderzoeken, met strengere vereisten, raden we aan om verdere studies
naar meng-effecten, verbeteringen van PSF-modellering, en vormmetingstechnieken
uit te voeren om de gevoeligheid voor verschillen in sterrenstelseleigenschappen te
verminderen.

In Hoofdstuk 4 voeren we een zwakke gravitatielensanalyse uit, waarbij we de ver-
beteringen meenemen die we geintroduceerd hebben in Hoofdstuk 3. Bovendien houden
we rekening met recente vooruitgangen in kosmologische inferenties en onderzoeken we
de invloed van IA-modellering op de uiteindelijke kosmologische resultaten. We stellen
voor om de statistische en systematische onzekerheden van de kalibratie, gezien hun
verschillende oorsprong, afzonderlijk te behandelen. Onze uiteindelijke kosmologische
resultaten komen overeen met eerdere analyses van KiDS metingen en die van andere
zwakke gravitatielensonderzoeken, waarbij een discrepantie van ongeveer 2.30" op Sg
wordt gemeten ten opzichte van de Planck kosmische microgolfachtergrondfluctuaties
resultaten.

Ten slotte onderzoeken we in Hoofdstuk 5 de relatie tussen donkere materie
halo’s en hun sterrenstelsels met behulp van de het zwakke lenswerkingeffect. We
meten signalen rond sterrenstelsgroepen die gemeten zijn binnen het Galaxy And Mass
Assembly (GAMA) project. We analyseren de zwaartekrachtlens metingen met behulp
van van het halo model formalisme. Hiermee bepalen we de totale halo massa van
de sterrenstelsgroepen. Door optische GAMA metingen te gebruiken, leggen we de
schalingsrelatie tussen de halo massa en de helderheid van de sterrenstelselgroepen vast.
We beoordelen de robuustheid van onze metingen door de behandeling van verschillende
parameters te variéren. De gevoeligheidstests helpen ons bij het identificeren van kritieke
modelcomponenten en zullen als handvatten gebruikt kunnen worden voor toekomstige
verbeteringen van het model. Gezien de verhoogde sensitiviteit van toekomstige
metingen, zijn verbeteringen van het model noodzakelijk.
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Born on a snowy day in 1994, I took my first steps in a small town named Dongyang in
Zhejiang, China. My parents often recall how I was a quiet nerd, keen on calculations
but with a poor memory. The disparity between my language and math scores on my
school report cards echoed their observations. My ever-growing curiosity about nature
ultimately drove me to pursue a career in scientific research.

In pursuit of higher education, I left my hometown after 18 years and joined Nanjing
University, renowned for having the oldest Astronomy department in China. The
rigorous courses in mathematics, physics, and astronomy clarified many of the theories
that piqued my curiosity during high school. It was a reaffirmation that I was on the
right path. Additionally, I participated in some early research training programs offered
by various institutes. A particularly formative experience was the two-month ‘UWA
Research Training Program’ at the University of Western Australia in Perth. This was my
first immersion into a different culture, which enriched both my research and language
skills and broadened my worldview. It was this journey that solidified my aspiration to
study in a diverse international environment.

My deep dive into research kicked off in Beijing during the final year of my Bachelor’s
program. Guided by Prof. Shude Mao, I started to explore the world of gravitational
lensing, especially in relation to gravitational waves. Our first paper on the topic has
since collected over a hundred citations. Yet, beyond the recognition, the sheer joy and
fulfilment I derived from the process truly fueled my passion. I completed my Bachelor’s
degree in Astronomy and proceeded with a Master’s in Astrophysics, deepening my
expertise in gravitational lensing, spanning strong to microlensing, and expanding from
gravitational waves to planetary exploration.

Fulfilling my aspiration to study abroad, I relocated to the picturesque town of Leiden
in the Netherlands for my PhD studies. Under the guidance of Profs. Koen Kuijken
and Henk Hoekstra, I delved into the fascinating realm of gravitational lensing within
cosmology. My involvement in international collaborations, notably the Kilo-Degree
Survey (KiDS) and the Euclid space mission, greatly enriched my academic journey.
With steadfast support from my supervisors and the KiDS team, we developed the
third-generation image simulations for KiDS, dubbed ‘SKiLLS’. This naming convention
follows its predecessors - ‘SCHOo/” and COllege’, symbolising both the development
of KiDS and our shared personal growth. Beyond my primary research, I contributed
to Master’s courses on ‘Gravitational lensing’ and ‘Large scale structure and galaxy
formation’, and helped mentor two Master’s students through their research projects.
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The global pandemic did throw a wrench into my PhD journey, especially affecting
collaborations and connections with colleagues. Virtual interactions became our norm
for over two years. However, I was fortunate to have some trips both before and after the
pandemic, forging lasting memories. These include visits to institutions in the UK and
Germany and delivering oral presentations at international conferences.

Come November 2023, I will embark on a new adventure as a KIPAC Rubin
postdoctoral fellow at Stanford. I eagerly await the challenges and discoveries that lie
ahead, especially with the Legacy Survey of Space and Time by the Vera C. Rubin
Observatory.
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