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1 
General Introduction
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1. Circadian clock and sleep-wake regulation

1.1 The circadian timing system

The ancient Chinese medical book Huangdi Neijing (475-221 BC) includes 
circadian rhythms - physical, mental, and behavioral changes that follow a 
daily rhythm, a syzygial (lunar) rhythm, and a seasonal (annual) rhythm, 
creating a harmonious lifestyle between humans and our natural world. 
Ancient Chinese people thought that human rhythms are fundamental for 
good health, and thousands of years later this appears to be true.  

The mammalian circadian clock is individually and collectively expressed by 
each of the ∼20,000 cells of the master circadian clock, the suprachiasmatic 
nucleus (SCN), which is located in the hypothalamus, lateral to the third 
ventricle, above the optic chiasm [1]. The circadian rhythm generated is 
approximately 24 hours and mammals synchronize their circadian activity 
to the cycles of light and darkness originating from the rotation of the earth. 
Light information is sent directly from the retina to the SCN through the 
retinohypothalamic tract (RHT), which, through release of glutamate, activates 
neurons in the SCN [2]. Feeding and exercise can also act as zeitgebers 
to synchronize the central clocks [3,4]. For this, the SCN receives timing 
information of other brain regions via direct and indirect inputs, and sends 
its output, like hormonal and nervous signals, to synchronize the peripheral 
clocks and optimize physiology to the temporal changes in our environment 
[2]. 

Most outputs of the SCN are directed towards the hypothalamus, including the 
medial preoptic nucleus, dorsomedial hypothalamic nucleus, paraventricular 
nucleus, and dorsomedial hypothalamic nucleus [2]. The unique location of 
the hypothalamus allows it to directly connect to the cerebrospinal fluid, thus, 
the hypothalamus can convey information from the SCN in a neuroendocrine 
way, for example, pituitary/hypothalamus-pituitary-adrenal axis and pineal 
gland, and also send output via synaptic pathways to other brain areas, for 
example, the cortex, cerebellum or hippocampus (Figure 2, upper panel) 
[5,6]. The central circadian clock plays a crucial role in sleep-wake rhythm, 
rest-activity rhythm, thermogenesis, immunity and metabolism (Figure 1). 
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Figure 1. Schematic representation of the circadian timing system. The circadian timing 
system synchronizes clocks through the whole body and adapts the changes of the outside 
world. Created via BioRender.

The SCN is an evolutionarily conserved brain area. It generates daily 
electrical activity rhythms which can even be observed in brain slices, and in 
cultured slices (Figure 2, bottom right panel) [7]. Furthermore, SCN lesioning 
experiments in animals as well damage of the hypothalamus in humans show 
that animals and human lose their daily rest-active rhythm after such an event 
[8,9]. It is possible to restore circadian rhythms in SCN lesioned hamsters with 
SCN transplants that carry the rhythmic properties of the donor animal [10]. 
Thus, the SCN is considered to be the intrinsic endogenous pacemaker in the 
body. During the day, the neurons discharge action potential rate in the SCN 
is high and the resting membrane potential is more depolarized relative to the 
night. When SCN neurons discharge action potentials are at a lower rate and 
SCN neurons are most responsive to excitatory or depolarizing stimulation 
[11]. This kind of rhythmic firing of neurons across the 24-hour is regulated 
by an autoregulatory transcription-translation feedback loop (TTFL) of clock 
genes (Figure 2, bottom left panel) [12]. This TTFL comprises the interlocked 
activities of transcriptional activators (CLOCK and BMAL1) and repressors 
(PER and CRY). CLOCK and BMAL1 form a heterodimer that regulates the 
expression of clock-controlled genes as well as the repressor proteins encoded 
by Period and Cryptochrome. The PER/CRY heterodimer repressor complex, 
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in turn, inhibits CLOCK/BMAL1 activity at E-box target sequences on both 
clock-controlled genes and CLOCK/BMAL1 autoregulation [13]. The TTFL 
forms the basis for cellular rhythms in gene expression, intracellular Ca2+ 
levels, rate of action potentials, neurotransmitter release and electrical activity 
rhythms [13-15]. Light entrains the phase of these rhythms through release 
of glutamate by the RHT, which can set Per transcription levels and induce 
changes in SCN neuronal activity [2,16-18]. Multi-unit recordings reveal 
the synchronization of this activity across the SCN circuit [7]. In nocturnal 
animals, higher firing is associated with reduced locomotor activity, and 
decreased firing is observed during the active phase [19,20]. Diurnal rodents 
exhibit behavioral rhythms in the opposite phase, although the phase of clock 
gene and action potential rhythms are likely to be similar to that of nocturnal 
mammals (Figure 2, bottom right panel) [21,22]. 

Figure 2. The suprachiasmatic nucleus is the central circadian pacemaker. Upper panel: 
Sagittal view of a rodent brain illustrating light input to the SCN via the RHT and output from 
the SCN to other brain areas. Bottom left (SCN neuron) panel is the simplified scheme of the 
molecular clock, the TTFL regulating the expression of clock genes and proteins that take 
around 24 h to complete a cycle. Bottom right panel is the representative rhythmic outputs 
from the SCN circuit. Adapted figure from Harvey et al., 2020 [23]. Created via BioRender. 
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1.2 Neurophysiology of sleep

Sleep sustains physical and cognitive performance, productivity, psychological 
health and well-being. Even mild sleep restriction over a few days negatively 
affect performance [24,25]. However, what exactly sleep is doing to our 
brain and body and the reason why we need sleep is still controversial in 
the research field. Sleep is a very complex physiological process involving 
the interaction of sleep-promoting and waking-promoting neural circuits. 
Most mammals have two different types of sleep: non-rapid eye movement 
(NREM) sleep and rapid eye movement (REM) sleep. The changes in cortical 
electroencephalogram (EEG) and muscular electromyogram (EMG) are 
generally used to distinguish different sleep and arousal states in mammals 
[26]. Frequency, amplitude and morphology are critical terms to characterize 
the EEG and EMG for different vigilance states.

NREM sleep, is characterized by high amplitude and low frequency waves, 
(0.5 Hz – 4.0 Hz) also called slow-waves. Surprisingly, almost half a century 
after the delta activity was first demonstrated by William Grey Walter in 
an isolated cortex in vivo in 1966, its mechanism of generation is still not 
fully understood [27]. Delta waves are generated within the thalamocortical 
network [28] and they are thought to represent the activity of synchronized 
cortical neurons [29,30]. However, delta waves are consistently observed in 
decorticated animals [31]. Other studies show that delta waves can also be 
observed in the isolated thalamus [32]. Moreover, also other brain areas may 
be involved in generating delta waves, as is shown by lesions of the anterior 
hypothalamus, preoptic region, and basal forebrain, all of which can abolish 
delta waves [33]. Although the body weight of rats (200 – 400 grams) and 
mice (20 - 35 grams) can be 10 times different, their EEG power spectrums 
are more or less the same compared with each other (Figure. 3). However 
different rodent species may still show subtle differences in their EEG is 
also shown in Figure 3, where the peak of the NREM power spectrum (left, 
blue) of mice have a peak of around 3 Hz, and the peak of the NREM power 
spectrum (right, blue) of rats have a peak that is near 1.5 Hz.

Eugene Aserinsky and Nathaniel Kleitman first discovered REM sleep [34]. 
They showed that rapid eye movements occur during “active” sleep in adult 
human and these sleep periods with rapid eye movements may be involved 
in dreaming [35]. Years later, using high quality REM sleep EEG/EMG 
recording showed low amplitude and high frequency bands of wake-like 
brain activity, but with the muscle tone reaching minimum level. Because of 
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this low amplitude and high frequency waves, REM sleep was termed active 
or paradoxical sleep in early studies. In rodents, REM sleep is rich in theta 
activity (6 – 9 Hz), as shown in Figure 3, both mice (peak around 8 Hz) and 
rats (peak around 7 Hz) had a similar REM sleep power spectrum pattern and 
theta peak frequency, which is generated by the hippocampus [36].  

The daily NREM-REM sleep cycle duration is also different across the 
species, for example, REM sleep occurs in the rodent approximately every 
10 – 15 min. However, REM sleep occurs every 90 – 120 min in humans 
[37]. The overall sleep architecture is different between rodents and humans. 
Humans show monophasic sleep which is restricted to the night, whereas 
rodents display polyphasic sleep over day and night [38]. The difference is 
considered to be related to the size of both body and brain across the different 
species. The functional role of REM sleep is unclear. After decades of research 
and studies, it is more evident that brain areas that generate REM sleep reside 
in the brainstem and hypothalamus [39]. Subgroups of neurons are activated 
during REM sleep, called REM-on neurons, and these neurons release 
neurotransmitters such as γ-Aminobutyric acid (GABA), acetylcholine, and 
glutamate [40]. Moreover, there is also a subgroup of neurons called REM-
off cells, which release neurotransmitters like norepinephrine, epinephrine, 
serotonin, histamine, and GABA [40].

There is a relation between the cortical EEG and theta waves in the 
hippocampus during REM sleep. Some studies indicated that theta activity 
during REM sleep is essential for motor performance, learning and memory 
consolidation [41,42]. REM sleep deprivation in rodents and humans 
resulted in impaired formation of spatial or emotional memory [40,43]. 
Both animal and human studies showed increased theta activity during 
REM sleep following a learning or memory tasks. In mice, specifically 
inhibiting theta activity in the  hippocampus during REM sleep impaired 
memory consolidation, indicating that theta activity is important in memory 
consolidation [42]. Another study showed that increased theta activity was 
associated with increased cerebral blood flow during REM sleep in humans 
[44]. This may further indicate an increased metabolic rate and increased 
the energy supply from the blood to the brain areas during REM sleep.
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Figure.3 Spectral analysis of the EEG by a fast Fourier Transform routine. Left panel: 
A twenty four hours electroencephalographic power spectra in waking (black), NREM sleep 
(blue) and REM sleep (red) in C57BL/6J male mice under light-dark condition (n = 9). Right 
panel: A six hour electroencephalographic power spectra in waking (black), NREM sleep 
(blue) and REM sleep (red) in Brown Norway make rats under constant darkness condition 
(n = 8). 

1.3 Homeostatic regulation of sleep

A balance of sleep and wakefulness exists, called sleep homeostasis. It means 
we tend to wake up when we sleep for a longer time, and when we stay awake 
for a longer time, the more sleepy we will feel. The sleepiness we feel is also 
called sleep propensity, or sleep pressure, which, in the two-process model of 
sleep regulation, increases during wakefulness and subsequently diminishes 
during sleep (Process S). This process S is thought to interact with signals 
received from the circadian clock (Process C) (Figure. 4). Both process C and 
S are influenced by external cues, like light and exercise. Slow wave activity 
(SWA) in the NREM sleep EEG is one of the best indicators for Process S. 
SWA in NREM sleep is increased with high sleep need, such as after sleep 
deprivation which is shown in the red line in Figure. 4 and decreased during 
sleep [26]. Homeostatic regulation of SWA has been demonstrated in a large 
number of rodents [26]. SWA is not only an indicator of Process S, but also 
critically important for the maintenance of sleep, brain plasticity, cognitive 
performance and memory [45-47]. 
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The theories on the function of NREM sleep fall into three main categories: 
energy metabolism, neural plasticity, and cellular defense [48]. Sleep 
deprivation (SD) is often used as a mediator of sleep homeostasis and to 
investigate the function of sleep [49]. According to the metabolic theories on 
the function of sleep, the brain consumes energy during waking and restores 
energy in the subsequence sleep. Prolonged waking can induce an increase in 
adenosine. Adenosine is a ubiquitous nucleoside which serves as a building 
block for nucleic acids and energy storage molecules, enzyme’s substrate and 
neuromodulator of cellular activity [50,51]. The adenosine theory states that 
during waking, due to neuronal activity-induced energy depletion, adenosine 
concentration in the brain increases, decreasing the neuronal activity of wake-
active neurons and through this induces sleep [52]. Adenosine has therefore 
been proposed as a mediator of sleep homeostasis and a link between energy 
metabolism and sleep control. 

Figure 4. The two process model of sleep regulation. A simplified representation of the 
two process model of sleep regulation, similar to the version of the model in the initial 
publication (Borbely, 1982 [53]). The blue line represents the baseline condition with 
8 hours of sleep and 16 hours of waking. The green line represents effects of 2-h nap and 
then a normal night sleep. The red line represents a 24-h sleep deprivation and followed by 
sleep. White and black bar represent the light and darkness. Figure adapted from Deboer 
2018 [54] 
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2. Drugs influenced circadian clock and sleep-wake 

2.1 Caffeine

As mentioned previously, adenosine may be an indicator of process S, and 
caffeine, which is found in coffee, tea and other types of food and beverages, 
is a non-selective adenosine receptor antagonist, is which widely used to 
induce wakefulness [55,56]. The pharmacokinetics of caffeine show a half-
life of around 3 to 5 hours, and caffeine can induce waking, delay sleep onset 
and decrease slow-wave sleep [57]. Next to the effects on wakefulness, sleep 
and sleep homeostasis, caffeine is also known to improve alertness, mood, 
and cognitive performance, and counteract fatigue [58]. However, caffeine in 
doses of 5 cups of coffee or more induces anxiogenic symptoms in healthy 
adults and in some individuals it may induce panic disorders, and can lead 
to negative moods like anxiety and panic attacks [59]. Interestingly, these 
effects are absent when caffeine is given chronically. A recent study in mice 
compared the effect of acute and chronic administration of caffeine on day-
night rhythm and sleep wake rhythm. Surprisingly, chronic caffeine did 
not induce wakefulness or disturbances of the sleep-wake cycle in contrast 
to acute caffeine administration. Instead, under chronic administration, it 
increases sleep during the rest phase and enhances sleep pressure in mice 
[60]. This suggests that acute and chronic caffeine influence sleep and sleep 
homeostasis differently. 

Whether caffeine affects the circadian clock and further influences the 
circadian timing control of sleep is still debated. In rodent studies, increased 
sleep pressure by sleep deprivation can decrease the neuronal activity in 
the SCN, which suggests that the function of the clock can be modified by 
increased sleep pressure [61]. This may indicate that caffeine have an effect on 
the circadian clock. Acute caffeine administration can decrease homeostatic 
sleep pressure and increases SCN sensitivity of light in mice [62]. In humans, 
chronic caffeine consumption before bedtime delayed the melatonin rhythm 
by around 40 min, and chronic caffeine lengthened the period of circadian 
gene expression of human osteosarcoma U2OS cells [63]. 

2.2 Ketamine

Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, applied 
mainly as anesthetic, which has attracted a lot of attention in the last two 
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decades because of the rapid antidepressant effect in depressive patients [64]. 
In Berman’s study, a sub-anesthetic dose in depressed patients showed a 
rapid antidepressant effect within 40 minutes and this effect lasted for seven 
days after the first infusion [64]. Ketamine may therefore have the potential 
to develop into a novel antidepressant; however, the mechanism of the 
antidepressant effect is still unknown. 

Ketamine has been used as a non-barbiturate anesthetic drug for a long time, 
and it was described as an ideal anesthetic for its rapid onset, short duration 
of action, rapid recovery, and safety [65-67]. In preclinical studies, anesthetic 
doses had no effect or even reduced glutamate in the medial prefrontal cortex, 
whereas in the sub-anesthetic dose, it increased the extracellular glutamate 
[68]. More and more evidence from both preclinical and clinical studies 
have linked major depressive disorder to a dysregulated glutamatergic 
system, and glutamate receptors are also viewed as potential targets for 
antidepressant [69-71]. Thus under the sub-anesthetic does, ketamine 
induced an acute glutamate surge which may lead to the observed rapid-
antidepressant effect. When administered in a sub-anesthetic dose, ketamine 
blocks NMDA receptors on GABA interneurons, thereby reducing GABA 
release on principal neurons and, in turn, the increasing presynaptic release of 
glutamate. The function of NMDARs is tightly linked to α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPAR-mediated 
depolarization of the postsynaptic membrane is required for opening the 
NMDAR channel and removal of Mg2+ that blocks the channel pore; this is 
required for ketamine entry and blockade of the NMDAR channel (Figure 5, 
right) [72]. 

As referred to earlier, sleep quality is related to mood and mental health [25,73], 
and depressive disorders are associated with disrupted sleep and circadian 
rhythms [74,75]. Interestingly, SD in a subset of depressive patients is also 
known to induce a rapid antidepressant effect [76]. Thus, these antidepressant 
effects are suggested to work through sleep homeostatic mechanisms. 
Moreover, both SD and ketamine can increase SWA in NREM sleep and also 
the level of brain derived neurotrophic factor (BDNF), which are suggested 
to enhance the synaptic strength and plasticity [77,78]. Besides that, both SD 
and ketamine increase cortical excitability, and cortical excitability showed 
robust circadian dynamics [79]. Therefore, a rapid antidepressant effect may 
relate to the effects on sleep and the circadian clock. Understanding the rapid 
antidepressant effects of SD and ketamine from a sleep and chronobiology 
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perspective may contribute to exploiting the potential of these two treatments.

Figure 5. Action of caffeine and ketamine. Left panel: Proposed mechanism of caffeine’s 
action, Right panel: Proposed mechanism of ketamine’s antidepressant action. AMPA: 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, GABA: γ-Aminobutyric acid, 
VDCCs: Voltage-gated calcium channels, created via BioRender.

3. Circadian clock, sleep and the relation with cancer 
related fatigue

3.1 Cancer related fatigue 

Cancer-related fatigue (CRF) is a complex and debilitating side effect of 
unknown etiology, which affects more than 50% of cancer patients and cancer 
survivors [80,81]. CRF is defined as ‘‘a distressing, persistent, subjective 
sense of physical, emotional, and/or cognitive tiredness or exhaustion related 
to cancer or cancer treatment that is not proportional to recent activity 
and interferes with usual functioning.’’ [82]. Persistent CRF has a serious 
effect on the quality of life of these patients since they are too tired to go to 
work, socialize or even perform their normal daily activities. Many cancer 
patients report fatigue when they get diagnosed, and this number increases in 
incidence and severity during and after treatment with either chemotherapy 
(chemotherapy related fatigue), radiotherapy, hormone therapy, surgery, or 
combined therapy. One third of the patients still feel fatigued five years after 
the end of treatment [83]. Several hypotheses describe the possible mechanism 
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both from a preclinical and clinical perspective. These mechanisms involve 
the effects of both the diseases, and the side effects of the therapies on 
energy metabolism, central nervous system, inflammation, immune function, 
hypothalamic-pituitary (HPA) axis function, antioxidant metabolism, sleep, 
and the circadian clock (Figure. 6) [84-92]. 

Many anti-cancer drugs have been approved to treat cancer. Anthracyclines 
are one class of chemotherapy that has been widely used for over 60 years 
to treat different types of cancers. The mechanisms by which anthracyclines 
kill tumor cells are various, including inhibition of DNA replication and 
RNA transcription, free radical generation leading to DNA damage or 
lipid peroxidation, DNA alkylation, interference with DNA unwinding or 
DNA strand separation and helicase activity, causing double-strand breaks 
(DSBs) following the poisoning of topoisomerase II, and chromatin damage, 
mediated through histone eviction at selected sites in the genome [93,94]. 
Anthracyclines have toxic side effects on nontargeted tissues, which may 
contribute to fatigue symptoms over a more extended period [95,96]. 

Recent studies document that especially the treatment of cancer is associated 
with both immune stimulation and immunosuppression with increased 
concentrations of various cytokines including tumor necrosis factor alpha 
(TNF-α), interleukin 6 (IL-6) and interleukin 10 (IL-10) [97,98]. Immune 
stimulation, increasing circulating cytokines, can reach the brain through 
several pathways [99]. For example, circulating cytokines can cross the 
blood brain barrier to enter cerebrospinal fluid and interstitial fluid spaces 
of the brain and spinal cord, increasing microglia activation, which can 
produce pro-inflammatory cytokines and chemokines [100]. Consequently, 
it is possible that active microglia drive neuroinflammation and further 
influence the function of the brain. Peripherally administered interleukin-1 
(IL-1) activates the HPA axis [101], and this may further influence  hormonal 
levels like adrenocorticotropic hormone (ACTH) and corticosterone (CORT) 
[102]. When the peripheral cytokines transfer into the brain, IL-1, IL-6, TNF, 
and their family members may mimic leptin and, hence, target hypothalamic 
neuropeptides that regulate food intake and energy expenditure [103]. Pro-
inflammatory cytokines, cardiotrophin-like cytokine (CLC), and acute infusion 
of CLC into the third ventricle inhibits locomotor activity in hamsters [104]. 
Furthermore, a variant of cytokines is correlated with sickness behaviors and 
fatigue in rodents and humans, which are also the proposed mechanism for 
CRF [105,106]. All these pieces of evidence indicate that peripheral cytokines 
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may play a role in developing fatigue. 

Figure.6 Possible relationships in cancer related fatigue. ATP: Adenosine triphosphate, 
HPA axis: hypothalamic-pituitary-adrenal axis, TRP: tryptophan, GABA: γ-Aminobutyric 
acid, 5- HT: serotonin. Created via BioRender. 

 3.2 Disruption of sleep 

A common complaint of cancer patients is disrupted sleep [107]. Patients 
complain about poor quality of (subjective) sleep, difficulty staying asleep 
and insomnia during treatment and even months after the treatment [108-
110]. Although we know that cancer related fatigue cannot be released after 
a good night of sleep or rest, a disrupted sleep-wake cycle may contribute to 
the fatigue experience of the patients [111]. Thus, normalizing the sleep-wake 
cycle of cancer patients, may help to reduce their fatigue level. However, a 
larger randomized trial of 219 breast cancer patients did not show any benefit 
of an individualized sleep therapy plan over the control intervention on fatigue 
[112]. Behavioral interventions aimed at improving sleep may be successful 
in their primary aim, but their effect on cancer-related fatigue is less obvious 
[113,114]. According to another study that reports sleep problems in around 
three thousand patients, instead of fatigue, sleep problems are more associated 
with pain and emotional distress [115]. The relationship between sleep and 
cancer related fatigue may therefore be more complicated.
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3.3 Circadian disruption and cancer-related fatigue

Robust circadian rhythms are strongly associated with good health. Cancer 
and hospitalization can disrupt circadian rhythms [116]. One proposed 
underlying mechanism of CRF is disrupted circadian rhythm. Several studies 
used a wearable sensor to detect the subjects’ activity, showing changes in 
daily rhythms. One study used the waist accelerometer which measured 
the daily activity, and further compared the daily activity before and after 
the first chemotherapy. This showed clear decreased activity after the 
chemotherapy, however, the changes in daily activity may be masked by the 
hospitalization [117]. Another study showed that the patients who wear the 
waist accelerometer show a dampened 24-h activity pattern compared with 
healthy subjects, and this dampened rhythm was associated with the level 
of fatigue, appetite and poor survival [118,119]. There is growing interest in 
HPA axis function and associated cortisol release in cancer survivors who 
have had fatigue complaints for years [120]. The daily cortisol rhythm is 
under strong control of the circadian clock. In healthy adults, a typical diurnal 
cortisol pattern is characterized by a high morning level that peaks about 
30 min after awakening, followed by a decline over the course of the day 
with the lowest level achieved around midnight [121]. Breast cancer patients 
showed a dampened cortisol response compared with healthy subjects, and the 
decline in cortisol levels during the night is blunted in breast cancer patients 
[120,122]. However, it is not known whether these changes are the effects of 
fatigue or causal factors, for example, daily dysfunctioning.

Yet, these studies do not provide insight into the timing of the clock and the 
relation with fatigue. Animal models may  provide more insights into the 
relationship among the circadian timing system, sleep-wake cycle and cancer 
related fatigue. Wheel running in rodent is voluntary, motivated behavior. 
Wheel running behavior is also a measure for accessing the circadian clock 
controlled behavior under continuous recording condition. Furthermore, 
wheel running is also viewed as a measurement of fatigue. In this case, with 
the animal fatigue model, it may be easier to answer the question : “ Is fatigue 
a sleep problem, or clock problem, or both?”.

Disruptions of normal circadian rhythms and sleep cycles are consequences 
of aging and can profoundly affect health. Accumulating evidence indicates 
that circadian and sleep disturbances are a risk for mood disorders and 
neurodegenerative conditions, and may actually drive pathogenesis early in 
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the course of these diseases [123-125].

 In order to ensure normal functioning of the circadian clock, environmental 
time cues are quite important. Circadian misalignment occurs when the 
internal timing system runs out of synchrony with the behavioral cycle. One 
common example of circadian misalignment is shift work which misaligns the 
sleep-wake rhythm to the objective night. Shift work can result in disrupted 
sleep, impaired cognitive performance, fatigue, decreased alertness, impaired 
energy metabolism and inflammation (Figure. 7)  [125-129]. Other types 
of misalignments include internal misalignments between the central and 
peripheral clocks. For example, research in animal models has demonstrated 
that altering the availability of food timing shifts the peripheral clock but not 
the central clock [130]. 

The rest-active rhythm is also a biomarker that reflects the robustness of 
the clock in patients. Interestingly, most cancer survivors benefit from 
daily exercise or routines [131,132]. These interventions probably help to 
maintain  normal circadian rhythms in the body. Furthermore, cancer patients 
suffering from circadian disruptions have poor health outcomes compared to 
patients who have a robust daily activity rhythm [132,133]. Studies in rodents 
have added more evidence from different types of cancer, chemotherapy, 
radiotherapy and the consequences of circadian disruptions [134-137]. 
5-fluorouracil affected rhythmicity of clock genes expression in the SCN and 
decreased locomotor activity during the dark phase under chronic treatment 
[138]. Clock mutant mice are more sensitive to the chemotherapy treatment 
with cyclophosphamide [139]. Recent advances identify disturbed clock 
gene expression and circadian rhythms to correlate with tumor development 
and tumor progression in mouse models [136,140,141]. These studies offer 
new insight into the interaction of previously unsuspected pathways with 
the circadian system besides cancer or treatments themselves. We can also 
begin to rationally develop new treatments for disorders affected by circadian 
disruptions.
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Figure 7. Schematic overview of different types of circadian disruptions, the causes 
and the consequences of health under acute and chronic situations. Acute and long-term 
consequences may send feedback and further disrupted the circadian clock. Modified from 
Rüger et al., 2011 [125].

Outline of this thesis
This research aims to understand how the circadian clock and sleep are 
influenced by different drugs, which include the most common CNS stimulant 
caffeine, ketamine, the newly proved anti-depressant drug, and anthracyclines, 
a widely used group of chemotherapeutic agents. 

Caffeine is one the most widely used psychoactive stimulant across the world, 
it is known as a nonselective adenosine receptor antagonist, and it has been 
more than 60 years since adenosine has been discovered to be involved in 
sleep. However, most of the previous experiments have been performed under 
light-dark conditions and the entrainment of light has a massive effect on 
sleep-wake rhythm and is known to interact with caffeine. Thus, our question 
is how long the effect of acute caffeine lasts under constant dark conditions. 
Chapter 2 describes the effect of acute administration of caffeine on sleep, 
sleep EEG and the circadian clock in Brown Norway rats.
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As described in the introduction, mental health has a complex relationship 
with sleep, and the rapid-antidepressant effect of sleep deprivation is not 
well understood. Ketamine has a similar rapid anti-depressant effect and also 
changes sleep. Thus our hypothesis is that the rapid anti-depressant effect 
observed from both sleep deprivation and ketamine may have a similar effect 
on sleep and the sleep EEG. In Chapter 3, we investigate the relationship 
between the two treatments comparing the effect of sleep deprivation and low 
dose ketamine on sleep in Brown Norway rats. 

The effect of chemotherapy on sleep and the circadian clock was investigated 
in Chapter 4. During chemotherapy, most patients complain about how 
tired or fatigued they feel both under the treatment and months to years after 
finalizing treatment. There are several hypotheses about the mechanisms of 
cancer-related fatigue, but there is still too much unknown about this particular 
type of tiredness. In this chapter, we want to investigate if CRF is a circadian 
problem, a sleep problem, or both. At the end of chapter 4, we conclude that it 
is a circadian problem, in which waking, rather than sleep is affected

Based on the conclusion in chapter 4, in Chapter 5, we performed a followed-
up experiment that further investigated the effect on the neuronal activity of 
SCN and peri-SCN areas in the brain, rest-activity behavior, immune system 
responses and the effect on kidney and spleen, to establish where the circadian 
clock may be involved in CRF.
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