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8.1 ABSTRACT

8.1.1 Objective
Many machine learning (ML) models have been developed for application in 
the intensive care unit (ICU), but few models have been subjected to external 
validation. The performance of these models in new settings therefore remains 
unknown. The objective of this study was to assess the performance of an 
existing decision support tool based on a ML model predicting readmission or 
death within 7 days after ICU discharge before, during, and after retraining 
and recalibration.

8.1.2 Design
A gradient boosted ML model was developed and validated on electronic health 
record data from 2004-2021. We performed an independent validation of this 
model on electronic health record data from 2011-2019 from a different tertiary 
care center.

8.1.3 Setting
Two ICUs in a tertiary care centers in the Netherlands.

8.1.4 Patients
Adult patients who were admitted to the ICU and stayed for longer than 12 
hours.

8.1.5 Interventions
None.

8.1.6 Measurements and Main Results
We assessed discrimination by area under the receiver operating characteristic 
curve (AUC) and calibration (slope and intercept). We retrained and recali-
brated the original model and assessed performance via a temporal validation 
design. The final retrained model was cross-validated on all data from the new 
site. Readmission or death within 7 days after ICU discharge occurred in 577 
(5.7%) of 10,052 ICU admissions at the new site. External validation revealed 
moderate discrimination with an AUC of 0.72 (95% CI 0.67-0.76). Retrained 
models showed improved discrimination with AUC 0.79 (95% CI 0.75-0.82) for 
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the final validation model. Calibration was poor initially and good after reca-
libration via isotonic regression.

8.1.7 Conclusions
In this era of expanding availability of ML models, external validation and 
retraining are key steps to consider before applying ML models to new settings. 
Clinicians and decision makers should take this into account when considering 
applying new ML models to their local settings.

8
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8.2 INTRODUCTION

There has been a rapid increase in the use of machine learning (ML) techniques 
for prediction modeling on routinely collected hospital data [1]. The intensive 
care unit (ICU) forms a popular application area with its high-volume data 
from continuously monitored patients [2, 3]. ML models have been developed 
at the ICU to predict the onset of sepsis [4, 5], COVID-19 disease progression [6, 
7], and mortality and readmission [2, 8]. Clinicians increasingly encounter ML 
vendors that claim to revolutionize their clinical workflow, environment, and 
patient outcomes. Therefore, it is important that clinicians are aware of the 
quality assessment steps that need to be taken before the local implementation 
of these ML models.

Before introducing these ML models in a clinical environment that is different 
from the development site (e.g., a different ICU, hospital, or country), we need 
to assess the generalizability or external validity at this site [9-11]. However, few 
ML models have been subjected to external validation. A recent study found 
that less than one third of FDA approved ML models reported to have under-
gone multi-site assessment [12]. Moreover, less than 11% of prediction models 
developed for the ICU were externally validated [13]. This is particularly prob-
lematic as correlations based on site specific clinical practices are prone to 
boost local performance of ML models, but may hamper generalizability to 
other settings [14]. Similarly, shifts in the data-generating process over time at 
a single site can affect performance [15-18]. A recent example is an ICU sepsis 
prediction model. This model was implemented and widely adopted before 
external validation showed poor discrimination and calibration, which in turn 
may have dangerous consequences for patients [19].

Several steps may be taken to improve model performance at a new site after 
external validation. First, the external validation may show poor calibration, 
meaning that the estimated probabilities are unreliable. Recalibration of the 
probability outcomes may be applied to improve the probability estimates [15, 
20, 21]. Second, when the external validation shows subpar discrimination, the 
model may be retrained on data from the external validation site. However, it 
remains unclear to date when and under which circumstances these steps are 
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necessary to ensure safe and responsible introduction of ML models in local 
clinical settings.

We aimed to assess the external validity of a certified ML model for the ICU: 
Pacmed Critical [8]. Pacmed Critical is a decision support tool based on a ML 
predictive model that estimates the probability of readmission or death within 
7 days after ICU discharge. It intends to support intensivists in determining 
the optimal moment for discharge of a patient from the ICU to a clinical ward. 
Second, we aimed to assess the effect of retraining of the model on predictive 
performance through a temporal validation design. This study serves as a use 
case illustrating how the generalizability of ML models may be addressed by 
local retraining.

8.3 MATERIALS AND METHODS

8.3.1 Patients
For the external validation, retraining, and recalibration of the Pacmed model 
we used EHR data from Leiden University Medical Center (Leiden UMC), a 
tertiary care center in the Netherlands. This data was collected between 2011 
and 2019. We purposefully left the year 2020 out, as COVID-19 drastically 
changed the composition of ICU patients and disrupted ICU care processes 
which might have significantly impacted model performance. This study was 
conducted in accordance with the Helsinki Declaration. The need for ethical 
approval was waived for this study by the Institutional Review Board of the 
Amsterdam University Medical Center, location VUmc (2017.212, date: May 
2017, study title: ‘Right Data, Right Now: Predicting ICU readmission rates’).

8.3.2 Outcome
The outcome variable was defined as a readmission to the ICU or unexpected 
death within 7 days after discharge from the ICU to the ward. Our definition of 
an ICU discharge did not include patients that were discharged to the Medium 
Care Unit (MCU) as the intensity of monitoring on the ICU is comparable to that 
of the MCU, while on the ward the level of monitoring is much less intense. A 
planned surgical readmission was not considered as a readmission, but rather 
modelled as one continuous ICU stay. ICU admissions with a time difference 
of less than 12 hours were removed from the cohort. Only the readmission 

8
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was considered in the case of death after readmission. Other exclusion criteria 
were patients younger than 18 years, patients being transferred to the ICU of 
another hospital, dying at the ICU during the original admission, or receiving 
palliative care.

8.3.3 Machine learning model
Pacmed Critical is a CE-certified decision support tool, meeting the safety, 
health, and environmental protection requirements of the European Union. It 
intends to assist intensivists in determining the optimal moment to discharge 
their patient from the ICU to the ward. It is a Gradient Boosting model that 
was developed and validated on electronic health record (EHR) data collected 
between 2004 and 2021 from the Amsterdam University Medical Center, loca-
tion VUmc (Amsterdam UMC), a tertiary care center in the Netherlands.The 
area under the receiver operating characteristic curve (AUC) at the validation 
cohort of Amsterdam UMC was 0.78 (95% CI 0.75-0.81). An in-depth description 
of the original model development and initial validation is reported elsewhere 
[8].

8.3.4 Retraining
The Pacmed Critical model was retrained on data from the Leiden UMC with the 
same pipeline and modelling techniques as those used for the original model 
developed at the Amsterdam UMC. A careful mapping was made between the 
feature sets of Amsterdam UMC and Leiden UMC to deal with discrepancies 
in recorded features between the two locations due to differences in their 
EHR systems (Epic, Epic Systems Corporation, Verona, Wisconsin, USA, and 
HiX, Chipsoft B.V., Amsterdam, The Netherlands, respectively). Features were 
included for model development when good data quality could be guaranteed 
for the data from which the feature was computed. This led to slightly different 
feature lists between the two hospitals (supplementary Table S1). Differences 
in inclusion were for example caused by incomplete feature data for some of 
the recorded years. Leiden UMC added features related to severity monitoring 
(e.g., base excess mixed venous and cvvh blood flow) and ICU specialty.

8.3.5 Validation design
We compared the descriptive statistics on patient demographics, clinical 
context and type of event (readmission or death within 7 days) from the 
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Amsterdam UMC with the Leiden UMC. We supplemented this analysis with 
information on the type of admission and mortality risk obtained from the 
National Intensive Care Evaluation (NICE) registry [22] for the beginning of 
the NICE registration (2013) up to and including 2019 for the Leiden UMC and 
2021 for the Amsterdam UMC.

The predictive performance of the Pacmed model on Leiden UMC data was 
measured via a temporal validation design at four time points: before retraining, 
after the first round of retraining, after the second round of retraining, and 
after the third and final round of retraining (supplementary Table S2). The 
validation before retraining represents the external validation of the original 
gradient boosted ML model developed on Amsterdam UMC data, validated on 
new, unseen data from the Leiden UMC (“External validation before retraining”, 
supplementary Table S2). This validation was performed on the 2018-2019 
Leiden UMC cohort. Temporal validation consisted of retraining the model on 
subsets of the Leiden UMC data and validation on the 2018-2019 Leiden UMC 
cohort. For the first round of retraining, the ML model was trained on data from 
2011-2015 (“Temporal validation 1”, supplementary Table S2). In the second round 
of retraining, data from 2011-2017 were used for retraining (“Temporal valida-
tion 2”, supplementary Table S2). The final model was retrained on all Leiden 
UMC data (2011-2019). It underwent a 10-fold cross-validation after which we 
assessed its performance on the 2018-2019 cohort (“Validation after retraining”, 
supplementary Table S2).

We measure the predictive performance for all validation moments along three 
axes: discrimination, calibration, and Net Benefit. Discrimination quantifies 
the separation between low and high-risk subjects and was measured via the 
Area Under the Receiver Operating Characteristic curve (AUC) [23]. The AUC 
ranges between 0.5 and 1, with higher values indicating better discrimination. 
Calibration is good when the proportion of patients receiving a given risk score 
approximates that risk score (e.g., 40% of patients are readmitted within the 
group of patients receiving a 40% risk of readmission) [23]. Calibration was 
assessed through the calibration slope (1 for perfect calibration), intercept (0 
for perfect calibration), and calibration loss by bins (lower loss is better) [21, 
24, 25]. Probability predictions were recalibrated via isotonic regression [26]. 
Such rescaling is common for ML models for the probability estimates to better 

8

38993_de Hond_BNW-def.indd   22738993_de Hond_BNW-def.indd   227 3-8-2023   11:07:253-8-2023   11:07:25



228

Chapter 8

approximate the actual probability distribution. Confidence intervals were 
obtained through bootstrapping (1000 samples).

A Decision Curve Analysis (DCA) was performed to assess how the Pacmed 
model could impact patient care within the clinical workflow [27, 28]. A DCA 
plots Net Benefit across a range of decision probability thresholds. Net Benefit 
measures the number of true-positive classifications (patients that were read-
mitted or died and were identified as such) penalized for false-positive classi-
fications (patients that were not readmitted and did not die but were identified 
as such). The DCA was performed with four patient discharge strategies for 
Leiden UMC data: discharge none, discharge all, discharge according to the 
original model developed at Amsterdam UMC, and discharge according to the 
final retrained model developed at Leiden UMC. In the reporting of our results, 
we followed the TRIPOD statement [29].

8.3.6 Subgroup analysis
To assess model performance across different ICU specialties, we performed a 
subgroup analysis for surgery, internal medicine, cardiology, neurology, and 
gastroenterology patients.

8.3.7 Software
All analyses were performed in Python 3.8.0. Code for the validation analysis 
is available online at https://git.lumc.nl/aahdehond/pacmed-validation.

8.4 RESULTS

The Leiden UMC data consisted of a total of 10,052 ICU admissions after 
excluding 2198 admissions discharged to the MCU, 1980 admissions with 
patients dying at the ICU, 1056 admissions with a length of stay shorter than 12 
hours, 616 admissions with patients transferred to the ICU of another hospital, 
and 220 admissions with patients receiving palliative care (Figure 8.1).  Approx-
imately 0.8% of ICU admissions had a time difference of less than 12 hours 
and were also removed from the cohort. There were only minor differences 
in demographics (age, sex, and BMI) between the original development site 
(Amsterdam UMC) and validation site (Leiden UMC) (Table 8.1). The average 
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length of ICU stay was almost a day longer at the original development site 
compared to the validation site. The number of vasopressors or inotropes 
supplied were approximately the same. The percentage of readmissions within 
7 days after discharge was slightly higher at the validation compared to devel-
opment site (4.7% vs 4.3%), whereas the mortality was slightly higher at the 
development compared to the validation site (1.2 vs 1.0%). There were more 
planned surgical procedures at the validation site compared to the development 
site. A subset of features differed between the validation and development site 
in how often they were recorded (e.g., glasgow coma scale) or their median 
value (e.g., troponin t) (for details see supplementary Table S1). Across the 
different validation cohorts (Table S2-S3) there was a slight decrease in length 
of stay over time and a decrease in readmissions and deaths over time (supple-
mentary Table S4).

Table 8.1 Temporal validation design throughout retraining process

2011 2012 2013 2014 2015 2016 2017 2018 2019

External validation before retraining

Temporal validation 1

Temporal validation 2

Validation after retraining

data for retraining data for validation data for retraining and validation
8
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Figure 8.1 Flow chart of the ICU admissions included for external validation.

Among the 10,052 discharged patients from the ICU at the validation site, 577 
(5.7%) patients experienced readmission or death within 7 days (Table 8.2). 
Length of ICU stay (before discharge) was notably higher for the patients who 
were readmitted or died compared to the patients with no such event (3.9 vs 2.2 
days, Table 8.2). There were fewer surgical compared to non-surgical patients 
in the readmitted or dead group.
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Table 8.2 Descriptive statistics by outcome event for the validation site (Leiden UMC)

All No event Readmission or death

Demographics

Total N (%) 10,052 (100.0) 9475 (94.3) 577 (5.7)

Age, mean (SD) 62.2 (14.0) 62.1 (14.0) 63.5 (13.9)

Sex (female), N (%) 3423 (34.1) 3181 (33.6) 242 (41.9)

BMI [kg/m2], mean (SD) 26.4 (5.6) 26.5 (5.7) 25.9 (5.5)

Clinical information

Length of stay*, mean (SD) 2.3 (4.2) 2.2 (4.0) 3.9 (5.6)

Received vasopressors/inotropes, 
N (%)

7119 (70.8) 6677 (70.4) 442 (76.6)

ICU specialty top 5 (%)

 Surgery 7980 (79.4) 7633 (80.6) 347 (60.1)

 Internal medicine 588 (5.9) 543 (5.7) 45 (7.8)

 Cardiology 327 (3.3) 295 (3.1) 32 (5.6)

 Neurology 245 (2.4) 207 (2.2) 38 (6.6)

 Gastroenterology 234 (2.3) 196 (2.1) 38 (6.6)

*Length of stay in days calculated before discharge.

The original model had an AUC of 0.72 (95% CI 0.67-0.76, “External validation 
before retraining”, Table 8.3) on validation data (2018-2019). The retrained models 
had improved discriminative performance with an AUC of 0.79 (95% CI 0.76-
0.82) for temporal validation 1 and 0.79 (95% CI 0.76-0.83) for temporal vali-
dation 2 on validation data (2018-2019). The final retrained model (“Validation 
after retraining”, Table 8.3) obtained a discrimination of 0.79 (95% CI 0.75-0.82) 
on validation data (2018-2019).

8
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Table 8.3 Predictive performance before and after retraining

Validation step AUC Calibration 
intercept

Calibration 
slope

Calibration 
loss

External validation before 
retraining

0.72 (0.67, 0.76) -0.09 (-0.3, 0.12) 1.0 (0.72, 1.28) 0.01

Temporal validation 1 0.79 (0.76, 0.82) 0.07 (-0.14, 0.29) 0.95 (0.73, 1.17) 0.01

Temporal validation 2 0.79 (0.76, 0.83) -0.0 (-0.22, 0.21) 1.02 (0.78, 1.26) 0.01

Validation after retraining 0.79 (0.75, 0.82) -0.03 (-0.24, 0.19) 0.99 (0.77, 1.21) 0.01

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve

The models developed on data from the validation site showed calibration 
slopes below 1, indicating too extreme risk estimates, and intercepts above 
0, indicating overall underestimation of risk (supplementary Table S5). After 
recalibration via isotonic regression, the slopes and intercepts were at 1 and 
0 respectively for all validation time points (Table 8.3). The calibration loss 
showed a minor decrease from 0.02 before recalibration to 0.01 after recali-
bration for all validation moments (Table 8.3 and supplementary Table S5). 
The decision curve for the model retrained at the validation site lies above the 
other strategies across almost the entire range of relevant probability thresh-
olds, indicating a higher net benefit than the original model (Figure 8.2). At 
a threshold of 5% for risk of readmission or death, the Leiden UMC model 
had a net benefit of 0.035: a net reduction of 3.5 percentage points in patients 
that would have been readmitted or would have died. At a threshold of 10%, 
the model had a net benefit of 0.015, and at a threshold of 20% the net benefit 
was 0.005. The original model had net benefits of approximately 0.03 at a 5% 
threshold, 0.01 at a 10% threshold, and 0.002 at a 20% threshold respectively.
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Figure 8.2 Decision curve analysis plotting Net Benefit for four discharging strategies across 
different threshold probabilities

Net Benefit is expressed as the percentage reduction in readmission or death with respect to 
regular clinical practice (discharge all). The ‘discharge none’ line corresponds to treating all 
patients as if they would be readmitted or dead within 7 days. This leads to many unnecessary 
prolonged ICU stays and only yields positive NB for very low threshold values (risk averseness). 
The ‘discharge all’ line corresponds to discharging all patients as if they would not be read-
mitted or death within 7 days and hence corresponds to the current clinical practice strategy. 
The ‘Amsterdam UMC model’ line corresponds to discharging according to the original model 
developed on Amsterdam UMC data and recalibrated for the Leiden UMC setting. The ‘Leiden 
UMC model’ line corresponds to discharging according to the final retrained and recalibrated 
model developed on Leiden UMC data.

Model discrimination was best for surgical and neurology patients (final model 
AUC of 0.79 (95% CI 0.75-0.84) and 0.84 (95% CI 0.70-0.97), supplementary Tables 
S6-S10), and worst for internal medicine and gastroenterology patients (final 
model AUC of 0.62 (95% CI 0.44-0.79) and 0.63 (95% CI 0.40-0.92)). Calibration 
is best for the surgical group. Confidence intervals are generally large due to 
small sample sizes.

8.5 DISCUSSION

This study illustrated the importance of local retraining for a specific setting 
to increase the applicability of a gradient boosted ML model. We confirmed 

8
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the external validity of a promising ML model to predict readmission or death 
within 7 days after ICU discharge.

Our results indicate that retraining improved discrimination and calibration 
comparable to the original performance at a new site. The constant perfor-
mance throughout the temporal validation indicated that there were no 
changes in our data (data drift) affecting performance over time. Retraining 
followed upon a process of extensive data preparation and harmonization [11]. 
The need for retraining was underwritten by the decision curve analysis in 
which the final retrained model had a notably higher clinical usefulness than 
the original model. The level of heterogeneity between different sites directly 
relates to the generalizability of the original model to new sites. Heteroge-
neity between sites may for example be found in the patient populations, the 
healthcare context, and model specification, including the types of features 
included. In our case study, the model development and validation settings 
both treated similar patient populations and provided a similar level of care 
in comparable healthcare contexts (Table 8.1). There were some differences 
in the frequency and median of the features recorded, which may indicate 
differences in clinical protocols at the two centers (supplementary Table S1). 
Yet, there was considerable overlap in the feature sets used at development and 
validation sites. Despite these similarities, there was a clear drop in perfor-
mance for the external validation in comparison to the original model results. 
Retraining led to markedly improved performance. We hypothesize that the 
drop in performance was caused by the differences in features and healthcare 
contexts, but this warrants further research. These results illustrate the impor-
tance of external validation and retraining, as generalizability was difficult to 
attain, and the exact differences between healthcare contexts driving the lack 
of generalizability may be hard to discern.

Retrained ML models also showed superior performance in other studies. For a 
ML model predicting hospital admission, the locally retrained models obtained 
AUCs of around 0.90 versus 0.60 for the external validations [30]. For a study 
that aimed to identify pneumothorax patients with medical imaging this was 
0.90 versus 0.59 [31]. These results underwrite that retraining and recalibration 
will likely be necessary when ML models are applied to a different setting. Yet, 
information on the external validity and necessity to recalibrate or retrain a ML 
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model is currently not required to obtain CE-certification or FDA approval [12]. 
Clinicians should be aware of this gap in the current regulatory requirements to 
prevent implementation of models with suboptimal or harmful performance.

Our study has the following implications. First, our results illustrate that 
generalizability cannot be taken for granted, even when the development 
and validation cohorts have strong similarities in terms of patient population, 
healthcare context, and model specification. A second implication is that when 
generalizability is poor, more extensive retraining may be required to improve 
performance at the new site, which requires substantial sample size [32]. Poor 
generalizability of ML models from one local setting to another limits the scal-
ability of these techniques [21]. The potential of Pacmed Critical [33] may not 
come to fruition by non-transportable and highly tailored solutions that are 
labor-intensive to develop and maintain. Future research should analyze multi-
site datasets to explore heterogeneity in predictive relations as threats to devel-
oping generalizable models [34]. Alternatively, up and coming techniques such 
as federated learning may prove useful in addressing the generalizability issue 
[35, 36]. In situations where generalizable models cannot be attained, invest-
ment in data sharing infrastructure and in-hospital data science skills may help 
to facilitate the retraining and recalibration of these models locally. Lastly, the 
subgroup analysis showed diverging model performance across the different 
ICU specialties. Caution is needed when applying this model to “the ICU popu-
lation” without detailed knowledge of the specific specialty case mix. Future 
model developments may focus on maximizing model performance across 
specialties by incorporating specialty specific parameters and increasing the 
sample size of these subgroups. When applying ML models to clinical practice, 
clinicians should consider what case mix was considered during ML model 
development and whether the ML model can be safely and reliably applied to 
all patient groups and/or their case mix.

A strength of the current study was the use of a temporal validation design. 
Besides examining the effect of retraining on model performance, this design 
also allowed us to assess the model’s sensitivity to shifts in data over time 
[15-18]. A second strength was the complete and external EHR data for the vali-
dation after thorough data preparation in collaboration with a clinical domain 
expert (MA). This led to a high-quality dataset. Another strength is the use of 

8
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a comprehensive set of metrics to evaluate performance aspects, including 
calibration, discrimination, and clinical usefulness [37].

This study also had several limitations. First, the external validation was 
performed for one academic hospital (Leiden UMC) and one ML model (gradient 
boosting decision tree). Hence, our results cannot be directly extrapolated 
to other sites and ML techniques. Based on our findings we anticipate that 
external validation and possibly retraining likely remain necessary for new 
implementation sites and ML techniques. Second, the models were developed 
with data preceding the COVID-19 pandemic to reflect ‘standard care’. COVID-19 
has drastically changed the composition of ICU patients and disrupted ICU 
care processes. Moreover, COVID-19 may have changed the way critical care is 
practiced in non-COVID situations. Further validation is therefore needed for 
(post-)COVID-19 patients to use the model safely and reliably in this context. 
Finally, our definition of an ICU discharge excluded patients discharged to 
the MCU from the analysis, and those with a recorded admission less than 12 
hours. These exclusion criteria adhered to the strict focus on discharges from 
critical care to non-critical care settings, but also limits the applicability of this 
model for clinical practice. Moreover, the distinction between ICU and MCU 
may not always be clearcut. To address this limitation, future model develop-
ments should aim to incorporate ICU discharges to the MCU, and include all 
ICU admissions, irrespective of duration.

In conclusion, external validation can be essential to consider before clinical 
implementation of a ML model in a new setting. Techniques such as retraining 
may aid in improving model performance at a new site. Clinicians and deci-
sionmakers at the ICU should take this into account when considering applying 
new ML models to their local settings.
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Predicting readmission or death after discharge from the ICU
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Predicting readmission or death after discharge from the ICU
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Predicting readmission or death after discharge from the ICU

Table S2 Temporal validation design throughout retraining process

2011 2012 2013 2014 2015 2016 2017 2018 2019

External validation before retraining

Temporal validation 1

Temporal validation 2

Validation after retraining

data for retraining data for validation data for retraining and validation

Table S3 Sample size across years at the validation site (Leiden UMC)

2011 2012 2013 2014 2015 2016 2017 2018 2019 Total

Sample size 845 1119 1238 1302 1298 1201 1211 996 842 10052

Table S4 Descriptive statistics for the temporal validation cohorts

All (2011-2019) Cohort 2018-2019

Demographics

Total observation N (%) 10052 (100.0) 1838 (18.3)

Age, mean (SD) 62.2 (14.0) 62.1 (13.6)

Sex (female), N (%) 3423 (34.1) 617 (33.6)

BMI [kg/m2], mean (SD) 26.4 (5.6) 26.7 (5.7)

Clinical information

Lenth of stay (days), mean (SD) 2.3 (4.2) 2.2 (4.6)

Received vasopressors/inotropes, 
N (%)

7119 (70.8) 1443 (78.5)

ICU specialty top 5 (%)

 Surgery 7980 (79.4) 1505 (81.9)

 Internal medicine 588 (5.9) 85 (4.6)

 Cardiology 327 (3.3) 69 (3.8)

 Neurology 245 (2.4) 53 (2.9)

 Gastroenterology 234 (2.3) 41 (2.2)

Event

Readmission (%) 467 (4.7) 78 (4.2)

Death (%) 103 (1.0) 14 (0.8)

Readmission or death (%) 577 (5.7) 92 (5.0)

8
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Table S5 Predictive performance for different validation cohorts before recalibration by isotonic 
regression

AUC Calibration 
intercept

Calibration 
slope

Calibration 
loss

External validation before 
retraining

0.71 (0.66, 0.76) 0.61 (0.4, 0.82) 1.05 (0.75, 1.35) 0.02

Temporal validation 1 0.78 (0.75, 0.82) 0.27 (0.05, 0.49) 0.76 (0.59, 0.94) 0.02

Temporal validation 2 0.78 (0.74, 0.82) 0.38 (0.15, 0.6) 0.76 (0.59, 0.93) 0.02

Validation after retraining 0.78 (0.75, 0.82) 0.41 (0.18, 0.63) 0.77 (0.6, 0.94) 0.02

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve

Table S6 Predictive performance for different validation cohorts within the surgical ICU specialty

AUC Calibration 
intercept

Calibration 
slope

Calibration 
loss

External validation before 
retraining

0.72 (0.66, 0.78) -0.3 (-0.57, -0.03) 1.01 (0.66, 1.36) 0.02

Temporal validation 1 0.8 (0.76, 0.84) 0.08 (-0.19, 0.35) 0.95 (0.69, 1.21) 0.01

Temporal validation 2 0.8 (0.76, 0.84) 0.02 (-0.25, 0.29) 0.99 (0.71, 1.27) 0.01

Validation after retraining 0.79 (0.75, 0.84) 0.01 (-0.26, 0.28) 0.98 (0.72, 1.23) 0.01

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve

Table S7 Predictive performance for different validation cohorts within the internal medicine 
ICU specialty

AUC Calibration 
intercept

Calibration 
slope

Calibration 
loss

External validation before 
retraining

0.7 (0.53, 0.87) 0.12 (-0.68, 0.91) 0.93 (-0.08, 1.95) 0

Temporal validation 1 0.55 (0.45, 0.66) -0.17 (-0.96, 0.61) 0.83 (-0.58, 2.23) 0

Temporal validation 2 0.6 (0.45, 0.76) -0.18 (-0.96, 0.6) 0.5 (-0.92, 1.92) 0

Validation after retraining 0.62 (0.44, 0.79) -0.27 (-1.06, 0.51) 0.69 (-0.66, 2.04) 0

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve
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Table S8 Predictive performance for different validation cohorts within the cardiology ICU 
specialty

AUC Calibration 
intercept

Calibration 
slope

Calibration 
loss

External validation before 
retraining

0.62 (0.49, 0.75) 1.09 (0.42, 1.76) 0.68 (-0.22, 1.59) 0

Temporal validation 1 0.68 (0.54, 0.82) 0.64 (-0.04, 1.32) 0.89 (0.08, 1.7) 0

Temporal validation 2 0.7 (0.53, 0.84) 0.55 (-0.12, 1.22) 1.14 (0.13, 2.15) 0

Validation after retraining 0.69 (0.52, 0.83) 0.5 (-0.17, 1.18) 0.97 (0.06, 1.89) 0

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve

Table S9 Predictive performance for different validation cohorts within the neurology ICU 
specialty

AUC Calibration 
intercept

Calibration 
slope

Cali.

loss

External validation before 
retraining

0.84 (0.74, 0.93) 1.04 (0.24, 1.83) 1.45 (0.4, 2.51) 0

Temporal validation 1 0.81 (0.69, 0.92) 0.64 (-0.14, 1.42) 3.14 (0.1, 6.18) 0

Temporal validation 2 0.87 (0.76, 0.97) 0.27 (-0.51, 1.06) 2.77 (0.71, 4.84) 0

Validation after retraining 0.84 (0.7, 0.97) 0.25 (-0.53, 1.02) 2.36 (0.65, 4.07) 0

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve

Table S10 Predictive performance for different validation cohorts within the gastroenterology 
ICU specialty

AUC Calibration 
intercept

Calibration 
slope

Cali. loss

External validation before 
retraining

0.41 (0.19, 0.71) -0.11 (-1.3, 1.09) -0.14 (-1.77, 1.48) 0

Temporal validation 1 0.59 (0.39, 0.78) -0.49 (-1.69, 0.71) 0.51 (-1.21, 2.23) 0

Temporal validation 2 0.72 (0.54, 0.85) -0.49 (-1.67, 0.7) 2.08 (-1.46, 5.61) 0

Validation after retraining 0.63 (0.4, 0.92) -0.57 (-1.76, 0.62) 0.95 (-1.09, 2.99) 0

Abbreviations: AUC Area Under the Receiver Operating Characteristics Curve
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