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Chapter 6

6.1 ABSTRACT

6.1.1 Background

Prediction of revision in arthroplasty surgery requires competing risk analysis
to calculate the absolute risk of revision. Machine learning (ML) algorithms
may improve upon decision support tools based on traditional regression tech-
niques in orthopedics and overcome surgeons’ biases in risk stratification.
Therefore, this study addressed the following study question: Does ML survival
analysis with competing risk perform better than traditional regression models
for estimating the risk of revision for patients undergoing arthroplasty surgery?

6.1.2 Methods

We developed a set of time-to-event models with revision as the event of interest
and death as the competing risk using 11 datasets from previously published
studies from the Dutch Arthroplasty Register. A set of predictors was identified
based on the original variable selection of the included studies. We assessed the
predictive performance of two state-of-the-art statistical time-to-event models
for 1- 2- and 3-year follow-up: a Fine and Gray model and a cause-specific Cox
model. These were compared to a ML approach consisting of a random survival
forest model. The 11 datasets were all observational cohort studies that previ-
ously reported on predictors of outcome or survival following partial or total
knee and hip arthroplasty. The sample size of these datasets ranged from 1,037
to 218,214 procedures. Performance was assessed according to discriminative
ability as quantified by the c-index (time-dependent area under the receiver
operating curve [AUCt]), calibration (slope and intercept), and overall predic-
tion error (scaled Brier score).

6.1.3 Results

The AUCt of the models ranged between 0.52 to 0.68. On average, the differences
between the validated performance of different modeling approaches were 0.00
(range -0.04 to 0.03) across 11 data sets.

6.1.4 Conclusions

ML did not outperform traditional regression models. Current predictor vari-
ables are insufficient for estimating the risk of revision following arthroplasty
surgery either with ML survival- or traditional regression methods. Future
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registry efforts should aim at collecting more relevant predictors to improve
prediction for individual patients planned for a procedure.

6.1.5 Level of evidence
Prognostic level III
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6.2 INTRODUCTION

Various predictive modeling tools have been developed and are used for deci-
sion support in healthcare to inform patient and surgeon decision-making.
In the field of orthopedic surgery, studies have been designed predicting
arthroplasty revision surgery, using competing risk analysis [1-13]. Revision is
a procedure that may involve a partial or complete exchange of the prosthesis
implanted during the primary -index- surgery. In a classical survival setting,
patients only fail from one cause. However, the cumulative incidence of revi-
sion (primary outcome) depends not only on the effect of covariates (i.e., age
or gender) but also on the survival rate, since patients who have died cannot
subsequently undergo revision. Standard survival analyses (Kaplan Meier
curves) treat death simply as censored information, but this approach may
overestimate revision rates [14]. Therefore, a competing risk analysis should be
performed with revision as the primary outcome event and death as competing
risk.

New techniques like machine learning (ML) algorithms and the increasing
availability of electronic health record data as well as healthcare registries
provide new opportunities to improve decision support tools. However, it
is unclear whether ML generates better risk estimates than the traditional
approach. Some preliminary evidence exists investigating this question. For
example, a recent study from our group compared ML and logistic regression
algorithms for the prediction of binary events (e.g., reoperation yes or no) in
orthopedic trauma in 9 datasets. ML's benefit was shown to be limited [15]. In
fields outside of orthopedic surgery, studies have explored ML survival analysis
with competing risks: random survival forests (RSFs) [16, 17], a decision tree-
based ML algorithm for time-to-event analysis. However, to our knowledge, no
study to date has compared competing risk survival models based on ML and
traditional regression methods in multiple datasets.

This study aimed to compare the performance of ML survival analysis and
traditional regression modeling in a competing risk setting. We hereto analyzed
11 datasets including patients undergoing arthroplasty surgery registered in
the Dutch Arthroplasty Register (LROI).
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6.3 MATERIALS AND METHODS

6.3.1 Guidelines

This study was conducted according to the Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical Research and
the Transparent Reporting of Multivariable Prediction Models for Individual
Prognosis or Diagnosis (TRIPOD) guidelines [18, 19].

6.3.2 Study design and participants (Data sources)

Eligible datasets were derived from previously published studies, including
patients registered in the Dutch Arthroplasty Register (LROI) [20] and under-
going a (partial) knee or hip arthroplasty surgery. The overall data complete-
ness for both primary knee and hip arthroplasties was 96% in 2014 and up
to 100% in 2020 [20]. In total, 11 datasets were included in the study. All were
observational cohort studies that previously reported on predictors of outcome
or survival following partial or total knee and hip arthroplasty (Table 6.1)
[1-5, 7-11, 21]. The sample size of these datasets ranged from 1,037 to 218,214
procedures. The raw datasets supplied by the LROI were directly derived from
the previous studies and contained several processing steps. This resulted in
different patients and variables being available across the different datasets.
We therefore chose to perform the ML versus traditional statistics comparison
in each dataset separately with the same inclusion criteria and set of predictors
as applied by the original studies. This also allowed for a direct comparison
with the results from the original studies. The baseline characteristics of the
11 included datasets can be found in the original studies [1-5, 7-11, 21]
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6.3.3 Data analysis — Traditional survival approaches

Of the included studies, one study conducted a multivariable logistic regres-
sion analysis [1], five applied Kaplan Meier analysis [4, 5, 7, 8, 21], and 10 used
multivariable Cox proportional hazard regression analyses [2-5, 7-11, 21]. None
of these methods accounted for competing risks.

Logistic Regression Analysis
The study applying logistic regression analysis investigated the differences in
revision rates (1- and 3-year) between case-mix subgroups were investigated [1].

Kaplan-Meier Analysis

Kaplan-Meier survival analyses were performed [4, 5, 7, 8, 21] to determine
the probability of not experiencing a revision after a specific period of time
(surviving) in which the log-rank test (Mantel-Co, 95% CI) was used to compare
two groups (e.g., men and women). Kaplan-Meier analysis may overestimate
the probability of the event of interest (i.e., revision surgery) [14, 22].

Cox Proportional Hazard Regression Analysis

Cox regression analyses were common in previously published studies [2-5,
7-11, 21], where death was censored. Absolute risk was calculated per time
window (e.g., 3-year), and covariates were presented with hazard ratios with a
95% confidence interval (CI).

6.3.4 Data analysis — Survival approaches accounting for competing risks
On the included studies, we developed a set of time-to-event models with revi-
sion as the event of interest and death as the competing risk for all included
studies separately.

Aalen-Johansen curves

An Aalen-Johansen estimator is a non-parametric estimation of risks, like the
Kaplan-Meier estimator in the survival setting (see above). The Aalen-Johansen
curve is plotting the CIF of the event of interest (revision) accounting for a
competing risk (death) [23].
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Fine and Gray Model

A Fine and Gray model [24] is a semi-parametric method (proportional hazards
model), estimating the incidence of the outcome of interest (revision) over time
in the presence over a competing risk (death), thereby relating covariates to
the CIF of the event of interest (revision) [25].

Cause-specific Cox Model

A cause-specific Cox model also is a semi-parametric method. It is an exten-
sion of the earlier described Cox regression analyses. In the cause-specific Cox
model, the risk of revision is compared among patients who are event free and
in follow-up (i.e., patients who have not experienced a revision or the competing
risk (death) at a particular time point) [22, 26].

Random Survival Forest

The Random survival forest (RSF) [27] was introduced as a time-to-event exten-
sion to a random forest that can account for competing risks. RSF is a machine
learning method that uses ensemble learning on many decision trees. It can
work with high dimensional and complex (also nonlinear) data.

6.3.5 Data preparation

A set of predictors was identified based on the original variable selection of the
included studies (Table 6.1) [26]. The observations for which age or gender were
missing were removed from the analysis. All other missing data was imputed
using multivariate imputation by chained equations [28] creating 10 imputed
datasets.

6.3.6 Model development

For each of the 11 datasets, we plotted the CIF for the outcome of interests
(revision) and the competing risk (death) in Aalen-Johansen curves [23]. Subse-
quently, we compared the predictive performance of two state-of-the-art statis-
tical time-to-event models: a Fine and Gray model and a cause-specific Cox
model. These were compared to a ML approach consisting of a random survival
forest with competing risks [27].

The time-to-event was set at 1-, 2- and 3-year follow-up for each cohort. The
imputed data was split into a train (2/3 of the data) and a test set. This approach
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was chosen over more sophisticated train designs (e.g., nested cross-validation)
for computational feasibility. The hyperparameters for the random survival
forest were set via 5-fold cross-validation on the train data (supplementary
Table S1). The models were trained on the train data (with tuned hyperparam-
eters) and applied to the test data.

6.3.7 Model performance

Model performance was evaluated following recent guidance for prediction
models in the presence of competing risks [29] that includes: (1) discrimina-
tion with a time-dependent area under the receiver operating curve (AUC), (2)
calibration with the calibration slope and intercept (in line with the method
by Cox [30]) and (3) the overall prediction error with the scaled version of the
Brier score [29].

The c-index (AUC) ranges from 0.50 to 1.0, with 1.0 indicating the highest
discrimination score and 0.50 indicating the lowest. The higher the discrim-
ination score, the better the model’s ability to distinguish patients who had
the outcome (i.e., patients who received revision from those who had not) [31].
The time-dependent c-index (AUC,) can be calculated for a single time point of
interest (e.g., two-year revision) [29, 32].

A calibration plot plots the primary outcome’s estimated and observed proba-
bilities. A perfect calibration plot has an intercept of 0 (<0 reflects overestima-
tion, >0 reflects underestimating the probability of the outcome) and a slope of
1 (the model is performing similarly in training and test sets) [33, 34]. In a small
dataset, the slope is often <1, reflecting model overfitting; probabilities are too
extreme (low probability too low, high probability too high) [26].

The Brier score calculates a composite of discrimination and calibration, with
0 indicating perfect prediction and a Brier score of 1 the poorest prediction
[31]. A scaled version of the Brier score (1-(model Brier score / null model Brier
score)) can be interpreted as the amount of prediction error in a null model
that the prediction model explains. A 100% scaled Brier score corresponds to
a perfect model, 0% to an ineffective model, and <0% to a harmful model [29].
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Model performance estimates were pooled across the 10 imputed datasets
via Rubin’s Rules [35]. We visualized model performance comparison in a
beeswarm plot - a scatterplot of the differences in AUCt of each ML and tradi-

tional regression pair.

6.3.8 Software

Data pre-processing and analysis was performed using R Version 5.3 (“R: A
Language and Environment for Statistical Computing” The R Foundation,
Vienna, Austria 2013), R- studio Version 1.2.1335 (R-Studio, Boston, MA, USA)
and Python 3.10. The following packages were used: caret, cmprsk, geepack,
Hmisc, modelr, prodlim, randomForestSRC, riskRegression, survival, tidyr,
tidyverse, and beeswarm. We used the following packages for Python (version
3.7.7): pandas, numpy, matplotlib, lifelines, sksurv, and sklearn.

6.4 RESULTS

The CIFs were plotted for all 11 datasets (Figure 6.1). For most datasets, the
absolute risk of death surpasses the risk of revision at some point in time, which
concurs with the population generally studied.

Peters et al. (2020) Peters et al. (2018) v Steenbergen et al. (2020)
0.081 — revision 0.150 71 —— revision —— revision
death 0.125 | death 0.15 death
0.06 )
0.100 1
%004 £ 00751 = 010
0.0501 e 0.05 .
0.025 /"_’,..-—“’—" /
0.0001 / 0.00 /
0 2 4 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 100
Years after primary THA Years after primary THA Years after primary THA and RHA
v Oost et al. (2020) Burger et al. (2020) Kuijpers et al. (2019)
0.150{ —— revision . 0.1501 —— revision g 0.081 —— revision o

death death

death o

0.125 0.125

0.100 0.100
® 0,075 = 0.075
0.050 0.050

0.025 0.025

0.000 0.000

00 25 50 75 100 00 25 50 75 100 00 25 50 75 100
Years after PKR Years after UKR Years after primary THA
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Bloemheuvel et al. (2019)
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Figure 6.1 Cumulative Incidence Function for all datasets

Spekenbrink et al. (2018)

0.175
—— revision
0.150 death

0.125
0.100
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Abbreviations: THA Total Hip Arthroplasty, RHA Resurfacing Hip Arthroplasty, PKR Partial Knee
Replacement, UKR Unicompartimental Knee Arthroplasty, TKA Total Knee Arthroplasty, HA

hemiarthroplasty

Next, we compared the predictive performance of a ML approach to two state-
of-the-art statistical time-to-event models in 11 datasets. The difference in AUCt

for each analysis was on average 0.00 for traditional regression compared to
ML, with a range from -0.04 to 0.03, indicating that ML and traditional regres-

sion models produce similar probability estimates (Figure 6.2).
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Model Performance Comparison 1-Year
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Figure 6.2 Beeswarm plots of model performance time-dependent c-index differences (AML -

Traditional Regression).

Abbreviations: ML Machine Learning, CR Competing Risk

Table 6.2 Time-dependent AUC (95% confidence interval)

Dataset

Time

Fine and Gray Cause-specific Cox

Competing Risk
Survival Forest

Peters et al. (2020)

Peters et al. (2018)

van Steenbergen et al.
(2020)

van Oost et al. (2020)

=W N =W N

0.57 (0.55,0.6)
0.58 (0.56,0.6)
0.58 (0.56,0.6)
0.61 (0.59,0.63)
0.62 (0.61,0.64)
0.66 (0.64,0.67)
0.54 (0.53,0.56)

0.55 (0.54,0.57)
0.57 (0.55,0.58)
0.54 (0.49,0.58)

172

0.57 (0.55,0.6)
0.58 (0.56,0.6)
0.58 (0.56,0.6)
0.61 (0.59,0.63)
0.63 (0.61,0.64)
0.66 (0.64,0.67)
0.55 (0.53,0.57)

0.56 (0.54,0.58)
0.57 (0.56,0.59)
0.54 (0.49,0.58)

0.56 (0.54,0.59)
0.56 (0.54,0.59)
0.56 (0.54,0.59)
0.61 (0.59,0.63)
0.63 (0.61,0.64)
0.65 (0.64,0.67)
0.57 (0.55,0.59)

0.57 (0.55,0.59)
0.58 (0.56,0.59)
0.53 (0.48,0.58)
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Table 6.2 Time-dependent AUC (95% confidence interval) (continued)

Dataset

Time

Fine and Gray Cause-specific Cox

Competing Risk

Survival Forest

Burger et al. (2020)

Kuijpers et al. (2019)

Bloemheuvel et al. (2019)

Bloemheuvel et al. (2018)

Spekenbrink et al. (2018)

Moerman et al. (2018)

Janssen et al. (2018)

2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

0.55 (0.52,0.58)
0.55 (0.52,0.57)
0.51 (0.45,0.56)
0.53 (0.49,0.57)
0.54 (0.5,0.57)
0.59 (0.53,0.65)
0.58 (0.53,0.63)
0.58 (0.53,0.62)
0.5 (0.46,0.53)
0.53(0.5,0.56)
0.54 (0.51,0.57)
0.56 (0.52,0.59)
0.57 (0.54,0.6)
0.57 (0.54,0.59)
0.57 (0.54,0.6)
0.6 (0.58,0.62)
0.62 (0.6,0.63)
0.61 (0.56,0.65)
0.61 (0.57,0.65)
0.61 (0.58,0.65)
0.52 (0.49,0.56)
0.52 (0.49,0.55)
0.5 (0.47,0.53)

0.55 (0.52,0.59)
0.55 (0.52,0.58)
0.51 (0.46,0.57)
0.53 (0.49,0.57
0.54 (0.5,0.58
0.59 (0.53,0.65
0.58 (0.53,0.63
0.58 (0.53,0.62
0.5 (0.46,0.54
0.53 (0.5,0.56
0.54 (0.51,0.57
0.56 (0.53,0.59
0.57 (0.54,0.6
0.57 (0.54,0.59
0.57 (0.54,0.6
0.6 (0.58,0.62
0.62 (0.6,0.63
0.61 (0.56,0.65
0.61 (0.57,0.65
0.61 (0.58,0.65
0.52 (0.49,0.56
0.52 (0.49,0.55

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0.5(0.47,0.53)

0.55 (0.52,0.58)
0.54 (0.51,0.57)
0.52 (0.47,0.58)
0.53 (0.49,0.58)
0.55 (0.51,0.58)
0.61 (0.54,0.67)
0.58 (0.53,0.63)
0.58 (0.53,0.62)
0.52 (0.49,0.56)
0.54 (0.51,0.57)
0.55 (0.52,0.58)
0.58 (0.54,0.61)
0.57 (0.54,0.59)
0.56 (0.54,0.59)
0.58 (0.55,0.62)

0.6 (0.58,0.62)
0.61 (0.59,0.63)
0.62 (0.57,0.66)
0.62 (0.58,0.67)
0.62 (0.59,0.66)
0.53 (0.49,0.57)

0.53 (0.5,0.56)
0.51 (0.48,0.55)

Abbreviations: AUC Area Under the Curve

The AUC, of the Fine and Gray models ranged between 0.52 to 0.66, the
cause-specific Cox ranged from 0.53 to 0.66, and the random survival forest
ranged from 0.51 to 0.65 (Table 6.2).

The calibration metrics (Table 6.3) and scaled Brier scores (Table 6.4) also

produced comparable estimates, showing no advantage of ML over traditional

regression models.
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Table 6.3 continued Calibration intercept and slope (95% confidence interval)

Dataset

Time

Intercept

Competing Risk Survival Forest

Slope

Peters et al. (2020)

Peters et al. (2018)

van Steenbergen et al. (2020)

van Oost et al. (2020)

Burger et al. (2020)

Kuijpers et al. (2019)

Bloemheuvel et al. (2019)

Bloemheuvel et al. (2018)

Spekenbrink et al. (2018)

Moerman et al. (2018)

Janssen et al. (2018)

-0.03 (-0.12,0.07)
-0.07 (-0.15,0.01)
-0.09 (-0.17,-0.01)
0.04 (-0.03,0.11)
0.02 (-0.04,0.08)
-0.01 (-0.06,0.04)
0.05 (-0.02,0.12)
0 (-0.06,0.06)
0.01 (-0.04,0.07)
0.19 (0.02,0.37)
0.19 (0.07,0.31)
0.18 (0.07,0.28)
-0.07 (-0.26,0.11)
-0.08 (-0.21,0.06)
-0.02 (-0.14,0.1)
-0.17 (-0.39,0.05)
-0.11 (-0.28,0.06)
-0.09 (-0.24,0.06)
-0.03 (-0.17,0.11)
-0.07 (-0.19,0.05)
-0.04 (-0.15,0.07)
-0.14 (-0.26,-0.01)
-0.13 (-0.24,-0.03)
-0.09 (-0.19,0)
0.14 (0.02,0.26)
0.03 (-0.05,0.1)
-0.06 (-0.13,0.01)
0 (-0.18,0.19)

0 (-0.17,0.16)
-0.02 (-0.18,0.13)
0(-0.13,0.13)
-0.02 (-0.13,0.09)
-0.05 (-0.15,0.05)

W N H W N R W N R WNHEWNHE O WNHEWN R WN R WNEWDNHE W N

0.77 (0.43,1.11)
0.77 (0.4,1.13)
0.77 (0.45,1.09)
1.4 (1.1,1.71)
1.34 (1.06,1.62)
1.25 (0.99,1.52)
0.84 (0.52,1.16)
0.86 (0.55,1.16)
0.94 (0.63,1.26)
0.44 (-0.26,1.15)
0.85 (0.41,1.28)
0.89 (0.5,1.28)
0.37 (-0.23,0.97)
0.5(0.1,0.91)
0.68 (0.27,1.08)
1.33 (0.26,2.41)
0.94 (0.18,1.7)
0.95 (0.31,1.59)
0.16 (-0.34,0.67)
0.38 (-0.05,0.8)
0.51 (0.14,0.88)
1.11(0.51,1.7)
1.02 (0.65,1.39)
1(0.68,1.32)
1.09 (0.6,1.59)
1.28 (0.97,1.58)
1.15(0.91,1.39)
0.7 (0.4,1)
0.64 (0.39,0.89)
0.61 (0.38,0.83)
0.45 (-0.04,0.94)
0.44 (0.02,0.86)
0.46 (0.02,0.91)
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Table 6.4 Scaled Brier score (95% confidence interval)

Dataset

Peters et al. (2020)

Peters et al. (2018)

van Steenbergen et al.
(2020)

van Oost et al. (2020)

Burger et al. (2020)

Kuijpers et al. (2019)

Bloemheuvel et al. (2019)

Bloemheuvel et al. (2018)

Spekenbrink et al. (2018)

Moerman et al. (2018)

Janssen et al. (2018)

Time

= ow N R W N

W N H W N R W N HEWNHE WNHEWN R WN W HE W N

Fine and Gray

0.001 (0,0.002)
0.001 (0,0.003)
0.002 (0.001,0.004)
0.002 (0.001,0.003)
0.004 (0.003,0.005)
0.006 (0.005,0.007)
0(0,0.001)

0.001 (0,0.001)

0.001 (0.001,0.002)
-0.002 (-0.005,0.001)
-0.001 (-0.005,0.003)
-0.003 (-0.008,0.003)
-0.003 (-0.007,0.001)
-0.002 (-0.007,0.002)
-0.001 (-0.006,0.005)
-0.001 (-0.005,0.003)
-0.002 (-0.007,0.003)
-0.002 (-0.008,0.005)
-0.005 (-0.009,-0.002)
-0.003 (-0.008,0.001
-0.001 (-0.006,0.004
0 (-0.001,0.001
0.001 (0,0.001

0.001 (0,0.002

0 (-0.001,0.001
0.003 (0.001,0.005
0.005 (0.002,0.007
0.002 (-0.002,0.005
0.003 (-0.001,0.006
0.003 (-0.002,0.007
0 (-0.001,0,

-0.001 (-0.002,0
-0.001 (-0.003,0

NN AN - N N A N s N N N N Nl

Cause-specific Cox

0.001 (0,0.002)
0.001 (0,0.003)
0.002 (0.001,0.004)
0.002 (0.001,0.003)
0.004 (0.003,0.005)
0.007 (0.006,0.007)
0(0,0.001)

0.001 (0,0.002)
0.002 (0.001,0.002)
-0.002 (-0.004,0.001)
-0.001 (-0.005,0.003)
-0.002 (-0.008,0.003)
-0.003 (-0.007,0.001)
-0.002 (-0.007,0.002)
-0.001 (-0.006,0.005)
-0.001 (-0.005,0.003)
-0.002 (-0.007,0.003)
-0.002 (-0.008,0.005)
-0.004 (-0.008,-0.001)
-0.002 (-0.007,0.002)
0 (-0.005,0.004)

0 (0,0.001)

0.001 (0,0.001)

0.001 (0,0.002)

0 (-0.001,0.001)
0.003 (0.001,0.005)
0.005 (0.002,0.007)
0.002 (-0.001,0.006)
0.003 (-0.001,0.007)
0.003 (-0.001,0.007)
0 (-0.001,0.001)
-0.001 (-0.002,0)
-0.001 (-0.003,0)

Competing Risk
Survival Forest

0.001 (0,0.002)
0.001 (-0.001,0.002)
0.001 (-0.001,0.002)

0.002 (0.001,0.003)
0.003 (0.002,0.004)
0.004 (0.004,0.005)

0.001 (0,0.001)

0.001 (0.001,0.002)
0.002 (0.001,0.002)
-0.001 (-0.004,0.001)
0 (-0.004,0.003)
-0.001 (-0.005,0.004)
-0.001 (-0.004,0.001)
-0.002 (-0.007,0.003)
0 (-0.005,0.005)
0.001 (-0.002,0.005)
0 (-0.003,0.004)
0.001 (-0.003,0.005)
-0.003 (-0.006,0.001)
-0.002 (-0.007,0.003)
-0.001 (-0.006,0.004)
0(0,0.001)
0(0,0.001)

0.001 (0,0.001)
0.001 (0,0.001)
0.003 (0.002,0.004)
0.004 (0.003,0.006)
0.003 (-0.001,0.007)
0.004 (-0.001,0.008)
0.004 (-0.001,0.009)
0 (-0.001,0.001)
-0.001 (-0.002,0.001)
-0.001 (-0.003,0.001)

Abbreviations: AUC Area Under the Curve
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6.5 DISCUSSION

In this comparative study, we found that ML performed similarly to traditional
regression methods. Moreover, current predictor variables are insufficient for
estimating the risk of revision for patients undergoing arthroplasty surgery
either with ML or conventional traditional regression methods.

6.5.1 Strengths and limitations

An important strength of our study is that we included multiple datasets from
previously peer-reviewed published studies, enhancing the reliability of our
findings. To the best of our knowledge, this is the first study comparing ML and
conventional traditional regression methods with a competing risk in multiple
datasets.

The results of this study should also be viewed considering several limitations.
First, the data was derived from the Dutch Arthroplasty Registry (LROI) [20]
and may not be generalized to an international population. The findings of this
study may be more reliable when evaluated on independent registry cohorts.
Second, we chose a common set of time-to-event points for a true comparison
of model performances across the included datasets. A visual trend was seen
where the ML performances were increasing more over time compared to tradi-
tional regression model performances (Figure 6.2). Future studies can evaluate
longer time-to-event points for individual studies investigating the benefit of
ML survival analysis with a competing risk. Third, hyperparameter tuning was
carried out on the train data set. We did not carry out nested cross-validation
due to the current computation time for training a RSF model. However, we did
not expect to have an incremental benefit in model performance in our cohorts
with the use of more sophisticated nested cross-validation. Lastly, this was a
retrospective study beholden to limitations inherent to such a research design.
Future prospective research efforts to predict revision following arthroplasty
surgery, should aim at collecting a higher number of relevant predictors per
individual patient.

6.5.2 Previous literature

Our findings were comparable to Aram and colleagues [16] evaluating various
model approaches for accurate risk estimation in patients undergoing revi-
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sion surgery after knee arthroplasty. Their results showed that a fully para-
metric model (i.e., RSF) is essential for revision prediction; however, their study
concluded that such methods did not provide high discriminatory power at the
individual level either. Martin and colleagues [36] aimed to predict revision
surgery following hip arthroscopy, including different model approaches (e.g.,
RSF), concluding limited clinical usefulness.

The finding that ML and traditional regression methods were comparable is
consistent with a previous study from our group, comparing ML and logistic
regression algorithms for predicting binary outcome in Orthopaedic trauma
in 9 datasets. In other fields, a study expected ML analysis to outperform Cox
proportional hazard regression analysis in breast cancer survival [37]. However
again, RSF showed a similar performance to traditional regression analysis,
and the ML algorithms outperforming traditional regression analysis did not
account for a competing risk.

6.5.3 Implications

These findings have implications for future research aiming to improve deci-
sion support tools in the presence of competing risks. First, the observation
that ML models are comparable with traditional models in the presence of
competing risks suggests that their benefit may be limited in this context. Our
findings highlight the importance of not overly relying on ML methods as the
‘holy grail’ in prediction modelling and questioning the benefit of ML models
for low dimensional datasets.

Second, the modelling approaches presented here are insufficient to predict
the risk of revision following knee- or hip arthroplasty. The low revision rate
ranging between 0.5% to 4.6% may have limited the models’ ability to distin-
guish between procedures with and without a revision in the current study
context [38]. Predicting revision in arthroplasty procedures will likely remain
challenging for this reason. Imbalance correction techniques could be applied
prior to training the models in the future, but this comes at the cost of strong
miscalibration [39]. Future research may investigate the comparison between
ML and traditional regression methods for other outcomes, such as patient-re-
ported outcome measures (PROMs), and evaluating patients’ satisfaction after
arthroplasty surgery [40, 41].
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Moreover, the registry data at present may not be discriminative enough. Glob-
ally, arthroplasty registries are broadening their data collection regarding
PROMs and social determinants of health [42]. Future patient-centered strate-
gies can focus on evaluating such measures and their influence on improving
decision support tools.

6.5.4 Conclusions

Current predictor variables are insufficient to accurately predict the risk of
revision following arthroplasty surgery either with ML or traditional regression
approach. Developing prediction models for estimating the risk of revision
surgery in patients undergoing arthroplasty surgery offers challenges due to
the censored nature of data and the current data availability. Future registry
efforts should aim at collecting more relevant predictors for the benefit of indi-
vidual patients.
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Chapter 6

SUPPLEMENTARY MATERIAL

Table S1 Hyper parameters Random Survival Forest

Hyperparameters Number of Maximum number Maximum depth
trees of end nodes
[50,100,200] [5,10,15] [5,10,15]
Peters et al. (2020) 50 10 5
Peters et al. (2018) 200 15 5
van Steenbergen et al. (2020) 50 5 5
van Oost et al. (2020) 100 10 5
Burger et al. (2020) 100 5 5
Kuijpers et al. (2019) 200 5 5
Bloemheuvel et al. (2019) 200 5 5
Bloemheuvel et al. (2018) 100 10 5
Spekenbrink et al. (2018) 50 15 5
Moerman et al. (2018) 50 5 5
Janssen et al. (2018) 200 15 15
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