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PART II
DEVELOPMENT AND VALIDATION: 

USE CASES
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Chapter 4

4.1 ABSTRACT

4.1.1 Objective
Early identification of emergency department (ED) patients who need hospital-
ization is essential for quality of care and patient safety. We aimed to compare 
machine learning (ML) models predicting the hospitalization of ED patients and 
conventional regression techniques at three points in time after ED registration.

4.1.2 Methods
We analyzed consecutive ED patients of three hospitals using the Netherlands 
Emergency Department Evaluation Database (NEED). We developed prediction 
models for hospitalization using an increasing number of data available at 
triage, ~30 minutes (including vital signs) and ~2 hours (including laboratory 
tests) after ED registration, using ML (random forest, gradient boosted decision 
trees, deep neural networks) and multivariable logistic regression analysis 
(including spline transformations for continuous predictors). Demographics, 
urgency, presenting complaints, disease severity and proxies for comorbidity, 
and complexity were used as covariates. We compared the performance using 
the area under the ROC curve in independent validation sets from each hospital.

4.1.3 Results
We included 172,104 ED patients of whom 66,782 (39%) were hospitalized. 
The AUC of the multivariable logistic regression model was 0.82 (0.78-0.86) at 
triage, 0.84 (0.81-0.86) at ~30 minutes and 0.83 (0.75-0.92) after ~2 hours. The 
best performing ML model over time was the gradient boosted decision trees 
model with an AUC of 0.84 (0.77-0.88) at triage, 0.86 (0.82-0.89) at ~30 minutes 
and 0.86 (0.74-0.93) after ~2 hours.

4.1.4 Conclusions
Our study showed that machine learning models had an excellent but similar 
predictive performance as the logistic regression model for predicting hospital 
admission. In comparison to the 30-minute model, the 2-hour model did not 
show a performance improvement. After further validation, these prediction 
models could support management decisions by real-time feedback to medical 
personal.
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4.2 INTRODUCTION2

4.2.1 Background
Emergency department (ED) crowding is a well-known problem affecting the 
quality of care and patient safety, also in the Netherlands [1, 2]. Long ED length 
of stay (LOS) is associated with reduced patient satisfaction, negative effects on 
staff, and poorer patient outcomes, including increased in-hospital mortality 
[3-6]. ED patients who ultimately need to be admitted contribute disproportion-
ately to the occurrence of crowding [7, 8].

4.2.2 Importance
Reduction of ED-LOS by early identification of patients who need hospitalization 
has several advantages. First, the hospitalization process can be initialized in 
parallel to ED management, which would save time and enables fast admission 
to an appropriate level of care. This has been suggested to reduce mortality [9]. 
Secondly, patients can anticipate hospitalization, which could increase patient 
satisfaction. Finally, it may have prognostic value as patients who need hospi-
talization are often the sickest and will benefit most from time-sensitive ED 
treatment, i.e., fluid resuscitation in sepsis [8, 10].

Unfortunately, the clinical judgment of triage nurses is not good enough to 
accurately predict the hospitalization of ED patients [11]. ED physicians may 
produce better risk estimates, but it is uncommon for them to perform triage 
[12]. Therefore, various regression models have been developed to aid the deci-
sion to hospitalize the patient, often with mediocre results [13-18].

The advent of machine learning (ML) and the growing availability of increas-
ingly large databases such as electronic health records offer new opportunities 
to develop novel prediction models that have a better predictive performance 
[19-21].

However, recent articles [22, 23] state that, on average, the performance of ML 
was no different from that of logistic regression. Furthermore, a prediction 
model can only reduce ED-LOS when it has good predictive performance with 

2	 Abbreviations: ED = emergency department, LOS = length of stay, ML = machine learning.

4
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data available soon after triage. However, some potentially important prog-
nostic patient information (such as vital signs and blood tests) is not available 
at time of triage. Waiting longer for this information to become available means 
the ED-LOS reduction will be lower than when deploying soon after triage.

4.2.3 Aims of this investigation
The aim of the present study was twofold. First, we investigated whether ML 
models could predict hospitalization of ED patients more accurately than 
logistic regression. Second, we investigated the trade-off between the poten-
tial to improve the predictive performance of the models when including more 
variables and the potential to reduce time to decision-making by developing 
models at triage, at ~30 min (when vital signs are available) and ~2 hours (when 
blood test results are available).

4.3 METHODS

4.3.1 Study design and setting
We used observational multi-center data from the Netherlands Emergency 
Department Evaluation Database (NEED, for more information, see www.
stichting-need.nl), the national quality registry of EDs in the Netherlands. For 
the present study, data were available of 3 EDs, one tertiary care center, and two 
urban teaching hospitals. We used data collected between 1 January 2017 and 
31 December 2019. The study was approved by the medical ethics committee of 
the LUMC and registered in the Netherlands Trial Register (NL8743).

4.3.2 Selection of participants
All consecutive ED patients with a registered presenting complaint in the NEED 
registry database were prospectively included in the study unless they objected 
to participating in the registry. We filtered patients at three consecutive time 
points at which, on average, an increasing number of data become available 
in the electronic hospital information systems: at triage (~15 minutes after ED 
registration), after ~30 minutes (including all vital signs if measured) and after 
~2 hours (also including laboratory testing, if performed). For the 15-minute 
dataset, we excluded patients sent home or referred to a GP within the first 15 
minutes of arrival. It should be kept in mind that these points in time are theo-
retical and merely indicate the approximate moment when additional data are 
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available in clinical practice, i.e., in the Netherlands, it will take approximately 
two hours before diagnostic test results are available.

4.3.3 Data collection
For model development, we used the variables of the Minimal Data Set (MDS) 
collected in the NEED.

4.3.4 Variables

Dependent variable
Hospital admission was defined as admission to a normal ward, admission to 
a medium care or coronary care unit, transfer to another hospital, admission 
to an intensive care unit, and the patient dying in the ED. The remaining cases 
were categorized as the patient being discharged. The treating physician was in 
charge of the decision to hospitalize. Generally, the decision to admit a patient 
was made after the consultation results and laboratory/radiology testing had 
become available.

Independent variables
A set of independent variables was identified to predict hospital admission 
based on a review of the literature [13] and consensus between two ED physi-
cians obtained over multiple discussions involving two ED physicians and two 
data scientists. The selection was made based on expected relevance and avail-
ability. The following variables were considered, depending on the sequential 
dataset collected (~15 minutes, ~30 minutes, and ~2 hours after arrival).
Demographics based on age and gender (all models).
Urgency based on referral type, mode of transport, and triage category (all 
models). The included hospitals used the Manchester Triage System [22] and 
the similar Netherlands Triage System [23] (both validated tools).
Time of day of presentation (all models).
Presenting complaints categorized in 18 main categories (all models). Presenting 
complaints of the MTS and NTS systems were merged to form one coherent list 
(see supplement S1).
Treating specialty of the physician who first saw the patient or to whom the 
general practitioner referred the patient (all models).

4
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Disease severity based on a continuous (ordinal) Glasgow Coma Scale (all 
models), vital signs (categorical for the 15-minute model as the outcomes were 
not available yet at this time point, continuous for the subsequent models), 
Numeric Rating pain score (NRS; 30-minute and 2-hour models) and a categor-
ical variable for intravenous fluids administered (2-hour model).
Proxies for comorbidity and complexity based on binary indicator variables for 
blood tests requested, blood cultures, blood gas analysis, radiology imaging, 
and electrocardiogram (30-minute and 2-hour models) and a categorical vari-
able for the number of consultations (2-hour model) [8].
Laboratory test results (2-hour model). We also included whether lab tests were 
completed for a patient via binary indicator variable (see Proxies for comorbidity 
and complexity) as this signals a certain degree of disease severity.

4.3.5 Descriptive statistics and model development
The patient population was described with descriptive statistics at each moment 
after arrival (triage, ~30 minutes and ~2 hours after arrival). Subsequently, we 
developed four models for each of these moments.

First, we developed a classical statistical multivariable logistic regression model 
with restricted cubic spline transformations and penalization. It is inherently 
interpretable: the model equation can be easily written down and understood 
[24]. However, logistic regression will underperform compared to ML when 
faced with (highly) complex data patterns.

We also developed two tree-based models: a random forest and a gradient 
boosted decision trees (XGBoost) model [25]. They perform well in practice, 
are robust to outliers, and can capture complex relationships. However, they 
perform poorly on large amounts of categorical data.

Lastly, a deep neural network was developed. This modelling technique has 
shown exceptional performance in some instances. However, deep neural 
networks require large amounts of data and have a particular risk of overfitting 
when using elaborate architectures with respect to sample size.
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4.3.6 Handling of missing data
All values which were unrealistic according to the expert opinion of two ED 
physicians were set to missing. We removed the observations for which ED 
location, age, gender, triage category, presenting complaint, and ED length 
of stay were missing as these were considered crucial in the modeling. For 
the remaining categorical variables, missing values were assigned a separate 
category. We imputed the missing value for continuous variables via multiple 
imputation, and a dummy variable was constructed for each continuous vari-
able indicating where the missing values occurred. The categorical variables 
were converted into dummy variables, and the continuous variables were 
normalized.

4.3.7 Training procedure
We split the data in a train (2/3 of the data) and test dataset (1/3 of the data) 
stratified by ED location and hospital admission. The train data were used to 
predict the hospital admission with the abovementioned independent vari-
ables. We performed internal-external validation [26]. This is a ‘leave one group 
out’ cross-validation (where each ED location forms one group) to address the 
heterogeneity between ED locations throughout the Netherlands [27, 28]. We 
tuned the hyperparameters for the training data during cross-validation. 
Subsequently, all models were trained on the entire train dataset with the tuned 
hyperparameters to arrive at the final models.

4.3.8 Testing procedure
We applied the models that resulted from the training procedure to each ED 
location separately in the remaining 1/3 of test data. The discriminative perfor-
mance was measured through the area under the receiver operating charac-
teristic curves (confidence intervals were obtained through bootstrapping). 
We assessed the calibration through the calibration slope. The test results for 
the three ED locations were pooled through a random-effects meta-analysis. 
Sensitivity and specificity were calculated using the cutoff that maximized the 
sum of sensitivity and specificity. Feature importance was obtained via SHapley 
Additive exPlanations.

To assess the potential clinical value of these models, we calculated the Mean 
theoretical reduction in time to decision making based on the thresholds corre-

4
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sponding to the 95% positive and negative predictive value. A 5% error rate 
was considered reasonable given the consequences of such an error. Patients 
retrospectively received an actionable decision (hospitalized or sent home) by 
the best performing model if their probability of hospitalization was either i) 
higher than the threshold corresponding to the 95% PPV or ii) lower than the 
threshold corresponding to the 95% NPV. For this set of patients, the time to 
decision making was adjusted to the model’s time point (15 minutes, 30 minutes, 
or 2 hours), and the Mean difference in observed and expected time to decision 
making was calculated for all patients.

4.3.9 Software
Descriptive statistics were obtained with IBM SPSS version 25. The main anal-
yses were performed in Python 3.8.0. with R 3.6.3 plug-ins to perform the 
logistic regression and obtain the pooled results. The code to obtain the results 
can be obtained upon request.

4.4 RESULTS

The total number of patients present at the ED decreased over time (Figure 4.1 
and Table 4.1). Compared to triage, patients still at the ED after 2 hours were on 
average older, more likely to have arrived by ambulance, had a higher triage 
category, and were more likely to be admitted to the hospital (Table 4.1).
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Figure 4.1 Flow chart of patients at the ED after ~15 minutes, ~30 minutes, and ~2 hours after 
arrival at three different locations

Abbreviations: ED emergency department

Table 4.1 Characteristics split up by time of model

Total cohort Patients, 15 
min after 

arrival

Patients, 30 
min after 

arrival

Patients, 2 hrs 
after arrival

Demographics

N(%) 172104(100) 166516(100) 159499(100) 110150(100)

Age, Mean (SD) 49.9(25.2) 50.4(25.1) 50.9(25.1) 55.1(23.7)

Gender (female), N(%) 82812(48.1) 80544(48.4) 77476(48.6) 54970(49.9)

Urgency

Referral type, N(%)

 Self-referral 68135(39.6) 63341(38.0) 58251(36.5) 39579(35.9)

 Referral from GP 74302(43.2) 73769(44.3) 72676(45.6) 52742(47.9)

4
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Table 4.1 Characteristics split up by time of model (continued)

Total cohort Patients, 15 
min after 

arrival

Patients, 30 
min after 

arrival

Patients, 2 hrs 
after arrival

 Referral from specialist 27207(15.8) 26970(16.2) 26171(16.4) 16202(14.7)

 Missing 2460(1.4) 2436(1.5) 2401(1.5) 1627(1.5)

Arrival by ambulance, N(%) 47581(27.6) 47159(28.3) 46672(29.3) 36975(33.6)

 Missing 13149(7.6) 12929(7.8) 12589(7.9) 9209(8.4)

Triage category, N(%)

 Blue & green 53815(31.3) 51348(30.8) 47876(30.0) 27014(24.5)

 Yellow 68445(39.8) 67542(40.6) 66053(41.4) 48909(44.4)

 Orange 36128(21.0) 36008(21.6) 35600(22.3) 28313(25.7)

 Red 6216(3.6) 6204(3.7) 6144(3.9) 4251(3.9)

 Missing 7500(4.4) 5414(3.3) 3826(2.4) 1663(1.5)

Time of day of presentation ‘hh:mm’, N(%)

 ‘00:00-5:59’ 13933(8.1) 13566(8.1) 13148(8.2) 7943(7.2)

 ‘6:00-11:59’ 41351(24.0) 40256(24.2) 38683(24.3) 27188(24.7)

 ’12:00-17:59’ 73586(42.8) 71380(42.9) 68425(42.9) 49121(44.6)

 ’18:00-23:59’ 43236(25.1) 41314(24.8) 39243(24.6) 25898(23.5)

Top 5 Presenting complaints, N(%)

Extremity problems 36614(21.3) 35616(21.4) 34067(21.4) 16246(14.7)

‘Feeling unwell’ 26653(15.5) 26328(15.8) 25740(16.1) 21324(19.4)

Abdominal pain 17425(10.1) 17248(10.4) 17025(10.7) 14273(13.0)

Dyspnea 14369(8.3) 14296(8.6) 14195(8.9) 12233(11.1)

Chest pain 12196(7.1) 12099(7.3) 11897(7.5) 9399(8.5)

Disease Severity

Vital score*, N(%)

 Not measured 62430(36.3) 57754(34.7) 52102(32.7) 24100(21.9)

 1-4 vital signs measured 58193(33.8) 57310(34.4) 56100(35.1) 42247(38.3)

 All vital signs measured 51481(29.9) 51452(30.9) 51297(32.2) 43803(39.8)

GCS, N(%)

 GCS = 15 9745(5.7) 9417(5.7) 9381(5.9) 7767(7.1)

 GCS < 15 1385(0.8) 1237(0.7) 1233(0.8) 1005(0.9)

 Not assessed 160974(93.5) 155862(93.6) 148885(93.3) 101378(92.0)

Pain score, scale 1 to 10, N(%)

 Not measured 112030(65.1) 108974(65.4) 104832(65.7) 7823(67.0)

 1-3 26277(15.3) 24927(15.0) 23398(14.7) 14502(13.2)

 4-6 22672(13.2) 21796(13.1) 20820(13.1) 14049(12.8)
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Table 4.1 Characteristics split up by time of model (continued)

Total cohort Patients, 15 
min after 

arrival

Patients, 30 
min after 

arrival

Patients, 2 hrs 
after arrival

 7+ 11125(6.5) 10819(6.5) 10449(6.6) 7776(7.1)

Fluids administered, N(%)

 < 500 ml 11539(6.7) 9793(8.9)

 > 500 ml 12870(7.5) 11103(10.1)

 None 147695(85.8) 89254(81.0)

Proxies for comorbidity and complexity

Treating specialty

 Emergency Medicine 33908(19.7) 33832(20.3) 33182(21.7) 20988(19.1)

 Surgery** 35561(20.7) 35440(21.3) 89118(55.9) 20778(18.9)

 Medicine*** 90456(52.6) 90144(54.1) 34683(21.7) 67882(61.6)

 Missing 12179(7.1) 7100(4.3) 2516(1.6) 502(0.5)

Number of consultations, N(%)

 None 139555(81.1) 89807(81.5)

 One consultation 19087(11.1) 16214(14.7)

 Two or more consultations 4212(2.4) 3870(3.5)

 Missing 9250(5.4) 259(0.2)

Blood tests, N(%) 97584(56.7) 97297(61.0) 82867(75.2)

Blood cultures, N(%) 13680(7.9) 13672(8.6) 12761(11.6)

Blood gas analysis, N(%) 22833(13.3) 22798(14.3) 19831(18.0)

Radiology imaging****, N(%) 94258(54.8) 92579(58.0) 70736(64.2)

Electrocardiogram, N(%) 43014(25.0) 42953(26.9) 36845(33.4)

Laboratory tests

Haemoglobin (mmol/L), 
median (IQR)[N]

8.4(7.6-9.1)
[95238]

8.4(7.5-9.1)
[81097]

Hematocrit (L/L), median 
(IQR)[N]

0.40(0.37-
0.43)[94333]

0.40(0.37-0.44)
[80245]

Sodium (mmol/L), median 
(IQR)[N]

140(137-142)
[94144]

140(137-141)
[80334]

Leukocytes (x10^9 mg/L), 
median (IQR)[N]

9.1(7.0-12.1)
[94067)

9.2(7.0-12.2)
[80488]

Potassium (mmol/L), 
median (IQR)[N]

4.1(3.8-4.4)
[92333]

4.1(3.8-4.4)
[78755]

Creatinine (μmol/L), median 
(IQR)[N]

76(63-96)
[92212]

94(63-97)
[79229]

Urea (mmol/L), median 
(IQR)[N]

5.7(4.3-7.8)
[91288]

5.7(4.3-7.9)
[78361]

4
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Table 4.1 Characteristics split up by time of model (continued)

Total cohort Patients, 15 
min after 

arrival

Patients, 30 
min after 

arrival

Patients, 2 hrs 
after arrival

Platelets (x10^9 mg/L), 
median (IQR)[N]

245(196-303)
[88955]

245(195-305)
[76198]

ALAT (U/L), median (IQR)[N] 23(17-34)
[83733]

23(17-34)[72051]

Gamma GT (U/L), median 
(IQR)[N]

29(18-57)
[83632]

30(18-59)[71964]

ASAT (U/L), median (IQR)[N] 25(20-34)
[81503]

25(20-34)
[71964]

CRP (mg/L), median (IQR)[N] 10.5(4.3-
47.0)[80310]

12.0(5.0-51.0)
[69378]

Alkalic Fosfate (U/L), 
median (IQR)[N]

82(66-105)
[66200]

83(67-106)
[56496]

LDH (U/L), median (IQR)[N] 209(180-105)
[65452]

210(181-252)
[56132]

Mean Cell Volume (fL), 
median (IQR)[N]

90(86-93)
[62762]

90(86-93)
[53522]

Neutrophilics (x10^9 mg/L), 
median (IQR)[N]

6.4(4.5-9.3)
[46297]

6.5(4.6-9.5)
[39597]

Calcium (mmol/L), median 
(IQR)[N]

2.4(2.3-2.4)
[44752]

2.3(2.3-2.4)
[39435]

Creatine Kinase (U/L), 
median (IQR)[N]

88(57-143)
[35078]

87(56-141)
[29362]

Hemolysis material present, N(%)

Yes 4749(2.8) 4166(3.8)

Missing 80476(46.8) 44589(40.5)

Patient characteristics are presented for the total cohort and three different times used in the 
prediction models: after ~15 minutes, ~30 minutes, and ~2 hours of stay in the emergency depart-
ment. Normally distributed data are presented as Mean (SD), skewed data as median (IQR), and 
categorical data as number (%).
Abbreviations: N = number, SD = standard deviation, GCS = Glasgow Coma Scale, n/min = breaths/
beats per minute, IQR = interquartile range, mmHg = millimeter of mercury, mL = milliliter, 
U/L = Units per liter, fL = femtoliter, ED = emergency department.
* Vital signs measured involve: Respiratory Rate, O2 Saturation, Heart Rate, Systolic Blood Pres-
sure, Diastolic Blood Pressure, and Temperature.
**Surgery contains the specialties of general surgery, traumatology, ophthalmology, orthopedics, 
otorhinolaryngology, thoracic surgery, urology, gynecology, and neurosurgery.
*** Medicine contains the specialties of internal medicine, cardiology, pulmonology, gastroen-
terology, neurology, pediatrics, and rheumatology.
****Radiology imaging is positive if either an X-ray, ultrasound or CT- scan was performed.
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After cross-validation (supplementary Table S2), the trained models were 
validated on the test data. The AUC score (Table 4.2) of the best performing 
ML model (XGBoost with AUC 0.84 (0.77-0.88) at triage, 0.86 (0.82-0.89) at ~30 
minutes and 0.86 (0.74-0.93) at ~2 hours after arrival) was by and large compa-
rable to that of the logistic regression model (0.82 (0.78-0.86) at triage, 0.84 
(0.81-0.86) at ~30 minutes and 0.83 (0.74-0.90) at ~2 hours after arrival). The 
calibration of all models was generally excellent (Table 4.2), with calibration 
slopes close to 1. The XGBoost model had an average sensitivity and specificity 
of 0.78 and 0.72 at triage, 0.80 and 0.73 at ~30 minutes, and 0.76 and 0.77 after 
~2 hours. The models showed minor improvements for the consecutive time 
points (Table 4.2). Age and treating specialty were important predictors across 
all time points (supplementary Figure S3).

Table 4.2 Pooled random effect meta-analysis performance characteristics

Dataset Algorithm Test AUC (95% CI) Calibration slope (95% CI)

Triage LR 0.82 (0.78, 0.86) 1.14 (0.92, 1.41)

RF 0.80 (0.72, 0.85) 1.05 (0.95, 1.17)

XGBoost 0.84 (0.77, 0.88) 1.09 (0.92, 1.29)

DNN 0.83 (0.77, 0.88) 1.05 (0.89, 1.24)

~ 30 minutes LR 0.84 (0.81, 0.86) 1.12 (0.94, 1.34)

RF 0.86 (0.83, 0.88) 1.03 (0.90, 1.17)

XGBoost 0.86 (0.82, 0.89) 1.07 (0.94, 1.21)

DNN 0.86 (0.82, 0.89) 1.13 (1.01, 1.27)

~ 2 hours LR 0.83 (0.74, 0.90) 1.06 (0.92, 1.23)

RF 0.86 (0.75, 0.92) 0.98 (0.85, 1.14)

XGBoost 0.86 (0.74, 0.93) 1.03 (0.92, 1.15)

DNN 0.86 (0.75, 0.93) 1.02 (0.89, 1.17)

AUC and calibration slope were calculated separately for the three centers and pooled through a 
random effect meta-analysis for each model.
Abbreviations: LR Logistic Regression, RF Random Forset, XGBoost gradient boosted decision 
trees, DNN Deep Neural Network, AUC Area Under the Curve

More patients received a decision to be discharged home compared to hospital-
ization for the 15-minute and 30-minute time points (Table 4.3). For the model 
at triage, a Mean theoretical time to decision-making reduction of 33 minutes 
(25%) could be realized based on both thresholds across the whole population. 

4
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At the 30-minute time point, this increased to 40 minutes (26%), which fell back 
to 31 minutes (12%) at the 2-hour point.

Table 4.3 Potential Mean (relative) time to decision making (TDM) reduction based on number of 
patients in the test data receiving an earlier decision (admitted or sent home) according to best 
performing model (XGBoost)

Total 
number of 

patients 
test data

Number of 
patients with 
an actionable 

decision*

Mean TDM reduction in 
minutes (Mean relative 

TDM reduction)** 
for patients with an 

actionable decision*

Mean TDM reduction 
in minutes (Mean 

relative TDM 
reduction) for all 

patients**

Triage

PPV 52928 1227 (2%) 174 (90%) 4.04 (2%)

NPV 52928 15281 (29%) 99.34 (79%) 28.68 (23%)

PPV & NPV 52928 16508 (31%) 104.91 (79%) 32.72 (25%)

30 minutes

PPV 51137 3200 (6%) 182.29 (83%) 11.41 (5%)

NPV 51137 15369 (30%) 94.46 (68%) 28.39 (20%)

PPV & NPV 51137 18569 (36%) 109.60 (71%) 39.80 (26%)

2 hours

PPV 35649 6000 (17%) 117.28 (44%) 19.74 (7%)

NPV 35649 5706 (16%) 69.13 (31%) 11.07 (5%)

PPV & NPV 35649 11706 (33%) 93.81 (38%) 30.80 (12%)

*A patient receives an actionable decision from the model when:
i) P(hospitalization) > 95% PPV threshold for PPV scenario;
ii) P(hospitalization) < 95% NPV threshold for NPV scenario;
iii) P(hospitalization) > 95% PPV threshold or P(hospitalization) < 95% NPV threshold for PPV & 
NPV combined scenario.
**Mean time to decision making (TDM) and Mean relative TDM reduction in minutes are calcu-
lated as: Mean(TDM patient – TDM patient model) and Mean(100x(TDM patient – TDM patient model) 
/ TDM patient). TDM patient model is set to 15 minutes (triage model), 30 minutes (30-minute model), 
or 2 hours (2-hour model) for patients with an actionable decision. TDM patient model is set to TDM 
patient when the patient did not receive an actionable decision.
Abbreviations: ED Emergency Department, TDM Time to Decision Making, PPV Positive Predictive 
Value, NPV Negative Predictive Value

4.5 LIMITATIONS

This study has some limitations. All ED locations were used in the training and 
testing of the models to develop highly generalizable models. An advantage 
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of this approach is that it acknowledges the heterogeneity between locations 
[27, 28]. However, the quest for generalizability might negatively impact the 
performance at each specific location.

Secondly, the clinician’s decision regarding patient admission was used as the 
dependent variable for model training. However, the clinical decision-making 
in itself may be inaccurate, introducing a ceiling effect in terms of the ulti-
mately attainable accuracy of predictive algorithms [29]. Also, patients’ pref-
erences regarding hospitalization or social circumstances might play a role. 
However, the ceiling effect and effect of patient preferences will be similar for 
the conventional regression and machine learning models, and therefore the 
main conclusions remain unchanged.

Finally, consistent with the nature of quality registries, the NEED only contains 
variables that are registered in the hospital information system. Therefore, 
vital signs and blood tests were only available for those patients in whom it was 
measured. Nevertheless, the clinical decision to measure these values contains 
important prognostic information.

4.6 DISCUSSION

4.6.1 Discussion
Our study showed that machine learning models had an excellent but similar 
predictive performance as the logistic regression model for predicting hospital 
admission. Compared to the 30-minute model, the 2-hour model (including 
laboratory test results) did not improve performance.

The predictive performance of our models is comparable to other ML and 
logistic regression models reported in recent literature ([18](N=506,486);[30]
(N=85,526);[31](N=1160);[32](N=47,200)) and confirm that – in the current setting 
– ML models and logistic regression are comparable in performance [18, 30-32] 
with small advantages of modern algorithms. Two of these studies [18, 32] also 
used multi-center data. However, neither one incorporated the potential hetero-
geneity of the different centers in their training and testing designs, meaning 
that the general discriminatory performance could be an overestimation of 
the performance at the individual sites. Also, Peck et al. [31] only included 1160 

4
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patients, which might have resulted in a reduction of the predictive power of 
machine learning models in their study.

A recent study by Barak-Corren, Israelit, and Reis [30] found that laboratory 
results in a 1-hour model did improve discriminatory performance, in contrast 
to the findings reported here. This difference with our results may well be 
explained by the fact that 89% of patients who had full blood work were hospi-
talized in the study by Barak-Corren and colleagues. In the NEED, the decision 
for admission is made after lab results become available.

In only one study [31] did the authors compare their model to the clinical judg-
ment of triage nurses. They found better calibration for the predictions of the 
models than those of the nurses. We did not directly compare the predictive 
performance of our models with clinical judgment. However, compared to 
the pooled sensitivity and specificity of clinical judgment of triage nurses in 
a recent systematic review [11], our models had slightly higher sensitivity but 
lower specificity, making their performance roughly comparable.

The present study has several consequences. First, it implies that ML has little 
benefit for predicting hospital admission over conventional models, at least 
in the ED setting. ML algorithms may only outperform conventional models 
if millions rather than hundreds of thousands of patients are included since 
ML may benefit from a growing sample size [33]. Moreover, the current dataset 
may lack the covariate complexity that would require the high modeling flex-
ibility ML has to offer. Increasing the number of covariates or the addition of 
unstructured data could bring to light an advantage of ML over conventional 
regression methods [18, 34].

Although the ML and conventional prediction models had a predictive perfor-
mance comparable to clinical judgment, they have the advantage that they can 
be fully automated, and the probability of hospitalization may be reported in 
the hospital information system, increasing awareness among treating physi-
cians and serving as verification of clinical judgment. Also, as mentioned in 
the limitations section, it remains to be seen whether clinical judgment should 
be regarded as the gold standard.
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Secondly, although laboratory test results are needed for other purposes such 
as diagnosis, they appear to have little value for predicting hospital admission 
in our study. Lab test completion (available after ~30 minutes) may already be 
a good predictor of hospitalization, regardless of the test result. The decrease 
in sample size and change in the sample composition (retaining the generally 
more complex patients in the ED while others are discharged or admitted) over 
time may also affect predictive performance.

Consequently, the hospitalization process in Dutch EDs could be initialized 
before test results are available. Based on a prospective study by van der Veen 
et al. [8] in a similar setting, time to decision making, and therefore ED-LOS 
could theoretically be reduced by approximately 40 minutes (see also Table 
4.3), as long as exit blocks are not the main determinant of ED-LOS. As soon as 
hospital admission is indicated, additional testing could be performed in the 
clinical decision unit. Note that in clinical practice, an earlier decision may not 
necessarily translate into a shorter ED-LOS. Patients who are discharged may 
require other medical attention before being sent home.

Nevertheless, a reduction in the time to decision-making may have other bene-
fits, like helping patients anticipate on the hospitalization, which could increase 
patient satisfaction. Furthermore, because patients who need hospitalization 
are often the sickest, it may increase awareness of the treating physician, which 
could be used during ED management. This type of decision support might also 
aid patient safety, particularly during the evening and night shifts of inexperi-
enced junior doctors when their supervising consultants are often not present.

4.6.2 Conclusion
Our study showed that machine learning models had an excellent but similar 
predictive performance as the logistic regression model in predicting admis-
sion. In comparison to the 30-minute model, the 2-hour model did not show a 
performance improvement. Future studies should investigate whether larger 
sample sizes or more variables result in a better predictive performance of 
ML models. Future research should also examine the clinical effectiveness 
of implementing of our predictive algorithm including an investigation of the 
type of circumstances in which one might prefer ML models over classical 
statistical techniques.

4
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SUPPLEMENTARY MATERIAL

S1 Synchronization of MTS and NTS presenting complaints
The participating EDs in the study made use of different triage systems for the registration 
of presenting complaints. Both the Netherlands Triage System (NTS) (included 50 presenting 
complaints) and the Manchester Triage System (MTS) (included 51 presenting complaints) were 
used. In order to use both MTS and NTS presenting complaints in the logistic regression and 
machine learning models, we merged the MTS and NTS presenting complaints into one combined 
list of 51 complaints as shown below. Whenever presenting complaints present in either the 
MTS or NTS could not be matched with complaints present in the other triage system, a distinct 
presenting complaint was made to be used in the study (e.g. Abscesses & local infections).

Table S1 Synchronization of MTS and NTS presenting complaints

Synchronized presenting 
complaints used in the study 
(51 in total)

MTS presenting complaints 
(51 in total)

NTS presenting complaints 
(50 in total)

Abdominal pain Abdominal pain in adults
Abdominal pain in children

Abdominal pain in adults
Abdominal pain in children

Abscesses & local infections Abscesses and local infec-
tions

Allergy, bites & stings Allergy
Bites and stings

Allergic reaction and stings

Apparently drunk Apparently drunk

Assault Assault

Asthma Asthma

Back pain Back pain Back pain

Behaving strangely or suicidal Behaving strangely Behaving strangely or suicidal

Breast infection Breast infection

Burns & scalds Burns and scalds Burns and scalds

Chest pain Chest pain Chest pain

Collapse Collapsed adult Collapse
Dizziness

Constipation Constipation

Coughing Coughing

Crying baby Crying baby

Dental problems Dental problems Dental problems

Diabetes Diabetes Diabetes

Diarrhea & vomiting Diarrhea and vomiting Diarrhea
Vomiting

4
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Table S1 Synchronization of MTS and NTS presenting complaints (continued)

Synchronized presenting 
complaints used in the study 
(51 in total)

MTS presenting complaints 
(51 in total)

NTS presenting complaints 
(50 in total)

Dyspnea Shortness of breath in adults
Shortness of breath in chil-
dren

Shortness of breath

Ear problems Ear problems Ear problems

Exposure to chemicals Exposure to chemicals

Extremity problems Limb problems Arm problems
General/limb trauma
Leg problems

Eye problems Eye problems Eye problems

Facial problems Facial problems Facial trauma
Nosebleed

Falls Falls

Feeling unwell Unwell adult
Unwell child

Fever in adults
Fever in children
Neurological failure
Unwell adult
Unwell child

Fits Fits Fits

Foreign body Foreign body Foreign body

Gastro-intestinal (GI) bleeding Gastro-intestinal (GI) bleed-
ing

Genital problems Testicular pain Genital problems

Headache Headache Headache

Implantable Cardioverter 
Defibrillator (ICD)

Implantable Cardioverter 
Defibrillator (ICD)

Irritable child Irritable child

Limping child Limping child

Major incidents – primary Major incidents – primary

Mental illness Mental illness

Near-drowning Near-drowning

Neck pain Neck pain Neck problems
Neck trauma

Overdose & poisoning Overdose and poisoning Poisoning

Palpitations Palpitations Palpitations

Per vaginum (VP) bleeding Per vaginum (VP) bleeding Per vaginum (VP) bleeding

Pregnancy Pregnancy Childbirth

Rashes Rashes Rashes
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Table S1 Synchronization of MTS and NTS presenting complaints (continued)

Synchronized presenting 
complaints used in the study 
(51 in total)

MTS presenting complaints 
(51 in total)

NTS presenting complaints 
(50 in total)

Rectal problems Rectal problems

Self-harm Self-harm

Sexually acquired infection Sexual acquired infection

Throat problems Sore throat Throat problems

Trauma Head injury
Major trauma
Torso injury

Abdominal trauma
Back trauma
Head trauma
Thorax trauma

Urinary problems Urinary problems Urinary problems

Worried parent Worried parent

Wounds Wounds Wounds

Bold presenting complaints directly used in the modelling, remaining complaints grouped in 
category ‘other’.
Abbreviations: MTS Manchester Triage System, NTS Netherlands Triage System

Table S2 Cross-validation resulting hyperparameters and AUC

Triage 30 minutes 2 hours

LR

Penalty 20 200 200

AUC 0.81 0.82 0.81

RF

Estimators 2000 1500 2000

AUC 0.78 0.83 0.82

XGBoost

Estimators 500 500 500

AUC 0.82 0.84 0.82

DNN

Nodes 120 120 120

Layers 3 2 3

AUC 0.81 0.84 0.82

4
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a) 

b) 
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c) 

Figure S3  Shapley values for the best performing model (XGBoost) a) at triage, b) at ~30 minutes, 
and c) at ~2 hours
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