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PART I
PERSPECTIVES ON METHODS 
FOR CLINICAL ARTIFICIAL 
INTELLIGENCE PREDICTION 

ALGORITHMS
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Chapter 2

2.1 ABSTRACT

While the opportunities of ML and AI in healthcare are promising, the growth 
of complex data-driven prediction models requires careful quality and applica-
bility assessment before they are applied and disseminated in daily practice. 
This scoping review aimed to identify actionable guidance for those closely 
involved in AI-based prediction model (AIPM) development, evaluation and 
implementation including software engineers, data scientists, and healthcare 
professionals and to identify potential gaps in this guidance. We performed a 
scoping review of the relevant literature providing guidance or quality criteria 
regarding the development, evaluation, and implementation of AIPMs using a 
comprehensive multi-stage screening strategy. PubMed, Web of Science, and 
the ACM Digital Library were searched, and AI experts were consulted. Topics 
were extracted from the identified literature and summarized across the six 
phases at the core of this review: (1) data preparation, (2) AIPM development, (3) 
AIPM validation, (4) software development, (5) AIPM impact assessment, and (6) 
AIPM implementation into daily healthcare practice. From 2,683 unique hits, 72 
relevant guidance documents were identified. Substantial guidance was found 
for data preparation, AIPM development and AIPM validation (phases 1-3), 
while later phases clearly have received less attention (software development, 
impact assessment and implementation) in the scientific literature. The six 
phases of the AIPM development, evaluation and implementation cycle provide 
a framework for responsible introduction of AI-based prediction models in 
healthcare. Additional domain and technology specific research may be neces-
sary and more practical experience with implementing AIPMs is needed to 
support further guidance.
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2.2 INTRODUCTION

Prediction models have a prominent role in healthcare research and practice. 
Diagnostic prediction models make predictions about the current health status 
of a patient, whereas prognostic prediction models estimate the probability 
of a health outcome in the future [1, 2]. Methods from the machine learning 
(ML) domain and its broader field of Artificial Intelligence (AI) have seen a 
rapid increase in popularity for prediction modeling. While the opportunities 
of ML and AI in healthcare are promising, the growth of complex data-driven 
prediction models requires careful quality and applicability assessment to 
guarantee their performance, safety and usability before they are used and 
disseminated in practice.

A framework for structured quality assessment across the entire AI-based 
prediction model (AIPM) development, evaluation and implementation cycle 
is still missing. Such a framework is needed to ensure safe and responsible 
application of AIPMs in healthcare. For example, it can provide guidance on the 
appropriate validation steps needed before implementation to prevent faulty 
decision making based on overfitted models. The absence of such a framework 
may have contributed to relatively few models having been implemented to 
date [3]. We define the term AI-based prediction model (AIPM) as follows: a 
data-driven model that provides probabilistic patient-level predictions of the 
current presence or future occurrence of a certain outcome (e.g., a certain 
patient condition), given certain input (e.g., certain patient characteristics, 
genetic markers, medical images, or other types of features).

We aimed to identify existing guidelines and quality criteria regarding six 
predefined phases of the AI-based prediction model development, evaluation 
and implementation cycle. The six AIPM development phases range from prepa-
ration and data collection to implementation in daily healthcare practice (see 
Box 2.1.) and form the core structure and driver for this review. These phases 
are based on the predominant phases in clinical prediction model research 
[4, 5]. We performed a scoping review to outline the most important aspects 
to consider in each phase, while providing pointers to relevant guidelines and 
quality criteria in the recent literature, focusing on actionable guidance for 
those closely involved in the AIPM development, evaluation and implemen-

2
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tation cycle (e.g., software engineers, data scientists, but also health profes-
sionals). We also aimed to identify gaps in the existing guidance.

Box 2.1 Phases1 of AI prediction model construction

Phase 1. Preparation, collection, and checking of the data: the preparation, collection and 
checking of the data to facilitate proper AIPM development (phase 2) and AIPM validation 
(phase 3).
Phase 2. Development of the AIPM: the modelling of the relation between the predictive input 
variables (features / predictors) and the health outcome of interest, via a mathematical formula 
or algorithm.
Phase 3. Validation of the AIPM: the testing (validating) how well the developed AIPM from 
phase 2 predicts the outcome in individuals whose data were not used during AIPM development 
(so called external validation data), quantifying the AIPM’s predictive performance.
Phase 4. Development of the software application: the development of the software application, 
containing the programming, design, usage and support of the digital packaging of the AIPM.
Phase 5. Impact assessment of the AIPM with software: the assessment of the impact of the 
usage of the AIPM and software on daily healthcare practice, patient or individual health out-
comes, and healthcare costs.
Phase 6. Implementation and use in daily healthcare practice: the implementation of the 
AIPM in routine care, including maintenance, post-deployment monitoring, and updating.

 1These phases are primarily introduced to provide clear structure to the article. In practice 
the order of these phases may slightly differ.

2.3 METHODS

A multi-stage screening strategy was used for this scoping review driven by the 
six AIPM development phases (Figure 2.1). We searched for relevant academic 
literature published from January 2000 up to January 2021 in three online data-
bases containing a variety of medical, technical, ethical, and social science 
literature: PubMed, Web of Science, and ACM Digital Library. The search 
strings consisted of a combination of search terms related to: i) guidelines, 
quality criteria, best practices and reporting standards ii) artificial intelligence, 
including machine learning and prediction modelling in general and iii) topics 
relating to one of the six phases of AIPM development (see Box 2.1), such as 
‘data cleaning’ for phase 1 and ‘impact assessment’ for phase 5. For the complete 
search strings, see supplementary Table S1.

We used the following inclusion criteria for our review process: i) documents 
(e.g., reports, articles, or guidelines) primarily aimed at the individuals directly 
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involved with the development, evaluation, and implementation of AIPMs 
(excluding institution or organization wide guidance) and ii) documents with 
actionable guidance (e.g., clearly defined recommendations on how to develop 
AIPMs and implement them into practice). The following exclusion criteria 
were used: i) guidance limited to one medical domain (e.g., cardiology) without 
generalizing to other domains, ii) guidance limited to one AI technique (e.g., 
reinforcement learning) without generalizing to other techniques, iii) guid-
ance aimed at governing institutions, iv) documents published before 2000, v) 
guidance limited to the prerequisites to develop, validate and implement an 
AIPM (e.g., documents focusing on the development of data infrastructures or 
legal and governance frameworks), and vi) documents not written in English.

Two reviewers (AdH and AL) performed title and abstract screening of the 
documents produced by the online database search. Additional literature was 
added through manually scrutinizing (snowballing) the reference lists of the 
identified documents. We also asked a convenience sample of 14 AI experts 
from academia and industry to provide potentially relevant sources (see supple-
mentary Table S3). These additional search strategies were specifically aimed at 
identifying grey literature consisting of government, institutional or industry 
documents and websites. The two reviewers performed a full-text screening on 
all retained literature (including grey literature). Conflicts regarding the eligi-
bility of documents during the screening process were resolved by consensus 
in regular sessions between the two reviewers.

For the data extraction, two reviewers (AdH and AL) independently identified 
keywords from each included document which represented the area on which 
guidance was provided (e.g., development, parameter tuning). Each keyword 
was mapped to more central topics pertaining directly to the AIPM develop-
ment phases (e.g., development and parameter tuning were mapped to AIPM 
training). When applicable to more than one phase, the keyword was placed in 
a phase-overarching topic (e.g., algorithmic bias). The mapping was adjusted 
and fine-tuned repeatedly over the course of data extraction and validated 
based on the input from three co-authors (IK, SN, and MvS). During a second 
full-text screening round, all identified guidance was extracted according to 
the topics, summarized, and placed in the review section corresponding to that 

2
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phase-specific or phase-overarching topic. In our reporting, we adhered to the 
PRISMA reporting checklist for scoping reviews.

Figure 2.1 Multi-stage screening strategy for the scoping review

2.4 RESULTS

After removing duplicates, the search resulted in 2,683 documents. The title and 
abstract screening reduced this number to 89 documents. Snowballing added 51 
documents. A total of 27 papers from online databases, 23 from manual inclu-
sion and 22 from expert consultation, were retained after full-text screening. 
This led to a total of 72 documents included in the review (Figure 2.1). Data 
extraction resulted in 138 keywords, which were mapped to 27 phase-specific 
topics and 6 phase-overarching topics (see supplementary Table S3). In the next 
sections, the summarized guidance is structured per phase. The phase-overar-
ching topics are summarized in Box 2.2 and further integrated in the phase-spe-
cific summaries (as shown in supplementary Table S4).
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Box 2.2 Descriptions of identified phase-overarching topics2

Algorithmic bias refers to an AIPM that systematically disadvantages individuals belonging 
to a particular subgroup when there is no a priori medical justification for this discrepancy. 
Subgroups can for example be based on gender, race, culture, religion, age, sexual orientation, 
socioeconomic background, ability status and ethnicity. There are two important causes for 
algorithmic bias: non-representative development data and historical human biases that are 
reflected in data. The field of AI fairness aims to address algorithmic bias by studying how best 
to identify and mitigate it.
Transparency and openness entail the possibility to inspect sufficient details on e.g., study 
design, data selection, analytical scripts, the AIPM model and modelling approach, justifi-
cations, and limitations, in a way that could allow others to reproduce the process (e.g., for 
independent external validation of the AIPM). Recommendations regarding transparency often 
involve detailed reporting, following relevant reporting guidelines, and sharing of relevant 
information, code, and data across the different phases.
Interpretability of an AIPM refers to the degree to which a human can understand how an 
AIPM comes to its predictions or classifications. Being able to interpret an AIPM may facilitate 
detection of potential errors and biases in its predictions. This may be an important factor 
in obtaining trust and acceptance by end users (e.g., healthcare professionals and patients). 
Interpretability and transparency are closely related. For example, an interpretable AIPM 
may allow a physician to be more transparent about the decision-making process to patients.
Team members, end users, and stakeholders should be considered carefully throughout the 
AIMP lifecycle (see Box 2.1). It has been recommended that already from the start the AIPM 
development team must cover a multidisciplinary technical, methodological and medical ex-
pertise, consider data and project management, and attend to the diversity of the anticipated 
end users of the AIPM. Identifying and involving the right expertise and stakeholders in each 
consecutive phase of the AIPM development, evaluation and implementation cycle is crucial 
for its success in daily healthcare practice.
Security encompasses the protection of the AIPM and its (personal) data against malicious 
actors. Two risks particularly concerning an AIPM are the misuse of the (often large amounts 
of) development and validation data and software vulnerabilities introduced by the new AIPM 
code and infrastructure. Security measures protecting against these vulnerabilities form part 
of the AIPM architecture and should be tested before deployment.
Risks refer to any (unintended) consequences of the AIPM’s application that threaten the AIPM’s 
safe and effective application. Potential risks are flaws in the design of the AIPM, technical de-
fects, inappropriate or malicious use, process changes, security breaches (see Security above), 
and disparate outcomes for different use cases or subgroups (see algorithmic bias and fairness 
above). Safety (for patients and healthcare professionals) should be considered during all phases 
of AIPM development.

 2An index on where each phase-overarching topic is further discussed in the article can be 
found in supplementary Table S4.

2
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2.4.1 Phase 1. Preparation, collection, and checking of the data

Medical problem and context. One of the very first aspects of developing 
and validating an AIPM as recommended in literature is to clearly specify 
the medical problem and context that the AIPM will address, and to identify 
the healthcare setting(s) in which the AIPM is to be deployed [3, 6-15]. Before 
starting actual AIPM development, it is advocated to first conduct a thorough 
investigation into the current standard of care, context and workflow [7-9, 11, 
13-18], and to provide a clear rationale for why the current approach falls short. 
For example, via analysis of the needs of targeted end users through observa-
tions and interviews, and by involving them from the start in the developmental 
process [9, 12, 16, 17, 19, 20]. Once a precise (diagnostic or prognostic) predic-
tion task has been formulated, healthcare actions, treatments or interventions 
should be defined that are to follow from the AIPM predictions [3, 6-11, 17, 21]. 
Clinical success criteria must be determined and described [3, 9-12, 15, 20, 
22], including an analysis of the potential risks of prediction errors [10, 23]. 
Developers are advised to perform a feasibility check to assess at an early stage 
whether the expected benefit of the AIPM to the healthcare system outweighs 
the costs of developing the AIPM, its maintenance, and other consequences of 
incorrect (or unfair) use of the predictions of the AIPM [8, 9, 12, 15, 22, 24-28].

Patient privacy. The literature advocates that, before starting data collec-
tion, the development team should ensure compliance with relevant privacy 
legislation (e.g., General Data Protection Regulation (GDPR) [29], the Personal 
Information Protection and Electronic Documents Act (PIPEDA) [30] or the 
Health Insurance Portability and Accountability Act (HIPAA) [31]) and take 
measures to protect the privacy of the individuals whose data are used for AIPM 
development, evaluation, or application [7, 12, 20, 23, 27, 32-36]. Consultation 
with data protection specialists has been recommended [23]. Legislation may 
require identification of the right legal basis (such as informed consent) for 
processing confidential information of individuals [12, 20, 27, 33, 34, 36, 37]. 
In many cases, individuals must be informed about the processing of their 
personal data [20, 23, 29, 35, 36, 38]. In the case of using (existing) data that was 
originally collected for a purpose unrelated to the AIPM (e.g., patient care), 
there must be an adequate processing basis for re-using these data for AIPM-re-
lated purposes [23, 35]. The legal basis can be different for the development 
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and validating versus deployment phases of AIPMs [23, 34]. More specifically, 
data subjects may not be directly affected by AIPM development but are often 
affected by AIPM deployment as the AIPM’s predictions could influence the 
treatment decisions of data subjects. Depending on local legislation, it can be 
required (e.g., under GDPR [29] or the Canadian Privacy Act [39]) to develop a 
data protection impact assessment [23, 27, 33-35, 40, 41], assign a data protection 
officer [23, 27, 36], and take measures to conduct data protection oversight, by 
limiting access only to necessary and qualified personnel [23, 27, 35]. Moreover, 
taking measures to achieve privacy-by-design [12, 23, 27, 33, 35, 36, 40, 42, 43], 
such as data minimization [23, 35, 40], encryption [35, 40], or the use of data 
pseudonymization or anonymization methods is recommended [35, 40]. The 
use (or absence) of such methods should be clearly motivated [7, 12, 13, 20, 27, 
35, 44], especially whenever patient data leave primary care systems [7]. Any 
trade-offs between predictive performance and privacy should be considered 
[23]. Finally, under some data protection regulations, individuals have the right 
to withdraw consent, the right to object, and the right to be forgotten (e.g., 
under GDPR [29] and the California Consumer Privacy Act [45]), which should be 
considered and implemented throughout development and deployment stages 
of the AIPM [12, 23, 36, 40].

Sample size. It is recommended that the amount of collected data is suffi-
ciently large for the intended purpose [7, 10, 12, 14, 20, 22, 27, 46-49], is ideally 
prespecified [7] and should be clearly reported [3, 13, 37, 48, 50]. The required 
sample size for AIPM development depends on the specific context, including 
the used prediction modelling method, the number of features, the propor-
tion of the predicted health outcome (in case of categorical outcomes), and 
the desired predictive performance [46, 47], which may be linked to a minimal 
required clinical impact [7]. For regression-based methods [47], and a selection 
of machine-learning based methods [46], technique-specific a priori sample 
size calculations are available, although for many model architectures and 
settings (e.g., semi-supervised learning, decision trees, or convolutional neural 
networks) no specific guidance was found. If some (closely related) data are 
already available, it has been suggested to inspect the model’s learning curve 
in that data, setting out prediction performance against the amount of used 
data, to estimate the required total sample size for a specific use case [46, 51, 
52]. For external predictive performance evaluation (discussed in more detail 

2

38993_de Hond_BNW-def.indd   3138993_de Hond_BNW-def.indd   31 3-8-2023   11:06:143-8-2023   11:06:14



32

Chapter 2

in phase 3), as a rule of thumb, it has been suggested that the sample should 
at least contain 100 events per outcome [53], but for binary and continuous 
outcomes more specific sample size calculations are now available [54, 55].

Representativeness. The literature recommends that the collected data are 
representative of the target population and intended healthcare setting, and 
sufficiently cover the relevant real-world heterogeneity and diversity [11, 12, 15, 
24, 27, 33, 37, 47, 56, 57]. This representativeness criterion is considered crucial 
to assess and combat algorithmic bias [7, 18-20, 22-24, 26-28, 42, 48, 57-59] and 
poor calibration [60]. Thorough assessment of the representativeness of the 
data is strongly advised [6, 10, 11, 13, 18, 27, 37, 48, 56, 57], for which a detailed 
description of the collected data is required, including the time span of data 
collection [3, 10-12, 15, 21, 22, 37, 61], the collection site and setting [3, 11, 13, 14, 
20-22, 26, 43, 48, 61-63], relevant population characteristics such as gender, age, 
ethnicity, and relevant medical history [3, 11, 14, 21, 37, 48], and any inclusion 
or exclusion criteria that were used [3, 6, 10, 11, 13-15, 18, 20, 21, 37, 50, 57, 64, 
65]. Finally, revaluation and reporting of any differences between the collected 
data and the intended target population and setting is emphasized [3, 6, 10, 13, 
18, 26, 27, 48, 56, 57], including which groups may be underrepresented in the 
data with respect to the target population.

Data quality. Extensive assessment of data quality has been widely recom-
mended [6, 10-12, 18, 22, 26, 27, 34, 37, 64, 65]. For both feature variables as 
well as outcomes, this involves the inspection and description of missing data, 
consideration of potential errors in measurement, and their underlying mecha-
nisms (e.g., random or systematic) [3, 6, 10, 14, 15, 17, 18, 20, 22, 24, 37, 46, 48, 66, 
67]. A clear definition of how and when each variable was measured should be 
provided [3, 6, 10, 12-15, 17, 21, 22, 28, 37, 48, 50, 58, 62, 64, 65], including specifi-
cation of measurement instruments or tools (e.g., make and model of devices). 
Any known data quality risks and limitations should be reported and related 
to potential impact on the AIPM’s predictions and its validation (with special 
attention to algorithmic bias) [3, 6, 20, 22, 27, 33, 34, 37, 42, 56]. An additional 
validity check could be performed by randomly sampling a portion of the data 
and manually checking it for errors [25, 61]. The proportion of errors should 
be reported [61]. The literature also recommends the installation of a process 
through which data errors can be corrected [42, 61]. Note that when such a 
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process is installed, it should also be employed during implementation and not 
just during model development. It must be clearly identified whether data were 
collected retrospectively or prospectively [10, 13, 14, 21, 48]. Prospective data 
collection may be preferred as it more closely matches the real-world operating 
conditions [57]. It was pointed out that one should be aware of potential quality 
risks of routinely collected data as such data are often collected for a different 
purpose [57, 68].

The literature places a particular emphasis on the quality of outcome data, 
more specifically the reference standard or ‘ground truth’. A clear rationale 
on outcome data collection needs to be provided (e.g., an expert panel, biopsy, 
clinical determination via laboratory tests), and any potential quality issues [3, 
6, 10, 13, 14, 21, 48]. In case the outcome data were manually labeled, the AIPM 
development and validation team are urged to precisely specify how and by 
whom data were labeled, including the level of experience of the labelers, and 
elaborate on relevant pitfalls or difficult cases [7, 8, 14, 21, 48, 64-66]. Ideally, 
to ensure label quality and prevent bias in AIPM evaluation, it was advised 
that this is a well-defined and controlled process [48, 67], where experts label-
ling the data work independently from each other [7, 21], and are not directly 
involved in performance assessment of the AIPM [14, 48]. Depending on the 
exact procedure, inter-observer variability or test reproducibility [7, 14, 21, 48] 
should be calculated to obtain an assessment of label quality.

Data preprocessing. To prepare data for the consecutive phases, or handle 
identified data quality issues, data preprocessing steps may be applied. Such 
preprocessing steps can include splitting the data into different subsets (e.g., 
train, tuning, and test sets), augmenting data, removing outliers, re-coding 
or transforming variables, standardization, and imputation of missing data 
[6, 10, 17, 24, 46, 48, 49, 68]. The literature stresses that detailed description of 
any pre-processing steps applied to the raw data should be provided, including 
software used to perform the processing steps [3, 6, 10, 11, 13-15, 22, 50, 61, 62, 
64, 65]. Missing data imputation is generally recommended over complete case 
analysis where incomplete data are excluded, but this should depend on the 
underlying missing data mechanism (missing completely at random, missing 
at random, or missing not at random) [6, 17, 46, 49, 68]. Any data augmentation 
should be carefully considered against the potential introduction of bias, and 

2
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model developers are advised to collaborate with domain experts on these 
preprocessing steps [15, 22, 48]. Finally, the literature stresses that data split-
ting actions, must happen before any other preprocessing steps are applied 
(e.g., missing data imputation or standardization) [24, 69, 70]. This is crucial 
to prevent information leakage between data subsets, which leads to overop-
timistic AIPM predictive performance.

Data coding standards. To facilitate interoperability, and easier adoption of the 
AIPM into healthcare settings, it has been recommended to align data manage-
ment with relevant coding standards and widely adopted protocols [20, 27]. 
Relevant standards may include SNOMED CT for coding clinical data, ICD-10 
and OPCS4 for clinical conditions and procedures [20]. Additionally, adopting 
data exchange protocols in the final AIPM software design has been recom-
mended, but is discussed later in the article (in phase 4, about development of 
the software application).

2.4.2 Phase 2. Development of the AIPM

Model selection and interpretability. The literature indicates that the 
following aspects may affect the choice for a certain modelling technique 
(e.g., regression, decision tree, neural network): prediction performance, 
interpretability, the familiarity of the modelling technique to the end user, 
computational requirements, development and validation costs, maintenance, 
privacy, sample size, and the structure of the data [6, 10, 15, 17, 18, 22, 23, 71]. 
It is recommended that any motivations for choosing a modelling technique 
should be clearly articulated [6, 7, 10, 13, 20, 23, 26, 27], including benefits and 
potential risks associated with the chosen technique [6, 18, 20, 23, 26, 27, 33]. 
Facilitating interpretability of the AIPM, e.g., by providing insight into the 
impact of each feature or predictor on the predicted outcome [10, 13, 18, 46, 56, 
72, 73], is frequently mentioned as an important aspect for AIPM acceptance 
into healthcare practice [8, 26, 27, 41, 46, 72]. Important to note is that the term 
AIPM interpretability - in this scoping review - does not imply causal interpret-
ability (e.g., high feature impact does not imply causal influence of that feature 
on the actual health outcome). Interpretability may help to detect trivial and 
erroneous AIPMs [11, 24], provide medical domain experts with a possibility to 
discuss whether the associations on which the AIPM relies are likely to remain 
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stable [7, 24, 61], help to identify algorithmic bias [11, 22, 24, 26, 41, 42], provide 
information on where the AIPM could be most easily attacked [24], or how the 
AIPM may behave under dataset shift [11]. Neural networks are for example 
recommended for high volume, dense, and complex data types [6, 74], but they 
are also considered black boxes [23, 26, 34], for which additional model-agnostic 
interpretation tools (explainable AI) are needed to give insight into the impor-
tance of individual features for the predictions [6, 23, 26, 34, 56, 75]. This is in 
contrast with linear regression and decision trees, which have been consid-
ered inherently interpretable approaches. Irrespective of the modelling choice, 
facilitating interpretability is generally encouraged [6, 23, 26, 33, 34, 40, 41, 56, 
62, 71], in particular when AIPMs rely on sensitive social and demographic data, 
or if the AIPM’s predictions significantly affect healthcare decision making and 
a patient’s treatment [18, 22, 40]. Moreover, under the GDPR [29], patients have 
a right to an explanation that enables them to understand why a particular 
decision was reached [36, 40, 41]. If a form of interpretability is required, the 
underlying reasons should be made explicit [15, 41].

Training the AIPM. Training (or fitting) the AIPM is the process of determining 
the values of any model parameters (e.g., also called weights, or coefficients) 
of the AIPM. Beside model parameters, AIPM development involves choosing 
hyper-parameters, which influence model training and design, but are not 
necessarily part of the AIPM itself (e.g., penalization factors of shrinkage, 
learning rates, or the depth of tree-based methods). Automatic optimization of 
hyper-parameters (also referred to as tuning) has been recommended [15, 24, 67, 
76, 77], for example, via nested cross-validation, or using a small representative 
held-out tuning data set. To foster transparency and replicability it is advised 
that any details about training and hyper-parameter optimization procedures 
should be reported, including the final values of the (hyper-)parameters, the 
number of intermediate models trained to come to the final model, and an 
evaluation of predictive performance on the training data [3, 6, 7, 13, 14, 50, 61].

Internal validation. The goal of internal validation is to assess the predictive 
performance of an AIPM in data that are unseen with respect to model training 
but come from the same population and setting.
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To assess AIPM performance, the literature stresses that data should be strictly 
separated into training, tuning and test sets [6, 7, 11, 77], possibly stratified by 
the outcome event [15, 24] to prevent data leakage, which can result in optimisti-
cally biased evaluation [6, 11, 24, 69]. Here, the training data is used to train the 
AIPM, the tuning data for optimizing the hyperparameters, and the test data 
for assessing the AIPM model performance. Variations on the simplistic ‘split 
sample’ validation have been suggested for better data efficiency and hetero-
geneity assessment (e.g., k-fold cross-validation or bootstrapping). Especially 
for small datasets, a cross-validated procedure is recommended [6, 24]. The 
cross-validated procedure should incorporate all processing steps (standard-
ization, imputation etc.) on the data to prevent data leakage [15, 69]. The split of 
the data and any potential repeats of this splitting procedure should be reported 
[6, 13, 50].

Following the literature, the performance evaluation should be based on at 
least discrimination and calibration [5, 6, 10, 15, 17, 49, 57, 78]. Discrimina-
tion refers to the ability of the AIPM to distinguish between subjects with and 
without the outcome of interest. It is recommended to define the metrics used 
to measure discrimination prior to the validation [6, 7, 10]. The chosen metrics 
should correspond with the intended medical use and should be chosen in close 
collaboration with domain experts (e.g., an AIPM estimating risk of breast 
cancer should be highly sensitive) [7, 11, 13-15, 18, 19, 56, 79, 80]. Discrimination 
is commonly quantified by the area under the receiver operating characteristic 
curve [14, 15, 17, 48, 49, 57, 69]. In case of a clearly defined probability threshold, 
other metrics could also be used like sensitivity (also labeled: ‘recall’) and spec-
ificity, or the positive and negative predictive value (also precision) [8, 15, 19, 72, 
80]. Note that fixed probability thresholds are not always considered necessary 
and when they are, they should be carefully determined in collaboration with 
medical experts [81].

Calibration refers to the concordance between predicted and observed proba-
bilities. A calibration plot is the recommended method to evaluate calibration 
[10, 17, 49, 57, 60]. Discrimination and calibration evaluation metrics should be 
documented for all data sets [6, 13, 18]. It is recommended to calculate confi-
dence intervals to accompany these metrics [7, 8, 13, 14, 21, 22, 24, 26, 48, 61].
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For some application types, Decision Curve Analysis (DCA) is considered a valu-
able addition to the discrimination and calibration of the AIPM. This perfor-
mance assessment quantifies how the AIPM could impact patient care within 
the relatable workflow. Unlike discrimination and calibration, DCA derives the 
clinical utility from the predictive performance [5, 10, 17, 49, 68, 72]. Promising 
results in a DCA can provide a clear indication that an AIPM could benefit daily 
healthcare practice. It could therefore serve as a precursor (but not a replace-
ment) of a prospective impact study or more fully developed cost-effectiveness 
analysis (see phase 5).

Measures to reduce risk of overfitting. If an AIPM is adapted too much to the 
training data, and therefore its predictions no longer generalize well to new 
individuals not used for the development of the AIPM, the model is said to be 
overfitted [7, 46, 57, 60, 76, 78]. Often mentioned factors contributing to over-
fitting are a small sample size in combination with many candidate features, 
perfect separation on rare categories, and a large imbalance resulting in a small 
number of events for one of the outcomes [10, 46, 49, 72, 76, 77, 82]. To prevent 
overfitting, a multitude of strategies are available, often aimed at reducing 
AIPM complexity. It has been widely recommended to report any measures 
taken to prevent overfitting [3, 6, 7, 11, 14]. One commonly referred strategy is 
feature selection [6, 14, 24, 46, 76], for which it is explicitly recommended that 
selection should work independently of model training (unlike in methods as 
forward and backward selection) and is best informed - a priori - by medical 
expert knowledge or existing literature [6, 17, 76]. Other suggested strategies to 
combat overfitting are dimensionality reduction [46, 76], which can be implicit 
(e.g., common in neural networks) [76], and explicit penalization of complexity 
(e.g., regularization) [17, 49, 76]. It should be noted that when the sample size is 
simply too small, even penalization methods have been shown ineffective to 
mitigate overfitting [83, 84].

Measures to identify and prevent algorithmic bias. The literature indicates 
that tools to identify and mitigate algorithmic bias should also be developed 
in the AIPM development phase when applicable. First, a definition of fairness 
should be chosen that corresponds with the AIPM’s intended use [18]. This 
definition should be integrated with model development as part of the AIPM’s 
evaluation metrics [22, 26, 28]. Examples of fairness metrics are outcome parity 
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[22, 23, 28, 42, 43], true (false) positive (negative) rate parity [22, 23, 28, 42, 43, 
79], positive (negative) predictive value parity [22, 42, 43], individual fairness 
[22], counterfactual fairness [22, 26, 43, 59], and equal calibration [23]. Devel-
opers are advised to make the chosen fairness metrics available in a Fairness 
Position or Bias Impact Statement that is reviewed by stakeholders [22, 23, 27, 
28, 62]. They are also advised to avoid modelling techniques for which it is alto-
gether impossible to evaluate algorithmic bias in an AIPM, for example due to 
the high dimensionality of its architecture [22].

Upon identification, algorithmic bias should be addressed by employing an 
appropriate mitigation strategy during AIPM development, which may be 
different for different applications and domains. When the bias is caused by 
unrepresentative training data, the main recommendation is to redo the data 
collection to rectify this [7, 18-20, 22-24, 26-28, 42, 48, 57-59]. Unrepresentative 
training data may also be addressed by undersampling the overrepresented 
group or oversampling the underrepresented group [23, 43]. However, this may 
cause miscalibration of the model predictions and should be used with caution 
[85]. The most popular recommendation addressing other causes of algorithmic 
bias (e.g., historical human biases reflected in the data) is to exclude or reweigh 
the features causing the algorithmic bias [22-24, 28, 42], although this may not 
eliminate the bias altogether. Alternatively, the predictions themselves can be 
reweighed by adjusting the probability threshold per subgroup [42, 43]. Lesser 
mentioned recommendations consist of the application of fairness optimiza-
tion constraints during AIPM training [42, 43] and the development of separate 
models per specific subgroup [23].

Note that the preconceptions and biases of designers can be replicated in 
their modelling choices [22]. It is therefore considered important to compose 
a diverse development team [17, 22, 23, 26, 28], create awareness and involve 
stakeholders in design choices [22, 24, 26, 27, 72]. Also, developers should keep 
evaluating algorithmic bias at every stage of the development process [33].

Transparency of the modelling process. The literature advocates that the final 
AIPM structure should be described in detail, covering input, outputs, and all 
intermediate layers or parameters [3, 13, 14, 50]. To facilitate transparency and 
reproducibility of the developmental process, the used computational architec-
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ture, high-performance techniques, software packages, and versioning (data, 
model, configurations and training scripts) should be reported [6, 13, 18, 50, 
64, 65, 67]. Code for the complete model building pipeline should be published 
in well-documented scripts with computer environment requirements when 
possible [6, 7, 11, 13, 18-20, 24, 26, 28, 34, 50, 62, 64, 65], including statements 
about any restrictions to access or re-use.

2.4.3 Phase 3. Validation of the AIPM

External performance evaluation. In practice, an AIPM is likely to be applied 
in a setting that differs from the setting in which the AIPM was developed, 
which may have an impact on AIPM performance. In contrast to internal vali-
dation (phase 2), external validation is the application of an existing model 
without any modifications to data from a different population or setting 
compared to model development (see Generalizability below). The literature 
highly recommends external validation for all AIPM applications when applied 
to a new setting [3, 15, 17, 49, 86]. Similar to internal validation of the AIPM, 
external AIPM model validation can be based on discrimination (area under 
the receiver operating characteristic curve, sensitivity, specificity, positive and 
negative predictive values), calibration (calibration plot) [5, 6, 10, 17, 49, 57, 78], 
and Decision Curve Analysis [5, 10, 17, 49, 68, 72]. When possible, the literature 
recommends the comparison of current best practice (e.g., an existing predic-
tion model or medical decision rule) to the AIPM performance [7, 11, 13, 14, 18].

External validation can be performed on retrospective or prospective data. 
Although prospective validation is rare, it is preferred by the literature [5, 
13, 57], as it provides a better idea of the AIPM’s true applicability to medical 
practice and allows the healthcare professionals to identify and review errors 
in real time [19, 72]. External validation is ideally performed by independent 
researchers from other institutions or settings [3, 7, 8, 18, 24, 68, 72]. The neces-
sity for external validation by independent researchers may depend on the 
risks posed by the application (for example based on the level of autonomy of 
an AIPM) [80].

Generalizability. Generalizability refers to the AIPM’s ability to generalize its 
performance to a new setting. Poor generalizability may be caused by overfit-
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ting (see phase 2) or development data that were unrepresentative for the new 
setting (see phase 1). The literature recommends to assess generalizability on 
external data from a different time period, place, or healthcare setting [3, 7, 8, 
11, 17, 18, 24, 57, 68, 72, 79].

To ensure the generalizability of the AIPM to the intended healthcare setting, 
developers are advised to extensively validate the model for representative 
data from that setting [6-8, 10, 11, 13, 14, 24, 26, 57, 64, 67, 68, 72, 77, 79, 87, 
88] (see phase 1, Representativeness). The intended healthcare setting may 
be different from the population or setting on which the AIPM was originally 
developed (e.g., an AIPM developed at a tertiary care center applied to a smaller 
hospital). It is advised that the size of this validation data should follow the 
available sample size recommendations for AIPM validation (see phase 1) 
[53-55]. Developers are urged to clearly describe any differences between the 
development and validation data where possible [13] and report other sources 
potentially affecting generalizability [7, 10, 24]. Still, AIPM updating, site-spe-
cific training or recalibration might be needed to adapt an existing AIPM to a 
different healthcare setting [3, 5, 15, 60, 68, 72]. Statistical updating methods 
are available for regression-based models [89, 90]. For AIPMs outside of this 
context no specific guidance was found.

Performance analysis by population subgroups or specific problematic use 
cases is recommended to identify algorithmic bias [10, 11, 23, 26, 27, 43, 61, 
72, 79, 91]. Note that such an analysis may be limited by small sample sizes of 
certain subgroups. The literature advises to discuss and explicitly report any 
identified sources of algorithmic bias, so that end users know for whom the 
AIPM’s predictive performance is subpar [7, 18]. Many systems will display 
some unfairness in their outcomes, and therefore a baseline comparison with 
the algorithmic bias of the current systems may be considered [18].

2.4.4 Phase 4. Development of the software application

Interoperability. The ability for AIPMs to interoperate with various existing 
digital infrastructure of hospitals and clinical care centers is essential for their 
successful integration into healthcare practice. Following existing standards 
from the industry was recommended as this supports the interoperability of 
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AIPMs [15, 16, 20, 27] (e.g., ISO/IEC JTC 1/SC 42 [92] or the IEEE 7000-2021 [93]). 
This applies to data coding standards as mentioned in phase 1 of this article, 
but also to data exchange standards (e.g., FHIR [94] and the HL7 framework 
[95]). Such standards provide (among other aspects) guidance on what data 
formats to use, how they should be exchanged between system components, 
and reduce the risk that data are accidentally misinterpreted due to slight 
differences in meaning of variables (semantic interoperability). For wearable 
devices, following the ISO/IEEE 11073-10418:2014 [96] standard is advised [20].

Moreover, multiple articles recommend the use of open source or publicly avail-
able libraries in the software implementation of the AIPM [20, 27] to increase 
the accessibility of the AIPM as a whole. The NHS guide to good practice for 
digital and data-driven health technologies goes as far as to recommend that all 
new digital health services, including AIPMs, should be made internet-facing 
from day one (and follow the Representational State Transfer design principles) 
to promote accessibility and reduce complexity and costs of incorporating them 
in the digital infrastructure of organizations [20].

Human-AI interaction. A proper design of how end users can interact with the 
AIPM is crucial for its adoption, and effective and safe use in daily healthcare 
practice. What constitutes a good design depends on the domain, healthcare 
setting and intended end users. End users interacting with the AIPM can be 
healthcare professionals, auditors, or patients (e.g., physicians may need to 
communicate about the AIPM with patients [16]). Many of the recommendations 
for human-AI interaction design come from the general human-computer inter-
action literature and current standards for general medical software design. 
Recommended standards are ISO 9241-210:2019 [97] for interactive systems and 
the IEC 62366-1:2015 [98] on application of usability engineering to medical 
devices [20]. At the software development stage, it has been recommended to 
include experts in user interface design [7, 16]. Designing a good user interface 
and interaction requires careful consideration of the cognitive load of the end 
users [8, 16, 68, 99, 100], by showing only relevant information in the right 
context, and by allowing adjustment of its behavior by end users [99].

A widely suggested minimum criteria for AIPM user interaction design is that 
it becomes clear to end users what the AIPM’s intended use is [27, 79, 88, 99]. 
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Providing a model facts label should be provided to the end users is advised, 
including the system’s technical specifications, statistical working, limita-
tions, fairness criteria and validation, implementation disclaimer, and links 
to process logs [22, 101].

To arrive at a good design, repeated extensive user experience testing is recom-
mended [9, 16]. The AIPM should be evaluated according to how it interfaces 
with the end user, and how well the AIPM and the user perform together in a 
typical environment [8, 100, 102, 103]. It was proposed that such evaluations 
can, for example, be done via reader and user studies [8, 102, 103]. Tools such 
as a system usability scale (SUS) have been suggested as a quick and useful way 
of capturing user feedback [20].

Careful attention should be paid to inclusiveness and broad usability of the 
design [20, 22, 27, 62], for example by considering the digital literacy of the end 
users [20, 22, 27]. Multiple sources state that the design should match social 
norms, and make sure its presentation does not reinforce stereotypes (e.g., 
regarding a pre-specified fairness position or bias impact statement, see phase 
2) [22, 26, 27, 33, 99].

Moreover, the AIPM should have built-in mechanisms that protect the end user 
and patient from potential risks to its safe application (e.g., overconfidence in 
the AIPMs predictions or automation bias). These mechanisms should detect 
situations beyond the capabilities of the AIPM [8, 99], and share the confidence 
in the predictions with the user [8, 22, 27, 99]. Additional information may be 
required explaining how the confidence level relates to the input data [23, 42, 
61]. It was recommended to carefully consider whether predictions should be 
presented in a directive fashion (by also proposing decisions), or in an assistive 
way (e.g., by only showing estimated probabilities) [15, 22, 41, 68, 86, 88].

The literature advised that the design should facilitate AIPM interpretability 
(see also Box 2.2. and the section on model selection and interpretability in 
phase 2) and allow end users to visually see the link between the input data 
and the predicted output [7, 8, 22, 27, 33, 61, 99] in a comprehensive way [22, 23, 
26, 27, 41, 43, 62], and encourage giving feedback, correction and refinement 
about the AIPM’s predictions [99]. Also, the design should enable the patient to 
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request a review of an AIPM supported decision [63], and may need to provide 
the possibility to delete data (depending on local legislation, see phase 1 on 
Patient privacy) [12, 23, 36, 40].

Facilitating software updating and monitoring. From a user interaction design 
perspective, it has been recommended that decisions are deterministic (consis-
tently giving the same output for a certain input) [8], and that updates of or 
adaptations to the AIPM should happen cautiously [99]. End users should be 
notified clearly about any changes in the AIPM [27, 99], and AIPM software 
should have the ability to roll back to previous versions, in case an update 
results in significant problems [20, 67].

Finally, as monitoring and auditing of AIPMs in practice is widely recom-
mended (covered in more detail in phase 6), the developed software should 
facilitate this [8, 22, 27, 33, 58, 62, 104]. This means adequate logging and trace-
ability of predictions and decisions is required and the AIPM interface should 
provide sharing of performance data with end users to enable ongoing moni-
toring of both individual and aggregated cases, quickly highlighting any signif-
icant deviations in performance [8, 27, 61, 67]. Such monitoring options should 
preferably be customizable by the user [79, 99].

Security. The principles of security and privacy by design mandate built-in 
data and software protection throughout the AIPM lifecycle [12, 35, 40, 42, 43], 
which is a central requirement in the GDPR [105]. Cybersecurity standards 
provide guidance on how to approach this [20, 23, 27], for example ANSI/NEMA 
NH 1-2019 [106], NEN 7510 [107], MDCG 2019-6 [108], ANSI/CAN/UL 2900-1 [109], 
Medical Device Cybersecurity Working Group on medical device cybersecu-
rity [110], Food and Drug Administration on cybersecurity [111], ISO/IEC TS 
27110:2021 [112], ISO/IEC 27032:2012 [113], ISO/IEC 27014:2013 [114], and ISO/
IEC 27002:2013 [115]. This might for example entail an initial risk assessment 
of vulnerabilities in data and software, including the risk of re-identification 
[34], the risk of data loss and manipulation [34, 35], and the risk of adversarial 
attacks [15, 22, 23, 27, 35, 42, 59]. Techniques that make the AIPM more robust 
to these vulnerabilities can be implemented, like converting data to less iden-
tifiable formats [23], adding random noise to the data [23, 32, 40], federated 
learning [23, 32, 40], saving personal data across different databases [32, 35], 
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and adversarial ML techniques such as model hardening and run-time detec-
tion [22, 42, 43, 59]. Code review by an external party and staying up to date on 
security alerts for code derived from third parties are also recommended [23, 
35]. All security measures should be tested before full deployment [79] (also see 
Software testing). The level of the required security measures will depend on 
the impact a potential security breach might have on the individuals involved, 
the type of AI deployed, and the risk management capabilities of the organiza-
tion [23, 24, 35, 40]. The timeframe within which security updates will become 
available should be reported [27].

An incident response plan anticipating a potential security breach is recom-
mended before deployment (also part of western legislation [104, 105, 116]), 
describing how incidents will be addressed and who takes responsibility with 
relevant contact information [23, 35, 61]. When new software vulnerabilities 
come to light, they should be documented and reported [33, 61], and so should 
any changes made to the AIPM in response to an attack after thorough testing 
[8, 23, 35, 61].

Software testing. AIPM software developers are recommended to follow rele-
vant existing international standards with regard to software testing, such as 
the IEC 62304:2006 [117], the IEC 82304-1:2016 [118], IEC 62366-1:2015 [98], ISO 
14971:2019 [119], Food and Drug Administration principles of software vali-
dation [120]  , and Food and Drug Administration guidance for off-the-shelf 
software use in medical devices   [121]. Deliberate stress tests like load testing, 
penetration testing, integration testing and unit testing are important for the 
verification of the AIPM from a software perspective [8, 27, 35, 48, 67, 79]. Each 
different context of use may require separate software testing to ensure repro-
ducibility of results across different situations, computational frameworks, 
and input data [58, 62, 87]. These testing requirements depend on the level 
of reliability needed and the risks posed by the AIPM in healthcare practice 
[27]. These types of tests are also recommended to assess the effectiveness of 
the security measures taken and to detect new security vulnerabilities (see 
Security). They should be repeated regularly to monitor the data and software 
security during the AIPM lifecycle [23, 27, 35].
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2.4.5 Phase 5. Impact assessment of the AIPM with software

Feasibility study. An impact assessment is performed to determine the clinical 
benefit of the AIPM for healthcare practice. It is important to note that a good 
performance of the AIPM in terms of discrimination and calibration (phases 
2 and 3) does not necessarily translate to clinical utility [5, 24, 72].

A feasibility study or implementation pilot is recommended preceding an 
impact study to ensure correct and safe use in healthcare practice [8, 16, 72]. 
This type of study consists of repeated live clinical tests in which variation is 
key to understanding the functionality of the technology and workflow [9, 16]. 
By adhering to the ‘plan, do, study, adjust’ process, adjustments can be made 
frequently and rapidly to optimize the workflow [9, 16].

The literature advises to clearly define the intended use and intended users 
in preparation of both the feasibility and impact study [12, 19, 64, 65]. It is 
also recommended to report any differences in healthcare setting between 
the current and previous (validation) studies [68] and to state the inclusion and 
exclusion criteria at the level of the participants and input data [25, 64, 65]. A 
description of the integration into the trial setting is highly recommended, 
including onsite and offsite requirements, version number and other technical 
specifications [25, 64, 65], but also the human-AI interaction involved (e.g., assis-
tive versus directive, see phase 4) [48, 64] and the patient treatment strategy 
associated with the AIPM outcomes [64, 65]. It is emphasized that potential 
interventions included in the patient treatment strategy following from the 
AIPM decision support should have a solid scientific basis [68]. Stakeholders 
have preferably given informed approval of the development and clinical appli-
cation of the AIPM [87].

Risk management. Risk management is highlighted as an important part of 
the impact assessment, alongside the preparations for a comparative study 
[25, 42]. The literature recommends the identification of potential sources of 
risk, extreme situations, and failures before the onset of the study [27, 56, 58]. 
Determining corresponding safety critical levels and quality checks is advised 
[27]. Special attention may be paid to accidental misuse and manipulation of 
the AIPM. Implementers are urged to report errors, failures or near misses 
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occurring during impact assessment and afterwards [26, 27, 42, 61, 64, 65]. A 
risk management plan can help to execute the monitoring, reporting and miti-
gation of risks encountered in healthcare practice [12, 18, 20, 25, 27]. This plan 
can for example describe the roles and responsibilities of the participants [25], 
the process for assessing and logging potential risks [12, 20, 26, 27, 42, 61], a 
pathway to report potential risks [12, 26, 27, 42, 62], and the process to address 
these issues in practice [12, 42, 62]. Some sources suggest that the assessment 
should be proportionate to the risk posed by the AIPM [27, 42].

Impact study. In terms of the impact study design, a prospective compara-
tive study is recommended [5, 7, 19, 24, 57, 68, 72, 86, 87]. In a comparative 
study, the effects on clinical outcomes and decision making are compared for a 
group exposed to the predictions of the AI versus a non-exposed control group 
receiving standard care [5, 25, 68, 86, 87]. The literature identifies a random-
ized controlled trial (RCT) as the ideal comparative study design, random-
izing patients individually or per cluster [5, 15, 49, 68, 86]. However, this may 
require more patients and might not always be feasible. Alternative designs are 
stepped-wedge trials [15, 19, 86], before-after studies [86], and observational 
studies [5, 19, 57, 68, 86]. For some applications (like imaging technology), a 
multiple reader multiple case study design is also possible [48], in which the 
effect of the AIPM on decision making is measured by assessing the differ-
ences in discrimination (see phase 2 and 3) with and without the tool. Deci-
sion Analytical Modelling may give an initial estimate of clinical utility before 
commencing a full-blown impact study (see phase 2 and 3) [68, 86].

Trial outcomes can differ across domains and applications. The most mentioned 
trial outcomes consist of clinical outcomes or patient-reported outcomes [5, 
18, 20, 68, 72, 86, 87] followed by cost effectiveness of care [5, 18, 20, 86, 87] 
and changes in decision making and workflow [5, 20, 68, 86]. Additional trial 
outcomes are patient experience [20, 57, 87], user satisfaction and engage-
ment [87], and changes in patient (healthy) behavior [87]. It is advised that 
trial outcomes are also evaluated per clinically relevant user group [12] or per 
affected non-user group (also in terms of algorithmic bias) [12, 26, 91].

It is recommended that findings are communicated in an understandable and 
meaningful way to healthcare professionals, but also to administrators and 
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policymakers [56]. AIPM specific guidelines have been developed as exten-
sions to the CONSORT and SPIRIT guidelines for reporting on clinical trials 
and their protocols respectively [64, 65]. Peer-reviewed open access publica-
tion may increase trust and facilitate adoption of the AIPM in a wider clinical 
community [15].

2.4.6 Phase 6. Implementation and use in daily healthcare practice

Clinical implementation. Clinical implementation consists of all the steps that 
are necessary to deploy the AIPM in the healthcare environment outside of 
the clinical trial setting (see phase 5). The literature strongly recommends 
to state the necessary conditions for deployment before proceeding with the 
implementation [9, 19, 20, 27, 88]. For example, the AIPM system might require 
dedicated and locally available hardware [7].

Although not always feasible, the integration of an AIPM directly into the 
existing medical workflow is preferred [7, 19, 59, 68]. This could for example 
involve direct integration into the EHR. Moreover, the user is urged to explicitly 
disclose what part of decision making might be affected by AIPM predictions 
[26, 27, 43, 62, 63, 88].

To further facilitate the implementation and consecutive monitoring, the liter-
ature recommends automatic AIPM deployment (moving software from testing 
to production environments with automated processes) and the facilitation of 
shadow deployment [67, 91], which enables prospective local validation (see 
phase 3) of new versions and updates [19]. Enabling the automatic roll-back 
for production models is also advised to address real-time operating risks 
(see phase 4) [67]. Moreover, a procedure to safely abort an operation is highly 
recommended when the system should stop being used due to a security breach 
or safety risk [23, 27, 62, 79]. Comparable to the feasibility study of phase 5, pilot 
studies are recommended to examine the potential pitfalls during implemen-
tation, considering both software and hardware issues [8, 16, 72].

Lastly, Institutions and implementers are encouraged to disclose their inno-
vation pathway, including the routes to commercialization [18]. The risks, 
investments, roles, and responsibilities of the different parties may inform 
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the allocation of benefits in a commercial arrangement [18, 20]. Albeit sparse, 
[87] provide good guidance on performing economic impact analysis.

Maintenance and updating. Although maintenance is essential to AIPMs (and 
their software) that are highly dependable on changes in the external world, 
little guidance can be found on this topic. Developers are recommended to 
regularly update their AIPMs over time to improve the AIPM’s predictive perfor-
mance as new improvements become available and to mitigate dataset shift [8, 
19, 23]. It is advised to pay special attention to the safe and automatic updating 
of mature systems involving many configurations for many similar models 
[71]. Note that updating the AIPM may involve recertification. The USA Food 
and Drug Administration is currently working on a framework that allows 
for repeated updating of an AIPM without repeated recertification through a 
change control plan [122].

Education. Education involves the training of end users in the correct use of 
the AIPM. The literature recommends the general education of end users, often 
healthcare professionals, on the probabilistic nature [22, 23, 26, 43] and the 
limitations of AIPMs [22, 43]. This may involve the development of a general AI 
curriculum for medical students and healthcare professionals.

Application specific training is also advised. The end user may for example be 
educated on the underlying assumptions of the AIPM [58, 68], its legal frame-
work [27], benefits [20, 27, 58], risks and (technical) limitations [14, 22, 27, 58, 
62]. Providing the end user with examples of incorrectly classified cases could 
help in creating an understanding of the strengths and limitations of the AIPM 
[13]. Moreover, it is recommended to regularly repeat the training on the correct 
use of the AIPM [12, 14, 27, 58, 62] and the appropriate response to security 
breaches [23, 35]. For example, end users may be made aware of the possibility 
of automation bias and trained to maintain vigilance [22, 27, 56, 88, 91].

When the end user (healthcare professional) and AIPM subject (patient) are 
different people, as is often the case for AIPMs in healthcare, the literature 
recommends to train the healthcare professional to explain one’s AIPM-sup-
ported decisions to their patient [22].
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Monitoring and auditing. Monitoring refers to the post-deployment evaluation 
of the behavior of an AIPM throughout its lifecycle [8, 23, 24, 27, 56, 62, 64, 67, 72, 
80, 91]. It is performed by the developer and implementers at the implementa-
tion site. Auditing refers to periodic quality control checks of the AIPM (and all 
of its monitoring aspects) performed by an independent third party [27, 58, 62, 
91]. Among other things, It will aid the detection of failures and near misses and 
through this strengthen the risk management and security of an AIPM [35, 58].

Several aspects of AIPM functioning can be monitored as identified in the litera-
ture. These may for example consist of predictive performance and other model 
outputs [8, 15, 27, 56, 63, 79, 80], distribution of predicted versus observed labels 
[71], reliability and reproducibility [8, 27, 62], types and severity of errors [56], 
changes in risk [80], quality of the input data [27, 56, 63, 71, 87], quality of the 
label [91], case-mix factors [72, 91], accessibility and integration of the model 
[56], use of the AIPM recommendations [56, 63, 87], user satisfaction and user 
feedback [8, 15, 56, 79, 87], and (clinical) outcomes [27, 56, 80, 87].

Several monitoring aspects are highlighted in the literature that deserve addi-
tional scrutiny. The monitoring of the fairness of an AIPM throughout its life-
cycle is often mentioned [12, 15, 20, 23, 26, 27, 63], for example by recording false 
positive and false negative prediction rates sliced across different subgroups [27, 
28, 79, 91]. Second, the monitoring of dataset shift is also repeatedly mentioned 
in the literature [5, 8, 22, 72, 79, 91]. Dataset shift is a change in the composition 
of the input data caused by changes in clinical or operational practices over 
time that can lead to the deterioration of AIPM performance. It can for example 
be measured by an increase in classification errors over time [23]. It can be 
mitigated by retraining or updating of the AIPM [72]. One last aspect is the 
monitoring of feedback loops [27]. They originate when an AIPM is modelled 
on care delivery features that in turn might be affected by the outcomes of an 
AIPM.

It is advised to develop integrated mechanisms to facilitate real-time monitoring 
available at the start of implementation [18, 71]. Implementers are encouraged 
to clearly define the context and boundaries within which the monitoring is 
to be performed [56]. Specifying the type of oversight is also recommended, 
e.g., human-in-the-loop, human-on-the-loop, or human-in-command [27]. Some 
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sources suggest the frequency of the monitoring should be proportional to 
the AIPM’s risks [22, 23, 91]: the higher the risk to the welfare of the patient, 
the higher the monitoring frequency should be. One source suggests frequent 
monitoring may be less important for AIPMs solely based on causal mecha-
nisms as they are less likely to change over time [24].

In terms of auditing, the literature recommends the installation of a compre-
hensive auditability framework [8, 22, 58] and an audit trail [28, 48, 62], in which 
the AIPM’s predictions, model version, input data, and use practices are meth-
odologically logged and made available to interested third parties [22, 27, 33, 
35, 58, 61, 62, 67, 91].

Implementers are advised to define mitigation pathways as part of the moni-
toring and auditing plan to deal with incidents [22, 35, 71, 79]. This may for 
example involve the regular reporting on failures and near misses and the orga-
nization of meetings to discuss incidents [58]. Moreover, the literature states 
that mitigation could and sometimes should lead to a change in the AIPM’s 
design or use practices, for example an adjustment in the instructions for use, 
a re-evaluating of the stakeholder impact assessment, or a model update [22, 
72, 80].

2.4.7 Current gaps and future perspectives
We identified several important aspects of the AIPM development, evaluation 
and implementation cycle for which clear guidance was missing in the litera-
ture. First, guidance is lacking on the requirements to be fulfilled during the 
assessment of the medical problem and context. In other words, what aspects 
of a medical or healthcare problem and setting make the introduction of an 
AIPM likely to result in better patient care, and when are conditions sufficient 
to initiate AIPM development? Guidance is also missing on the a priori esti-
mation of a minimum sample size for AIPM development for semi-supervised 
approaches, and for certain commonly used groups of ML modeling techniques 
such as decision-trees (e.g., random forests) and deep learning (e.g., convolu-
tional neural networks).

Across all phases, several methodologies and quality criteria were identified 
to address ethical issues such as algorithmic bias, privacy preservation, and 
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interpretable AI. However, the relevance of these issues for different health-
care domains might differ and so will the preferred definitions, metrics, and 
techniques to describe and mitigate them. As domain specific guidelines were 
not the primary focus of this investigation, we cannot with certainty comment 
on the general absence of such guidelines. Nevertheless, we would advise indi-
vidual healthcare domains to scrutinize the currently available guidance and, 
when necessary, address these ethical issues across the AIPM development, 
evaluation and implementation cycle for their respective settings.

Another aspect for which guidance was limited, is the combination of different 
data sources (e.g., from different registries and collection sites), and data 
modalities (e.g. imaging data, electrophysiological data, and lab results) for 
AIPM development. Although methodological studies exist for various combi-
nations, further research on best practices is needed. Also, current guidance is 
primarily focused on binary outcomes (e.g., mortality), and guidance is missing 
on other outcome types (e.g., multinomial, ordinal, hierarchical or sequential 
outcomes).

Although many standards exist for software security, it is unclear whether they 
suffice to address cyberattacks particularly geared at AIPMs. Experience with 
AIPM security in practice and experimentation with the insulation of AIPMs 
against different types of cyberattack in preclinical settings will help to clarify 
this. Also, more guidance on the unique aspects of AIPM-specific human-AI 
interaction design is needed. This will for example entail the presentation of 
and interaction with probabilistic outcomes and the impact of model interpret-
ability on end users.

Much more guidance is needed addressing how to integrate the AIPM into 
the current healthcare or clinical workflow. More guidance is also required 
specifying what design and execution of the feasibility and impact studies are 
needed, and how to report such studies.

Moreover, guidance is needed regarding the assessment of the cost effective-
ness of AIPMs. AIPMs differ from other health technologies and are likely to 
affect healthcare differently, which should be reflected in their cost effective-
ness assessments (as was done for the guidance on impact studies).
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We described recommendations regarding the responsibilities of different 
parties (developers, end-users, organizations) involved with AIPM development 
and deployment as described in the identified literature (e.g., risk assessment, 
incident reporting, patient privacy). However, more work is needed addressing 
the proper distribution of accountability across all involved parties, which may 
in turn inform institutional governance.

Lastly, guidance is needed on (long-term) maintenance aspects, on dataset 
shift (and how to mitigate it), and on the frequency and necessity of local vali-
dation, recalibration (updating), and retraining. As more and more AIPMs will 
be implemented into healthcare practice in the coming years, this practical 
experience can be used to inform these aspects.

2.5 DISCUSSION

This scoping review provides an easy-to-use overview and summary of the 
currently available actionable guidelines and quality criteria driven by the six 
phases of the AIPM development, evaluation, and implementation cycle: (1) 
data preparation, (2) AIPM development, (3) AIPM validation, (4) software devel-
opment, (5) AIPM impact assessment, and (6) AIPM implementation into daily 
healthcare practice. Guidance was structured in specific topics and mapped 
to the different phases and we provided an overview of the current gaps in this 
guidance.

To appreciate our scoping review and suggested framework of six phases several 
issues need to be addressed. First, our definitions of ‘actionable’ guidance as 
an inclusion criterion and the defined six phases are somewhat arbitrary and 
mainly informed by vast experience with and guidance on developing, eval-
uating, and implementing prediction models in healthcare. Individual AIPM 
applications may deviate from the structure presented here. Nevertheless, we 
believe the phases and their associated topics will translate to most AIPM proj-
ects and are in agreement with other phases formulated in the literature [4, 5, 
7, 22]. Also, the structure provided by the six phases, and our focus on action-
ability form two strengths of this scoping review and produce a comprehensible 
and easy-to-use overview of practical recommendations for those involved in 
the AIPM development, evaluation and implementation cycle. This sets our 
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review apart from other work that was previously undertaken (e.g., [33, 123, 
124]).

Second, the literature databases and sources we used mostly contain scien-
tific literature and only English documents were included in the final search 
(translations were also considered). This may have biased our results towards 
academic sources and English-speaking countries of origin. To combat this, 
we identified additional grey literature through consultation with AI experts 
and a thorough screening of citations in the included literature. As a result, a 
substantial number of our included sources can be considered grey literature. 
Moreover, due to our extensive search, the current summary of available guide-
lines and quality criteria is comprehensive.

Lastly, the expert group consulted was a convenience sample, resulting in 
experts predominantly working in the Netherlands. Diversity was obtained by 
inviting experts with different occupations (e.g., healthcare professionals, data 
scientists, statisticians, engineers), from different healthcare domains (e.g., 
radiology, internal medicine, intensive care, primary care, family medicine), 
and from both academia and industry.

In conclusion, a substantial number of studies provide guidelines and quality 
criteria pertaining to the AIPM development, evaluation, and implementation 
cycle, which can be grouped in six well-defined phases. While the opportunities 
of AIPMs in healthcare are undeniable, the growing interest in these techniques 
requires careful quality and applicability assessment to guarantee their safety 
and (cost-)effectiveness before they are used and disseminated in healthcare. 
This review can serve as the basis for a structured quality assessment frame-
work. Several gaps in the literature were identified where more research is 
needed. Additional domain and technology specific studies may be necessary 
and more practical experience with implementing AIPMs is needed to inform 
further guidance.
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SUPPLEMENTARY MATERIAL

Table S1 The search query

Database Search string

PubMed (("data cleaning" OR "data preparation" OR "preprocessing" OR "pre-processing" OR 
"design" OR "missing data" OR "outlier detection" OR "data harmonization" OR "de-iden-
tification" OR "anonymization" OR "predictor selection " OR "feature selection" OR 
"feature extraction" OR "selection bias" OR "annotation" OR "sample size" OR "data 
privacy" OR "model development" OR "model architectures" OR "explainability" OR 
"hyper-parameter" OR "hyperparameter" OR "model training" OR "model fitting" OR 
"optimization" OR "model updating" OR "parameter-sharing" OR "distant supervision" 
OR "weak supervision" OR "interpretability" OR "interpretable" OR "evaluation" OR 
"calibration" OR "discrimination" OR "evaluation metric" OR "evaluation measure" 
OR "model accuracy" OR "risk of bias" OR "prediction performance" OR "generaliza-
tion error" OR "prediction error" OR "validation" OR "net-benefit" OR "precision" OR 
"software" OR "software quality assurance" OR "SQA" OR "software quality control" 
OR "SQC" OR "software as a medical device" OR "SaMD" OR "software compliance" OR 
"anti-patterns" OR "design patterns" OR "software architecture" OR "front-end design" 
OR "presentation layer" OR "software testing" OR "software security" OR "Software 
as a service" OR "SaaS" OR "miminum viable product" OR "impact assessment" OR 
"outcome assessment" OR "validation" OR "clinical performance" OR "clinical in-
vestigation" OR "external validation" OR "RCT" OR "randomized controlled trial" OR 
"randomized clinical trial" OR "random control trial" OR "technology assessment" OR 
"HTA" OR "clinical impact" OR "pilot study" OR "clinical benefit" OR "clinical evalu-
ation" OR "cost-effectiveness" OR "generalizability" OR "explainability" OR "clinical 
benchmarking" OR "study design" OR "fairness" OR "bias" OR "qualitative evaluation" 
OR "implementation" OR "scalability" OR "integration" OR "calibration" OR "transfer 
learning" OR "usability" OR "patient satisfaction" OR "satisfaction" OR "interoperabil-
ity" OR "user friendly" OR "ethics" OR "ethical" OR "jurisprudence" OR "legislation" OR 
"legal" OR "law" OR "diffusion" OR "application" OR "dissemination" OR "real-world 
performance" OR "real world performance" OR "monitoring" OR "clinical practice" 
OR "education") AND ("artificial intelligence"[Title] OR "machine intelligence"[Title] 
OR "machine learning"[Title] OR "deep learning"[Title] OR "prediction model"[Title] 
OR "neural network"[Title] OR "support vector machines"[Title] OR "natural language 
processing"[Title] OR "computer vision"[Title] OR "supervised learning"[Title] OR "un-
supervised learning"[Title] OR "reinforcement learning"[Title] OR "statistical learn-
ing"[Title] OR "computational intelligence"[Title] OR "computer reasoning"[Title] OR 
"AI"[Title] OR "computer heuristics"[Title] OR "expert systems"[Title])) AND ("recom-
mendations"[Title] OR "challenges"[Title] OR "guideline"[Title] OR "a guide"[Title] OR 
"guidelines"[Title] OR "practice guideline"[Title] OR "practice guidelines"[Title] OR 
"quality norm"[Title] OR "quality of care"[Title] OR "quality criteria"[Title] OR "quality 
instrument"[Title] OR "quality of health care"[Title] OR "healthcare quality"[Title] OR 
"quality improvement"[Title] OR "quality indicator"[Title] OR "quality indicators"[Title] 
OR "total quality management"[Title] OR "best practice"[Title] OR "code of conduct"[Ti-
tle] OR "reporting standard"[Title] OR "good machine learning practice"[Title] OR "best 
practices"[Title] OR "framework"[Title] OR "guidance"[Title] OR "strategies for"[Title] 
OR "statement"[Title])
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Table S1 The search query (continued)

Database Search string

Web of 
Science

TS=(("guideline" OR "a guide" OR "guidelines" OR "practice guideline" OR "practice 
guidelines" OR "quality norm" OR "quality of care" OR "quality criteria" OR "quality 
instrument" OR "quality of health care" OR "healthcare quality" OR "quality improve-
ment" OR "quality indicator" OR "quality indicators" OR "total quality management" OR 
"best practice" OR "code of conduct" OR "reporting standard" OR "good machine learn-
ing practice" OR "best practices" OR "framework" OR "guidance" OR "strategies for" 
OR "statement" OR "recommendations" OR "challenges") AND ("artificial intelligence" 
OR "machine intelligence" OR "machine learning" OR "deep learning" OR "prediction 
model" OR "neural network" OR "support vector machines" OR "natural language pro-
cessing" OR "computer vision" OR "supervised learning" OR "unsupervised learning" 
OR "reinforcement learning" OR "statistical learning" OR "computational intelligence" 
OR "computer reasoning" OR "AI" OR "computer heuristics" OR "expert systems")) AND 
AB=(("data cleaning" OR "data preparation" OR "preprocessing" OR "pre-processing" 
OR "design" OR "missing data" OR "outlier detection" OR "data harmonization" OR 
"de-identification" OR "anonymization" OR "predictor selection " OR "feature selec-
tion" OR "feature extraction" OR "selection bias" OR "annotation" OR "sample size" OR 
"data privacy" OR "model development" OR "model architectures" OR "explainability" 
OR "hyper-parameter" OR "hyperparameter" OR "model training" OR "model fitting" 
OR "optimization" OR "model updating" OR "parameter-sharing" OR "distant supervi-
sion" OR "weak supervision" OR "interpretability" OR "interpretable" OR "evaluation" 
OR "calibration" OR "discrimination" OR "evaluation metric" OR "evaluation measure" 
OR "model accuracy" OR "risk of bias" OR "prediction performance" OR "generaliza-
tion error" OR "prediction error" OR "validation" OR "net-benefit" OR "precision" OR 
"software" OR "software quality assurance" OR "SQA" OR "software quality control" 
OR "SQC" OR "software as a medical device" OR "SaMD" OR "software compliance" OR 
"anti-patterns" OR "design patterns" OR "software architecture" OR "front-end design" 
OR "presentation layer" OR "software testing" OR "software security" OR "Software as a 
service" OR "SaaS" OR "minimum viable product" OR "impact assessment" OR "outcome 
assessment" OR "validation" OR "clinical performance" OR "clinical investigation" OR 
"external validation" OR "RCT" OR "randomized controlled trial" OR "randomized clin-
ical trial" OR "random control trial" OR "technology assessment" OR "HTA" OR "clinical 
impact" OR "pilot study" OR "clinical benefit" OR "clinical evaluation" OR "cost-effective-
ness" OR "generalizability" OR "explainability" OR "clinical benchmarking" OR "study 
design" OR "fairness" OR "bias" OR "qualitative evaluation" OR "implementation" OR 
"scalability" OR "integration" OR "calibration" OR "transfer learning" OR "usability" 
OR "patient satisfaction" OR "satisfaction" OR "interoperability" OR "user friendly" OR 
"ethics" OR "ethical" OR "jurisprudence" OR "legislation" OR "legal" OR "law" OR "diffu-
sion" OR "application" OR "dissemination" OR "real-world performance" OR "real world 
performance" OR "monitoring" OR "clinical practice" OR "education") AND (Healthcare 
domain))

38993_de Hond_BNW-def.indd   6438993_de Hond_BNW-def.indd   64 3-8-2023   11:06:173-8-2023   11:06:17



65

Guidelines and quality criteria for artificial intelligence in healthcare

Table S1 The search query (continued)

Database Search string

ACM 
Digital 
Library

[[Publication Title: "recommendations"] OR [Publication Title: "challenges"] OR 
[Publication Title: "guideline"] OR [Publication Title: "a guide"] OR [Publication Title: 
"guidelines"] OR [Publication Title: "practice guideline"] OR [Publication Title: "practice 
guidelines"] OR [Publication Title: "quality norm"] OR [Publication Title: "quality of 
care"] OR [Publication Title: "quality criteria"] OR [Publication Title: "quality instru-
ment"] OR [Publication Title: "quality of health care"] OR [Publication Title: "healthcare 
quality"] OR [Publication Title: "quality improvement"] OR [Publication Title: "quality 
indicator"] OR [Publication Title: "quality indicators"] OR [Publication Title: "total qual-
ity management"] OR [Publication Title: "best practice"] OR [Publication Title: "code of 
conduct"] OR [Publication Title: "reporting standard"] OR [Publication Title: "good ma-
chine learning practice"] OR [Publication Title: "best practices"] OR [Publication Title: 
"framework"] OR [Publication Title: "guidance"] OR [Publication Title: "strategies for"] 
OR [Publication Title: "statement"]] AND [[Publication Title: "artificial intelligence"] OR 
[Publication Title: "machine intelligence"] OR [Publication Title: "machine learning"] 
OR [Publication Title: "deep learning"] OR [Publication Title: "prediction model"] OR 
[Publication Title: "neural network"] OR [Publication Title: "support vector machines"] 
OR [Publication Title: "natural language processing"] OR [Publication Title: "computer 
vision"] OR [Publication Title: "supervised learning"] OR [Publication Title: "unsu-
pervised learning"] OR [Publication Title: "reinforcement learning"] OR [Publication 
Title: "statistical learning"] OR [Publication Title: "computational intelligence"] OR 
[Publication Title: "computer reasoning"] OR [Publication Title: "ai"] OR [Publication 
Title: "computer heuristics"] OR [Publication Title: "expert systems"]] AND [[Full Text: 
"data cleaning"] OR [Full Text: "data preparation"] OR [Full Text: "preprocessing"] OR 
[Full Text: "pre-processing"] OR [Full Text: "design"] OR [Full Text: "missing data"] 
OR [Full Text: "outlier detection"] OR [Full Text: "data harmonization"] OR [Full Text: 
"de-identification"] OR [Full Text: "anonymization"] OR [Full Text: "predictor selec-
tion "] OR [Full Text: "feature selection"] OR [Full Text: "feature extraction"] OR [Full 
Text: "selection bias"] OR [Full Text: "annotation"] OR [Full Text: "sample size"] OR 
[Full Text: "data privacy"] OR [Full Text: "model development"] OR [Full Text: "model 
architectures"] OR [Full Text: "explainability"] OR [Full Text: "hyper-parameter"] OR 
[Full Text: "hyperparameter"] OR [Full Text: "model training"] OR [Full Text: "model 
fitting"] OR [Full Text: "optimization"] OR [Full Text: "model updating"] OR [Full Text: 
"parameter-sharing"] OR [Full Text: "distant supervision"] OR [Full Text: "weak super-
vision"] OR [Full Text: "interpretability"] OR [Full Text: "interpretable"] OR [Full Text: 
"evaluation"] OR [Full Text: "calibration"] OR [Full Text: "discrimination"] OR [Full 
Text: "evaluation metric"] OR [Full Text: "evaluation measure"] OR [Full Text: "model 
accuracy"] OR [Full Text: "risk of bias"] OR [Full Text: "prediction performance"] OR 
[Full Text: "generalization error"] OR [Full Text: "prediction error"] OR [Full Text: 
"validation"] OR [Full Text: "net-benefit"] OR [Full Text: "precision"] OR [Full Text: "soft-
ware"] OR [Full Text: "software quality assurance"] OR [Full Text: "sqa"] OR [Full Text: 
"software quality control"] OR [Full Text: "sqc"] OR [Full Text: "software as a medical 
device"] OR [Full Text: "samd"] OR [Full Text: "software compliance"] OR [Full Text: 
"anti-patterns"] OR [Full Text: "design patterns"] OR [Full Text: "software architecture"] 
OR [Full Text: "front-end design"] OR [Full Text: "presentation layer"] OR [Full Text: 
"software testing"] OR [Full Text: “software security”] OR [Full Text: “software 
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Table S1 The search query (continued)

Database Search string

as a service”] OR [Full Text: “saas”] OR [Full Text: “miminum viable product”] OR 
[Full Text: “impact assessment”] OR [Full Text: “outcome assessment”] OR [Full Text: 
“validation”] OR [Full Text: “clinical performance”]
 OR [Full Text: “clinical investigation”] OR [Full Text: “external validation”] OR [Full 
Text: “rct”] OR [Full Text: “randomized controlled trial”] OR [Full Text: “randomized 
clinical trial”] OR [Full Text: “random control trial”] OR [Full Text: “technology as-
sessment”] OR [Full Text: “hta”] OR [Full Text: “clinical impact”] OR [Full Text: “pilot 
study”] OR [Full Text: “clinical benefit”] OR [Full Text: “clinical evaluation”] OR [Full 
Text: “cost-effectiveness”] OR [Full Text: “generalizability”] OR [Full Text: “explainabil-
ity”] OR [Full Text: “clinical benchmarking”] OR [Full Text: “study design”] OR [Full 
Text: “fairness”] OR [Full Text: “bias”] OR [Full Text: “qualitative evaluation”] OR [Full 
Text: “implementation”] OR [Full Text: “scalability”] OR [Full Text: “integration”] OR 
[Full Text: “calibration”] OR [Full Text: “transfer learning”] OR [Full Text: “usability”] 
OR [Full Text: “patient satisfaction”] OR [Full Text: “satisfaction”] OR [Full Text: “in-
teroperability”] OR [Full Text: “user friendly”] OR [Full Text: “ethics”] OR [Full Text: 
“ethical”] OR [Full Text: “jurisprudence”] OR [Full Text: “legislation”] OR [Full Text: 
“legal”] OR [Full Text: “law”] OR [Full Text: “diffusion”] OR [Full Text: “application”] 
OR [Full Text: “dissemination”] OR [Full Text: “real-world performance”] OR [Full 
Text: “real world performance”] OR [Full Text: “monitoring”] OR [Full Text: “clinical 
practice”] OR [Full Text: “education”]] AND [Publication Date: (01/01/2000 TO *)]

Table S2 The consulted experts

Name Affiliation Expertise

Maarten de Rijke University of Amsterdam Artificial intelligence

Evangelos Kanoulas University of Amsterdam Machine learning and statistics

Floor van Leeuwen Quantib Medical device regulation

Daniel Oberski Utrecht University Machine learning and statistics

Wiro Niessen Erasmus MC, University Medical 
Center Rotterdam & Delft 
University of Technology

Medical image processing

Giovanni Cina Pacmed Artificial intelligence

Rene Aarnink Philips Artificial intelligence

Anonymous - Medical device regulation

Bart-Jan Verhoeff Expertisecentrum Zorgalgoritmen Clinical software development

Bart Geerts Healthplus.ai & Spaarne Gasthuis Clinical AI implementation

Egge van der Poel Erasmus Medical Center Personalized healthcare

Stephan Romeijn Leiden University Medical Center Clinical AI implementation

Martijn Bauer Leiden University Medical Center Clinical AI implementation

André Dekker Maastricht University Clinical data science
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Table S3 The mapping from the initially used more fine-grained topics and terms identified in 
the literature, to more coarse-grained topics used in the review’s outline, and their distribution 
over the different phases from Box 1.

Keywords Topic Phase

Problem definition; analysis of the status quo; 
background study; specification of the clinical 
setting; identification of stakeholders; the 
prediction task; motivation; clinical context; 
clinical workflow; clinical baseline; clinical 
setting; clinical question

Medical problem and context Phase 1

GDPR; privacy; informed consent; data 
governance; de-identification; lawful basis; 
data minimization; compliance; ethics

Patient privacy

Sample size Sample size

Representative data; study population; spec-
trum bias

Representativeness

Missing data; measurement error; data quality; 
outliers; inter-annotator agreement; label-
ling; annotation; ground truth quality; data 
cleaning; data collection; reference standard; 
outcome measures; reference test

Data quality

  Data cleaning; data preparation; outlier detec-
tion; imputation; data wrangling; data fusion; 
integrating data; fusion; coding predictors

Data preprocessing

Data standards; interoperability Data coding standards

Interpretability; model selection; deep learn-
ing; federated learning; model specification; 
statistical models

Model selection and interpret-
ability

Phase 2

Parameter tuning; hyperparameters; nested 
cross-validation; development; training; train-
test split

Training the AIPM

Overfitting; dimensionality reduction; feature 
selection; class imbalance; clustering; regular-
ization; predictor selection

Measures to reduce risk of 
overfitting

Fairness; discriminatory bias; equality; algo-
rithmic bias

Measures to identify and pre-
vent discriminatory bias

Validation; evaluation; metrics; cross-valida-
tion; train-test split; evaluation metrics; cali-
bration; discrimination; internal validation

Internal validation

Reporting; code sharing Transparency of the model-
ling process

2
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Chapter 2

Table S3 The mapping from the initially used more fine-grained topics and terms identified in 
the literature, to more coarse-grained topics used in the review’s outline, and their distribution 
over the different phases from Box 1. (continued)

Keywords Topic Phase

Validation; evaluation; metrics; comparing 
models; evaluation metrics; external valida-
tion; prospective vs. retrospective; calibration; 
discrimination; benchmarking; temporal 
validation

Validation of the AIPM Phase 3

Generalizability Generalizability

Interoperability; open source; data standards; 
software design

Interoperability Phase 4

Human-AI interaction; usability; human-ma-
chine interaction; design; user interface; HCI

Human-AI interaction

Logging; software updating; facilitating mon-
itoring

Facilitating software updating 
and monitoring

Security; adversarial attack; model inversion 
attack

Security

Security; risks; software design; coding; unit 
testing; software testing

Software testing

Feasibility study; clinical utility; patient treat-
ment strategy

Feasibility study Phase 5

Effectiveness; clinical outcome; impact 
assessment; clinical impact assessment; RCT; 
economic impact assessment

Impact study

Risks; risk management Risk management

Implementation; patient-physician relation; 
integration into clinical workflow; clinical 
implementation; trust

Clinical implementation Phase 6

Hardware; maintenance Maintenance

Education Education

Auditing; data drift; monitoring; concept drift; 
performance over time; third-party evaluation;

Monitoring and auditing

Fairness; algorithmic bias; bias; ethics Algorithmic bias & fairness Overarching

Reporting; open source; code sharing; trans-
parency; trust

Transparency & openness

Explainability; saliency mapping; trust Interpretability

Accountability; stakeholders; multidisciplinary 
team

Development team, end users, 
and stakeholders

Security; safety; model inversion attack; adver-
sarial attack; trust

Security

Risks; safety; risk management Risks
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Table S4 Index on where phase-overarching topics are discussed in the article’s summary of the 
found guidance

Topic

A
lgorithm

ic bias and 
fairness

Transparency and 
openness

Interpretability

Team
 m

em
bers, end 

users, and stakeholders

Security

R
isks

Phase 1 Medical problem and context ✓ ✓ . ✓ . ✓

Patient privacy . ✓ . ✓ ✓ .

Sample size . ✓ . . . .

Representativeness ✓ ✓ . . . .

Data quality ✓ ✓ . ✓ . ✓

Data preprocessing . ✓ . ✓ . ✓

Data coding standards . . . . . .

Phase 2 Model selection and interpretability ✓ ✓ ✓ . ✓ ✓

Training the AIPM . ✓ . . . .

Internal validation . ✓ . . . ✓

Measures to reduce risk of overfitting . ✓ . ✓ . ✓

Measures to identify and prevent 
algorithmic bias

✓ ✓ ✓ ✓ . .

Transparency of the modelling process . ✓ . . . .

Phase 3 Validation of the AIPM . . . ✓ . ✓

Generalizability ✓ ✓ . . . ✓

Phase 4 Interoperability . ✓ . . . ✓

Human-AI interaction ✓ ✓ ✓ ✓ . ✓

Facilitating software updating and 
monitoring

. ✓ . . . ✓

Security . ✓ . ✓ ✓ ✓

Software testing . . . . ✓ ✓

Phase 5 Feasibility study . ✓ . ✓ . .

Risk management . ✓ . . . ✓

Impact study ✓ ✓ . . . .

Phase 6 Clinical implementation . ✓ . . ✓ ✓

Maintenance and updating . . . . . ✓

Education . ✓ . ✓ ✓ ✓

Monitoring and auditing ✓ ✓ . ✓ ✓ ✓

2
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