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Chapter 1

Artificial intelligence (AI) has made extraordinary progress in the last couple 
of years, defeating top-ranking Go players [1], generating fantastical images [2], 
and writing grammatically flawless texts [3].1 For the healthcare field, AI has 
the potential to improve patient outcomes through personalized predictions, 
lower healthcare costs, and reduce the administrative burden for healthcare 
professionals through automation and decision support [4]. In response to these 
big promises, recent years have seen a surge in healthcare AI funding [5] with 
clinical AI publications at an all-time high [6]. Yet, despite its potential, only 
a handful of AI algorithms have made it into healthcare practice [7-9]. More-
over, several safety concerns have been raised regarding the reliability of these 
algorithms when deployed in real-world settings [10, 11]. This thesis therefore 
focuses on the responsible development and validation of AI for healthcare.

1.1 PREDICTION ALGORITHMS

A clinical prediction algorithm aims to predict a usually binary outcome (e.g., 
hospital discharge or admission, or health outcomes such as cardiac infarc-
tion) by combining a number of characteristics [12]. In this thesis, prediction 
is used for prognostic purposes. This means that we predict the likelihood or 
risk of an event occurring in the future. Prediction algorithms can be developed 
using both classical statistics and AI techniques. Both types of techniques are 
discussed in more detail below.

1.1.1 Classical statistics techniques
There is a long history of developing prediction algorithms in the fields of 
epidemiology and medical statistics (referred to here as ‘classical statistics’). 
Examples of popular classical statistics algorithms are the Framingham risk 
score, predicting 10 year cardiovascular risk [13], and the 4C Mortality Score for 
risk stratification of COVID-19 patients [14]. Prediction algorithms derived with 
classical statistics methods usually rely on regression techniques, like logistic 
regression. A special class of methods called survival analysis may be used 
when the time between a baseline point (e.g., start of treatment) and the event 
of interest is important (e.g., death). A popular survival analysis technique is 
the Cox Proportional-Hazards model [12]. For situations with competing risks, 

1	 See the chapter illustrations throughout this thesis and the summary for examples of image 
and text generation by Stable Diffusion and GPT3.
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the Fine and Gray model is commonly used, while cause-specific Cox models 
may be preferred [15, 16].

1.1.2 Artificial intelligence techniques
This thesis is concerned with the subfield of AI known as machine learning 
(Figure 1.1). Machine learning is a class of AI techniques that learns from data 
to improve its performance on a prediction task. Typically, we do not specify 
the full set of (interaction) terms for the algorithm to learn from, as might be 
needed for a classical statistics approach. As a result, machine learning algo-
rithms provide us with a lot of flexibility to model nonlinear relationships [17]. 
Because machine learning algorithms can become highly complex and difficult 
to interpret, they are also referred to as black boxes [18, 19].

Figure 1.1 AI hierarchy and terminology

The most prominently featured machine learning algorithms in this thesis 
are tree-based algorithms (e.g., random forest and gradient boosting decision 
trees) and neural networks. A random forest combines the predictions of many 
independently built decision trees into one prediction (also called bagging) 
[20]. Gradient boosting decision trees are essentially a random forest that is 
optimized through gradient boosting [21]. Neural networks are comprised of 
several layers of nodes that are highly interconnected [22]. A neural network 
with one layer, one node and a sigmoid activation function is akin to a logistic 

1
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regression (Figure 1.2). The depth created by the layers in the network is why 
this type of machine learning is also called deep learning (Figure 1.1).

Figure 1.2 Schematic representation of a logistic regression and a neural network

1.2 TOWARDS IMPLEMENTATION: DEVELOPMENT AND 
VALIDATION

This thesis discusses AI prediction algorithms that are intended for imple-
mentation in healthcare practice. The development and validation steps are 
crucial to successful and safe implementation and are the focus of this thesis. 
The objective of algorithm development is to train an algorithm that most accu-
rately predicts the outcome variable on new, unseen data. Part of the dataset 
is selected to train the algorithm. The leftover data (also holdout, validation, 
or test data) is used to test the algorithm’s performance in the same setting 
as the train data, but with new examples not used during training. There are 
several designs to optimize this training procedure, like k-fold cross-validation 
and bootstrapping [23]. Algorithm development is followed by validation in 
which the performance of the prediction algorithm is tested on an external 
dataset [24]. Validation is needed to assess an algorithm’s generalizability to 
other settings that are different from the development setting (for example in 
time or place).
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1.2.1 Assessing algorithm performance
During algorithm development and validation, we need to quantify an algo-
rithm’s prediction performance. This can be done along various axes. Classifi-
cation measures quantify the algorithm’s ability to correctly classify patients at 
a specific decision threshold. For example, at a decision threshold of 50%, risk 
predictions higher than 50% are classified as 1 for experiencing the outcome 
and predictions lower than 50% as 0 for not experiencing it. Classification 
measures are based on the 2x2 confusion matrix (Table 1.1). Common clas-
sification measures are accuracy, sensitivity, specificity, positive predictive 
value, and negative predictive value. Discrimination measures such as the Area 
Under the Receiver Operating Characteristic curve (AUROC) are also based 
on the confusion matrix but evaluated for consecutive decision thresholds. 
They quantify the separation between low-risk and high-risk individuals [25] 
(Table 1.2). Calibration assesses the reliability of the risk predictions [25, 26], 
for example through a calibration curve (Table 1.2). Calibration is good when 
the proportion of the individuals receiving a certain risk score approximates 
that risk score. For example, within the group of patients receiving a 30% risk 
prediction of hospital admission, 30% of patients are in fact admitted to the 
hospital. Lastly, utility measures such as Net Benefit measure the number of 
true-positive classifications penalized for false-positive classifications [27-29] 
(Table 1.2). It provides a first indication of the clinical utility of the prediction 
algorithm with respect to current healthcare practice.

Table 1.1 Confusion matrix for classification measures at a specific decision threshold
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Table 1.2 Classification, discrimination, calibration, and clinical utility evaluation measures

Evaluation measures Definition

Classification Quantifies an algorithm’s ability to correctly classify cases at a spe-
cific decision threshold.

Accuracy; sensitivity; 
specificity; positive 
predictive value; negative 
predictive value

See Table 1.1.

Discrimination Quantifies the separation between low-risk and high-risk 
individuals.

Area under the receiver 
operating characteristic 
curve (AUROC)

The receiver operating characteristic curve plots sensitivity as a 
function of 1-specificity for consecutive decision thresholds to clas-
sify a patient as high risk.

Area under the prediction 
recall curve (AUPRC)

The precision recall curve plots the positive predictive value (pre-
cision) as a function of sensitivity (recall).

Calibration Quantifies the reliability of the risk predictions.

Calibration curve A calibration curve plots the agreement between observed and pre-
dicted risks [25, 26]. The intercept relates to calibration-in-the-large 
and the correct estimation of overall baseline risk. An intercept 
below 0 indicates that the estimated risks are too high and above 
0 too low. The slope measures whether risks are too extreme or 
modest. A slope below 1 implies too extreme risk estimates, above 
1 too moderate.

Calibration loss The calibration loss is calculated by ordering all cases by their risk 
estimate [30]. Cases 1-100 are put in the same bin. The percentage of 
true positives and the mean prediction are calculated. The absolute 
value of the difference between the true positive percentage and 
the mean prediction is the calibration error for this bin. Repeat this 
for cases 2-101, 3-102, etc. The calibration loss is the mean of all the 
binned calibration errors.

Clinical utility Quantifies benefits and harms of an algorithm for clinical decision 
making.

Net Benefit

Net Benefit is a weighted sum of true positive (TP) and false posi-
tive (FP) predictions at a given decision threshold (t): 

= ( −
1−

∗ )/  [27-29]  

Net Benefit can be plotted over a range of decision thresholds 
resulting in a decision curve.
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1.3 CHALLENGES FOR RESPONSIBLE AI IN HEALTHCARE

Despite the promises of AI and machine learning for healthcare, we note a 
lack of systematic development and validation practices for clinical AI predic-
tion algorithms: Guidance is incomplete or missing, jargon differs between the 
statistics and computer science fields [31], and external validation is rare [32]. 
This can have real-world ramifications, as illustrated by the widely used Epic 
sepsis algorithm that failed to detect 67% of patients with sepsis [11]. To create 
realistic expectations for AI in healthcare and facilitate responsible develop-
ment, validation, and implementation, knowledge is required on the boundary 
conditions for a successful AI project. What situations benefit from the use 
of AI techniques and in what situations could it be disadvantageous or even 
harmful? What should be taken into consideration when applying AI prediction 
algorithms to healthcare practice?

1.4 AIMS

The overall aim of this thesis is to provide insight in the responsible develop-
ment and validation of AI algorithms for outcome prediction in healthcare 
practice. To this end, this thesis has three specific research questions:

1. 	 What are prime considerations in the development and validation of artifi-
cial intelligence prediction algorithms?

2. 	 What are opportunities for classical statistics and artificial intelligence 
techniques for developing prediction algorithms?

3. 	 What is the performance and potential of artificial intelligence prediction 
algorithms for clinical practice?

1.5 DATA

The data for the prediction algorithms in this thesis come from a variety of 
sources, allowing us to study the applicability of AI prediction algorithms in 
different healthcare settings (Table 1.3). Most use cases focus on the application 
of a prediction algorithm in a hospital environment. The clinical domains cover 

1
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emergency medicine, primary care medicine, orthopedic surgery, oncology, 
and intensive care medicine. Most datasets are derived from hospital Electronic 
Health Records (EHR). All datasets consist of tabular (or structured) data fields. 
One study also uses unstructured text data. The acquired datasets generally 
consist of real-time data, allowing us to study the performance of AI prediction 
algorithms in real-world settings.

Table 1.3 Characteristics of the datasets used in this thesis

CH Clinical domain Data source Data type Data modality

4 Emergency medicine NEED registry [33] EHR Tabular data

5 Primary care medicine Controlled trials [34, 35] Patient diaries Tabular data

6 Arthroplasty surgery LROI registry [36] Questionnaires Tabular data

7 Oncology Stanford data lake EHR Tabular and text 
data

8 Intensive care medicine LUMC data lake EHR Tabular data

1.6 OUTLINE

This thesis is divided into two parts.

Part I of this thesis is concerned with methods: the description of guidance 
and several methodological considerations for the development, validation, 
and implementation of clinical AI prediction algorithms. Chapter 2 contains a 
scoping review that identifies actionable guidance for all stages of AI develop-
ment. Chapter 3 includes three short articles reflecting on validation methods. 
It describes i) the methodological differences between the statistics and 
computer science fields for algorithm evaluation, ii) how to (not) interpret the 
area under the receiver operating characteristic curve, and iii) the necessity 
to align one’s validation goals with an algorithm’s intended use.

Part II describes development and validation of prediction algorithms in 
five use cases. In chapters 4, 5, and 6 classical statistics and AI techniques 
are compared. Chapter 4 covers the development of several AI prediction 
algorithms for predicting hospital admission at the emergency department. 
Chapter 5 compares different algorithms for predicting severe asthma exac-
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erbations in asthma patients. In chapter 6 several competing risk algorithms 
are developed to predict arthroplasty revision. Chapter 7 assesses the value of 
multimodal data for predicting depression risk in oncology patients at the start 
of treatment. Chapter 8 discusses the external validation and retraining of a 
proprietary algorithm predicting ICU readmission or death within seven days 
of discharge. In chapter 9, the main findings of this thesis and their implica-
tions for research and development are discussed. 1
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