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GENERAL DISCUSSION

1. Introduction

Real-world data (RWD) on systemic cancer therapy are needed to complement the
registration trial results as trials have limited external validity and cannot be used
to investigate rare or long-term effects and treatment use in clinical practice [1-3].
Especially with the increasing incidence of cancer, but also an increase in treatment
options and costs, insights into treatment effects in clinical practice are necessary to
make informed treatment decisions [4, 5]. The electronic health record (EHR) is a
rich source of RWD that has the potential to create these insights [6, 7]. However, as
the EHR is a complex data source, with both structured and unstructured stored data,
manual data collection has been the standard, which is laborious, costly and error-
prone and therefore not scalable [8-10]. Text-mining techniques, including natural
language processing, can be used for information extraction not from structured data
but also from unstructured text documents, and thus might improve the efficiency of
RWD collection from EHRs [10-13].

This thesis aimed to investigate whether this text mining EHR data would be a suitable
method to collect real-world data on oncologic drug treatments. Therefore, we reviewed
avaijlable real-world data sources and applications, performed a validation study and
investigated whether this tool can be applied to evaluate treatment effectiveness,
including the overall survival, progression-free survival and recurrence-free survival
and prognostic factors, adverse events, treatment patterns and guideline adherence
in a variety of cancer (and Covid-19) populations. The short answer is that it can be;

the nuanced answer will follow in the discussion below.

1.1 The electronic health record and text mining

First, we will discuss the source and method used in this thesis. Of all RWD sources
investigated in Chapter 2 (case report forms, administrative claims data, patient reported
outcomes, registries, wearable devices, and social media data), the EHR was the source
with the most potential to study a range of real-world aspects of cancer patients and their
treatments. Even though other sources have specific advantages, for example, claims
data contains information across healthcare facilities, and patient reported outcomes
can give insights into the patients’ perception, the EHR is the most extensive and
nuanced source overall. Especially, since cancer patients regularly visit the hospital for
their treatment and evaluation, and therefore continuous patient data regarding their

disease and treatment is captured in structured and unstructured parts of the EHR, e.g.,
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the prescribed medication, laboratory data, and free-text notes [7]. However, the review
also showed that for research purposes, the EHR as a real-world source has its limita-
tions, first since notes and values can be uninterpretable, inconsistent, or erroneous, and
second since data may be missing [14, 15]. As missing, or otherwise limited, data may

influence the method as well as and the results. These will also be addressed later on.

CTcue (CTcue B.V.,, Amsterdam, The Netherlands), the EHR text-mining software
used in this thesis, is a rule-based text-mining tool, meaning that the user/researcher
sets a selection of rules, queries, for what patients to identify and what data to extract.
To gain insight in whether a text-mining tool could be useful for cancer treatment
evaluation, we performed a validation study (Chapter 3). Next to inclusion criteria,
based on medication use and diagnosis-treatment codes (DBCs), a range of patient
characteristics, treatments, survival outcomes, and adverse events (AEs) were collected
both with text mining and manually from the EHR to estimate time spend per method

and the precision, recall and F1-score of the text-mining tool.

It showed that with text mining, the time spend on information extraction could be
reduced sevenfold. Part of the benefit in time with this method is in the patient identi-
fication. Since this was highly accurate, only using text mining for patient identification
can already be beneficial, especially when a combination of inclusion criteria defines
the population and this tool can work as a structured filter. Others also found that
using text mining for patient identification alone can greatly decrease the time and

resources needed to review charts [16, 17]. However, text mining can be used for more.

This study also showed the range in accuracy and recall of specific variables. Overall
we could conclude that the risk factors based on laboratory values and variables
extracted from free text with limited variability in terminology (e.g., type of cancer)
showed higher accuracy than the extracted comorbidities, AEs, and risk factors stored
in unstructured data. This can shortly be explained by the difference in variability of
the data in the EHR, both related to the criteria themselves and how they are registered.
As for the data extraction, the queries are comprised by the researcher, even though
well informed, it is more likely to include all relevant terms of patient variables with
low variance than with high variance. This potential difference of accuracy per variable

key for researchers to keep in mind when designing queries.

Moreover, inconsistencies, errors, and omissions in the EHR contributed to differences

between the results collected with text mining and manual data retrieval. If structur-
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ally stored information (used for text mining) was not consistent with the free-text
notes, this could be adjusted in the manual data retrieval only. For example, we found
differences in start- and stop dates of the treatments and this influenced outcomes by
text mining. Since data collection was in all studies related to the moment of start or
stop of treatments. Furthermore, even though some data was stored structurally, it
was at that moment not yet extractable with the text-mining tool, including the vital
signs as length and weight, therefore had to be extracted from the free-text. This was
updated in newer versions of the tool. And these variables furthermore sometimes
had large fluctuations, which we assigned to measurement- or typing errors, or rough
estimations from the healthcare professional. These limitations of the EHR are also well
recognized in the literature. Bowman et al. [18] described the discrepancies between
structured data fields and free-text. And for drug dosing instructions and Hanauer
etal. [19] underlined the variety and errors of numerical values registered in clinical
notes. Ideally, the EHR would contain all relevant data, and without any errors, ready for
secondary use. But that is not the current practice, and might not be reached anytime
soon. That does not mean that the data becomes useless, in contrary, however, these
limitations must be taken into consideration when performing (text mining) studies
with EHR data and decide upfront how to deal with it.

1.2 Patient inclusion

Defining fitting patient inclusion queries, based on the patient inclusion- and exclusion
criteria, is a crucial step in performing a text-mining study. All studies we performed
were medication oriented. Therefore, we used medication prescriptions as the basis for
the patient inclusion. We combined this with the diagnosis-treatment codes (Dutch:
diagnose-behandelcombinatie-codes; DBC) in all studies reviewing oncologic treat-
ments (Chapter 4-7). The advantage of using prescribed medication and DBCs is that
they are, in general, structured and reliable data, and therefore identify all potential
patients. However, as treatments can have more than one specific indication and DBCs
can still be too broad for the specific aimed diagnosis and for several other reasons,
we found that the combination of medication and DBC was not specific enough to
include no “false positives” Since an accurate patient population is the basis of a study,
and is an important step in collecting reliable real-world data, we have added a third
component. For all these studies, discriminating free-text searches were added to

manually verify the population with context validation.
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Context validation was used to exclude patients from the initial search. In Chapter 4
and 5, patients were excluded since they started treatment before the inclusion period,
did not start the prescribed treatment, or received the treatment for a different type of
cancer. An even more accurate registration of start of treatments and the indication
could partly have prevented the patients ending up in our initial search. Furthermore,
in Chapter 6, the added value of the verification was mostly to exclude melanoma
patients that received palliative treatments, instead of the intended adjuvant treatment,
as the DBC code does not discriminate between these two. Furthermore, in Chapter
7, the verification method was used to distinguish between a range of treatment
courses, for example, the regular doxorubicin and cyclophosphamide (AC) course
and a dose dense AC course. The advantage of this semi-automatic method was that
with these three components already a large part of the manual labor is replaced, and
this semi-automatic concept can also be used in other studies as a stepping stone to
full automized patient inclusion. McKenzie et al. [20], for example, also used a semi-
automatic approach to identify patients, in this case whether lung cancer patients
developed radiation pneumonitis. However, all manual labor limits the scalability of
the method. Therefore, further optimization and validation of the inclusion queries
of these studies are needed before they can be implemented on a large scale without
manual verification. Only in Chapter 8, patient inclusion was possible without addi-
tional verification since remdesivir use and a positive PCR for Covid-19 - both struc-
tured data — was already highly specific. This illustrates, furthermore, the potential

for automatic patient identification.

1.3 Baseline characteristics

Baseline characteristics are key in every study. They are needed to describe the popu-
lation in order to provide context to outcomes. This can be done by comparing the
study population to other populations or by distinguishing subgroups within the
population. For patients with cancer, these characteristics can further be roughly
categorized in patient-, disease or tumor-, and treatment related characteristics. In
our studies, these were collected with different approaches linked to the start date of

the specific treatment.

Patient-related characteristics mainly include sex, age, length, weight, a selection of
relevant laboratory values, including renal- and liver function, values that are already

known to be predictive for an outcome of that type of disease, and the performance
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status. The vital signs and laboratory values were found to be extracted with high
accuracy from their structured source. By design of the queries, automatically the most
recent value before the start of the treatment was selected for data extraction. This
significantly reduced the time spend on data collection and the risk of typing errors
when manually transferring these values to an electronic collection report form, also

found by others [21]. These patient data already generate added value.

In Chapter 8, the structured laboratory values were sufficient to characterize patients
according to their kidney-, and liver function. And in Chapter 5 we could determine
that at least 28% of the patients would not be eligible for participation in the pivotal
trials based on values from structured data. However, sometimes these well-defined
and/or structured data will not cover all desired patient characteristics in a study. In
Chapter 7, investigating the use of G-CSFs in patients with intermediate risk of febrile
neutropenia (FN), we limited the inclusion of the risk factors for FN to structured
variables. To ensure high accuracy risk factors that were too broad or unclear to extract
in high accuracy were excluded. One patient characteristic, the performance status,
is notorious for being underreported in the EHR [22, 23]. In Chapter 4 to 7 between
35% to 55% of the performance statuses could not have been retrieved. However, this
rate is comparable to other real-world studies [22, 23]. As the performance status of
patients is often a significant predictor of outcomes, irrespective of a specific cancer
type, it would be beneficial for real-world treatment evaluations if this specific char-

acteristic was better registered.

Next, often it is relevant to further subdivide the investigated cancer type based on
its histology-, tumor receptor-, and/or oncogene mutation profile since these can be
predictive for the overall survival or the clinical outcome of medical treatments. These
details are often stored in unstructured text. And, even though these characteristics
are well-defined, and therefore have the potential to be extracted with high accuracy
with text mining, we encountered several challenges. In Chapter 4 we identified the
tumor histology by including free-text key words not only for the most prominent
clear-cell type, but also papillary- and chromophobic renal cell carcinoma (RCC).
However, as a high variety of other rare subtypes are present, we scanned the texts
by adding a general query instead of adding all potential variables, and identified by
context analysis the sarcomatoid subtype in the population. With this, we were able to
observe that specifically sunitinib treated patients had a non-clear cell histology and

therefore identify a potential bias by indication in this group that is underrepresented
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in trials [24]. This was not only reflected in clinical practice in which sunitinib was
first choice for non-clear cell histology, but also could partially explain differences in

results between the sunitinib and pazopanib treated group in our study population.

Furthermore, we had to adapt search queries regarding disease characteristics, since
punctuation, in general, is ignored by the text-mining program, and the symbols
as “+” and “-”, often used to indicate presence or absence of a specific mutation or
receptor cannot be included in searches. Removal of punctuation is often done in the
pre-processing of text data for text mining [25]. In Chapter 6 and 7 we extracted the
presence or absence of a specific receptor or mutation. Since punctuation is ignored
by the text-mining program, including, for example, “PR+” a common method to note
progesterone receptor positive, would not result in the desired outcomes. Therefore,
other combinations of the specific gene combined with options used textually to note
the presence or absence of a mutation were searched for. Specifically, in Chapter 6
these results were used to show that all patients receiving dabrafenib plus trametinib
had a BRAF mutation, but also up to half of the patients receiving immunotherapy.
This was relevant, since for this group of melanoma patients both therapies can be

considered.

Also for cancer staging we had to adapt the search method to the practice. Cancer
staging can be classified with the TNM staging system, composed of the primary
tumor site and size (T), regional lymph node involvement (N) and the presence of
metastasis (M) [26]. As this is a general standard to register the stage, we expected that
is would be easy to use this for the determination of the disease stage. However, due to
the complexity in the reporting of this score with subcategories, e.g., T1aN2M1b, the
variants reported in the EHR were too diverse to include in the search. Other attempts
for retrieving the TNM classification by text mining showed varying accuracy ranging
from 64-94% for the retrieval of the different T, N, and M components [27, 28]. In
Chapter 6, only disease stage was used instead. With this, enough insight in disease

severity could be established by retrieving stage from the EHR for most patients.

Treatment-related variables do not only describe the specific treatment investigated,
but can also be used to put this treatment in perspective by including previous and
following treatments. All systemic cancer treatments could be extracted from the medi-
cation lists. Even though the validation study in Chapter 3 highlighted that start- and
stop date may not always be correct, omissions will be highly unlikely since patients

then would not receive their treatment. Vice versa, verification showed that not all
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patients started their intended treatment, due to multiple reasons as already further
progressive disease. With these treatment-related variables, a variety of insights can be
created. The field of RCC and HCC treatments are undergoing major developments.
Therefore, we investigated treatment patterns in Chapter 4 and 5. These patterns add
relevant insights, as for the HCC population the data illustrate the introduction of new
treatments after a decade with only sorafenib as treatment option. And in the RCC
population, compared to the first trials of sunitinib and pazopanib, significantly more
patient received follow-up treatments, and the type of treatments also changed. In
our study, these follow-up treatments might have added to improved overall survival.
However, this does not only highlight the relevance of real-world data on treatment
patterns, but also the complexity in interpreting results. With the introduction of a new
treatment, more treatment lines can be followed, which contribute, next to patient-
and cancer characteristics, to the outcome. Even though estimations are made, for
example by investigating the (improvement of) overall survival between time periods,
or investigating multiple lines of one treatment [29, 30] it is difficult to estimate, based
on these complex data, the added benefit of every individual treatment to the overall

survival of a patient.

However, not all treatments could not be extracted by using the medication list. Other
types of treatment as radiology interventions (e.g. TACE in Chapter 5) or surgical
interventions (e.g. nephrectomies in Chapter 3/4) were determined by text mining.
And in Chapter 7 we had to perform free-text search to identify granulocyte colony-
stimulating factor (G-CSF) as G-CSF treatment is extramural therapy and only docu-
mented in unstructured text. However, as use of G-CSF was also a study outcome and
we wanted to ensure high accuracy, we did not only perform context validation, but
also manual validation in the EHR of G-CSF use for the patients that were identified
as potential users by text mining. This was not only followed by context validation
but also manual validation in the EHR to determine whether patients started G-CSF

treatment.

To summarize, all these examples of baseline characteristics show the variability in
documentation and some accompanying challenges. Over the chapters we have shown
all approaches we have used in an attempt to optimize efficiency and accuracy in the

data extraction of the baseline variables, which can be used as basis for new studies.
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1.4 Treatment effectiveness

The most important endpoint to assess the effectiveness of cancer treatments is the
measurement of overall survival (OS). Determining the overall survival time per patient
based on real-world data from the health records is also relatively easy since the start
of treatment and time of death are structurally and accurately stored in the EHR. The
accuracy was confirmed in our validation study (Chapter 3) which showed an almost
identical Kaplan-Meier curve when calculating the median OS based on manual versus
text-mining data. We first used this to estimate the effectiveness of RCC treatments in
Chapter 4 and reused the queries in Chapter 5 now only regarding HCC treatments.
This resulted in the OS of first-line treatments pazopanib, sunitinib, nivolumab (RCC),
and sorafenib (HCC). As only data that can be extracted from structured sources is
needed to calculate the effectiveness, this could be something to use on a large scale
to gain very general insights into whether treatments are effective in clinical practice,
especially since this has not always been the case [31]. And it could, for example, be
used to yearly benchmark hospital results. Of course, only effectiveness data will not

be enough, but with these data trends can be identified.

Since the median time to OS, fortunately, often takes years, surrogate endpoints
are often used in trials for an earlier estimation of treatment efficacy. Often-used
surrogate end-points are progression-free survival (PFS), in case of palliative disease,
and recurrence-free survival (RFS) or disease-free survival (DFS) for curative disease.
For the extraction of the PFS of pharmacological treatments for RCC and HCC, and
RFS for adjuvant melanoma (Chapter 4-6), a more elaborate method was used. Even
though the measurement of tumor response is standardized in the Response Evalua-
tion Criteria In Solid Tumors (RECIST), the documentation in the radiology reports
was unstructured and very high dense and variable in information. Therefore, these
radiology reports were not fit for direct text mining. In our approach, we first identi-
fied relevant free-text fields to determine reason to end treatment. This was linked
to the last date of use of a treatment according to the prescription data. Following,
in case of recurrence or progression, the radiology report diagnosing the case was
selected, to have the most accurate date of the event. Even though this method
still contains some manual labor, it also is a significant reduction and shown to be
accurate in the validation study. This method is, in basis, comparable to a mix of the
clinician-anchored approach radiology-anchored approach of Griffith et al. [32], who
investigated methods to identify real-world progression in EHRs, and showed that the

combination was most optimal.
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The difficulty with survival results in our studies, irrespective of the collection method,
was the interpretation of the results because of the large confidence intervals due to
small sample sizes and sometimes limited follow-up time (e.g., the recurrence-free
survival in Chapter 6). Mostly, we could detect trends but lacked statistical significance
to make conclusions. Therefore, it might be beneficial to not only aim to include more
patients, but also to — a priori — determine the sample size and power necessary to
detect meaningful insights [33]. Even when sample sizes are not reached, this can put
the outcomes better in perspective. Also, it is known that not all surrogate endpoints are
not always good predictors of overall survival, even the well-established progression-
free survival [31, 34]. Therefore, it remains a challenge to quickly establish treatment
effectiveness based on real-world data, since it takes time for enough patients to reach
the median OS.

1.5 Treatment safety

Even though adverse events are monitored before the marketing approval of a
treatment, post approval monitoring is important to identify 1) adverse events
occurring in subgroups, especially patients not meeting trial eligibility criteria, 2)
adverse events that occur later after the start of a medication, and 3) rare events [35].

In this thesis we also used text mining to estimate the incidence of adverse events.

In Chapter 3, we extracted regular occurring adverse events during treatment with
targeted therapies, such as diarrhea, liver toxicity, hypertension, and hand-foot
syndrome to test text mining for AE extraction. In general, we set a threshold for
accuracy of 90%, and for none of these adverse events this threshold was reached. This
relative low accuracy be attributed to the different and tangled way AEs are recorded in
the EHRs. What further might contribute is the — often - temporary nature of adverse
events. Wang et al. [36] already stated that ADE identification is complex. However, we
argue that a larger range of uncertainty may be acceptable for the detection of adverse
events, compared to treatment effectiveness, as at least the results can indicate whether

an AE occurs distinctively more, less, or comparable to the trials.

The first study we implemented automated data extraction to evaluate potential
adverse events was slightly out of scope of this thesis, nevertheless fully in line with
the period in which this thesis was written and the urgent need for data on pharmaco-
logical treatments for Covid-19. In Chapter 8, fast data extraction was performed to

test the hypothesis that remdesivir could result in nephrotoxicity and hepatotoxicity
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in Covid-19 patients. Especially since patients with poor kidney- and liver function
were contra-indications. No severe nephrotoxicity, and in two patients grade 3 hepa-
totoxicity, was found in the first fifteen days after treatment initiation. Furthermore,
the incidence of decreased eGFR was comparable with data reported in the RCTs last
year [37, 38]. And none of the patients that started with transaminases above ULN,
including patients meeting exclusion criteria, had grade 2 or higher transaminase
elevation. Based on these results of structured data, we concluded that patients meeting
contra-indications seem not to develop more renal- or hepatotoxicity on remdesivir
treatment, and this may be no reason for these contra-indications to be absolute. It has
to be mentioned that since later no effectiveness was shown for remdesivir treatment
of Covid-19, it is no longer advised in The Netherlands [39]. However, in general, it

shows how fast(er) access to and publication of data is of relevance for adverse events.

Next, in Chapter 7, we investigated the use of G-CSFs to prevent the adverse event
of chemotherapy-induced febrile neutropenia in breast cancer patients. Even though
neutropenia can be identified based on laboratory results, the “febrile” aspect is not
always documented as elevated body temperature in the structured vital signs, even
though this is potentially a reason for hospitalisation. Since this adverse event was
a crucial outcome, we identified the potential cases of neutropenia and febrile neu-
tropenia with text mining, and additionally performed manual validation by EHR
review. This is another method to use text mining and simultaneously reduce the
risk of incorrect data by only performing this validation on the selection of patients
[40]. Furthermore, even though the low use of G-CSFs in the intermediate risk group
(<20% FN risk), the FN incidence was moderate (12%), but a substantial amount of
the patients developed grade 3-4 neutropenia (31%). Therefore, we concluded that
higher G-CSF use could further have prevented cases of severe neutropenia, and with

it concomitant chemotherapy dose delay or reductions [41, 42].

In the real-world evaluation of adjuvant nivolumab, pembrolizumab, and dabrafenib
plus trametinib for melanoma in Chapter 6, we not only investigated the ten most
frequent adverse events reported in the pivotal trials (including the severity), but also
the treatment-limiting adverse events in this population. To estimate the incidence
of the common adverse events, we used extensive free-text search. With this we, for
instance, found that manifestations of thyroid-related AE after use of both nivolumab
of pembrolizumab seemed to occur more often in this population than in the trials.

Even though a thyroid-related AE not necessarily leads to treatment termination, or
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can be classified as severe, patients often need lifelong hormone replacement [43], and
therefore the occurrence of this type of AE might have a severe impact on an individual
patient’s quality of life. Furthermore, we were able - to a limited extent - to identify
the severity of adverse events based on the context corresponding with the CTCAE.
De Meza et al. [44] did report higher rates of severe AEs in clinical practice compared
to the RCTs. However, due to the low incidence of the individual severe AEs, we could

not determine if this was the case for our study population.

To identify the treatment-limiting AE, we used the parts of EHR used to select the
reason to end treatment and were able to select the specific treatment-limiting AE in
the program. This showed that, in general, nivolumab and pembrolizumab had less
treatment-limiting toxicity compared to dabrafenib plus trametinib. Furthermore, for
both immunotherapies, mostly one or two concurring immune-related AEs (irAEs)
were treatment limiting. These irAEs are characterized by auto-reactive T-cells and
can affect many organs. This contrasts with combinations of two up to six treatment-
limiting AEs on dabrafenib plus trametinib treatment [45-47]. Most outstanding
treatment-limiting adverse event due to dabrafenib plus trametinib was pyrexia,
occurring in more than half of the patients who ended treatment due to toxicity. Even
though pyrexia is a well-known AE of dabrafenib plus trametinib, the rate in which
it occurred seemed higher than in the trial [48]. Overall, we could use the analysis
of treatment-limiting adverse events to conclude that, in this population, adjuvant
immunotherapy was better tolerated than dabrafenib plus trametinib, which is relevant

to consider when initiating adjuvant melanoma treatment.

Overall, the different chapters show that, AE can be gathered with multiple approaches
of text mining EHRs. This is also done by others. But, e.g., Mashima et al. [49] used
a machine-learning approach to develop an algoritm to detect nausea/vomiting and
diarrhea. The difficulty with AEs is that for every event a query has to be developed.
And, since there are many possible AEs, it will take a lot of effort to develop and

validate the extraction methods of AEs.

2. Future perspectives

The amount of available real-world data in the EHR of patients with cancer receiving
systemic pharmacologic treatments is constantly growing, and this thesis shows

that with text mining these data can be captured for several research and evalua-
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tion purposes. These data have the potential to replace or add data to the evidence
generated in traditional research methods by being able to generate datasets quicker,
cheaper or datasets that are bigger, and generate insights in data that were previously
not available. However, by improving registration at the source and by application of

text-mining techniques, the use of RWD can reach its full potential.

2.1 Improving EHR

The quality of the data is essential to establish meaningful real-world evidence. However,
the challenge of the EHR is that the primary purpose for data registration is not research.
Therefore, the data has limitations. Part of the solution can be improving and harmoniz-
ing the data capture by generating more user-friendly and clear front-ends of the used
EHR software so that healthcare professionals easily can store information for secondary
use. However, fundamentally, it remains impossible to capture everything. Thus, relevant
baselines should be established and harmonized over all the used EHRs [50]. However,
these alterations should not add to the burden of registration. By requesting only the
registration of relevant variables, healthcare professionals will still be motivated [51].
Reflecting on cancer treatment care, it might be relevant to systematically capture the
diagnosis and stage for all patients at the start of every treatment. But, in case of labora-
tory values, one might argue that it is reasonable that only relevant parameters for patient
care measured. Furthermore, regarding adverse events, not every symptom might be
recognized as an adverse event, and writing down all symptoms can be burdensome.
However, optimized data registration in the EHR, making it suitable for text mining,
can potentially reduce time spent on validating data extracted for research purposes

and registries, and therefore motivate healthcare professionals.

Also, other methods of data collection and entry into the EHR can be implemented.
For example, integration of patient reported outcome measures (PROM:s) and wearable
devices into the EHR can add extra perspective. Not only for research purposes, but
also/especially for healthcare practice. Some devices and questionnaires have been
piloted or implemented in EHR systems already. However, limited interoperability
of systems is currently still a barrier [52]. Also, in the future, manual data entry can
potentially be replaced with new techniques as automatic speech-recognition based
clinical documentation, in which conversations between patients and healthcare
professionals are captured and automatically documented. However, these speech to

text-techniques are still in development [53].
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2.2 Development of text-mining use

(Semi-)automatic data extraction, as shown in this thesis, can significantly reduce
time needed to extract relevant real-world data for treatment evaluation. But, as this
is still a relative new technique, further developments can be made, both technical and
in the used procedures. The challenge in the field of NLP is generating a query set or
algorithm that is specific and precise enough to fit the often heterogenous EHR (72).
The rule-based extraction, used in this thesis, is in the basis a coded set of rules for
data extraction. And especially use of elaborate searches in free-text notes is of added
value. However, currently, the data retrieval is limited to the synonyms provided, and
recognition of typing errors or the sentiment (in short: is the mention of a variable
positive, negative, or neutral) is not yet possible in the used software. To enable these,
often machine-learning based NLP is necessary, a system based on a statistical learning
algorithm that identifies the relevant context based on annotated training data (70).
With large data sets as training data, and more uniform data, use of machine learning

to establish the algorithms might be the next step.

Furthermore, not only the literal use of text mining can be improved, but also the
agreement on procedures followed when implementing. For example, in Chapter 3
we choose to formally validate individual queries by comparison to manual data col-
lection and calculate precision, accuracy and F1-scores, and set 90% as benchmark.
However, no guideline or standard is set on how and when to manually validate,
including a minimal percentage or number of records/data points, what benchmarks
needs to be met, and how to verify if these queries can also be applied in other centers.
This should not be a one-size-fits all agreement, but be dependent on the variables,
research questions and population size. For example, higher accuracy can be relevant

for the primary end-points.

2.3 Active use of real-world data in pursuit of value-based healthcare

This thesis showed that text mining EHRs can create insights into real-world data on
cancer treatments: the primary aim of this research. The data can be used - as previously
discussed - to evaluate treatment effectiveness, adverse events, patient populations,
treatment patterns, and guideline adherence, reflecting current care. By text mining,
more data can be gathered for evaluation, creating the potential for more insights into
clinical practice of oncologic treatments. These real-world data are of the most value

when actually actively used.
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More concretely, ideally, real-world data is collected regularly and with or without
the use of text mining. The results should be linked to concepts of value-based
healthcare, in which measuring outcomes (and costs) is only one step of the cycle.
A step further in this direction is using these data to refine funding recommenda-
tions needed to challenge currently escalating costs [54]. In case benefits in clinical
practice do not match the results on a national level, they potentially could be reduced
accordingly. Additionally, real-world data can play a role in other payment schemes,
such as outcome-based payments. Lorgelly et al. highlighted that not only survival
is an outcome of importance for cancer patients, but also other tumor progression
and quality of life aspects — which should and can be included [55]. Reducing costs
is only one aspect. Using these data to regularly reflect on outcomes on the hospital-,
regional- or (inter)national level and change or verify treatment policies is a second.
And actively implementing insights from real-world data for shared patient and

clinician decision making [56].

As this discussion highlights once more, there is a high need for real-world data to
evaluate cancer treatments in clinical practice, and the EHR is a source containing
these. This thesis shows that text mining can extract the data that create insights on
a variety of aspects, including patient characteristics, treatment outcomes, adverse
events and treatment patterns by a variety of different cancer patient populations and
their treatments. However, this method is relatively new, and still can be optimized
by improving the source, the EHR, and further developing the use of text mining.
But, ultimately text mining can be a critical component in the generation of more
real-world data. This must result in better insights in all aspects of a cancer treatment,
especially what treatment would benefit an individual patient best in every phase of

their disease, and therefore optimize systemic cancer therapy.
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