
Algorithm selection and configuration for Noisy Intermediate
Scale Quantum methods for industrial applications
Moussa, C.

Citation
Moussa, C. (2023, October 11). Algorithm selection and configuration for Noisy
Intermediate Scale Quantum methods for industrial applications. Retrieved from
https://hdl.handle.net/1887/3643423

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3643423

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3643423

Chapter 8

Resource frugal optimizer for
quantum machine learning

Variational quantum machine learning algorithms have the potential to solve practical
problems on real hardware, particularly when involving quantum data. In Chapter 7,
we assessed the importance of hyperparameters of quantum neural networks on classi-
cal data and in idealized simulation settings. However, training these algorithms can
be challenging and calls for tailored optimization procedures. Specifically, QML appli-
cations can require a large shot-count overhead due to the large datasets involved. In
this chapter1, we advocate for simultaneous random sampling over both the dataset
as well as the measurement operators that define the loss function. We consider a
highly general loss function that encompasses many QML applications, and we show
how to construct an unbiased estimator of its gradient. This allows us to propose a
shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for
QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save
several orders of magnitude in shot cost, even relative to optimizers that sample over
measurement operators alone.

1Contents of this chapter are based on [136]; Charles Moussa, Max Hunter Gordon, Michal Baczyk,
M. Cerezo, Lukasz Cincio, and Patrick J. Coles. Resource frugal optimizer for quantum machine
learning. arXiv:2211.04965, 2022.

109

8.1. Introduction

8.1 Introduction

The field of quantum machine learning (QML) revolves mostly around variational
methods, which involve classically training a parameterized quantum model. Varia-
tional QML, henceforth referred to as QML for simplicity, is indeed a leading candidate
for implementing QML in the near term. However, it has faced various sorts of train-
ability issues.

Exponentially vanishing gradients, known as barren plateaus [125, 42, 87, 88, 176,
122, 190, 9, 153], as well as the prevalence of local minima [23, 7] are two issues that
can impact the complexity of the training process. Quantum hardware noise also
impacts trainability [197, 184]. All of these issues contribute to increasing the number
of shots and iterations required to minimize the QML loss function. Indeed, a detailed
shot-cost analysis has painted a concerning picture [200].

It is therefore clear that QML requires careful frugality in terms of the resources
expended during the optimization process. Indeed, novel optimizers have been de-
veloped in response to these challenges. Quantum-aware optimizers aim to replace
off-the-shelf classical optimizers with ones that are specifically tailored to the quan-
tum setting [185, 107, 140]. Shot-frugal optimizers [109, 72, 189] have been proposed
in the context of variational quantum eigensolver (VQE), whereby one can sample
over terms in the Hamiltonian instead of measuring every term [10]. While significant
progress has been made on such optimizers, particularly for VQE, we argue that very
little work has been done to specifically tailor optimizers to the QML setting. The
cost functions in QML go well beyond those used in VQE and hence QML requires
more general tools.

In this work, we generalize previous shot-frugal and iteration-frugal optimizers,
such as those in Refs. [109, 72, 10], by extending them to the QML setting. Specifically,
we allow for random, weighted sampling over both the input and the output of the
loss function estimation circuit. In other words, and as shown in Fig. 8.1, we allow for
sampling over the dataset as well as over the measurement operators used to define
the loss function. Our sampling approach allows us to unlock the frugality (i.e., to
achieve the full potential) of adaptive stochastic gradient descent optimizers, such as
iCANS [109] and gCANS [72].

We discuss how our approach applies to various QML applications such as
perceptron-based quantum neural networks [17, 176], quantum autoencoders [161],
variational quantum principal component analysis (PCA) [110, 41], and classifiers
that employ the mean-squared-error loss function [170, 189]. Each of these applica-

110

Chapter 8. Resource frugal optimizer for quantum machine learning

tions can be unified under one umbrella by considering a generic loss function with
a highly general form. Thus we state our main results for this generic loss function.
We establish an unbiased estimator for this loss function and its gradient. In turn,
this allows us to provide convergence guarantees for certain optimization routines, like
stochastic gradient descent. Furthermore, we show that for this general loss function
one can use the form of the estimator to inform a strategy that distributes shots to
obtain the best shot frugal estimates.

Finally, we numerically investigate the performance of our new optimization ap-
proach, which we call Refoqus (REsource Frugal Optimizer for QUantum Stochastic
gradient descent). For a quantum PCA task, Refoqus significantly outperforms state-
of-the-art optimizers in terms of the shot resources required. Refoqus even outperforms
Rosalin [10] - a shot-frugal optimizer that samples only over measurement operators.
Hence, Refoqus will be a crucial tool to minimize the number of shots and iterations
required in near-term QML implementations.

8.2 Background

8.2.1 Stochastic Gradient Descent

One of the most popular optimization approaches is gradient descent, which involves
the following update rule for the parameter vector:

θ(t+1) = θ(t) − α∇L(θ(t)) . (8.1)

Here, L is the loss function, α is the learning rate, and θ(t) is the parameter vector at
iteration t.

Oftentimes one only has access to noisy estimates of the gradient ∇L, in which
case the optimizer is called stochastic gradient descent. In the quantum setting, this
situation arises due to shot noise or noise due to sampling from terms in some expansion
of the gradient.

8.2.2 Parameter Shift Rule

Estimating the gradient is clearly an essential step in stochastic gradient descent. For
this purpose, one useful tool that is often employed in the quantum case is the so-
called parameter shift rule [131, 169]. We emphasize that several assumptions go into
this rule. Specifically, suppose we assume that the quantum circuit ansatz U(θ) can

111

8.2. Background

Figure 8.1: Schematic illustration of Refoqus. Measurements, or shots, are a
precious (and expensive) resource in quantum computing. As such, they should be
used sparingly and only when absolutely necessary. This is particularly important
in variational QML methods where training a model requires continuously calling a
quantum device to estimate the loss function or its gradients. Refoqus provides a
shot-frugal optimization paradigm where shots are allocated by sampling over the
input data and the measurement operators.

be expressed as U(θ) =
∏
x e

−iθxσxWx where Wx are unparametrized unitaries, and
where σx are Pauli operators. Moreover, we consider the case when the loss function
has the simple form L(θ) = ⟨0|U†(θ)HU(θ)|0⟩ for some Hermitian operator H. (Note
that we will consider more complicated loss functions in this work, and hence we are
just stating this special case for background information.) In this case, the parameter
shift rule gives

∂xL(θ) :=
∂L(θ)
∂θx

=
L(θ + π

2 δx)− L(θ − π
2 δx)

2
, (8.2)

where δx is a unit vector with a one on the x-th component. Equation (8.2) allows
one to estimate the gradient by estimating the loss function as specific points on the
landscape. Hence it simplifies the procedure to estimate the gradient.

8.2.3 Lipschitz continuity

The loss function L is called Lipschitz continuous if there is some Lipschitz constant
L ≥ 0 that satisfies the bound

∥∇L(θa)−∇L(θb)∥ ≤ L∥θa − θb∥ , (8.3)

112

Chapter 8. Resource frugal optimizer for quantum machine learning

for all θa,θb ∈ dom(L), where ∥·∥ is the ℓ2 norm. This property provides a recipe for
choosing an appropriate learning rate, α. Specifically, if (8.3) holds and we have access
to the exact gradient, then choosing α ≤ 2/L is sufficient to guarantee convergence
using the update rule in (8.1).

8.2.4 iCANS

Inspired by an adaptive batch size optimizer used in classical machine learning [13],
the iCANS (individual coupled adaptive number of shots) optimizer [109] was intro-
duced as an adaptive method for stochastic gradient in the context of the variational
quantum eigensolver. It allows the number of shots per partial derivative (i.e., gradient
component) to vary individually, hence the name iCANS.

Consider the gain (i.e., the decrease in the loss function), denoted Gx, associated
with updating the x-th parameter θx. The goal of iCANS is to maximize the expected
gain per shot. That is, for each individual partial derivative, we maximize the shot
efficiency:

γx :=
E[Gx]
sx

; x = 1, . . . , d , (8.4)

where sx is the shot allocation for gradient component x and d is the number of
gradient components. Solving for the optimal shot allocation gives:

sx =
2Lα

2− Lα

σ2
x

g2x
. (8.5)

Here, gx is an unbiased estimator for the x-th gradient component, and σx is the
standard deviation of a random variable Xx whose sample mean is gx. While iCANS
often heuristically outperforms other methods, it can have instabilities.

8.2.5 gCANS

Recently, a potential improvement over iCANS was introduced called gCANS (global
coupled adaptive number of shots) [72]. gCANS considers the expected gain E[G] over
the entire gradient vector. Then the goal is to maximize the shot efficiency

γ :=
E[G]∑d
x=1 sx

, (8.6)

113

8.2. Background

where the sum
∑d
x=1 sx goes over all components of the gradient. Solving for the

optimal shot count then gives:

sx =
2Lα

2− Lα

σx
∑d
x′=1 σx′

∥∇L(θ)∥2
. (8.7)

(Note that an exponential moving average is used to estimate σx and ∥∇L(θ)∥2 as
their true value is not accessible.) It was proven that gCANS achieves geometric
convergence to the optimum, often reducing the number of shots spent for comparable
solutions against its predecessor iCANS.

8.2.6 Rosalin

Shot-frugal optimizers like iCANS and gCANS rely on having an unbiased estimator
for the gradient or its components. However, this typically places a hard floor on
how many shots must be allocated at each iteration, i.e., going below this floor could
result in a biased estimator. This is because the measurement operator H is typically
composed of multiple non-commuting terms, each of which must be measured individ-
ually. Each of these terms must receive some shot allocation to avoid having a biased
estimator. However, having this hard floor on the shot requirement is antithetical
to the shot-frugal nature of iCANS and gCANS, and ultimately it handicaps these
optimizers’ ability to achieve shot frugality.

This issue inspired a recent proposal called Rosalin (Random Operator Sam-
pling for Adaptive Learning with Individual Number of shots) [10]. Rosalin employs
weighted random sampling of operators in the measurement operator H =

∑
j cjHj ,

which allows one to achieve an unbiased estimator without a hard floor on the shot re-
quirement. (Even a single shot, provided that it is randomly allocated according to an
appropriate probability distribution, can lead to an unbiased estimator.) When com-
bined with the shot allocation methods from iCANS or gCANS, the operator sampling
methods in Rosalin were shown to be extremely powerful in the context of molecular
chemistry problems, which often have a large number of terms in H.

We remark that Ref. [10] considered several sampling strategies. Given a budget
of stot shots and N terms, a simple strategy is to distribute shots per term equally
(sj = stot/N) - referred as uniform deterministic sampling (UDS). Defining M =∑
j |cj |, one can also use weighted deterministic sampling (WDS) where the shots

are proportionally distributed: sj = stot ∗ |cj |
M . One can add randomness by using

pj =
|cj |
M to define a (non-uniform) probability distribution to select which term should

114

Chapter 8. Resource frugal optimizer for quantum machine learning

Figure 8.2: Illustration of a generic variational QML framework. Given a
dataset of quantum states S, the input states to the QML model are tensor product
states of the form ρi = ρi1 ⊗ ...⊗ρim . The number of samples m depends on the QML
task at hand. The parameterized quantum model denoted Mθ, acts on m copies of
the input Hilbert space. Finally, an operator Hi is measured to estimate a quantity to
be used when evaluating a loss function L(θ). The latter evaluation is then inputted
to a classical optimizer that proposes new parameters θ in order to minimize the loss.
Hence, one can repeat the quantum-classical loop of evaluations and updates until the
desired stopping criteria are satisfied.

be measured. This is referred to as weighted random sampling (WRS). Finally, there
exists a hybrid approach where one combines WDS with WRS - referred to as weighted
hybrid sampling (WHS). Ref. [10] found that the WRS and WHS strategies performed
similarly and they both significantly outperformed the UDS and WDS strategies on
molecular ground state problems. Because of these results, we choose to focus on the
WRS strategy in our work here.

While Rosalin was designed for chemistry problems, it was not designed for QML,
where the number of terms in H is not the only consideration. As discussed below,
QML problems involve a (potentially large) dataset of input states. Each input state
requires a separate quantum circuit, and hence we are back to the situation of having
a hard floor on the shots required due to these multiple input states. This ultimately
provides the motivation for our work, which can be viewed as a generalization of
Rosalin to the setting of QML.

8.3 Framework

8.3.1 Generic Variational QML Framework

Let us present our general framework for discussing (variational) QML methods; see
Fig. 8.2 for an illustration. This framework is meant to unify multiple literature QML
algorithms under one umbrella. We discuss how specific literature algorithms are
special cases of this framework in Section 8.3.2.

115

8.3. Framework

In a generic QML setting, one has a training dataset composed of quantum states:

S = {ρi}Ni=1 , (8.8)

where each ρi is a trace-one positive semi-definite matrix, i.e., a density matrix. Each
of these training states may come with an associated probability, with the associated
probability distribution denoted as

P = {pi}Ni=1 . (8.9)

In variational QML, one trains a parameterized quantum model, which we write
as Mθ for some set of parameters θ. With a large degree of generality, we can assume
that Mθ is a linear, completely-positive map. In general, Mθ could act on multiple
copies (m copies) of the input Hilbert space. (Multiple copies allow for non-linear
operations on the dataset, which can be important in certain classification tasks.)
Hence we allow for the output of this action to be of the form:

Mθ(ρi) = Mθ(ρi1 ⊗ ...⊗ ρim) = Mθ

(
m⊗
α=1

ρiα

)
, (8.10)

where we employ the notation ρi := ρi1 ⊗ ... ⊗ ρim . Given that we are allowing for
multiple copies of the input space, one can define an effective dataset Sm composed of
the tensor product of m states in S and an effective probability distribution Pm.

A QML loss function is then defined in an operational manner so that it could
be estimated on a quantum device. This involves considering the aforementioned
mathematical objects as well as a measurement operator, or a set of measurement
operators. We allow for the measurement operator to be tailored to the input state.
Hence we write Hi, with i = {i1, ..., im}, as the measurement operator when the
input state on m copies of the Hilbert space is ρi = ρi1 ⊗ ... ⊗ ρim . Moreover, each
measurement operator can be decomposed into a linear combination of Hermitian
matrices that can be directly measured:

Hi =

ti∑
j=1

ci,jhi,j . (8.11)

Generically, we could write the loss function as an average over training states

116

Chapter 8. Resource frugal optimizer for quantum machine learning

chosen from the effective dataset Dm:

L(θ) =
∑
i

piℓ(Ei(θ)) . (8.12)

Here, ℓ is an application-dependent function whose input is a measurable expectation
value Ei(θ). Specifically, this expectation value is associated with the ρi input state,
with the form

Ei(θ) = Tr[Mθ(ρi)Hi] . (8.13)

There are many possible forms for the function ℓ. However, there are multiple
QML proposals in the literature that involve a simple linear form:

ℓ(Ei(θ)) = Ei(θ) , (8.14)

and in this case, we refer to the overall loss function as a “linear loss function”. Al-
ternatively, non-linear functions are also possible, and we also consider polynomial
functions of the form:

ℓ(Ei(θ)) =

D∑
z=0

az[Ei(θ)]
z , (8.15)

where D is the degree of the polynomial. In this case, we refer to the loss as a
“polynomial loss function”.

8.3.2 Examples of QML loss functions

Now let us illustrate how various QML loss functions proposed in the literature fall
under the previous framework. Crucially, as shown in Fig. 8.3 these loss functions can
be used for a wide range of QML tasks.

Variational quantum error correction

Variational quantum algorithms to learn device-tailored quantum error correction
codes were discussed in Refs. [95, 45]. The loss function involves evaluating the input-
output fidelity of the code, averaged over a set of input states. The input state is fed
into the encoder Eθ1

, then the noise channel N acts, followed by the decoder Dθ2
. The

concatenation of these three channels can be viewed as the overall channel

Mθ = Dθ2 ◦ N ◦ Eθ1 , (8.16)

117

8.3. Framework

Figure 8.3: Applications benefiting from Refoqus. Many variational quantum
algorithms employ training data, and many QML models (which naturally analyze
datasets) are variational in nature. We give examples of both of these cases in this
figure. Our Refoqus optimizer is relevant in all cases.

with parameter vector θ = (θ1,θ2). Then the loss function is given by:

L(θ) =
∑

|ψi⟩∈S

1

|S| Tr[|ψi⟩⟨ψi|Mθ(|ψi⟩⟨ψi|)] , (8.17)

where S is some appropriately chosen set of states. It is clear that this loss function
is of the form in (8.12) with ℓ having the linear form in (8.14).

Quantum autoencoder

Inspired by the success of classical autoencoders, quantum autoencoders [161] were
proposed to compress quantum data by reducing the number of qubits needed to
represent the dataset. Consider a bipartite quantum system AB composed of nA and
nB qubits, respectively, and let {pi, |ψi⟩} be an ensemble of pure states on AB. The
quantum autoencoder trains a gate sequence U(θ) to compress this ensemble into the

118

Chapter 8. Resource frugal optimizer for quantum machine learning

A subsystem, such that one can recover each state |ψi⟩ with high fidelity from the
information in subsystem A. One can think of B as the “trash” since it is discarded
after the action of U(θ).

The original proposal [161] employed a loss function that quantified the overlap of
the trash state with a fixed pure state:

LG(θ) = 1− TrB [|0⟩⟨0| ρout
B] (8.18)

= TrAB [HGU(θ)ρin
ABU(θ)†] (8.19)

=
∑
i

pi TrAB [HGU(θ) |ψi⟩⟨ψi|U(θ)†] . (8.20)

Here, ρin
AB =

∑
i pi |ψi⟩⟨ψi| is the ensemble-average input state, ρout

B =

TrA[U(θ)ρin
ABU(θ)†] is the ensemble-average trash state, and the measurement op-

erator is HG = 1AB − 1A ⊗ |0⟩⟨0|.
Note that HG is a global measurement operator, meaning it acts non-trivially on

all qubits, which can lead to barren plateaus in the training landscape [42]. To remedy
this issue, Ref. [42] proposed a loss function with a local measurement operator acting
non-trivially only on a small number of qubits:

LL(θ) = 1− 1

nB

nB∑
j=1

TrB

[(
|0⟩⟨0|j ⊗ 1j

)
ρout
B

]
(8.21)

=
∑
i

piTrAB [HLU(θ) |ψi⟩⟨ψi|U(θ)†] , (8.22)

where HL = 1AB − 1
nB

∑nB
j=1 1A ⊗ |0⟩⟨0|j ⊗ 1j , and 1j is the identity on all qubits in

B except the j-th qubit.
It is clear from (8.20) and (8.22) that both loss functions fall under our framework.

Namely, they have the form in (8.12) with ℓ having the linear form in (8.14).

Dynamical simulation

Recently a QML-based algorithm was proposed for dynamical simulation [63]. Here
the idea is to variationally compile the short-time dynamics into a time-dependent
quantum neural network [44]. Then one uses the trained model to extrapolate to
longer times. The training data for the compiling process can be taken to be product
states, due to a generalization result from Ref. [39].

Let U∆t be a unitary associated with the short-time dynamics. Let {
∣∣ΨPi 〉}Ni=1 be

a set of product states used for training, where
∣∣ΨPi 〉 =

⊗n
j=1 |ψi,j⟩, and where n is

119

8.3. Framework

the number of qubits. Let U(θ) be the quantum neural network to be trained. Then
the loss function is given by:

L(θ) =
N∑
i=1

1

N
Tr
[
HiV (θ)

∣∣ΨPi 〉〈ΨPi ∣∣V (θ)†
]
, (8.23)

where we have defined V (θ) := U(θ)†U∆t. Here, the measurement operator is given
by Hi = 1− 1

n

∑n
j=1 |ψi,j⟩⟨ψi,j |⊗1j , where j is the set of all qubits excluding the j-th

qubit.
Once again, this loss function clearly falls under our framework, having the form

in (8.12) with ℓ having the linear form in (8.14).

Fidelity for Quantum Neural Networks

Dissipative perceptron-based quantum neural networks (DQNNs) were proposed in
Ref. [17] and their trainability was analyzed in Ref. [176]. The loss function is based
on the fidelity between the idealized output state and the actual output state of the
DQNN. Specifically, we are given access to training data {

∣∣ϕin
i

〉
, |ϕout

i ⟩}Ni=1, and the
DQNN is trained to output a state close to |ϕout

i ⟩ when the input is
∣∣ϕin
i

〉
.

For this application, a global loss function was considered with the form

LG(θ) =
N∑
i=1

1

N
Tr
[
HG
i ρ

out
i

]
. (8.24)

Here, ρout
i = Mθ(

∣∣ϕin
i

〉〈
ϕin
i

∣∣) is the output state of the DQNN, which is denoted by
Mθ. The measurement operator is the projector orthogonal to the ideal output state:
HG
i = 1− |ϕout

i ⟩⟨ϕout
i |.

To avoid the issue of barren plateaus, a local loss function was also considered in
Ref. [176]:

LL(θ) =
N∑
i=1

1

N
Tr
[
HL
i ρ

out
i

]
, (8.25)

where the measurement operator is

HL
i = 1− 1

nout

nout∑
j=1

∣∣ψout
i,j

〉〈
ψout
i,j

∣∣⊗ 1j . (8.26)

This loss function is relevant whenever the ideal output states have a tensor-product
form across the nout output qubits, i.e., of the form |ϕout

i ⟩ =
∣∣ψout
i,1

〉
⊗ · · · ⊗

∣∣ψout
i,nout

〉
.

120

Chapter 8. Resource frugal optimizer for quantum machine learning

Clearly, these two loss functions fall under our framework, having the form in (8.12)
with ℓ having the linear form in (8.14).

Variational quantum state eigensolver

Near-term methods for quantum principal component analysis have recently been pro-
posed, including the variational quantum state eigensolver (VQSE) [41] and the vari-
ational quantum state diagonalization (VQSD) algorithm. Let us first discuss VQSE.

The goals of VQSE are to estimate the m largest eigenvalues of a density matrix ρ
and to find quantum circuits that prepare the associated eigenvectors. When combined
with a method to prepare the covariance matrix as a density matrix, VQSE can be
used for principal component analysis. Note that such a method was proposed in
Ref. [70], where it was shown that choosing ρ =

∑
i pi |ψi⟩⟨ψi| prepares the covariance

matrix for a given quantum dataset {pi, |ψi⟩}.
The VQSE loss function can be written as an energy:

L(θ) = Tr
[
HU(θ)ρU(θ)†

]
(8.27)

=
∑
i

piTr
[
HU(θ) |ψi⟩⟨ψi|U(θ)†

]
(8.28)

where U(θ) is a parameterized unitary that is trained to approximately diagonalize ρ.
Note that we inserted the formula ρ =

∑
i pi |ψi⟩⟨ψi| in order to arrive at (8.28).

The measurement operator H is chosen to be non-degenerate over its m-lowest
energy levels. For example, one can choose a global version of this operator:

H = 1−
m∑
j=1

rj |ej⟩⟨ej | , rj > 0 (8.29)

or a local version of this operator:

H = 1−
n∑
j=1

rjZj , rj ∈ R , (8.30)

where Zj is the Pauli-z operator on the j-th qubit, and with appropriately chosen real
coefficients rj to achieve non-degeneracy over the m-lowest energy levels. Regardless,
it is clear that the loss function in (8.28) falls under our framework, having the form
in (8.12) with ℓ having the linear form in (8.14).

121

8.3. Framework

Variational quantum state diagonalization

The goal of the VQSD algorithm [110] is essentially the same as that of VQSE, i.e.,
to diagonalize a target quantum state ρ. Let us use:

ρ̃ := U(θ)ρU(θ)† (8.31)

to denote the state after the attempted diagonalization. Here we omit the θ depen-
dency for simplicity of notation.

In contrast to VQSE, the VQSD loss function depends quadratically on the quan-
tum state. Specifically, global and lost functions have been proposed, respectively
given by

LG(θ) = Tr
[
ρ2
]
− Tr

[
Z(ρ̃)2

]
, (8.32)

LL(θ) = Tr
[
ρ2
]
− 1

n

n∑
j=1

Tr
[
Zj(ρ̃)2

]
. (8.33)

Here, Z and Zj are quantum channels that dephase (i.e., destroy the off-diagonal
elements) in the global standard basis and in the local standard basis on qubit j,
respectively.

We can rewrite the terms in the global loss using:

Tr
[
ρ2
]
= Tr[(ρ⊗ ρ)SWAP] , (8.34)

Tr
[
Z(ρ̃)2

]
= Tr

[
(ρ⊗ ρ)W †

G(|0⟩⟨0| ⊗ 1)WG

]
, (8.35)

where SWAP denotes the swap operator, and where WG corresponds to the layers
of CNOTs used in the so-called diagonalized inner product (DIP) test circuit [110].
Hence, we obtain:

LG(θ) = Tr[(ρ⊗ ρ)HG] (8.36)

=
∑
i,i′

pipi′ Tr[(|ψi⟩⟨ψi| ⊗ |ψi′⟩⟨ψi′ |)HG] (8.37)

where HG = SWAP − U†
G(|0⟩⟨0| ⊗ 1)UG. Note that we inserted the relation ρ =∑

i pi |ψi⟩⟨ψi| in order to arrive at (8.37). Also note that one can think of the qi := pipi′

as defining a probability distribution over the index i = {i, i′}. Hence it is clear that
(8.37) falls under our framework, with m = 2 copies of the input Hilbert space, and

122

Chapter 8. Resource frugal optimizer for quantum machine learning

with ℓ having the linear form in (8.14).

Similarly, for the local loss, we can write

LL(θ) = Tr[(ρ⊗ ρ)HL] (8.38)

=
∑
i,i′

pipi′ Tr[(|ψi⟩⟨ψi| ⊗ |ψi′⟩⟨ψi′ |)HL] (8.39)

where HL = SWAP − (1/n)
∑n
j=1HL,j , and HL,j is the Hermitian operator that is

measured for the partial diagonalized inner product (PDIP) test [110]. Once again,
the local loss falls under our framework, with m = 2 copies of the input Hilbert space,
and with ℓ having the linear form in (8.14).

Mean squared error for quantum classifiers

The mean squared error (MSE) loss function is widely employed in classical machine
learning. Moreover, it has been used in the context of quantum neural networks, e.g.,
in Ref. [45]. Given a set of labels yi ∈ R for a dataset {ρi}Ni=1, and a set of predictions
from a machine learning model denoted ỹi(θ), the MSE loss is computed as:

L(θ) = 1

N

N∑
i=1

(yi − ỹi(θ))
2 . (8.40)

In the case of a quantum model, there is freedom in specifying how to compute
the prediction ỹi(θ). Typically, this will be estimated via an expectation value, such
as ỹi(θ) = Tr[Mθ(ρi)Hi] = Ei(θ). In this case, the loss function in (8.40) would be a
quadratic function of expectation value Ei(θ). Hence, this falls under our framework,
with ℓ having the polynomial form in (8.15) with degree D = 2.

8.4 Unbiased estimators for gradients of QML losses

Gradient-based optimizers are commonly used when optimizing QML models. In shot
frugal versions of these approaches, one of the key aspects is the construction of an
unbiased estimator of the gradient [189, 109, 72]. There are two types of loss functions
we will consider in this work; those that have a linear dependence on expectation
values and those that have a non-linear dependence given by a polynomial function.
We will see that for these two types of losses one can construct unbiased estimators of
the gradients and that it is also possible to define sampling strategies that massively

123

8.4. Unbiased estimators for gradients of QML losses

reduce the number of shots needed to evaluate such an estimator.

Previous work considered how to construct unbiased estimators of QML gradients.
However, the shot frugal resource allocation strategies presented were sub-optimal [189]
and leave room for improvement. Furthermore, the more sophisticated shot allocation
methods presented in [10] were purpose-built for VQE-type cost functions. Here we
unify approaches from these two works and show how one can employ more sophisti-
cated shot allocation strategies in a general QML setting.

First, we consider the simpler case of linear loss functions where we show one can
directly employ the parameter shift rule to construct an unbiased estimator for the
gradient. Then we turn our attention to polynomial loss functions where we present
a general form for an unbiased estimator of the gradient. In both cases, we show that
shots can be allocated according to the expansion coefficients in the expressions we
derive. These in turn depend on the coefficients in the operators to be measured and
the set of quantum states used in the QML data set. Such shot-allocation schemes are
an important ingredient in the design of our QML shot-frugal optimizer in the next
section.

8.4.1 Loss functions linear in the quantum circuit observables

Using the parameter shift rule

Loss functions that have a linear dependence on expectation values of observables are
straightforward to consider. As shown in Ref. [189], the parameter shift rule can be
used directly to construct unbiased estimators of the gradient of these loss functions.
Previously, we wrote our general linear loss function as

L(θ) =
∑
i

piℓ(Ei(θ)) . (8.41)

Let us not consider the case where

Ei(θ) = Tr(Mθ(ρi)Hi) and ℓ(Ei(θ)) = Ei(θ) .

By expanding the measurement operator as Hi =
∑ti
j=1 ci,jhi,j , we can then write

this loss function as follows

L(θ) =
∑
i,j

qi,j⟨hi,j(θ)⟩, (8.42)

124

Chapter 8. Resource frugal optimizer for quantum machine learning

where qi,j = pici,j and Tr[Mθ(ρi)hi,j] = ⟨hi,j(θ)⟩.

Consider the partial derivative of this loss function with respect to the parameter
θx,

∂L
∂θx

=
∑
i,j

qi,j
∂⟨hi,j(θ)⟩

∂θx
. (8.43)

Suppose we assume that the quantum channel Mθ(ρi) is a unitary channel:

Mθ(ρi) = U(θ)ρiU(θ)† , (8.44)

where U(θ) is a trainable quantum circuit whose parametrized gates are generated by
Pauli operators. This assumption allows us to directly apply the parameter shift rule
(see Sec. 8.2). This leads to

∂L
∂θx

=
1

2

∑
i,j

qi,j
(
⟨hi,j(θ + δx

π

2
)⟩ − ⟨hi,j(θ − δx

π

2
)⟩
)
. (8.45)

Therefore, an unbiased estimator for the gradient can be obtained by combining two
unbiased estimators for the loss function. Defining ĝx(θ) to be an unbiased estimator
of the x-th component of the gradient,

ĝx(θ) =
1

2
[L̂(θ + δx

π

2
)− L̂(θ + δx

π

2
)] , (8.46)

where L̂(θ±δx
π
2) are unbiased estimators for the loss function at the different shifted

parameter values needed when employing the parameter shift rule. This means that for
loss functions that are linear in the expectation values recovered from the quantum
circuit, one can then use an unbiased estimator for the cost evaluated at different
parameter values to return an unbiased estimator for the gradient.

We can therefore distribute the shots according to the coefficients qi,j when evalu-
ating a single or multi-shot estimate of L̂(θ± δx

π
2). This can be done by constructing

a probability distribution according to the probabilities ϵi,j = |qi,j |/
∑

i,j |qi,j |. Note
that this distribution strategy relies on the construction of two unbiased estimators of
the loss function, which are then combined. In the next section, we show how one can
construct such estimators. In practice, we will use the same total number of shots to
evaluate both estimators as they have the same expansion weights and are therefore
equally important.

125

8.4. Unbiased estimators for gradients of QML losses

Unbiased estimators for Linear loss functions

Let stot represent the total number of shots. We denote Êi,j as the estimator for
⟨hi,j(θ)⟩, and L̂(θ) the estimator for the loss. That is,

L̂(θ) =
∑
i,j

qi,j Êi,j , with Êi,j =
1

E[si,j]

si,j∑
k=1

ri,j,k . (8.47)

Here, si,j is the number of shots allocated to the measurement of ⟨hi,j(θ)⟩. Note
that si,j may be a random variable. As we will work in terms of the total shot budget
for the estimation, stot, we impose

∑
i,j si,j = stot. Also, each ri,j,k is an independent

random variable associated with the k-th single-shot measurement of ⟨hi,j(θ)⟩. We
will assume that E[si,j] > 0 for all i, j. Using these definitions we can show that this
defines an unbiased estimator for the loss function in the following proposition.

Proposition 1. Let L̂ be the estimator defined in Eq. (8.47). L̂ is an unbiased esti-
mator for the cost function L(θ) defined in Eq. (8.12).

Proof.

E[L̂] = E[
∑
i,j

qi,j
1

E[si,j]

si,j∑
k=1

ri,j,k]

=
∑
i,j

qi,j
1

E[si,j]
E[
si,j∑
k=1

ri,j,k]. (8.48)

Here it is useful to recall Wald’s equation. Wald’s equation states that the expectation
value of the sum of N real-valued, identically distributed, random variables, Xi, can
be expressed as

E[
N∑
i=1

Xi] = E[N]E[X1], (8.49)

where N is a random variable that does not depend on the terms of the sum. In
our case, each shot is indeed independent and sampled from the same distribution.
Furthermore, the total number of shots does not depend on the sequence of single-shot
measurements. Therefore,

E[L̂] =
∑
i,j

qi,j
E[si,j]
E[si,j]

⟨hi,j(θ)⟩ = L(θ). (8.50)

126

Chapter 8. Resource frugal optimizer for quantum machine learning

Using the above result, we arrive at the following corollary.

Corollary 1. Let ĝx(θ) be the estimator defined in Eq. (8.46). ĝx(θ) is an unbiased
estimator for the x-th component of the gradient.

Proof. The proof follows by taking the expectation values of Eq. (8.46) and employing
the result from Prop. 1 and the parameter shift rule.

Having now constructed an estimator for the loss function as outlined in the pre-
vious section combining two single or multi-shot estimates of this function evaluated
at the required parameter values will lead to an unbiased estimator of the gradient.

8.4.2 Loss functions with polynomial dependence on the quan-
tum circuit observables

Constructing an unbiased estimator of the gradient

In the case of non-linear dependence on the observables produced by a quantum circuit,
estimating the gradient is not as simple as simply applying to parameter shift rule.
However, we can still derive estimators for the gradient when the non-linearity is
described by a polynomial function. We begin with the general expression for the loss
functions we consider in this work

L(θ) =
∑
i

piℓ(Ei(θ)) . (8.51)

Now constructing a polynomial loss function of degree D requires that

ℓ(Ei(θ)) =

D∑
z=0

az[Ei(θ)]
z , (8.52)

which leads to the expression of the loss function,

L(θ) =
∑
i,z

pi,z
[∑

j

ci,j⟨hi,j(θ)⟩
]z
, (8.53)

where pi,z = piaz. Taking the derivative with respect to θx leads to

∂L(θ)
∂θx

=
∑
i,z

pi,zz
(∑

j

ci,j⟨hi,j(θ)⟩
)z−1(∑

j′

ci,j′
∂⟨hi,j′(θ)⟩

∂θx

)
. (8.54)

127

8.4. Unbiased estimators for gradients of QML losses

Using the multinomial theorem and given J Hamiltonian terms, we can expand the
second sum in the above expression,

∂L(θ)
∂θx

=
∑
i,z

pi,zz
∑

b1+b2+···+bJ=z−1

(
z − 1

b1, b2, · · · bJ

)
(8.55)

∏
j

(ci,j⟨hi,j(θ)⟩)bj
(∑
j′

ci,j′
∂⟨hi,j′(θ)⟩

∂θx

)
,

where
(

z−1
b1,b2,···bJ

)
= (z−1)!

b1!b2!···bJ ! and bj are non-negative integers. Therefore, we need to
construct unbiased estimators of the terms ⟨hi,j(θ)⟩bj and use the previously estab-
lished gradient estimators with the parameter shift rule. Then we will need to consider
how to distribute shots among this estimator. Rewriting Eq. (8.55) leads to

∂L(θ)
∂θx

=
∑
i,z

∑
b1+b2+···+bJ=z−1

pi,zz
(z − 1)!

b1!b2! · · · bJ !
(8.56)

∑
j′

∏
j

c
bj
i,jci,j′

[
∂⟨hi,j′(θ)⟩

∂θx
⟨hi,j(θ)⟩bj

]
.

Therefore we can distribute the shots according to the magnitude of the expansion
terms

∏
j c
bj
i,jci,j′pi,zz

(z−1)!
b1!b2!···bJ ! . Once again we can construct an unbiased estimator

with the normalized magnitude of these terms defining the probabilities. We now
explore how to construct an unbiased estimator for the term ⟨hi,j(θ)⟩bj , which is
essential to construct an unbiased estimator for the gradients of these kinds of loss
functions.

Constructing an unbiased estimator of polynomial terms

In order to construct an unbiased estimator for the gradient we need an unbiased
estimator for terms of the form

∂⟨hi,j(θ)⟩
∂θx

∏
j

⟨hi,j(θ)⟩bj . (8.57)

We can use the parameter shift rule for the term on the left-hand side. For the term
in the product as each j index corresponds to a different operator in the Hamiltonian,
each term will be independent. Therefore, we need to construct estimators for terms
of the form ⟨hi,j(θ)⟩z. This leads us to the following proposition.

128

Chapter 8. Resource frugal optimizer for quantum machine learning

Proposition 2. Let ξ̂i,j be an estimator defined as

ξ̂i,j =
1

E[
(
si,j
z

)
]

∑
h∗(ri,j,kα1

, ..., ri,j,kαz
), (8.58)

where the summation is over all subscripts 1 ⩽ α1 < α2 < ... < αz ⩽ si,j and
h∗(ri,j,k1 , ..., ri,j,kz) =

∏z
β=1 ri,j,kαβ

. ξ̂i,j is an unbiased estimator for the term
⟨hi,j(θ)⟩z estimated with si,j shots where si,j ⩾ z.

Eq. (8.58) is inspired by the form of a U-statistic for ⟨hi,j(θ)⟩bj . The theory of
U-statistics was initially introduced by Hoeffding in the late 1940s [86] and has a wide
range of applications. U-statistics presents a methodology on how to use observations
of estimable parameters to construct minimum variance unbiased estimates of more
complex functions of the estimable parameters. Taking the expectation value and
using the U-statistic formalism one can arrive at the desired result. We refer the
interested reader to the proof available in Appendix B of [136].

Bringing this all together we can formulate a proposition regarding an unbiased
estimator for gradients of loss functions with polynomial dependence.

Proposition 3.

ĝx(θ) =
∑
i,z

∑
b1+b2+···+bJ=z−1

(8.59)

pi,zz
(z − 1)!

b1!b2! · · · bJ !∑
j′

J∏
j=1

c
bj
i,jci,j′

1

E[si,j,j′,b]

si,j,j′,b∑
k=1

(
r+i,j,k − r−i,j,k

)
1

E[
(si,j,j′,b

bj

)
]

∑ z∏
β=1

ri,j,kαβ
,

where
E[r±i,j,1] = ⟨hi,j(θ ± δx

π

2
)⟩ (8.60)

and b = (b1, b2, ..., bJ). The final sum is over all subscripts 1 ⩽ α1 < α2 < ... < αz ⩽

si,j and h∗(ri,j,k1 , ..., ri,j,kz) =
∏z
β=1 ri,j,kαβ

. ĝx(θ) is a unbiased estimator for ∂L(θ)
∂θx

Proof. This can be seen to be true by taking the expectation values and invoking the
propositions previously established.

These same techniques can be used to construct unbiased estimators of the loss

129

8.4. Unbiased estimators for gradients of QML losses

function. In order to provide a concrete example of using the above propositions, we
consider the special case of the MSE loss function.

Constructing an estimator for the gradient of the MSE loss function

To clarify the notation used above, let us focus on the special case of the MSE loss
function. We consider a slightly more general form than the MSE cost introduced
above in Eq. (8.40). Consider a set of labels yi ∈ R for a dataset {ρi}Ni=1, composed of
the tensor product of m states. The predictions from the quantum machine learning
model are denoted ỹi(θ) =

∑
j ci,j⟨hi,j(θ)⟩. Therefore, we can write the loss as

LMSE(θ) =
∑
i

pi
[
yi −

∑
j

ci,j⟨hi,j(θ)⟩
]2
. (8.61)

Expanding the previous equation leads to

LMSE(θ) =
∑
i

pi
[
y2i − yi

∑
j

ci,j⟨hi,j(θ)⟩

+
(∑

j

ci,j⟨hi,j(θ)⟩
)2]

. (8.62)

Evaluating the partial derivative with respect to θx gives,

∂LMSE(θ)

∂θx
=
∑
i,j,j′

−pici,j
∂⟨hi,j(θ)⟩

∂θx
(8.63)

+ 2pici,j′ci,j⟨hi,j′(θ)⟩
∂⟨hi,j(θ)⟩

∂θx
.

We can distribute the total number of shots stot among these terms according to the
relative magnitudes of the pici,j′ and 2pici,j′ci,j coefficients. This can be achieved by
sampling from a multinomial probability distribution where the normalized magnitude
of these coefficients defines the probabilities.

It is important to note that some estimators have a different minimum number of
shots than others. For example, the estimator for the last term in the above equation,
involving a gradient and a direct expectation value, requires a total of 3 for different
circuit evaluations. The estimator for this term can be written as

D̂i,j,j′ =
1

2
Êi,j′

(
Ê+
i,j − Ê−

i,j

)
. (8.64)

Therefore, in this case, the minimum number of shots given to any term can be set to

130

Chapter 8. Resource frugal optimizer for quantum machine learning

3 to ensure every estimation of any term in Eq. (8.61) will always be unbiased. We
expand on this consideration below.

8.4.3 Distributing the shots among estimator terms

As previously mentioned the shots can be distributed according to a multinomial
distribution with probabilities given by the magnitude of the constant factors that
appear in the expression for the above estimators. We note that the shots assigned to
a given term may be zero. In order to ensure the estimate of the above term using a
given number of shots we need to ensure the estimate of each term is also unbiased.
One needs at least 2 shots to produce an unbiased estimate of the gradient. For terms
of the form ⟨hi,j(θ)⟩bj one needs at least bj shots. Therefore, care needs to be taken
when distributing shots to ensure that each term measured has sufficiently many. One
way to ensure this is the case is to distribute shots in multiples of the largest number
of shots needed to evaluate any one term. Any leftover shots can then be distributed
equally across the terms to be measured.

Each term itself may consist of a product of several expectation values, each with
a different required minimum number of shots. The shots distribution with each term
can be selected to correspond to this required minimum number of shots per term.
To make this concrete consider a term of the form in Eq. (8.57). Estimating the
gradient will take at least 2 shots. Estimating the product term will take at least∑J
j=1 bj shots. If we are given si,j shots to use to estimate this term we can assign

⌊2(si,j/(2+
∑J
j=1 bj)⌋ to the first term and ⌊∑J

j=1 bj(si,j/(2+
∑J
j=1 bj)⌋ to the product

term, distributing any remaining shots equally among both.

8.5 The Refoqus optimizer

Now that we have defined unbiased estimators of the gradient, we have the tools
needed to present our new optimizer. We call our optimizer Refoqus, which stands for
REsource Frugal Optimizer for QUantum Stochastic gradient descent. This optimizer
is tailored to QML tasks. QML tasks have the potential to incur large shot overheads
because of large training datasets as well as measurement operators composed of a
large number of terms. With Refoqus, we achieve shot frugality first by leveraging the
gCANS [72] rule for allocating shots at each iteration step and second by allocating
these shots to individual terms in the loss function via random sampling over the
training dataset and over measurement operators. This random sampling allows us

131

8.6. Convergence Guarantees

to remove the shot floor imposed by deterministic strategies (while still achieving an
unbiased estimator for the gradient), hence unlocking the full shot frugality of our
optimizer.

The key insight needed for the construction of the Refoqus protocol is that cost
functions that have a linear or polynomial dependence on measurable hermitian ma-
trices, and their gradients can always be written in a form consisting of a summation
of different measurable quantities with expansion coefficients. These coefficients can
in turn be used to define a multinomial probability distribution to guide the allocation
of the shots to each term when evaluating the loss function or its gradient.

We outline the Refoqus optimizer in Algorithm 3. Given a number of shots to
distribute among Hamiltonian terms, one evaluates the gradient components and the
corresponding variances with the iEvaluate subroutine (Line 3). We follow the gCANS
procedure to compute the shot budget for each iteration (Line 12). We refer to [72]
for more details on gCANS. The iterative process stops until the total shot budget has
been used.

The hyperparameters that we employ are similar to those of Rosalin [10], and will
come with similar recommendations on how to set them. For instance, the Lipshitz
constant L bounds the largest possible value of the derivative. Hence, it depends on
the loss expression but can be set as M =

∑
i,j |qi,j | according to [109]. Moreover, a

learning rate satisfying 0 < α < 2/L can be used.

8.6 Convergence Guarantees

The framework for Refoqus leverages the structure and the update rule of the gCANS
optimizer presented in [72]. Therefore, we can apply the same arguments introduced
to show geometric convergence. We repeat the arguments and assumptions needed for
this convergence result here for convenience.

Proposition 4. Provided the loss function satisfies the assumptions stated below the
stochastic gradient descent routine used in Refoqus achieves geometric convergence to
the optimal value of the cost function. That is,

E[L(θ)(t)]− L∗ = O(γt) (8.65)

where t labels the iteration, L∗ is the optimal value of the loss function, and 0 < γ < 1.

The update rule used in this work and introduced in [72] and the proof presented

132

Chapter 8. Resource frugal optimizer for quantum machine learning

Algorithm 3: The optimization loop used in Refoqus. The function
iEvaluate(θ, s, {f(pi, ci,j)}) evaluates the gradient at θ returning, a vector
of the gradient estimates g and their variances S. The vectors are calcu-
lated using s0sx shots to estimate the x-th component of the gradient and
its variance, where s0 is the minimum number of shots required to obtain
an unbiased estimator. Note that shots for each component estimation are
distributed in multiples of s0, according to a multinomial distribution deter-
mined by the expansion coefficients that define the gradient estimator. These
expansion coefficients are defined by the function f(pi, ci,j), which returns the
probability of measuring the term corresponding to the coefficients pi, ci,j .
For the case of linear loss functions f(pi, ci,j) =

|pici,j |∑
i,j pici,j

.

Input: Learning rate α, starting point θ0, min number of shots per estimation smin,
number of shots that can be used in total smax, Lipschitz constant L,
running average constant µ, a vector of the least number of shots needed for
each gradient estimate s0, which is loss function dependent and f(pi, ci,j),
which is also loss function dependent.

Output: θ
1 θ ← θ0, stot ← 0, g ← (0, ..., 0)T , S ← (0, ..., 0)T , s← (smin, ..., smin)

T ,
χ′ ← (0, ..., 0)T , χ← (0, ..., 0)T , ξ ← (0, ..., 0)T , ξ′ ← (0, ..., 0)T , t← 0 ;

2 while stot < smax do
3 g,S ← iEvaluate(θ, s{f(pi, ci,j)}) ;
4 stot ← stot +

∑
x s0sx ;

5 χ′ ← µχ+ (1− µ)g ;
6 ξ′ ← µξ + (1− µ)S ;
7 ξ ← ξ′/(1− µt+1) ;
8 χ← χ′/(1− µt+1) ;
9 θ ← θ − αg ;

10 for x ∈ [1, ..., d] do
11 sx ←

⌈
2Lα
2−Lα

ξx
∑

x ξx
||χ||2

⌉
12 t← t+ 1

here can be directly applied. This update rule guarantees fast convergence in ex-
pectation to the optimal value of sufficiently smooth loss functions. The underlying
assumption of this result is that the loss function is strongly convex and has Lipschitz-
continuous gradients. In most realistic QML scenarios the optimization landscape is
not convex, however, if the optimizer were to settle into a convex region then fast
convergence is expected.

The exact assumptions needed in order to ensure the geometric convergence of
Refoqus to the global minima are as follows:

1. E[gx(θ)] = ∂L(θ)
∂θx

,∀x ∈ [d].

133

8.7. Numerical Results

2. Var[gx(θ)] =
Var[Xx]
sx

, where Xx is the sampling-based estimator of gx(θ).

3. L(θ) is µ-strongly convex.

4. L(θ) has L-Lipschitz continuous gradient.

5. α is a constant learning rate satisfying 0 < α < min{1/L, 2/µ}.

6. An ideal version of the update rule holds, that is:

sx =
2Lα

2− Lα

σx(
∑d
x′=1 σx′)

||∇L(θ)||2 ∀x ∈ [d],

where σx =
√

Var[Xx] .

In the previous sections, we have shown how to construct unbiased estimators for
the gradient, satisfying the first assumption. The second assumption is satisfied as the
estimate of the gradient is constructed by calculating the mean of several sampling-
based estimates. Assumption 5 is satisfied by construction. Assumption 6 is an ide-
alized version of the update rule used in Refoqus. However, the gradient magnitude
and estimator variances cannot be exactly known in general, so these quantities are
replaced by exponentially moving averages to predict the values of σx and ||∇L(θ)||2.
Assumption 4 is also satisfied for all the loss functions we consider in this work. Finally,
as previously noted assumption 5 is not expected to hold in QML landscapes, which
are non-convex in general. Nevertheless, the convergence guarantee provides strong
analytical motivation for the functionality of the optimizer in an idealized scenario.

8.7 Numerical Results

We benchmark the performance of several optimizers when applied to using VQSE [41]
for quantum PCA [119] on molecular ground states. We perform quantum PCA on
3 quantum datasets: ground states of the H2 molecule in the sto-3g basis (4 qubits),
H2 in the 6-31g basis (8 qubits) and BeH2 in the sto-3g basis (14 qubits). We use 101

circuits, per dataset. The corresponding covariance matrix [70], which can be expressed
as 1

101

∑100
i=0 |ψ⟩i ⟨ψ|i. We optimize using the local cost introduced in Eq. (8.30) and

repeated here for convenience:

H = 1−
n∑
j=1

rjZj , rj ∈ R (8.66)

134

Chapter 8. Resource frugal optimizer for quantum machine learning

|0⟩ Ry • Ry • Ry • Ry • Ry

|0⟩ Ry • Ry • Ry • Ry • Ry

|0⟩ Ry • Ry • Ry • Ry • Ry

|0⟩ Ry • Ry • Ry • Ry • Ry

Figure 8.4: Hardware-efficient ansatz with 2 layers used for VQSE on 4
qubits. Each Ry rotation is independently parametrized according to Ry(θ) =
e−iY θ/2.

taking coefficients rj = 1.0 + 0.2(j − 1) and pi = 1
101 following the presentation

in [41]. Hence the latter coefficients form the qi,j = pirj terms used for shot-allocation
strategies, as outlined below.

When implementing Rosalin and Refoqus we use the weighted random sampling
strategy for allocating shots as it demonstrated superior performance against other
strategies in the numerical results of [10]. Hence, the qi,j coefficients that appear in
the loss function (and the gradient estimators) are used to construct a multinomial
probability distribution defined by the terms |qi,j |

M , where M =
∑
i,j |qi,j |. This distri-

bution is used to probabilistically allocate the number of shots given to each term for
each gradient estimation.

We use a circuit consisting of 2 layers of a hardware-efficient ansatz with depth 4,
depicted in Fig. 8.4, with 20, 40, and 70 parameters for the 4, 8 and 16 qubit problems
respectively. These parameters are optimized in order to minimize the VQSE cost
function using the Adam, Rosalin, and Refoqus optimizers2. We use the absolute error
in estimating the eigenvalues of the system to benchmark the overall performance of
the output of the optimized circuit as this is desired output of the algorithm. Given
the exact 16 highest eigenvalues λi, and their estimation λ̃i given current parameters
θ, the latter is computed as ϵλ =

∑16
i=1(λi − λ̃i)

2.
Figure 8.5 shows the results obtained when running each algorithm 20 times with

different random initialization of the variational ansatz, up to a total shot budget of
108. In general, we see that Refoqus is the best-performing optimizer, achieving a
best-case accuracy while using fewer shots for all shot budgets. In summary, for the
4 qubit system, a median eigenvalue error of 6.8× 10−6, 5.15× 10−6 and 6.08× 10−7

2For Adam, we perform 100 shots per circuit in our simulations. For Rosalin and Refoqus, we use
a minimum of 2 shots per circuit (this leads to smin = 202 and smin = 2 for Rosalin and Refoqus
respectively) in conjunction with WRS.

135

8.7. Numerical Results

(a) (b) (c)

(d) (e) (f)

Figure 8.5: VQSE for quantum PCA of H2 molecular ground states (a, b, d,
and e) and BeH2 (c and f). The upper plots show the budget of shots spent against
the best eigenvalue error achieved by the optimizers. The lower plots show the number
of iterations used to spend the total shot budget. We display the results obtained
from 20 independent optimization runs on a data set of 101 circuits representing
molecular ground states calculated using the Adam, Rosalin, and Refoqus optimizers
and compare their performance. We show the median (solid lines) and 95% confidence
intervals (shaded regions) over the 20 different random initializations.

was obtained using Adam, Rosalin and Refoqus respectively. Although we found
better minimal value with Adam compared to Rosalin (3.79 × 10−7 and 1.74 × 10−6

respectively), Rosalin is more advantageous at lower shot budgets. However, Refoqus
achieved a minimal error value of 6.13×10−9 and demonstrates a clear advantage over
both Adam and Rosalin. On both the 8 and 14 qubit systems, we observe a similar
trend although eigenvalue errors are worse overall. This is due to the variational ansatz
being kept at a fixed depth while increasing the size of the problem, which leads to
worse performance. Nonetheless, Refoqus appears to clearly match or outperform both
Adam and Rosalin in the number of shots required to reach a given accuracy.

136

Chapter 8. Resource frugal optimizer for quantum machine learning

Additionally, Refoqus requires fewer parameter updates (iterations) when com-
pared to Rosalin. Indeed, for the 4, 8 and 14 qubits problems respectively, a median of
117, 89, and 80 iterations were used by Refoqus against 1217, 618, and 353 for Rosalin.
We note that this may be interpreted as another desirable feature of the optimizer, as
this minimizes the number of iterations needed in the quantum-classical feedback loop
to arrive at a solution of the same (or better) quality. Although the number of iter-
ations is not a bottleneck in and of itself, in current hardware the quantum-classical
feedback can prove restrictive meaning fewer iterations are favorable for real-device
implementation.

Finally, we note that the variance of the Refoqus results appears to be larger,
suggesting that sampling over more terms can lead to a larger variety in the quality
of the optimization obtained. Nevertheless, the advantage in shot frugality that arises
from sampling over more terms is clear and despite this larger variance, Refoqus is
clearly the best-performing optimizer.

8.8 Discussion

QML algorithms present a different paradigm for data processing which is particularly
well suited to quantum data. VQAs are a key contender in giving a near-term useful
quantum advantage. However, both VQAs and QML models require long run times
and large resource overheads during training (as many iterations and shots to achieve
respectable performances). To address these challenges, we propose Refoqus as a shot-
frugal gradient-based optimizer based on state and operator sampling. We outline
many cost functions that are of interest to the community and are easily captured
within our framework for Refoqus. The new optimizer leverages the loss function of
the problem to allocate shots randomly when evaluating gradients. This randomness
allows us to make resource-cheap gradient update steps, unlocking shot-frugality. We
have shown that Refoqus comes with geometric convergence guarantees under specific
assumptions. Additionally, when applying our optimizer to a QML task, namely a
quantum PCA task, we obtain significantly better performance in terms of the number
of shots and the number of iterations needed to obtain a given accuracy.

A potential future research direction is to extend our analysis to more complicated,
non-linear loss functions such as the log-likelihood, exploring in more detail how to
introduce shot frugality to gradient-free optimizers. Furthermore, applying Refoqus
to a problem of interest on a real device is an interesting next step.

137

8.8. Discussion

138

