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Chapter 7

Hyperparameter Importance of
Quantum Neural Networks
Across Small Datasets

Machine learning has not been spared in the quest for meaningful quantum computing
applications. One of the more investigated approaches is the use of a special type of
quantum circuit – a so-called quantum neural network – to serve as a basis for a
machine learning model. We introduced the latter workflow in Chapter 2.5. Roughly
speaking, as the name suggests, a quantum neural network can play a similar role to
a neural network. However, specifically for applications in machine learning contexts,
very little is known about suitable circuit architectures, or model hyperparameters
one should use to achieve good learning performance. In this chapter1, we apply the
functional ANOVA framework to quantum neural networks to analyze which of the
hyperparameters were most influential for their predictive performance. We analyze
one of the most typically used quantum neural network architectures.

1Contents of this chapter are based on [137]; Charles Moussa, Jan N. van Rijn, Thomas Bäck,
and Vedran Dunjko. Hyperparameter importance of quantum neural networks across small datasets.
In Poncelet Pascal and Dino Ienco, editors, Discovery Science, pages 32–46, Cham, 2022. Springer
Nature Switzerland.
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7.2. Introduction

7.1 Introduction

Quantum models can exhibit clear potential in special datasets where we have theoret-
ically provable separations with classical models [94, 117, 163, 188]. More theoretical
works also study these models from a generalization perspective [38]. Quantum cir-
cuits with adjustable parameters, also called quantum neural networks, have been used
to tackle regression [130], classification [83], generative adversarial learning [208], and
reinforcement learning tasks [94, 180].

However, the value of quantum machine learning on real-world datasets is still to
be investigated in any larger-scale systematic fashion [82, 154]. Currently, common
practices from machine learning, such as large-scale benchmarking, hyperparameter
importance, and analysis have been challenging tools to use in the quantum commu-
nity [171]. Given that there exist many ways to design quantum circuits for machine
learning tasks, this gives rise to a hyperparameter optimization problem. However,
there is currently limited intuition as to which hyperparameters are important to opti-
mize and which are not. Such insights can lead to much more efficient hyperparameter
optimization [31, 60, 133].

In order to fill this gap, we employ functional ANOVA [92, 181], a tool for assessing
hyperparameter importance. This follows the methodology of [192, 175], who employed
this across datasets, allowing for more general results. For this, we selected a subset
of several low-dimensional datasets from the OpenML-CC18 benchmark [22], that
are matching the current scale of simulations of quantum hardware. We defined a
configuration space consisting of ten hyperparameters from an aggregation of quantum
computing literature and software. We extend this methodology by an important
additional verification step, where we verify the performance of the internal surrogate
models. Finally, we perform an extensive experiment to verify whether our conclusions
hold in practice. While our main findings are in line with previous intuition on a few
hyperparameters and the verification experiments, we also discovered new insights. For
instance, setting well the learning rate is deemed the most critical hyperparameter
in terms of marginal contribution on all datasets, whereas the particular choice of
entangling gates used is considered the least important except on one dataset.

7.2 Background

In this section, we introduce the necessary background on functional ANOVA, quan-
tum computing, and quantum circuits with adjustable parameters for supervised learn-
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ing.

7.2.1 Functional ANOVA

When applying a new machine learning algorithm, it is unknown which hyperparam-
eters to modify in order to get high performances on a task. Several techniques exist
that assess hyperparameter importance, such as functional ANOVA [164]. The latter
framework can detect the importance of both individual hyperparameters and inter-
action effects between different subsets of hyperparameters. We first introduce the
relevant notation, based on the work by Hutter et al. [92].

Let A be a machine learning algorithm that has n hyperparameters with do-
mains Θ1, . . . ,Θn and configuration space Θ = Θ1 × . . . × Θn. An instantiation
of A is a vector θ = {θ1, . . . , θn} with θi ∈ Θi (this is also called a configuration
of A). A partial instantiation of A is a vector θU = {θi1 , . . . , θik} with a subset
U = {i1, . . . , ik} ⊆ N = [n] = {1, . . . , n} of the hyperparameters fixed, and the values
for other hyperparameters unspecified. Note that θN = θ.

Functional ANOVA is based on the concept of a marginal of a hyperparameter,
i.e., how a given value for a hyperparameter performs, averaged over all possible com-
binations of the other hyperparameters’ values. The marginal performance âU (θU ) is
described as the average performance of all complete instantiations θ that have the
same values for hyperparameters that are in θU . As an illustration, Fig. 7.1 shows
marginals for two hyperparameters of a quantum neural network and their union.
As the number of terms to consider for the marginal can be very large, the authors
of [92] used tree-based surrogate regression models to calculate efficiently the average
performance. Such a model yields predictions ŷ for the performance p of arbitrary
hyperparameter settings.

Functional ANOVA determines how much each hyperparameter (and each com-
bination of hyperparameters) contributes to the variance of ŷ across the algorithm’s
hyperparameter space Θ, denoted V. Intuitively, if the marginal has a high vari-
ance, the hyperparameter is highly important to the performance measure. Such
framework has been used for studying the importance of hyperparameters of common
machine learning models such as support vector machines, random forests, Adaboost,
and residual neural networks [192, 175]. We refer to [92] for a complete description
and introduce the quantum supervised models considered in this study along with the
basics of quantum computing.
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7.2. Background
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Figure 7.1: Examples of marginals for a quantum neural network with validation accuracy
as performance on the banknote-authentication dataset. The hyperparameters correspond to
the learning rate used during training (a), the number of layers, also known as depth (b), and
their combination (c). The hyperparameter values for the learning rate are on a log scale.
When considered individually, we see for instance that depth and learning rate should not
be set too high for better performances. However, when grouped together, the learning rate
seems most influential.

7.2.2 Supervised learning with Parameterized Quantum Cir-
cuits

A parameterized quantum circuit (also called ansatz ) can be represented by a quantum
circuit with adjustable real-valued parameters θ. The latter is then defined by a
unitary U(θ) that acts on a fixed n-qubit state (e.g., |0⊗n⟩). The ansatz may be
constructed problem-independent generic construction. The latter are often designated
as hardware-efficient.

For a machine learning task, this unitary encodes an input data instance x ∈ Rd

and is parameterized by a trainable vector θ. Many designs exist but hardware-efficient
parameterized quantum circuits [97] with an alternating-layered architecture are often
considered in quantum machine learning when no information on the structure of the
data is provided. This architecture is depicted in an example presented in Fig. 7.2
and essentially consists of an alternation of encoding unitaries Uenc and variational
unitaries Uvar. In the example, Uenc is composed of single-qubit rotations RX , and
Uvar of single-qubit rotations Rz, Ry and entangling Ctrl-Z gates, represented as in
Fig. 7.2, forming the entangling part of the circuit. Such entangling part denoted Uent,
can be defined by connectivity between qubits.

These parameterized quantum circuits are similar to neural networks where the
circuit architecture is fixed and the gate parameters are adjusted by a classical opti-
mizer such as gradient descent. They have also been named quantum neural networks.
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Figure 7.2: Parameterized quantum circuit architecture example with 4 qubits and
ring connectivity (qubit 1 is connected to 2, 2 to 3, 3 to 4, and 4 to 1 makes a ring).
The first layer of RX is the encoding layer Uenc, taking a data instance x ∈ R4 as
input. It is followed by the entangling part with Ctrl-Z gates. Finally, a variational
layer Uvar is applied. Eventually, we do measurements to be converted into predictions
for a supervised task. The dashed part can be repeated many times to increase the
expressive power of the model.

The parameterized layer can be repeated multiple times, which increases its expressive
power like neural networks [179]. The data encoding strategy (such as reusing the
encoding layer multiple times in the circuit - a strategy called data reuploading) also
influences the latter [151, 174].

Finally, the user can define the observable(s) and the post-processing method to
convert the circuit outputs into a prediction in the case of supervised learning. Com-
monly, observables based on the single-qubit Z operator are used. When applied on
m ≤ n qubits, the observable is represented by a 2m − 1 square diagonal matrix with
{−1, 1} values and is denoted O = Z ⊗ Z ⊗ · · · ⊗ Z.

Having introduced parameterized quantum circuits, we present the hyperparame-
ters of the models, the configuration space, and the experimental setup for our func-
tional ANOVA-based hyperparameter importance study.

7.3 Methods

In this section, we describe the network type and its hyperparameters and define the
methodology that we follow.

7.3.1 Hyperparameters and configuration space

Many designs have been proposed for parameterized quantum circuits depend-
ing on the problem at hand or motivated research questions and contributions.
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Such propositions can be aggregated and translated into a set of hyperparame-
ters and configuration space for the importance study. As such, we first did an
extensive literature review on parameterized quantum circuits for machine learn-
ing [18, 83, 84, 93, 94, 116, 123, 129, 130, 154, 168, 180, 194, 195, 202, 208] as well
as quantum machine learning software [6, 19, 34]. This resulted in a list of 10 hyper-
parameters, presented in Table 7.1. We choose them so we balance between having
well-known hyperparameters that are expected to be important, and less considered
ones in the literature. For instance, many works use Adam [103] as the underlying
optimizer, and the learning rate should generally be well chosen. On the contrary, the
entangling gate used in the parameterized quantum circuit is generally a fixed choice.

From the literature, we expect data encoding strategy/circuit to be important. We
choose two main forms for Uenc. The first one is the hardware-efficient

⊗n
i=1RX(xi).

The second takes the following form from [19, 93, 83]:

Uenc(x) = Uz(x)H
⊗n (7.1)

Uz(x) = exp

−iπ

 n∑
i=1

xiZi +

n∑
j=1,
j>i

xixjZiZj


. (7.2)

Using data-reuploading [151] results in a more expressive model [174], and this was
also demonstrated numerically [94, 151, 180]. Finally, pre-processing of the input is
also sometimes used in encoding strategies that directly feed input features into Pauli
rotations. It also influences the expressive power of the model [174]. In this work, we
choose a usual activation function tanh commonly used in neural networks. We do so
as its range is [−1, 1], which is the same as the data features during training after the
normalization step.

The list of hyperparameters we take into account is non-exhaustive. It can be
extended at will, at the cost of more software engineering and budget for running
experiments.

7.3.2 Assessing Hyperparameter Importance

Once the list of hyperparameters and configuration space are decided, we perform the
hyperparameter importance analysis with the functional ANOVA framework. Assess-
ing the importance of the hyperparameters boils down to four steps. Firstly, the models
are applied to various datasets by sampling various configurations in a hyperparameter
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optimization process. The performances or metrics of the models are recorded along.
The sampled configurations and performances serve as data for functional ANOVA.
As functional ANOVA uses internally tree-based surrogate models, namely random
forests [32], we decided to add an extra step with reference to [192]. In the second
step, we verify the performance of the internal surrogate models. We cross-evaluate
them using regression metrics commonly used in surrogate benchmarks [53]. Surro-
gates performing badly at this step are then discarded from the importance analysis,
as they can deteriorate the quality of the study. Thirdly, the marginal contribution
of each hyperparameter over all datasets can be then obtained and used to infer a
ranking of their importance. Finally, a verification step similar to [192] is carried out
to confirm the inferred ranking previously obtained. We explain such a procedure in
the following section.

7.3.3 Verifying Hyperparameter Importance
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Figure 7.3: Performances of 1 000 quan-
tum machine learning models defined by
different configurations of hyperparame-
ters over each dataset. The metric of in-
terest in the study is the 10-fold cross-
validation accuracy. We take the best-
achieved metric per model trained over
100 epochs.

When applying the functional ANOVA
framework, an extra verification step is added
to confirm the output from a more intuitive
notion of hyperparameter importance [192].
It is based on the assumption that hyperpa-
rameters that perform badly when fixed to
a certain value (while other hyperparameters
are optimized), will be important to optimize.
The authors of [192] proposed to carry out
a costly random search procedure fixing one
hyperparameter at a time. In order to avoid a
bias to the chosen value to which this hyper-
parameter is fixed, several values are chosen,
and the optimization procedure is carried out
multiple times. Formally, for each hyperpa-
rameter θj we measure y∗j,f as the result of
a random search for maximizing the metric,
fixing θj to a given value f ∈ Fj , Fj ⊆ Θj .
For categorical θj with domain Θj , Fj = Θj

is used. For numeric θj , the authors of [192]
use a set of 10 values spread uniformly over
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7.5. Dataset and inclusion criteria

θj ’s range. We then compute y∗j = 1
|Fj |

∑
f∈Fj

y∗j,f , representing the score when not
optimizing hyperparameter θj , averaged over fixing θj to various values it can take.
Hyperparameters with lower values for y∗j are assumed to be more important since the
performance should deteriorate more when set sub-optimally.

In our study, we extend this framework to be used on the scale of quantum machine
learning models. As quantum simulations can be very expensive, we carry out the ver-
ification experiment by using the predictions of the surrogate instead of fitting new
quantum models during the verification experiment. The surrogates yield predictions
ŷ for the performance of arbitrary hyperparameter settings sampled during a random
search. Hence, they serve to compute y∗j,f . This is also why we assessed the quality of
the built-in surrogates as the second step. Poorly-performing surrogates can deterio-
rate the quality of the constructed marginals, and therefore lead to poorly-supported
conclusions.

7.4 Dataset and inclusion criteria

To apply our quantum models and study the importance of the previously introduced
hyperparameters, we consider classical datasets. Similarly to [192], we use datasets
from the OpenML-CC18 benchmark suite [22]. In our study, we consider only the case
where the number of qubits available is equal to the number of features, a common
setting in the quantum community. As simulating quantum circuits is a costly task,
we limit this study to the case where the number of features is less than 20 after pre-
processing.2 Our first step was to identify which datasets fit this criterion. We include
all datasets from the OpenML-CC18 that have 20 or fewer features after categorical
hyperparameters have been one-hot-encoded, and constant features are removed. Af-
terwards, the input variables are also scaled to unit variance as a normalization step.
The scaling constants are calculated on the training data and applied to the test data.

The final list of datasets is given in Table 7.2. In total, 7 datasets fitted the
criterion considered in this study. For all of them, we picked the OpenML Task ID
giving the 10-fold cross-validation task. A quantum model is then applied using the
latter procedure, with the aforementioned preprocessing steps.

2A 10-fold cross-validation run in our experiment takes on average 262 minutes for 100 epochs
with Tensorflow Quantum [34].
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7.5 Results

In this section, we present the results obtained using the hyperparameters and the
methodology defined in Section 7.3 with the datasets described in Section 7.4. First,
we show the distribution of performances obtained during a random search where
configurations are independently sampled for each dataset. Then we carry out the
surrogate verification. Finally, we present the functional ANOVA results in terms
of hyperparameter importance with marginal contributions and the random search
verification per hyperparameter.

7.5.1 Performance distributions per dataset

For each dataset, we sampled independently 1 000 hyperparameter configurations and
run the quantum models for 100 epochs as budget. As a performance measure, we
recorded the best validation accuracy obtained over 100 epochs. Fig. 7.3 shows the
distribution of the 10-fold cross-validation accuracy obtained per dataset. We observe
the impact of hyperparameter optimization by the difference between the least per-
forming and the best model configuration. For instance, on the wilt dataset, the best
model gets an accuracy close to 1, and the least below 0.25. We can also see that some
datasets present a smaller spread of performances. ilpd and blood-transfusion-service-
center are in this case. It seems that hyperparameter optimization does not have a
real effect, because most hyperparameter configurations give the same result. As such,
the surrogates could not differentiate between various configurations. In general, hy-
perparameter optimization is important for getting high performances per dataset and
detecting datasets where the importance study can be applied.

7.5.2 Surrogate verification

Functional ANOVA relies on an internal surrogate model to determine the marginal
contribution per hyperparameter. If this surrogate model is not accurate, this can
have a severe limitation on the conclusions drawn from functional ANOVA. In this
experiment, we verify whether the hyperparameters can explain the performances of
the models. Table 7.3 shows the performance of the internal surrogate models. We
notice low regression scores for the two datasets (less than 0.75 R2 scores). Hence we
remove them from the analysis.
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7.5. Results

7.5.3 Marginal contributions

For functional ANOVA, we used 128 trees for the surrogate model. Fig. 7.4(a,b) shows
the marginal contribution of each hyperparameter over the remaining 5 datasets. We
distinguish 3 main levels of importance. According to these results, the learning rate,
depth, and the data encoding circuit and reuploading strategy are critical. These
results are in line with our expectations. The entangler gate, connectivity, and whether
we use RX gates in the variational layer are the least important according to functional
ANOVA. Hence, our results reveal new insights into these hyperparameters that are
not considered in general.
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Figure 7.4: The marginal contributions per dataset are presented as a) the variance contri-
bution and b) the difference between the minimal and maximal value of the marginal of each
hyperparameter. The hyperparameters are sorted from the least to most important using the
median. We distinguish from the plot 3 main levels of importance.

7.5.4 Random search verification

In line with the work of [192], we perform an additional verification experiment that
verifies whether the outcomes of functional ANOVA are in line with our expectations.
However, the verification procedure involves an expensive, post-hoc analysis: a random
search procedure fixing one hyperparameter at a time. As our quantum simulations are
costly, we used the surrogate models fitted on the current dataset considered over the
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1 000 configurations obtained initially to predict the performances one would obtain
when presented with a new configuration.

Fig. 7.5 shows the average rank of each run of random search, labeled with the
hyperparameter whose value was fixed to a default value. A high rank implies poor
performance compared to the other configurations, meaning that tuning this hyperpa-
rameter would have been important. We witness again the 3 levels of importance, with
almost the same order obtained. However, the input_activation_function is deemed
more important while the batch size is less.
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Figure 7.5: Verification experiment of the importance of the hyperparameters. A random
search procedure up to 500 iterations excluding one parameter at a time is used. A lower
curve means the hyperparameter is deemed less important.

More simulations with more datasets may be required to validate the importance.
However, we retrieve empirically the importance of well-known hyperparameters while
considering less important ones. Hence functional ANOVA becomes an interesting tool
for quantum machine learning in practice.
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7.6 Conclusion

In this chapter, we study the importance of hyperparameters related to quantum
neural networks for classification using the functional ANOVA framework. Our exper-
iments are carried out over OpenML datasets that match the current scale of quantum
hardware simulations (i.e., datasets that have at most 20 features after pre-processing
operators have been applied, hence using 20 qubits). We selected and presented the
hyperparameters from an aggregation of quantum computing literature and software.
Firstly, hyperparameter optimization highlighted datasets where we observed high dif-
ferences between configurations. This underlines the importance of hyperparameter
optimization for these datasets. There were also datasets that showed little difference.
These led us to extend the methodology by adding an additional verification step of
the internal surrogate performances. From our results, we distinguished 3 main levels
of importance. On the one hand, Adam’s learning rate, depth, and data encoding
strategy are deemed very important, as we expected. On the other hand, the less con-
sidered hyperparameters such as the particular choice of the entangling gate and using
3 rotation types in the variational layer are in the least important group. Hence, our
experiment both confirmed expected patterns and revealed new insights for quantum
model selection.

For future work, further methods from the field of automated machine learning can
be applied to quantum neural networks [31, 60, 133]. Indeed, our experiments have
shown the importance of hyperparameter optimization, and this should become part of
the protocols applied within the community. We further envision functional ANOVA to
be employed in future works related to quantum machine learning and understanding
how to apply quantum models in practice. For instance, it would be interesting to
consider quantum data, for which quantum machine learning models may have an
advantage. Plus, extending hyperparameter importance to techniques for scaling to a
large number of features with the number of qubits, such as dimensionality reduction or
divide-and-conquer techniques, can be left for future work. Finally, this type of study
can also be extended to different noisy hardware and to algorithm/model selection and
design. If we have access to a cluster of different quantum computers, then choosing
which hardware works best for machine learning tasks becomes possible. One could
also extend our work with meta-learning [31], where a model configuration is selected
based on meta-features created from dataset features. Such types of studies already
exist for parameterized quantum circuits applied to combinatorial optimization and
we presented them in chapters 3 and 4 [135, 138].
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Table 7.1: List of hyperparameters considered for hyperparameter importance for
quantum neural network, as we named them in our Tensorflow-Quantum code.

Hyperparameter Values Description

Adam learning rate [10−4, 0.5]
(log)

The learning rate with which the quantum neu-
ral network starts training. The range was taken
from the automated machine learning library
Auto-sklearn [60]. We uniformly sample taking
the logarithmic scale.

batch size 16,
32,
64

Number of samples in one batch of Adam used
during training

depth {1, 2,
· · · , 10}

Number of variational layers defining the circuit

is data_encoding
hardware efficient

True,
False

Whether we use the hardware-efficient circuit⊗n
i=1RX(xi) or an IQP circuit defined in Eq.7.1

to encode the input data.
use reuploading True,

False
Whether the data encoding layer is used before
each variational layer or not.

have less rotations True,
False

If True, only use layers of RY , RZ gates as the
variational layer. If False, add a layer of RX
gates.

entangler operation cz,
sqiswap

Which entangling gate to use in Uent

map type ring,
full,
pairs

The connectivity used for Uent. The ring connec-
tivity use an entangling gate between consecu-
tive indices (i, i + 1), i ∈ {1, . . . , n} of qubits.
The full one uses a gate between each pair of
indices (i, j), i < j. Pairs connect even consecu-
tive indices first, then odd consecutive ones.

input activation
function

linear,
tanh

Whether to input tanh(xi) as rotations or just
xi.

output circuit 2Z,
mZ

The observable(s) used as output(s) of the cir-
cuit. If 2Z, we use all possible pairs of qubit in-
dices defining Z ⊗ Z. If mZ, the tensor product
acts on all qubits. Note we do not use single-
qubit Z observables although they are quite of-
ten used in the literature. Indeed, they are prov-
ably not using the entire circuit when it is shal-
low. Hence we decided to use Z ⊗ Z instead.
Also, a single neuron layer with a sigmoid acti-
vation function is used as a final decision layer
similar to [168].
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Table 7.2: List of datasets used in this study. The number of features is obtained after
a usual preprocessing used in machine learning methods, such as one-hot encoding.

Dataset OpenML
Task ID

Number of
features

Number of
instances

breast-w 15 9 699
diabetes 37 8 768
phoneme 9952 5 5 404
ilpd 9971 11 583
banknote-authentication 10093 4 1 372
blood-transfusion-service-
center

10 101 4 748

wilt 146820 5 4 839

Table 7.3: Performances of the surrogate models built within functional ANOVA over a
10-fold cross-validation procedure. We present the average coefficient of determination
(R2), root mean squared error (RMSE), and Spearman’s rank correlation coefficient
(CC). These are common regression metrics for benchmarking surrogate models on
hyperparameters [53]. The surrogates over ilpd and blood-transfusion-service-center
obtain low scores (less than .75 R2), hence we remove them from the study.

Dataset R2 score RMSE CC

breast-w 0.8663 0.0436 0.9299
diabetes 0.7839 0.0155 0.8456
phoneme 0.8649 0.0285 0.9282
ilpd 0.1939 0.0040 0.4530
banknote-authentication 0.8579 0.0507 0.9399
blood-transfusion-service-
center

0.6104 0.0056 0.8088

wilt 0.7912 0.0515 0.8015
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