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Chapter 6

Performance comparison of
optimization methods on
variational quantum algorithms

While for QAOA one can leverage concentration properties to avoid relying heavily
on a classical optimizer as discussed in Chapter 4, this is not the case for other VQAs.
In the case of VQE for quantum chemistry applications presented in chapter 2.3, fast
and reliable classical optimization algorithms are required. Hence, understanding and
optimizing how off-the-shelf optimization methods perform is an important research
area. In this chapter1, we study the performance of two commonly used gradient-free
optimization methods: CMA-ES, and SPSA. We do so on the task of finding ground-
state energies of a range of small chemistry and material science problems. SPSA was
used frequently as an optimizer for VQE while CMA-ES is a state-of-art optimizer for
difficult optimization problems in continuous search spaces. Hence, the underlying mo-
tivation was to benchmark both optimizers. We find that, with proper hyperparameter
tuning, CMA-ES is competitive with and sometimes outperforms SPSA.

1Contents of this chapter are based on [24];Xavier Bonet-Monroig, Hao Wang, Diederick Ver-
metten, Bruno Senjean, Charles Moussa, Thomas Bäck, Vedran Dunjko, and Thomas E. O’Brien.
Performance comparison of optimization methods on variational quantum algorithms. Phys. Rev. A,
107:032407, Mar 2023.
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6.2. Introduction

6.1 Introduction

The performance of VQAs is dependent on the ability of classical optimization algo-
rithms to solve such tasks. Finding their limitations for different VQA tasks is very
important in research and industry applications. To this end, optimization algorithms
can be benchmarked on a wide variety of systems. However, when we worked on
the topic, no extensive performance comparison of the most common optimization
methods existed for chemistry and material science problems yet. The Simultaneous
perturbation stochastic approximation algorithm (SPSA) [182, 183] seemed most of-
ten used though as it was designed for optimization on noisy functions. As stated
previously, our goal was to benchmark CMA-ES, a state-of-art optimizer for difficult
optimization problems in continuous search spaces, against the more common SPSA
for VQA on several chemistry and material science problems.

We first carried out hyperparameter tuning for CMA-ES and SPSA from which we
conclude that the two methods are comparable in performance across many problems.
One can outperform the other depending on the task. Additionally, the accuracy of
the optimized parameters is investigated. For this purpose, we define a ‘sampling noise
floor’: a limit on the accuracy that an optimizer can achieve when the optimal param-
eters correspond to the best-ever function evaluation. We demonstrated numerically
that CMA-ES can outperform this ‘sampling noise floor’.

The structure of the chapter is as follows. Section 6.2 presents the settings of
running VQE. We present the optimizers and the systems considered in Section 6.3.
Section 6.4 presents the results of hyperparameter tuning while Section 6.5 concerns
the accuracy of the optimized parameters. Finally, we conclude this chapter in Sec-
tion 6.6.

6.2 VQE methods

We have seen in Chapter 2 the typical VQA workflow and how they are applied for
chemistry under the naming VQE in Chapter 2.3. We remind here how VQE works.
Given a PQC preparing the state |Ψ(θ)⟩ and an observable O specifying the problem,
the cost function to optimize is:

C(θ) = ⟨O⟩ = ⟨Ψ(θ)|O|Ψ(θ)⟩.

In order to measure the expectation value of O on a quantum computer, it is
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typical to write O as a linear combination of easy-to-measure operators, i.e., the Pauli
operators P̂i ∈ {I, X, Y, Z}⊗N . By linearity of the expectation operator, we get:

O =
∑
i

ciP̂i → C(θ) = ⟨O⟩ =
∑
i

ci⟨P̂i⟩. (6.1)

Such a cost function is estimated by measuring many times many circuits for each
Pauli-based operator above-mentioned. Such estimation is then passed to a classical
optimization algorithm to find the set of parameters minimizing C(θ).

The total number of samples (also called shots) to be measured on quantum devices
is usually of the order of ∼ 109. Such limit calls for a balance between exploration and
estimation of the cost function such that the optimal parameters are reliably obtained.
In naive settings, the total number of shots per Pauli operator is fixed. We refer to
this approach as one-stage optimization. Cade et al. [36] split the total shot budget
between three stages, showing improved performance with VQAs.

Our numerical experiments are performed with different shot budgets of 107, 108,
and 109. On the one-stage method, the total number of function evaluations is fixed to
104 and 103, 104, and 105 shots per Pauli operator per function call used respectively.
Within the three-stage procedure, for a fair comparison, the function calls are fixed at
7150−2145−715, and the shots per Pauli operator at every stage are 102−103−104,
103 − 104 − 105, and 104 − 105 − 106, respectively.

6.3 Optimizers and systems considered

In this work, two gradient-free optimization algorithms are compared across multiple
problems of different sizes:

1. Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [78] is a state-
of-art population-based optimization algorithm using self-adaptation of its in-
ternal variables to the energy landscape.

2. Simultaneous perturbation stochastic approximation algorithm (SPSA) [182,
183] employs a stochastic perturbation vector to compute simultaneously an
approximate gradient of the objective and performs well on noisy functions.

As for their implementation, we use PyCMA [76] for CMA-ES and a modified
version of SPSA based on the code in [124].

Our numerical results use different chemistry and material science problems. For
VQE, we require their hamiltonians (generated via the open-source electronic structure
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6.4. Hyperparameter tuning results

H2O Equilibrium Stretched
O (0.0, 0.0, 0.1173) (0.0, 0.0, 0.0)
H (0.0, 0.7572, -0.4692) (0.0, 1.8186, 1.4081)
H (0.0, -0.7572, -0.4692) (0.0, -1.8186, 1.4081)

Table 6.1: Table describing the configurations of the atoms for the two water molecule
problems used in this work.

System # Parameters
H4 chain 14
H4 square 10
H2O eq. 26
H2O stret. 26
Hub. 1x6 15
Hub. 2x2 6
Hub. 2x3 16

Table 6.2: Number of parameters of the ansatze for each target problem.

package OpenFermion [126]) and the ansatz. The systems are presented in Table 6.2
with the respective number of parameters of the ansatz used.

The first kind of hamiltonians are Fermi-Hubbard Hamiltonians which describe the
behavior of fermions (fundamental particles such as electrons) on a lattice of nx × ny

sites. The variational circuit for this task is from Cade et al. [36].
The second kinds are molecular systems in different configurations (specified by 3D

coordinates): H4 and H2O. For the H4 in the chain configuration, the first hydrogen
atom is located at 0.0 in all coordinates, then every atom is separated in the x-direction
by 1.5Å. In the square configuration, we fix the hydrogen atoms in 2-dimensions. The
positions of the atoms are parametrized by their polar coordinates with R = 1.5Å
and θ = π

4 , and we locate them at (x, y, 0), (x,−y, 0), (−x, y, 0), (−x,−y, 0) with x =

R cos(θ) and y = R sin(θ). For the water molecule problems, the (x, y, z)-coordinates
of the atoms are given in Table 6.1. Concerning the ansatz, we use the Unitary
Coupled-Cluster ansatz [152, 56, 160], state-of-art for chemistry applications.

6.4 Hyperparameter tuning results

After presenting in the previous sections how a VQE is run and the problems consid-
ered, we start benchmarking under optimal hyperparameters found. In this work, we

88



Chapter 6. Performance comparison of optimization methods on
variational quantum algorithms

use the iterated racing for automatic algorithm configuration or shortly IRACE [121],
to tune the settings of SPSA and CMA-ES for the molecular systems. Additionally, we
perform hyperparameter tuning of CMA-ES for the Hubbard model on three different
configurations; 1× 6, 2× 2, and 2× 3. For SPSA, however, we take the results of [36]
where its hyperparameters were optimized.

For comparison, we use the relative energy error,

∆rE =

∣∣∣∣C(θopt)− E0

E0 − c0

∣∣∣∣ , (6.2)

where C(θopt) is the noiseless cost function evaluated at the optimized parameters
θopt obtained from a noisy optimization. E0 is the lowest eigenvalue of the problem,
computed exactly. c0 is the coefficient of the identity operator, which is the largest
term of the Hamiltonian and can be measured with exact precision. The results of
these numerical simulations are shown in figure 6.1.

SPSA performs better in the weakly-correlated problems H4 chain, H2O equilib-
rium, and 2× 2 Hubbard model. For the more interesting strongly-correlated systems
(categorized as more challenging in chemistry), CMA-ES slightly outperforms with the
mean values following mostly within error bars (orange ticks in fig. 6.1). Finally, we
observe that CMA-ES starts to outperform SPSA when the system size and number
of parameters increase. Such scenarios are more interesting for quantum simulations.
We leave the study of larger systems for future work.

6.5 The sampling noise floor

In VQA, given the real objective C(θ), one obtains optimal parameters returned deal-
ing with a sampled version C̄ with variance Var[C̄]. By construction, it is possible that
the evaluation of the outputted parameters is lower than its corresponding noiseless
evaluation due to statistical fluctuations. Thus, by considering the parameters achiev-
ing the best-ever function evaluation, we can obtain worse results than the global
minimum (assuming its existence).

Let us assume C(θ) has a global minimum θg with noiseless value Cg. Then, under
sampling noise, by evaluating the cost over multiple realizations of θ, including one
at θg, we end up with a confidence interval for the evaluation at θg with probability
1− p:

∆p = [Cg +m(p)
√
Var[C̄],− inf), (6.3)
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6.5. The sampling noise floor

Figure 6.1: Comparison of optimized hyper-parameters of CMA-ES (red, brown, and
purple dots) and SPSA (grey, orange, and blue dots). The black cross depicts the
mean value, with the error bar showing the 95% confidence interval of 15 independent
runs. The green ticks indicate that the optimization wins overall with a better mean
and without overlapping in standard error. The orange ticks indicate the optimization
wins in mean value, but its standard error overlaps with one or more optimization
methods.
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where m(p) ∼ log(p) defines the size of the interval for the distribution of C̄. Assuming
this distribution is symmetric, for ω ̸= θg satisfying C(ω)−m(p)

√
Var[C̄] /∈ ∆p, C(ω)

will lie outside ∆p with probability strictly greater than 1− p. Thus, with probability
strictly greater than 1 − p2, θg can be correctly identified as optimal parameters.
However, when the conditions are not met, the true minimum cannot be determined
and alternative candidates can be drawn with probability p from the region:

Ω(p) = {ω : C(ω) < C(θg) + 2m(p)
√

Var[C̄]}, (6.4)

True cost values an optimizer returning the best-measured candidate in this region lie
in:

Cp =
[
C(θg), C(θg) + 2m(p)

√
Var[C̄]

]
, (6.5)

The quantity 2m(p)
√

Var[C̄] is defined as the sampling floor. To be completely defined,
the value of p should be set but it is not accessible as it depends upon the optimizer’s
convergence. Yet, one can demonstrate numerically the effect of the sampling floor on
the candidates returned by optimizers.

CMA-ES returns two different candidates; the best-ever measured and a so-called
favourite which uses all accumulated prior information during optimization. Such
information contains many more shots than a single function call. In principle, the
sampling noise can be averaged out and beat the sampling noise floor. We investigate
such a phenomenon in this section. In figure 6.2, we present the results of the sam-
pling noise floor on the optimization performance. For every system, we obtained the
evaluations: C̄(θbest), C(θbest) and C(θfav). The energy error is then computed as:

∆E =
C(θopt)− E0

|E0 − c0|
. (6.6)

Firstly, we observe that the best function evaluation (orange points) is often be-
low the true energy due to sampling noise. The comparison should be done between
C(θbest) (red points) and C(θfav) (purple points). The average value of C(θbest) es-
timates the sampling floor. In all cases, we observe the average evaluation of the
favourite candidate is below the best candidate’s. By using the favourite, CMA-ES
overcomes the sampling floor. For the Hubbard model and the H4 systems, this is
not significant (up to a 95% confidence interval), but for the two geometries of the
water molecule, the difference is much larger (up to a 3-fold reduction of error). Such
a difference between problems may come from the different optimization landscapes
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6.6. Conclusion

Figure 6.2: Comparison of the cost function evaluated at the best-ever measured and
favourite candidate given by CMA-ES optimization under noisy optimization for the
problems considered in this work. Each optimization uses 107 shots per Pauli over the
course of the entire experiment: individual estimations of C̄(θ) are made using only 104

shots per Pauli. On the y-axis, we depict relative energy error where the column shows
the mean and the overlaying points are the values of these energies of 15 independent
runs. For each problem, from left to right we plot: (orange) the best-ever measured
function evaluation during the CMA-ES optimization, (red) the best-ever candidate
evaluated without noise, and (purple) the favourite candidate guessed by CMA-ES,
evaluated without noise.

of the different problems. We leave this study for future work.

6.6 Conclusion

VQA algorithms require careful investigation of the performances of the underlying
optimizers they depend on. Such optimizers may have been benchmarked using other
types of problems. However quantum applications can be inherently different and
optimizers will require to be adapted or discarded for tackling such settings. In this
chapter, we benchmarked two state-of-art gradient-free optimizers on several chemistry
and material science problems: SPSA and CMA-ES.

92



Chapter 6. Performance comparison of optimization methods on
variational quantum algorithms

The optimizers were compared under a one-stage and three-stage sampling method
from Ref. [36]. Hyperparameter optimization is performed showing comparable per-
formances between SPSA and CMA-ES. The latter obtains better results on the more
challenging systems. Additionally, we study the effect of sampling noise on the op-
timization performance using CMA-ES. Indeed, as the evaluation is not exact, using
the best-ever evaluation out of the optimizer can be misleading. To overcome such a
problem that we named sampling noise floor, using the favourite candidate yielded by
CMA-ES was a better strategy. We leave as future work more benchmarking using
larger systems of interest and against other VQA-tailored optimizers.
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