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Chapter 5

Tabu-driven quantum

neighborhood samplers

Combinatorial optimization is an important application targeted by quantum comput-
ing. However, near-term hardware constraints make quantum algorithms unlikely to
be competitive when compared to high-performing classical heuristics on large practi-
cal problems. The small size of instances used in previous chapters 3 and 4 illustrates
such an issue. One option to achieve advantages with near-term devices is to use them
in combination with classical heuristics. In particular, we propose using quantum
methods to sample from classically intractable distributions — which is the most prob-
able approach to attain a true provable quantum separation in the near term — which
are used to solve optimization problems faster. In this chapter, we numerically study
this enhancement by an adaptation of Tabu Search using QAOA as a neighborhood
sampler'. We show that QAOA provides a flexible tool for exploration-exploitation
in such hybrid settings and can provide evidence that it can help in solving problems

faster by saving many tabu iterations and achieving better solutions.

LContents of this chapter are based on [139];Charles Moussa, Hao Wang, Henri Calandra, Thomas
Béck, and Vedran Dunjko. Tabu-driven quantum neighborhood samplers. In Christine Zarges and
Sébastien Verel, editors, Evolutionary Computation in Combinatorial Optimization, pages 100—119,
Cham, 2021. Springer International Publishing.
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5.1. Introduction

5.1 Introduction

While numerous works have been studying various theoretical and empirical properties
of QAOA [26, 46, 207, 186, 135], many practical challenges remain. Indeed, only small-
sized problems and very limited p can be run on real hardware, which severely limits
the quality of the solution obtained empirically [79, 14, 114]. Many open questions
still remain, e.g., regarding the comparison of QAOA with other heuristic methods on
various cases of instances that stem from particular problem domains, with different
optimizers, and with varying levels of experimental (or simulated) noise. One reason of
why so many uncertainties remain is that classical simulation is computationally very
expensive, and quantum devices are still scarce to prevent large real-world tests [127,
79].

In contrast to optimization problems, quantum advantage has been demonstrated
in sampling [11]. Indeed, theoretical results establish a quantum advantage in produc-
ing samples according to certain distributions of constant-depth quantum circuits [27].
In this direction, it has been demonstrated that the sampling of the QAOA circuit,
even at p = 1, cannot be efficiently simulated classically [58]. The above considera-
tions point to a possibility of utilizing sampling features of QAOA for neighborhood
explorations with the added benefit that, since the neighborhood may be limited to
fewer variables, a smaller quantum device may already lead to improved performance

of a large instance.

It is interesting to delve into sampling aspects in the domain of classical local search
algorithms, where we seek the optimum in the vicinity of the current solution with
respect to either the original optimization problem or a subproblem thereof, using
a deterministic or stochastic sampling strategy [12]. Such a sampling-based local
procedure is typically realized by the combination of some parametric distribution
family for drawing local trial points (e.g., the binomial or a power-law distribution [48])
and a selection method for choosing good trial points, and hence the overall outcome

of this procedure results in the family of sampling distributions [47, 199, 112].

In this chapter, we use QAOA circuits as local neighborhood samplers, having
malleable support in (many) good local optima but still allowing a level of exploration
(which is desirable since local optima may not lead to global optima). This introduces
the topics of sampling and multiobjective aspects of QAOA that allow balancing be-
tween exploration and exploitation. To this end, we study its combination with tabu
search (TS), a metaheuristic that has been successfully applied in practice for com-

binatorial optimization by local search. Moreover, to control the trade-off between
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Chapter 5. Tabu-driven quantum neighborhood samplers

exploration and exploitation, we add this critical component in TS to the specification
of the standard QAOA circuit.

Contributions - We construct an algorithm incorporating QAOA in TS with the
usual attribute-based short-term memory structure (a.k.a the tabu list). With our
approach, we kill two birds with one stone: we gain quantum enhancements, while the
local properties of tabu search can make the required quantum computations naturally
economic in terms of needed qubit numbers, which is vital in the near-term quantum
era. We analyze and benchmark this incorporation with small QAOA depths against
a classical TS procedure on QUBO problems of up to 500 variables. We also propose
a penalized version of QAOA incorporating knowledge from a current solution. We
find that QAOA is often beneficial in terms of saved iterations, and can find shorter
paths toward better solutions. The structure of the chapter is as follows. Section 5.2
provides the necessary background on TS and interplay with quantum techniques. In
section 5.3, we detail the T'S procedure incorporating a short-term memory structure
with QAOA. The results of our simulations are presented in section 5.4. We conclude

with a discussion in section 5.5.

5.2 Background

Tabu Search (TS) [66] is a meta-heuristic that guides a local heuristic search procedure
to explore the search space beyond local optimality. One of the main components of
TS is its use of adaptive memory, which creates a more flexible search behavior. Such
a framework allows using a quantum algorithm as a local search tool, for solving large
instances with limited-sized quantum devices. Various works leveraged TS for solving
QUBOs [105, 65, 147, 67, 148] using short-term and long-term strategies used during
the search. We note also different hybrid settings that combine a basic T'S procedure
with another framework such as genetic search [120] and Path Relinking [198]. TS
was also incorporated with quantum computers to tackle larger problems beyond their
limitations. Indeed, finding methods to leverage smaller devices is of main importance.
Many divide-and-conquer approaches have been designed for quantum circuits and
algorithms [50, 159, 30, 150]. In this paper, the size of the QC comes into play more
naturally as a hyperparameter defining the «radius» of the search space.

With respect to the interplay between TS and quantum techniques, to our knowl-
edge TS has only been considered from the perspective of D-Wave quantum annealers,
a different non-universal model of computation than the gate-based model. The first

approach of this kind is an algorithm called gbsolv [25]|. It starts with an initial TS
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5.3. Tabu-driven QAOA sampling

run on the whole QUBO. Then the problem is partitioned into several subproblems
solved independently with the annealer. Subproblems are created randomly, by se-
lecting variables. Non-selected ones have their values fixed (clamping values) from the
TS solution. The subsolutions are then merged and a new TS is run as an improve-
ment method. The second approach is an iterative solver designed in [162]. At each
iteration, a subproblem is submitted to the annealer. The subproblem is obtained by
clamping values from a current solution. A tabu list is used in which each element is
a list of variables of length k. Each element is kept tabu for a user-defined number of

iterations. In contrast in this work, we consider using QAOA in combination with T'S.

5.3 Tabu-driven QAOA sampling

Inspired by the above-mentioned works, we use a simple TS procedure where QAOA
is added in the neighborhood generation phase to solve QUBO problems. Note that
we could also apply QAOA in more sophisticated frameworks, but a simpler approach
is easier for understanding the benefits of QAOA with TS.

Local search algorithms explore a search space by generating sequences of possible
solutions which are refined. At each step, we generate a so-called neighborhood from
a current solution. In particular, if we denote the current solution z, a generated
neighborhood corresponds to candidates x’ that differ by at most k bits. We denote
this set as Ni(z) = {2z’ € {0,1}"|0n(2’,z) < k}, where dy denotes the Hamming
distance. For a simple one-bit-flip generation strategy, this corresponds to £k = 1 and
TS uses a modified neighborhood due to tabu conditions. Although increasing k could
help exploration, the neighborhood generation comes at an exponential cost. But this
could mean finding better solutions in fewer TS iterations, and thus also in principle
overall faster if a fast good method for neighborhood exploration is devised.

This motivates the use of a quantum algorithm as a proxy for exploring N (x).
Specifically, we will use QAOA which 2p real parameters are tweaked in a continu-
ous optimization scheme resulting in a probability distribution on Nj. Increasing p
(assuming the optima are found over the parameters) will improve the quality of the
output (likelihood of returning an actual global optimum).

However, in the case of local search, a greedy strategy that tends to select the
best point in the neighborhood would not only lead to potential stagnation but also
result in longer optimization time (unless the neighborhoods are already the size of
the overall problem) [20]. Indeed, one may also consider modifications that impose

(various) notions of locality, which are usually not considered in standard QAOA
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Chapter 5. Tabu-driven quantum neighborhood samplers

uses where it is used for the entire instance, with the sole goal of finding optima.
To this end, we first outline the basic TS procedure generally used to solve QUBO
problems [67, 120, 198]. Then, we show how QAOA can be combined with the latter.
Finally, we propose a modification of QAOA that balances between going for the global

optimum and prioritizing local improvements relative to the current TS solution.

5.3.1 The basic TS algorithm

The basic TS procedure for solving a QUBO with objective function f(z) is described
in Alg. 2, for k = 1 excluding the green-highlighted part. It uses a simple tabu
list recording the number of iterations a variable remains tabu during the search.
A variable can be set tabu for a fixed number of iterations (denoted Tabu tenure
TT) but also with a random tenure. Each iteration can be considered as updating
a current solution denoted z, exploring a modified neighborhood Nj due to the tabu
considerations. Generally, x is chosen greedily when evaluating the objective function
over candidates x € N7.

For large problem instances, there exists an efficient evaluation technique for QUBO
solvers leveraging one-bit flip move [64]. Let A, = f(2’) — f(x) be a move value, that
is the effect in the objective of going to x’ from x. For one-bit flip moves, we denote
as A, (7) the move value upon flipping the i-th variable, which can be computed using
only the QUBO coefficients. The procedure records a data structure storing those
move values, which is updated after each TS iteration.

Initially, all variables can be flipped (line 5). At each iteration, the tabu solution x
is updated by flipping the variable that minimizes the objective over the neighborhood
obtained by one-bit flip moves over non-tabu variables (lines 6-8). If the new tabu
solution improves over the best-recorded solution, the aspiration is activated. In this
case, the tabu attribute of the flipped variable is removed. The tabu list is finally
updated (lines 18-23) and iterations continue until the stopping criterion is reached.
This can be either a maximum number of TS iterations and/or a maximum number of

TS iterations allowed without improvement of the best solution (improvement cutoff).

5.3.2 QAOA neighborhood sampling

In the usual TS algorithms, the neighborhood consists of candidates with Hamming
distance one relative to the current tabu solution z. We note that sometimes consider-
ing also neighbors that are at most k-Hamming distance away from x helps in finding

better solutions. The number k can be set in our case as large as the (limited) number
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5.3. Tabu-driven QAOA sampling

of available qubits in quantum hardware.

To study the exploration of such neighborhoods, a brute-force generation approach
is initially tested, and thereafter replaced by QAOA. As stated before, getting the op-
timum for subproblems in TS may lead to getting stuck during the search. QAOA,
by definition, is a flexible framework as an exploration-exploitation tool. On the one
hand, QAOA generates better solutions the deeper the circuit (p) , and the better the
classical optimization procedure within QAOA is. It is known it can have advantages
over various standard algorithms, e.g. Simulated and Quantum Annealing [186]. To
extract all advantages from the capacities of QAOA, we can further modulate the dis-
tribution of outputs it produces by limited depth or, as we present next, modifications
to the QAOA objective to prioritize a more local behavior. Such flexibility is impor-
tant, not only for the exploration-exploitation trade-off as it provides interesting ways
to fine-tune the algorithm depending on the instance to solve.

First, the choice of variables to run QAOA on needs to be addressed. Considering
the (],X ) possibilities would be intractable. Variables can be chosen randomly but
an approach incorporating one-bit flip move values can help in guiding toward an
optimum. The k variables can be chosen amongst the non-tabu ones at each step.
Plus, this means QAOA is an attempt at improving the solution one would get with the
one-bit flip strategy outlined previously. One can either select the k variables greedily
or add randomness by using the one-flip gains as weights for defining a probability
to be chosen. For simplification, we consider the greedy selection based on one-bit
flip move values. If we consider the chosen variables that were flipped, the update
step of the incremental evaluation strategy can be applied. Let | < k be the number
of different bits. The newly generated candidate can be considered as a result of [
sequential one-bit flips. Thus, [ calls to the above-mentioned efficient procedure are
required.

A second consideration concerns the tabu strategy for updating the tabu list. We
choose to set as tabu the variables amongst the k chosen ones that were flipped. Choos-
ing to flip all chosen ones could be problematic as it could lead to all variables being
tabu very early during TS. An aspiration criterion can be used if the new candidate
gives the best evaluation found during the search.

Finally, the question of how to run QAOA is of main importance. In our first
scenario, QAOA will be run as a proxy for brute-force (with exploration properties)
to optimize the subproblem defined over the k chosen variables. This is done by fixing
in the QUBO the non-chosen ones from the current tabu solution z. The depth p of

QAOA can be user-defined. In this work, we limit p to 2 to showcase sampling aspects
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Chapter 5. Tabu-driven quantum neighborhood samplers

of QAOA at small depths.

Our QAOA-featured TS is outlined in Alg. 2 where QAOA addition is indicated
in green shades. It starts with the same steps as with the standard Tabu search
algorithm until line 8. The QAOA part kicks in from line 9 by first choosing a subset
of k variables, and executing QAOA on the sub-QUBO problem where we optimize
over the chosen k variables while keeping the remaining bits the same with the current
point z. After obtaining the best point from QAOA (lines 11-13), we select the better

1-bit and use it

one from the QAOA outcome z*Pi* and the best one-bit flip point
to update the current search point. The move values are then updated by [ calls of
the fast incremental method (line 14). Finally, if the best-so-far point is improved by
the updated search point, we drop the accepted bit flips from the tabu list (line 21).
Otherwise, we reset their tabu value to the sum of tabu tenure and a random tenure

(line 23).

5.3.3 Enforcing locality with penalized QAOA

As a tool in local search algorithms, QAOA may be useful with modifications that
impose notions of locality. We incorporate these notions in the cost hamiltonian so
that they are captured during the QAOA evolution. This can be done through the
cost function by adding a penalty term. A possibility is to consider the Hamming

distance with a current tabu solution xz. Hence, the objective for QAOA becomes:
ming [f(2') + Adg (2, z)], (5.1)

where dy corresponds to the Hamming distance and A is a constant. The right-hand
side additive term of Eq. (5.1) aims to encourage the output of candidates that differ
by a few bits from the current solution if A > 0, and vice-versa. As a neighborhood
sampler, the penalty may help in enforcing locality. However, setting the parameter
A is non-trivial for activating the effect of the extra term.

There is also a possibility to add information about the fitness gain in differing
from z. If switching a bit is an improved move, it would be prioritized. Our algorithm
uses the one-bit flip move values A, in order to select the variables to run QAOA on,

from which we can construct a weighted penalty term:

—L N ALY (= 1) a. (5.2)

For a minimization problem, A, (j) < 0 characterizes encouraging flipping the j-th
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5.4. Tabu-driven QAOA sampling

Algorithm 2: QAOA-featured Tabu Search for solving QUBO.

Input: An initial solution zg, Cost function f(x)
Parameter : Tabu tenure TT, Random tabu tenure r'T'T, subproblem size k
Output: The best solution achieved z*
¥+ T+ 703
Tabu(i) + 0,A (i) < 0 for i € [1..N];
while stopping criterion not reached do
TP« 15
for i € [1.N]NTabu(i) = 0 do
xgl) 11—z, 29 1
one bit-flip gain: A, (i) = f(z) — f(z);

Il—bit

FOT- Y- BN R OO

— 2| j < argmin A, (i);

o]

9 Select greedily or randomly a subset of variables K C I s.t. |K| = k;
10 Get a new QUBO by fixing the N — k other variables in z;
11 Run QAOA and get the best sample & minimizing the new QUBO;

12 P« g, for i € I\K and zF""® « &, for i € K;
13 x < the better out of '™ and z*P;

14 Update move values A, (i) for ¢ € [1..N] N a™® # xy;
15 aspiration < False;

16 if f(z) < f(z*) then

17 L ¥ < x, aspiration < True;

18 Tabu(i) « Tabu(i) — 1 for ¢ € [1.N] N Tabu(i) > 0;
19 for j € [1.N]Na™ # z; do

20 if aspiration then

21 ‘ Tabu(j) + 0;

22 else

23 L Tabu(j) + TT + Random(r'TT);

variable in new candidates. For a candidate, in this case, A, (j) is added to the cost.
Conversely, A, (j) > 0 would result in penalizing candidates with the j-th bit value
flipped. One can also multiply by a positive constant A for enforcing more the locality
effects. The penalty translates in an additional operator term Hpenalty, following an

application of a usual cost operator in QAOA, where:
N . o
Hpenalty = _%Zj:1 Aw(])(_l)yjog (53)

The corresponding quantum circuit of depth one is very simple and given by
Q; Rz ((=1)"vAg (i), v € R.
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Chapter 5. Tabu-driven quantum neighborhood samplers

5.4 Simulations

We performed extensive simulations over instances of QUBO problems publicly avail-
able in the well-known OR-Library [65, 15, 16]. In designing them, our objectives are
1) investigating whether exploring larger neighborhoods can facilitate faster conver-
gence (in terms of TS iterations), 2) elucidating the effect of locality on QAOA output
given by the introduced penalty in Eq. (5.3), and 3) studying the utility of QAOA as

a proxy for brute-force.

5.4.1 Larger neighborhood exploration benefits

To study the first objective we replaced QAOA with brute-force search in Alg. 2.
Starting from the all-zero initial solution, we first run the basic TS with different
constant tabu tenures (rTT = 0). Then, we do the same with brute-force TS for
different values of k£ up to 20. We study two regimes that differ in how TS search
results, namely when k is not comparatively small to N on instances where N = 20,

and when it is on instances of 100, 200, and 500 variables.

k/N relatively large

In the first regime, we assume that we can explore a large percentage (more than 25%)
of the instance size greedily. As instances, we take the first eight instances of bgpgka
(named la-8a consisting of 30-100 variables), for which we solve by TS. Then we select
randomly 20 variables out of N and clamp values of the non-selected ones from the
solutions. We do so five times per instance, resulting in 40 instances of size 20. Then
TS with different k/N values for subproblems (0.9,0.75,0.5,0.25) were tried on this
suite. When using brute-force, we set 77" = 2 and tried many values for the basic TS.

Fig. 5.1 shows the proportion of (run, target value) pairs aggregated over all func-
tions for 10 targets generated by linear spacing using the benchmarking and profiling
tool IOHprofiler [49] for iterative optimization heuristics. The target values were nor-
malized by the optimum of the problems. We observed that for k/N > 0.5, these
instances are straightforward to solve (in 3 iterations). The case k = 5 required 8 it-
erations on one instance but managed to achieve optimality on all of them. However,
the basic TS, run for 20000 iterations, failed to solve the same instance. Letting this
instance aside, 5 iterations would be required for k = 5, and 22 for the classical TS
procedure. Hence, we clearly observe, as expected, degrading performances as k/N

decreases. This also enabled us to confirm numerically that a flip-gain-based approach
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when considering subproblems is in general beneficial for solving QUBOs.
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Figure 5.1: Empirical cumulative distribution function (ECDFs) of tabu iterations for each
algorithm aggregated over all 20-variable problems with 10 target values evenly spanning the
range of all observed function values.

k/N relatively small

In this regime, we study the case when k/N is relatively small (less than 20%). The
simulations are carried out on 15 QUBO instances from bgpgka: 100-variable (named
1d-5d), 200-variable (le-5e) and 500-variable problems (1f-5f). Algorithms are run
until the best objective value found in [65] is reached or a maximum number of TS
iterations is reached.

We run the algorithms with different 77" values ranging from 2 to 10 and adding
15, and for k = 10,15,20. We limit the number of iterations to 20000 for the basic
version and 1000 for the brute-force approach (200 for k£ = 20 though). Table 5.1 shows
for the different values of T'T" which ones achieved the best performances in terms of
target only. In these cases, we observe that we can find a k such that better solutions
are found using fewer iterations, especially on the densest instances 4f and 5f. These
instances, when considering the underlying graph given by the coefficients connecting
different variables, have a density of respectively 0.75 and 1 (a non-zero coefficient for
each pair of variables). For k = 20 the proposed approach achieved optimality where
the basic TS failed. Again, we observe performances, in terms of target achieved,

depending on setting well the tabu tenure in accordance with k. Intuitively, one could
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Chapter 5. Tabu-driven quantum neighborhood samplers

think that the larger k, the smaller TT has to be to save iterations and achieve a

better objective value. But we clearly observe counter-examples.

Table 5.1: Best values of tabu tenure (ranging from 2 to 10, adding 15) achieving the
optimum obtained with the first TS iteration(s) to reach the corresponding maximum
given in [65]. The best performances per instance are highlighted in bold. The mention
All means all TT values reached the same solution. The NA mention means no run
returns the optimum, with the best value obtained in parenthesis.

ALco. | 1p (6333) | 2D (6579) 3p (9261) | 4p (10727) | 5D (11626)
Basic 15 / 300 | AL / 71 <9 /90 | 2 /67 | 6 /171
k=10 | AL / 13 | >2 /61 6 /39 | 2 /31 | AL / 19
k=15 | AL / 10 | 245 / 26 ALL / 8 | 3 /18 | 5/ 42
k=20 | ALL / 7 | 5/ 37 ALL / 5 | ALL / 11 | 2/ 18
ALGo. | 1E (16464) [ 2 (23395) 3E (25243) | 4 (35594) [ 5 (35154)
Basic | 9/ 419 | 6/ 493 10 / 190 | 15 /170 | 6 /238
k=10 | 8 / 485 | 7/ 111 ALL / 21 | 6 /55 | AL / 25
k=15 | ALL / 13 | 6+7 /31 ALL /13 | 3 /41 | 2 /20

‘ a0 3/ 44 ‘3/25 ‘4/31

| |

|

|

|

| |
| |
| |
| |
| |
\ \
| |
| |
| |
k=20 ‘ 2 /35 NA (23370) / ‘
\ \

Alco. | 1r (61194) 3r (100161) 3r (138035) | 4r (172771) 5F (190507)
Basic | 8 / 970 7 /795 4/ 449 ‘ NA (ﬂig?"*) / ‘ NA (169407502) /
k=10 | 15 / 213 7 /337 15 / 77 ‘ NA (117120449) / ‘ NA (119206502) /
k=15 | 8 / 225 8 /173 15 / 139 ‘ NA (112734) / ‘ NA (139803502) /
k=20 | VA (%287) /| NA (110001158) /| a7 ‘ 4/ 57 ‘ 9 / 150

Larger k exploration, in this regime, turns out to not always be beneficial. This
seems counter-intuitive when considering a target objective only, on an instance-to-
instance basis comparison. Fig. 5.2 shows the proportion of (run, target value) pairs
aggregated over all functions for 1000 targets generated by linear spacing. The target
values were normalized by the optimum of the problems. Again, we observe that, with
larger k, the proportion of successes is higher, when measured at the same number
of iterations. Note that this can only be observed for k& = 20 up to 200 iterations.
The proportion for the basic TS was close to 0.9 while the brute-force approach was
superior to 0.99. Hence, we can reach very good solutions with fewer iterations as k

increases.

In summary, as opposed to the previous regime, the structure of the problems be-

comes very important and we have to look at performances in an aggregated way to
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5.4. Simulations

witness the benefits of exploring larger neighborhoods. Having outlined some perfor-
mances given by the brute-force approach on subproblems, we switch to QAOA and

study its sampling effect as a proxy.
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Figure 5.2: Empirical cumulative distribution function (ECDFs) of tabu iterations for each

algorithm aggregated over all dimensions, all problems, and 1000 target values evenly span-
ning the range of all observed function values.

5.4.2 QAOA as a proxy for brute-force

The second part of our simulations studies the output of QAOA as a proxy for brute-
force. To this end, we first study an example TS run from our previous simulations.
We take the subproblem QUBOs obtained at each step (except the first one), and run
QAOA at p =1 and 2, and we study the distribution of the energy given by |v, 8),
after optimization, with and without the penalty term.

Having outlined the properties of the QAOA output, we run Alg. 2 and study
its performances in comparison to the basic TS. From the optimized angles, we try
different sampling strategies to generate a candidate per iteration: just sampling once,
sampling 10 times and choosing a candidate greedily, and finally considering all samples
(even during optimization) greedily. The latter corresponds to a quasi brute-force (BF)
approach.
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Chapter 5. Tabu-driven quantum neighborhood samplers

Distribution of the energy
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Figure 5.3: QUBO evaluation distribution given by sampling 10° times from the QAOA
quantum state, and by running simulated annealing 1000 times (bottom), for the last
TS iteration done on instance le.

Energy distribution of QAOA

As a first step, we study how the QAOA output distribution looks like at small depth,
with the purpose of elucidating how it can help in avoiding detrimental greedy search
behavior. We consider, as an example, instance le for which k = 15,77 = 5 used 13
iterations greedily. The subproblem QUBOs are kept and we run QAOA on them as
previously stated. The third and last iterations are interesting when considering the
penalty term. The former is a case where the optimum is obtained by flipping all bits
except one and where all flip moves are favorable. The last iteration has flip moves
from the current tabu solution discouraging flipping all bits. Plus, very few candidates
(0.2%) improve over the tabu solution. For these iterations, we look at the quantum
state given by QAOA and analyze the distribution of the QUBO evaluation (or energy
in an Ising context).

Fig. 5.3 shows the distribution given by 10° samples from the last iteration’s quan-
tum state at p = 1 and 2. At p = 1, we observe a homogeneous spread with two
major humps on the left and right sides of the tabu solution evaluation. There is a
probability of 23.9% of improving from it by the quantum state. At p = 2, we see the
distribution is shifted to lower energies, yielding an improved probability of 75%. The
average energy is 16350 for QAOA p = 1 and 16428 for p = 2. Moreover, the standard
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5.4. Simulations

deviation of the output decreases from 79.2 to 42. This is expected as to the limit of
infinite depth, QAOA converges to the optimum with less variance.

When running simulated annealing 1000 times with a temperature of 17.5 using 100
steps, we observed that, unlike QAOA, the energy spread is restrained to a few points,
the optimum being most present. Decreasing slightly the temperature or the number of
steps would always yield the optimum. However, in terms of exploration opportunities,
QAOA could allow visiting different paths that may lead to fewer iterations required
towards improved solutions.

Theory shows that increasing the depth would permit QAOA to find the optimum
assuming optimal parameters are found. But by limiting the depth, we can control
how other good candidates are spread from the optimum. This could engender new
paths to solve a problem differently, where a suboptimal solution on a subproblem
leads to an easier one for QAOA towards better candidates. Note this can be done
in different ways. One way would be using brute-force and perturbating or mixing
the solution, which is not efficient. We could also have the same effect with simulated
annealing. But in many cases, we can fail to find the optimum and even less find
a bunch of candidates around it. Finally, due to its flexibility, QAOA permits in
leveraging modifications to introduce locality notions in a multiobjective scheme for

local search, such as the previously mentioned penalty. In the following, we study its
effect on the QAOA distribution.

Penalty effect

In section 5.3.3, we introduced a penalty term to impose notions of locality in QAOA
as a local search tool. An extra operator based on the hamiltonian given in Eq. (5.3),
translates to a circuit of depth one concatenated with a QAOA layer. We study its
effect on the QAOA distribution obtained on the resulting sub-qubos at the third and
last iteration.

On iteration 3, for both QAOA and its penalized version, the distribution tends
to output candidates with the largest Hamming distances to the current point as
expected. Also, the most likely candidate is the one that completely differs from the
current point, which is more favored by the penalty effect. No significant changes were
observed when penalizing at p = 2.

For the last iteration, Fig. 5.4 shows that the original QAOA at p = 1 results in
many probability peaks compared to the penalized version, which evolves to a major
peak with an increased depth. The penalized version demonstrates two major peaks,

from which the optimum and a close candidate to x are preferred.
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This characterizes the interplay between optimizing and penalizing. At p = 1, the
penalized version has a better probability of improving 2 (0.34 vs 0.239) and a higher
probability of finding the optimum (0.1 vs 0.02). However, the unpenalized p = 2
version was more likely to output the optimum (respectively 0.75 and 0.26, where the
penalty at p = 2 yields 0.62 and 0.26).

In summary, using the penalty creates a balance between the greedy approach
and the one-bit-flip gains knowledge from the current solution. This could result in
smoothening the distribution while favouring interesting candidates for both objec-
tives. This will modify the search path taken during TS depending on the outcome.
Having studied numerically the output of the quantum state one can get with QAOA,
and the penalty effect, we switch to less idealized simulations where the subproblems
depend on the QAOA output during the TS search.

depth 1 w/ penalty depth 1 w/o penalty

0.09 0.03

log(distance)

0.06 0.02

o
o
@

0.01

0 I
2 i o
£0.00 Mt 0.00
g depth 2 w/ penalty depth 2 w/o penalty
Q
o
o 1
0.2 0.2
0.1 . 0.1
. 0
00 oSt 00 it
-16400 -16300 -16200 -16100 -16000 -15900 -16400 -16300 -16200 -16100 -16000 -15900
Energy

Figure 5.4: Distribution of the evaluations (or energies) for the last iteration obtained on
instance le given by the QAOA output state, with and without the penalty term. A colormap
is given for the Hamming distance with the current tabu solution.

QAOA exploration possibilities

After looking at examples of QAOA output and outlining a few possible exploration
opportunities, we carried out a few extra simulations but not considering the subprob-

lems obtained with brute-force. Hence, QAOA (and its penalized version) was called
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Figure 5.5: Median of best normalized evaluations achieved over TS iterations for
instance 1d. The mentions D1, D2, mean respectively p = 1,2 and the penalized
version is indicated by «pen». A higher curve corresponds to better solutions reached.
At iteration 20, the basic TS value would be 0.38, while the lowest QAOA curve value
is 0.967. The m = 1000 runs and BF are over 0.99 starting at the 8th iteration. At
iteration 5, the penalized p = 2, m = 10 version is slightly better than the others, even
BF (0.9049 vs 0.9007). At the 6th, the m = 10 versions are above BF (respectively
0.9645 and 0.9578 for unpenalized and penalized p = 2, 0.9555 and 0.9470 for p = 1,
and 0.9409 for BF).

once per iteration with BIPOP-CMAES [145, 75| optimizing from one set of angles 2.
In the following, we give a few examples to illustrate the exploration possibilities.
We take instances where BF simulations required few iterations and where the
basic TS was beaten in target. Namely, instance 1d for £ = 15 and 7T = 5 and le for
k=15 and TT = 10. We run Alg. 2 for 10 times, limiting them to 20 TS iterations.
Different numbers of samples are used for generating a new candidate per iteration:
just once, 10 times, and 1000 times. The latter could be considered a quasi-brute-force

approach in these runs. We denote as m the number of samples used in the following.

2When using BIPOP-CMAES, we run circuits with 1000 measurements to estimate expectation
values. The optimizer stops when it has reached 2000 evaluations. We obtained great performances
in terms of averaged ratios (as the evaluations divided by the optimum of the subproblem), superior
to 0.97 at the considered depths.
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Figure 5.6: Median of best normalized evaluations achieved over TS iteration for
instance le. At iteration 20, the lowest QAOA curve value is 0.991 (while 0.19 for the
basic TS). The m = 1000 runs and BF are over 0.99 starting at the 11th iteration. At
iteration 7, the original p = 2 QAOA using 10 samples point is higher than the others,

even BF (0.7827 vs 0.7808). This also happens at iteration 12, with the penalized
p=2,m = 1000 (0.997085 vs 0.996902).

Fig. 5.6 and Fig. 5.5 show the median of the best normalized evaluation obtained
per run by iteration. We observe from iteration 7 for 1d and 10 for le that m = 1000
is equivalent (in median) to the BF generation. In general, the more samples used,
the better the solution found. However, we had at a few iterations median runs that
achieved higher values than BF. For instance, this happened for the penalized p = 2
QAOA at the 5th iteration with m = 10 for 1d and m = 1000 at the 12th for le.
We consider also the frequency of runs for which the basic TS was beaten, and the
optimum was found. Table 5.2 summarizes our results. Increasing m improves the
frequency of successful runs. We observe that new paths were found, mainly with
an extra iteration or two but exceptionally one run or two over 10 could save one
iteration. This was the case on instance le with 12 iterations instead of 13, exclusively
with the penalized version. These examples are numerically in favor of a greedy (or

quasi) approach to solving subproblems. However, QAOA allows, through a trade-off
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between exploration and exploitation, to discover new paths toward optimality that

are still interesting in terms of number of iterations.

Table 5.2: Frequency of successful runs in beating the basic TS and finding the optima for
instance 1d for k = 15 and T'T = 5, and instance le for k = 15 and TT = 10 (separated by
/), in terms of QAOA settings (with the number of measurements noted m). We report also
the number of iterations that led to the optimum.

QAOA ‘ m | FREQUENCY FREQUENCY ITERATIONS
BEATING T'S (/10) optiMUM (/10) TO OPTIMUM

D1 \ \ 0/0 \ 0/0 \

Dilren | 1 | 0/0 | 0/0 |

D2 \ \ 0/1 \ 0/1 \ / 14

D2pPEN | | 0/0 | 0/0 |

D1 \ \ 7/ 2 \ 1/2 \ 18 / 15,16

Dieen | 10 | 4/2 \ 0/2 \ / 15,15

D2 | | 5/1 | 2/1 | 11 /14

D2pPEN | \ 4/0 \ 1/0 \ 10 /

D1 \ \ 8 /7 \ 8 /7 \ 9,10,12 / 13

Dipen | 1000 | 8/5 | 8/5 | 10 / 12,13

D2 \ \ 9/9 \ 9/9 \ 10,11 / 13,14

D2peN | \ 10/ 7 \ 10 /7 \ 9,10 / 12,13

5.5 Conclusion and outlook

In this chapter, we studied sampling aspects when quantum approaches, specifically
the QAOA algorithm, are considered in combinatorial optimization. We considered
a practically relevant setting where a gate-based quantum algorithm, limited in the
number of qubits, is utilized in a hybrid quantum-classical framework to solve large op-
timization instances faster. Our framework constitutes a powerful yet simple heuristic,
Tabu Search, in tandem with QAOA as a local neighborhood sampler.

As a starting point, numerical experiments over open-source QUBO problems up to
500 variables validate using QAOA as a proxy to explore larger neighborhoods, under
the assumption that subproblems are solved optimally. Continuing, we investigated
the exploration possibilities given by QAOA output at small depth. User-defined pa-
rameters such as depth and number of measurements used to generate a candidate can
be increased to favor exploitation. In our examples, solving subproblems emphasizing

more on the latter gave better general performances. Yet, we found that exploration
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can be beneficial. Iterations can be saved with our QAOA procedure, illustrating
that missing to generate the solution of a subproblem in previous iterations could
yield faster paths towards better solutions. Hence, the QAOA-based algorithm we
introduce in this work becomes a very flexible tool in such hybrid quantum-classical
settings.

We see numerous possibilities for future work. First, our model allows for many
hyperparameters whose function needs to be explored, and, as is usually done in many
local search methods, the exploration/exploitation trade-offs can be made online-
adaptive. Second, the effect of real-world limitations, most importantly noise, and
hardware connectivity, calls for further investigation. Although QAOA can be run
on real hardware [79, 201], its output quality will improve as the quantum devices
decrease in error. Angle-setting strategies such as the ones studied in chapter 4 could
be incorporated to reduce the runtime. Finally, it would be interesting to propose
different frameworks (e.g. [147, 148, 67, 120]) with special emphasis on the exploration
possibilities given by small-depth quantum algorithms, and cross-compare with stan-
dard techniques in future works. We believe our approach combined with these types
of analyses will provide new promising ways to maximize the use of limited near-term

quantum computing architectures for real-world and industrial optimization problems.
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