
Algorithm selection and configuration for Noisy Intermediate
Scale Quantum methods for industrial applications
Moussa, C.

Citation
Moussa, C. (2023, October 11). Algorithm selection and configuration for Noisy
Intermediate Scale Quantum methods for industrial applications. Retrieved from
https://hdl.handle.net/1887/3643423

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3643423

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3643423

Chapter 2

Background

This chapter serves as a brief introduction to the basic concepts in quantum comput-
ing with the gate-based model of computation. We continue by presenting the general
workflow of variational quantum algorithms (VQAs). Finally, we present three do-
mains of applications of these algorithms relevant to the energy sector: chemistry,
combinatorial optimization, and machine learning. The aim of this chapter is to fa-
miliarize the reader with the necessary background, especially on VQA applications,
but not to offer an exhaustive overview. Such VQAs and their specificities for appli-
cations are then studied in the next chapters of this thesis.

2.1 Quantum computing basics: the gate-based

model

In contrast to classical computing which operates by manipulating bits, computation
is carried out by the manipulation of quantum bits or qubits. A quantum computer
is made of physical systems acting as qubits. Just like a bit, a qubit is an abstraction
and can be any quantum object which has two states such as an electron or a photon.
A classical bit has two distinct configurations or states representing values 0 and 1. A
qubit can be in two states representing 0 and 1 values but differ from classical bits by
its possibility to be in a superposition of those two states. The state of a qubit can
change by applying quantum operations which will constitute quantum computation.
In the conventional Copenhagen interpretation of quantum mechanics [59], by applying
a measurement operation, a superposition state collapses to states representing for

5

2.1. Quantum computing basics: the gate-based model

instance the classical 0 and 1 values. Hence, we can obtain either 0 or 1 with their
respective probabilities p0, p1 summing to 1.

The framework of quantum mechanics provides a mathematical and conceptual
formulation for the description of quantum systems. The framework is expressed in the
language of linear algebra and comes with postulates, providing a fundamental theory
to study such systems. Firstly, we will enumerate the four postulates as presented
in [143] and provide along more explanations. We then connect them to the so-called
gate-based model, a representation of computation in a quantum computer.

2.1.1 Postulates of quantum mechanics

The first postulate, the state vector representation, is as follows:

Postulate 1. Associated to any isolated physical system is a complex vector space
with an inner product (that is, a Hilbert space) known as the state space of the system.
The system is completely described by its state vector, which is a unit vector in the
system’s state space.

From this postulate, we understand that we can represent the state of a qubit (the
isolated physical system) by a 2-dimensional complex vector with two components,
c0 ∈ C and c1 ∈ C, subject to the constraint |c0|2 + |c1|2 = 1. This can be generalized
to a system of n qubits, represented by a 2n-dimensional complex vector in the Hilbert
space H = C2n . Hence, the description of such systems on classical computers grows
exponentially with the number of qubits.

In quantum computing, the bra-ket notation/convention is used. The vector
describing the state of the system is denoted |ψ⟩ ∈ H, their conjugate transpose
⟨ψ| = |ψ⟩† and inner-products ⟨ψ|ψ′⟩ in H, and is of unit norm ⟨ψ|ψ⟩ = 1. Such a
state can change with time, leading to the second postulate describing this evolution:

Postulate 2. The evolution of a closed quantum system is described by a unitary
transformation. That is, the state of the system at time t1 is related to the state |ψ⟩
of the system at time t2 by a unitary operator U which depends only on the times t1
and t2, |ψ⟩′ = U |ψ⟩.

Note that closed quantum system here refers to no interaction of the quantum
system with other systems. The quantum state is modified with unitary operations U
acting on H. This change can be also thought of as the realization of computation in
a quantum computer. We will see in the next subsection that such a computation can
be represented by a quantum circuit.

6

Chapter 2. Background

Eventually, a quantum system can be observed or measured (by action or interac-
tion of an experimentalist and/or experimental equipment), making them no longer
closed. We previously mentioned that states collapse and this leads to the third pos-
tulate on measurement :

Postulate 3. Quantum measurements are described by a collection of measurement
operators {Pm}. These are linear operators acting on the state space of the system be-
ing measured. The index m refers to the measurement outcomes that may occur in the
experiment. If the state of the quantum system is |ψ⟩ immediately before the measure-
ment then the probability that result m occurs is given by p(m) = pm = ⟨ψ|P †

mPm |ψ⟩.
The measurement operators satisfy the completeness equation:

∑
m P

†
mPm = I.

This postulate can also be rewritten with a special case of measurements known as
projective measurements as they are orthogonal projectors, i.e. {Pm} are Hermitian
and Pm′Pm = δm,m′Pm where δm,m′ = 1 if m = m′ and 0 otherwise. A projec-
tive measurement is described by a Hermitian operator O called an observable. Its
spectral decomposition O =

∑
m λmPm in terms of eigenvalues λm and orthogonal

projections Pm defines the outcomes of this measurement: a measured state |ψ⟩ gives
the outcome λm and gets projected onto the state Pm |ψ⟩ /

√
p(m) with probability

p(m) = ⟨ψ|Pm |ψ⟩ = ⟨Pm⟩ψ. The expectation value of the observable O with respect
to |ψ⟩ is Eψ[O] =

∑
m p(m)λm = ⟨O⟩ψ.

As mentioned above, for a qubit, a measurement operation changes its state to
states representing the classical m = 0 and m = 1 values. The probabilities of the 0, 1

outcomes are obtained by using the square of the amplitude on the components of the
state vector when the state is expressed in the eigenbasis of the observable. Hence,
for |ψ⟩ =

(
c0
c1

)
, we get p0 = |c0|2 and p1 = |c1|2. The special cases |0⟩ = (1, 0)T , |1⟩ =

(0, 1)T (T denotes the complex conjugate transpose for real numbers) are called the
computational basis states of the qubit state and correspond to obtaining the 0, 1

outcome with probability 1.
For systems made up of n qubits, the possible outcome by measurement (with

respect to the computational basis) is then one of the 2n possible bitstring values.
Such composite quantum systems made up of n ≥ 2 distinct physical systems are
described by the last postulate:

Postulate 4. The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. In particular, if we have systems
numbered 1 through n, and system number i is prepared in the state |ψi⟩, then the joint
state of the total system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

7

2.1. Quantum computing basics: the gate-based model

Hence, when dealing with many qubits, the state of the system is obtained by the
tensor product of the state of each individual qubit, The tensor product of single-qubit
computational basis states (given by |0⟩ = (1, 0)T , |1⟩ = (0, 1)T) describes general
computational basis states, e.g., |10⟩ = |1⟩ ⊗ |0⟩ = (0, 0, 1, 0)T . Hence, each of the 2n

possible bitstring values is associated with a basis state.
We refer to [143] for more basic concepts of quantum computing and introduce the

gate-based model of computation in the next subsection.

2.1.2 Quantum circuits

Similar to classical circuits used for classical computing, one model of computation
used to describe quantum computation is the model of quantum circuits (see Fig. 2.1
for an example). Considering a system of n qubits (represented by wires in Fig. 2.1),
unitary operations referred to as quantum gates are applied to the system, making the
circuit a unitary operation. Mathematically, the new state is obtained with U |ψ⟩ (as
seen with the third postulate on evolution) where U is the unitary operation associated
with the circuit. When a circuit U acts non-trivially only on a subset S ⊆ [n] of qubits
where [n] = {1, · · · , n}, we denote such operation U ⊗ 1[n]\S .

Common gates applied on a single qubit include the Hadamard gate H, the single-
qubit Pauli gates X,Z, Y , and their associated rotations RX , RY , RZ :

H =
1√
2

(
1 1

1 −1

)
, Z =

(
1 0

0 −1

)
, RZ(w) = exp

(
−iw

2
Z
)
,

Y =

(
0 −i
i 0

)
, RY (w) = exp

(
−iw

2
Y
)
, X =

(
0 1

1 0

)
, RX(w) = exp

(
−iw

2
X
)
,

(2.1)

The rotation angles are denoted w ∈ R. We also have gates acting on 2 qubits such
as the 2-qubit controlled-Z gate = diag(1, 1, 1,−1) and the CNOT gate given by the
matrix

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.2)

Measurements specified by observables are carried out at the end of a quantum
circuit to obtain bitstrings.

It is worth mentioning that any quantum computation can be expressed exactly
by a quantum circuit using only single-qubit and two-qubit gates (in particular the

8

Chapter 2. Background

|0⟩ RX(θ01) • • RY (θ
1
1) RZ(θ

1
2)

|0⟩ RX(θ02) • • RY (θ
2
1) RZ(θ

2
2)

|0⟩ RX(θ03) • • RY (θ
3
1) RZ(θ

3
2)

|0⟩ RX(θ04) • • RY (θ
4
1) RZ(θ

4
2)

Figure 2.1: An example of quantum circuit with 4 qubits. Rotations are applied with
arbitrary angles denoted by θ symbols. A layer of RX rotations is first applied, followed
by controlled-Z gates and RY , RZ rotations. Finally, measurements are carried out to
get a bitstring as an outcome.

CNOT or any entangling gate). We again refer to [143] for more details.

There exist many physical systems for designing quantum computers (supercon-
ducting, ion traps, neutral atoms...). However, they are very limited as their con-
structions do not scale well (in terms of the number of qubits) and the computation
is heavily affected by (environmental) noise. Hence we do not have perfect (fault-
tolerant, unaffected by noise) quantum computers. Thus, running large quantum
circuits is impractical as, due to the increased effect of noise the longer the circuit and
the greater the number of qubits, the calculations become less accurate and reliable
up to the point of being useless. Hence, to tackle applications in the NISQ era, ap-
proaches based on parameterized quantum circuits were proposed, which can be used
to construct resource-limited quantum computation, and are at the heart of many
research studies.

2.2 Parameterized quantum circuits - Variational

quantum algorithms

A parameterized quantum circuit (PQC - also called an ansatz) [18] is a quantum
circuit with adjustable real-valued parameters θ. The latter is denoted by a unitary
U(θ) that acts on a fixed n-qubit state (e.g., |0⊗n⟩). The ansatz can be problem
dependent, or generic (problem-independent). Hardware-efficient Ansätze [96] are
examples of the latter and the corresponding circuit can be made shallow enough
to run on limited hardware. PQCs have been widely used to tackle applications in
different fields such as chemistry [134], optimization [57], and machine learning [18].

9

2.2. Parameterized quantum circuits - Variational quantum algorithms

PQCs can be trained or optimized to tackle a problem of interest by specifying
a cost function. The optimization of the parameters within a PQC is generally done
within a loop of calls between a classical optimization algorithm and the quantum
computer. The output from a quantum circuit is processed by the classical optimiza-
tion algorithm. The latter then proposes new parameters, defining a new quantum
circuit. The optimization loop is carried out until a set of stopping criteria is met
(maximum number of calls exceeded, time-out, etc). Such a hybrid quantum-classical
procedure is common in research motivated by the near-term constraints of current
quantum computers in the NISQ era [156]. The general term used in the quantum
computing community of such hybrid approaches is variational quantum algorithms
(VQA). Fig. 2.2 illustrates such a workflow.

Figure 2.2: Diagram of a variational quantum algorithm. The user submits the algo-
rithm where a quantum computer and a classical one work together. The user defines
a quantum circuit with a set of parameters θdf , f = 1 · · · 8, d = 1 · · ·D. The dashed
part corresponds to repeating the quantum operation a user-specified D times with
different parameter values. Outcomes are retrieved from running a quantum circuit on
a quantum computer. The outcomes are then converted into cost evaluation(s) and/or
gradients. Such information is then used by an optimizer to get new parameters. The
procedure is then repeated until convergence.

VQAs can be adapted to tackle different problems of interest in various domains or

10

Chapter 2. Background

industries. In the next section, we will review several examples of VQA applications in
each of the previously-mentioned domains of chemistry, combinatorial optimization,
and machine learning.

2.3 Ground state problems in quantum chemistry

In quantum computing, one of the problems from the chemistry domain is to prepare
the ground state of a given molecule. The latter is specified by a molecular Hamiltonian
denoted O and the task boils down to finding a PQC and its associated parameters
approximating the ground state. The latter is a state vector that represents the most
stable configuration of the system - the lowest energy state. Algorithms that find
this ground state energy using variational approaches are called variational quantum
eigensolvers (VQEs) [134]. The VQE approach has been applied to problems in the
energy sector. For instance, at TotalEnergies, the problem of CO2 adsorption in Al-
fumarate metal-organic frameworks was tackled with such an approach [71].

The unitary representation of the PQC where the parameters θ ∈ [0, 2π]d will be
modified in the process of the VQE algorithm. Starting from an initial state |Φ⟩, we
get the final state |Ψ(θ)⟩ = U(θ) |Φ⟩. The cost function to optimize is then:

C(θ) = ⟨O⟩ = ⟨Ψ(θ)|O|Ψ(θ)⟩.

By the variational principle, such cost is assured to always be greater than or
equal to the ground state energy for all parameter values. In order to measure the
expectation value of O on a quantum computer, it is typical to write O as a linear com-
bination of easy-to-measure operators, i.e., the Pauli operators P̂i ∈ {I, X, Y, Z}⊗N ,
which is always possible thanks to mappings from fermionic to qubit systems such as
Jordan-Wigner’s [144, 115]. By linearity of the expectation operator, we get:

O =
∑
i

ciP̂i =⇒ C(θ) = ⟨O⟩ =
∑
i

ci⟨P̂i⟩. (2.3)

The same VQA workflow illustrated in Fig. 2.2 applies to VQE. The only difference
is that many circuits may be run to evaluate the cost C(θ) (at most the number of
Pauli-based operators to measure). Indeed, each Pauli-based operator P̂i may require
measuring the circuit differently (as with a different basis or projection), which is
typically done by adding an extra layer of gates before measurement. The weighted
sum of each expectation value is then computed.

11

2.4. Combinatorial Optimization

One of the main research directions of VQEs is the performance and suitability of
the classical optimizer for such tasks. Given that we estimate the cost value by many
measurements, the question of the accuracy an optimizer can achieve arises. As part
of the research reported in this thesis, we tackled these directions of benchmarking
different optimizers for the task of finding the approximate ground-state energy of
several chemistry and material science problems.

2.4 Combinatorial Optimization

In this section, we give the necessary background on another application of quantum
computing: combinatorial optimization (CO). Firstly, we present an important formu-
lation of CO problems when tackling them with a quantum computer. Then, we give
a few examples of CO problems having industrial applications. Finally, we present a
well-known VQA designed to tackle CO problems.

In CO, we optimize an objective function defined over discrete variables. Many
combinatorial optimization problems can be expressed by a quadratic unconstrained
binary optimization (QUBO) formulation [106, 204]. It is specified by the optimization
problem minx∈{0,1}n

∑
i≤j xiQijxj where n is the dimensionality of the problem and

Q ∈ Rn×n. This formulation is connected to the task of finding configurations of
binary labels {1,−1} (also called ground states) minimizing the energy of spin or
Ising Hamiltonians, commonly tackled in statistical physics and quantum computing,
i.e.:

mins∈{−1,1}n

∑
i hisi +

∑
j>i Jijsisj , (2.4)

where hi ∈ R are the biases and Jij ∈ R the interactions between spins. The so-
lutions from Ising to QUBO are connected by a linear transformation: xi = 1+si

2 .
Many industrial applications have been tackled using this formulation on quantum
hardware [204].

Let us mention a few examples of CO problems falling under the QUBO formulation
and which have numerous applications to industrial problems. A well-known example
is the traveling salesperson problem (TSP): given N different cities and their distances,
find the shortest possible path that visits each city exactly once. For the energy sector,
we can take as an example of TSP application the optimization of delivery routes.
The MaxCut problem is another one, with applications such as network design or
data clustering [155]. Consider a graph G over a vertex set V , and edge set E, with

12

Chapter 2. Background

N vertices. The problem is to find a subset S ⊂ V such that the number of edges
between S and V \ S is maximized. The set of edges between S and V \ S is called a
cut, and we will denote the size of the maximal cut with Cmax. The problem naturally
extends to weighted graphs, where the objective is to maximize the total weight of the
edges of the cut. Note that it is also possible to reformulate a QUBO of n variables
into a weighted MaxCut of n+1 variables. Finally, in graph coloring, we aim to color
a given graph such that no two adjacent vertices are of the same color. As an example
of an application, we can mention timetable/resource scheduling. All the previous
problems are NP-complete, and thus mutually reducible.

In terms of quantum algorithms, one approach stands out using the gate-based
model to tackle CO problems: the Quantum Approximate Optimization Algorithm
(QAOA) [57]. It constitutes one of the often-mentioned candidates expected to yield a
quantum boost in the era of near-term quantum computing [58]. Firstly, the classical
cost function given in Eq. 2.4 is encoded in a quantum Hamiltonian defined on N

qubits by replacing each variable si in Eq. 2.4 by the single-qubit operator σzi (which
has the same matrix representation as the Z gate in Eq.2.1 but we write so to maintain
consistency with standard notation in different literature), for example:

HC =
∑
i hiσ

z
i +

∑
j>i Jijσ

z
i σ

z
j . (2.5)

Here, HC corresponds to the target Hamiltonian, and any bitstring corresponding
to the ground state of HC also minimizes the cost function. Secondly, a so-called
mixer Hamiltonian HB =

∑N
j=1 σ

x
j is used during the procedure. σxj is the same

operator as the X gate in Eq.2.1. These Hamiltonians are then used to build a layer
of a quantum circuit with real parameters 1. This circuit is initialized in the |+⟩⊗N

state, corresponding to all bitstrings in superposition with equal probability of being
measured. Then, applying the layer p times sequentially yields the following quantum
state:

|γ, β⟩ = e−iβpHBe−iγpHC · · · e−iβ1HBe−iγ1HC |+⟩⊗N ,

defined by 2p real parameters γi, βi, i = 1...p or QAOA angles as they correspond
to angles of parameterized quantum gates. An example of depth 1 QAOA circuit is
provided in Fig. 2.3. The output state corresponds to a probability distribution over
all possible bitstrings. The classical optimization challenge of QAOA is to identify the
sequence of parameters γ and β so as to minimize the expected value of the cost func-

1As Hamiltonians HB , HC are Hermitian operators, e−iHB and e−iHC are unitary operators and
can be converted into circuits.

13

2.5. Machine Learning

0 H • • • • • • RX(β1)

1 H RZ(γ1) • • • • RX(β1)

2 H RZ(γ1) RZ(γ1) • • RX(β1)

3 H RZ(γ1) RZ(γ1) RZ(γ1) RX(β1)

Figure 2.3: An example of QAOA circuit for MaxCut on a graph with 4 nodes. Here
p = 1, corresponding to 2 parameters γ1, β1. The register of qubits is initialized as
the |0⟩⊗N state. The first operation, the Hadamard transform, will prepare the state
|+⟩⊗N . Then the unitary e−iγ1HC is decomposed into CNOT and RZ gates. All
possible edges of the graph are represented in the circuit with the presence of two
CNOT gates and one RZ gates. Finally, the mixer e−iβ1HB is translated as a layer of
RX rotations.

tion from the measurement outcome. It is known that, in the limit of infinite depth,
for optimal angles, the distribution of bitstrings will converge to the optimum [57].

While QAOA is an interesting candidate for tackling CO problems, several issues
remain and we address a few in this thesis. Firstly, QAOA will have to compete
with classical counterparts and we will face an algorithm selection issue, which we
address in Chapter 3. Secondly, the quality of its output depends on procedures to
set the values of the QAOA angles. In Chapter 4, we design and study different
unsupervised learning approaches for setting these parameters without optimization.
Finally, QAOA faces many practical challenges considering (some of the) limitations
of real devices, which severely limits the size of problems we can tackle with it. In
Chapter 5, we present a combination of QAOA with a classical heuristic, namely tabu
search, allowing us to tackle larger problems than the number of qubits would allow
running only QAOA.

2.5 Machine Learning

In 1959, the American pioneer in the field of computer gaming and artificial intelligence
Arthur Lee Samuel published a paper [165] popularizing the term machine learning

14

Chapter 2. Background

(ML), defined as the field of study that gives computers the capacity to solve prob-
lems without being explicitly programmed. The definition of learning can be taken
from [132]: “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.” Hence, a machine learning algorithm
uses experiences and (raw) data to improve its performance. ML has been applied
to many fields/industries in order to extract actionable information from raw data.
Such is the case in the energy sector. At TotalEnergies, ML has been applied to solve
partial differential equations more efficiently [2], detect oil slicks (a film or layer of oil
floating on an expanse of water) from satellite images [3], and model the injection of
CO2 in porous media [54].

Using quantum computing techniques for ML (or conversely ML for quantum) is
a simple description of the field of quantum machine learning (QML) [21, 173]. In
QML, PQCs can be used as ML models [18, 172, 45, 1, 141], allowing to tackle ML ap-
plications on near-term quantum computers. From Section 2.2, one understands that
the VQA workflow with a PQC as a ML model resembles training a neural network
(the optimizer can be a gradient descent method, commonly used in ML). Hence, they
have also been named quantum neural networks (QNNs). The applications concerned
mainly classical data but also quantum data. For instance, quantum experiments can
produce interesting sets of quantum states to be used as datasets for machine learning
tasks [90, 91]. QNNs have been used to tackle regression [130], classification [83], gen-
erative adversarial learning [208], and reinforcement learning tasks [94, 180]. Quantum
models can exhibit clear potential in special datasets where we have theoretically prov-
able separations with classical models [94, 117, 163, 188]. In this thesis, two chapters
will treat different benchmarking studies, one with classical data and another with
datasets of quantum states.

Let us explain more about the inner workings of QNNs. In the case of classical data,
an input data instance x ∈ Rd is passed into a part of the PQC: the data encoding part
(e.g. as the angles of a layer of rotations). We also have a parameterized part specified
by a trainable vector θ, following the encoding part. Many circuit architectures exist
but hardware-efficient PQCs [97] with an alternating-layered architecture are often
considered in QML when no information on the structure of the data is provided [157].

This architecture is depicted in an example presented in Fig. 2.4 and essentially
consists of an alternation of encoding unitaries Uenc and variational unitaries Uvar. In
the example, Uenc is composed of single-qubit rotations RX , and Uvar of single-qubit
rotations Rz, Ry and entangling Ctrl-Z gates, represented as in Fig. 2.4, forming the

15

2.5. Machine Learning

entangling part of the circuit denoted Uent. The same circuit architecture can be used
for quantum data coming as quantum states.

Finally, the user can define the observable(s) and the post-processing method to
convert the circuit outputs into predictions (e.g. a probability of belonging to a certain
class or a real value for a quantity of interest related to the ML task). Commonly,
observables based on the single-qubit Z operator are used. When applied on m ≤ n

qubits, the observable is represented by a 2m− 1 square diagonal matrix with {−1, 1}
values and is denoted O = Z ⊗ Z ⊗ · · · ⊗ Z. The predictions will be used to evaluate
a cost or loss function to train the model via an optimization algorithm.

|0⟩ RX(x1) • • RY (θ
1
1) RZ(θ

1
2) RX(x1) • • RY (θ

1
3) RZ(θ

1
4)

|0⟩ RX(x2) • • RY (θ
2
1) RZ(θ

2
2) RX(x2) • • RY (θ

2
3) RZ(θ

2
4)

|0⟩ RX(x3) • • RY (θ
3
1) RZ(θ

3
2) RX(x3) • • RY (θ

3
3) RZ(θ

3
4)

|0⟩ RX(x4) • • RY (θ
4
1) RZ(θ

4
2) RX(x4) • • RY (θ

4
3) RZ(θ

4
4)

Figure 2.4: Parameterized quantum circuit architecture example with 4 qubits and
ring connectivity (qubit 1 is connected to 2, 2 to 3, 3 to 4, and 4 to 1 makes a ring).
The first layer of RX is the encoding layer Uenc, taking a data instance x ∈ R4 as input.
The entangling part with Ctrl-Z gates follows it. Finally, a variational layer Uvar is
applied. Eventually, we perform measurements. The dashed part can be repeated
many times to increase the expressive power of the model. The encoding layer Uenc
can also be repeated, a technique known as data reuploading [151]. Here we show an
example of both repeated twice.

However, QNNs face various sorts of trainability issues such as exponentially van-
ishing gradients, known as barren plateaus [125, 42, 87, 88, 176, 122, 190, 9, 153], as
well as the prevalence of local minima [23, 7], which can impact the complexity of
the training process. Quantum hardware noise also impacts trainability [197, 184].
Finally, applications can require a large measurement-count overhead due to the large
datasets involved. Hence, QNNs require tailored optimization procedures to address
such trainability issues. Chapter 8 of this thesis is dedicated to the design of a re-
source frugal optimizer for QML applications. We benchmark it against state-of-art
optimizers and apply it on a few datasets of quantum states.

Another costly procedure is hyperparameter optimization, given that many ways
exist to design quantum circuits for ML tasks. A user can tweak many hyperparame-

16

Chapter 2. Background

ters of a QNN, affecting its performance. For instance, the parameterized layer can be
repeated multiple times, which increases its expressive power (the ability to approxi-
mate a wider range of functions) [179]. The data encoding strategy (such as reusing
the encoding layer multiple times in the circuit - a strategy called data reuploading)
also influences their expressive power [151, 174]. However, there is currently limited
intuition as to which hyperparameters are important to optimize and which are not for
their predictive performance. Such insights can lead to much more efficient hyperpa-
rameter optimization [31, 60, 133]. This research question is addressed in Chapter 7,
where we apply QNNs on a few open-source classical datasets.

17

2.5. Machine Learning

18

