
Numerical exploration of statistical physics
Bukva, A.

Citation
Bukva, A. (2023, October 10). Numerical exploration of statistical physics.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3643232
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/3643232
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3643232


Summary

Advancements in computing hardware are usually followed by emerging applica-

tions trying to utilize the new hardware to the maximum. These advances also find

their way into science, where they help us push the boundaries of what has been

possible so far.

At the beginning of the thesis, in Chapter 2, we contrast the current consensus an-

swer about thermalization in closed quantum systems, the eigenstate thermaliza-

tion hypothesis (ETH), with a recently discovered operator thermalization hypothe-

sis (OTH) by studying thermalization dynamics in closed unitary quantum systems.

We showed how the two are different and yet similar in some regards. No-go condi-

tions imposed by the operator thermalization hypothesis are a feature of the integra-

bility of the theory, and just a slight move away from it would make matrix elements

approach their ETH form. Solving these big eigen problems required the firepower

of the local computing grid at Leiden University.

One of the most ubiquitous numerical methods in science is Monte Carlo simula-

tion, initially developed by Stanisław Ulam while working on nuclear weapons at Los

Alamos National Laboratory. The main idea of Monte Carlo is to randomly sample

the values of an integrand to compute the approximate value of an integral, revo-

lutionized science and modern-day computing. In Chapter 3, we turn to the lattice

gauge theory. Building on the foundations set by Wegner in his realization of the

pure Z2 gauge theory and expanding the work of Fradkin and Shenker, we construct

Z2 gauge theory coupled to the several matter fields. Even though they are non-

interacting, these matter fields lead to exciting phenomena when gauged through

the same gauge field. Namely, a new “registry” order in the Higgs phase has emerged,

meaning that locally different copies of matter fields align their vectors in a parallel

and anti-parallel fashion, even in the case of continuous O(2) symmetry of matter

fields. Running Monte Carlo simulations for bigger 3D lattice sizes, we have discov-

ered some exciting characteristics of phase transitions previously obscured by the

finite-size effects.

In recent years we have witnessed an overwhelming development of machine-

learning techniques inspired by the new generations of graphic cards. The indus-

try predominantly led the research of new applications; nevertheless, these new

and exciting applications have found their way into science, especially physics. One
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method, named neural quantum states (NQS), considers using a neural network to

represent a quantum state of highly entangled systems. A particular architecture of

neural networks called Restricted Boltzmann machines (RBM) is very well situated

for the task, partially because it includes non-local correlation by design. In Chapter

4, we explore the entanglement entropy and its scaling of the same gauge theories

from Chapter 3, now expressed as a 2D quantum theory in one lower dimension. We

find that the expected linear relation between the total number of matter fields and

entanglement entropy is not present.

In the same way, that physics has embraced applications of machine learning, it also

can be used the other way around, to justify some of its successes and further im-

prove upon them. Following this mantra in Chapter 5 we apply the insights from

statistical physics to study the computational mechanics of deep neural networks.

Precisely how the initial parameter distribution for the weights and biases can lead

to two different phase regimes of the network and how choosing the optimal point in

this phase diagram can make the final accuracy of the network change given equal

training time. We find that initializing weights and biases along the line of phase

transition is necessary but not sufficient condition for optimal trainability.


