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Criticality versus Uniformity in

Deep Neural Networks

Attribution
This paper has been previously published as a preprint on arXiv and has been sub-

mitted to Journal of Machine Learning Research for publications, and it is currently

under the editorial review, under the title Criticality versus uniformity in deep neu-
ral networks, together with Jurriaan de Gier, Kevin T. Grosvenor, Ro Jefferson, Koen-

raad Schalm and Eliot Schwander.[82]

Abstract
Deep feedforward networks initialized along the edge of chaos exhibit exponentially

superior training ability as quantified by maximum trainable depth. In this work,

we explore the effect of saturation of the tanh activation function along the edge of

chaos. In particular, we determine the line of uniformity in phase space along which

the post-activation distribution has maximum entropy. This line intersects the edge

of chaos, and indicates the regime beyond which saturation of the activation func-

tion begins to impede training efficiency. Our results suggest that initialization along

the edge of chaos is a necessary but not sufficient condition for optimal trainability.
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5.1. Introduction
Over the past decade or so, deep learning has emerged as one of the most powerful

tools for processing and analyzing data, and has proven successful on an increasingly

wide range of computational challenges. These remarkable feats include highly ac-

curate image classification [83], advanced generative modelling of images [84], nat-

ural language processing [85], accurate protein structure predictions [86], and best-

ing humans in a wide range of games [87]. Key to these neural networks’ success is

the extremely large number of parameters—generally speaking, the expressivity of a

neural network increases with depth [88]. Expressivity refers to the range of func-

tions that a network can approximate, with the network being understood as simply

a function from the space of inputs to the space of outputs. However, the price we

must pay for larger and more powerful networks is that they are more difficult to

train; for example, the risk of vanishing or exploding gradients is exacerbated with

depth [89]. Hence, an improved understanding of how the network parameters im-

pact trainability is highly valuable, as even small improvements in the initialization

of deep neural networks can make intractable problems tractable.

In this work, we study trainability in deep random feedforward neural networks.

Such networks are frequently used in the literature due to their analytical tractabil-

ity: the phase space is two-dimensional and parameterized by the variances of the

initial weight and bias distributions: σ2
w andσ2

b .1 This makes them useful models for

investigating general features of deep networks. In particular, we will be concerned

with the behavior of the pre- and post-activations, in terms of both their distribu-

tions as well as the accuracy of the network on a classic image classification task,

namely MNIST (numerical digit recognition) and CIFAR-10 (colored images, which

we convert to grayscale).

More specifically, we build on previous work [14, 15] which demonstrated the pres-

ence of an order-to-chaos phase transition in this class of deep networks. Intui-

tively, correlations in the input that we wish to learn are exponentially suppressed

with depth in the ordered (analogously, low-temperature) phase, and washed-out by

noise in the chaotic (high-temperature) phase; these two phases are characterized

by vanishing or exploding gradients, respectively. The boundary between these two

phases is a critical line called the edge of chaos,2 which is a continuous phase transi-

tion characterized by a diverging correlation length ξ for the layer-to-layer two-point

function of the neurons. Since the correlation length sets the depth scale at which

information can propagate, this theoretically enables networks of arbitrary depth to

be trained at criticality (more generally, networks are trainable provided their depth

1As is standard in the literature, we restrict to zero-mean networks, as initializing with a small non-zero
mean does not qualitatively change our results.

2Technically, this should be called the edge of stability, but we will use edge of chaos synonymously with
criticality for consistency with the literature.
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does not exceed the scale set by ξ). In other words, the deeper the network, the closer

one must lie to the edge of chaos; this was demonstrated in [15] along a slice of pa-

rameter space at bias variance 0.05 and weight variance ranging from 1 to 4, and

subsequently generalized/corroborated in, e.g., [90–92]

Several questions naturally arise from the above work. First, given that the network

parameters will evolve under training in order to minimize the specified cost func-

tion and, in particular, develop interdependencies, why does the choice of initializa-

tion have such a decisive effect on network performance?3 Indeed, it was observed

in [92] that the hidden-layer pre-activation distributions (as quantified by their vari-

ance) rapidly approach some asymptotic value within 10 or fewer layers, and then

remain relatively unchanged for arbitrarily many additional layers. We corroborate

this fact at the level of the post-activation in fig. 5.6 of appendix 5.6.1.

Second, what role does the particular distribution of post-activations in a given layer

play in determining network performance? For example, the activation function con-

sidered in [15] is hyperbolic tangent, which we adopt henceforth. When σ2
b ≪ 1

and σ2
w ≲ 1, the pre-activations z of the hidden layers are approximately Gaussian-

distributed with small variance (cf. (5.8)). In this case, tanh(z) ≈ z, so the network

behaves like a linear network. These are quite restrictive, being incapable of repre-

senting functions whose output data are non-linearly separable and cannot be gen-

erated by a combination of linearly separable data. In the opposite extreme, for large

values of σ2
w and σ2

b , the pre-activation variance becomes so large that the post-

activation distribution becomes peaked at ±1. In other words, large pre-activation

variance saturates the tanh, causing it to behave like a discrete step-function. One

expects this regime to also impair trainability, since the gradients on which the back-

propagation algorithm depends become vanishingly small everywhere except near

the origin.4 Thus, it seems that one should seek to remain somewhere between these

two extremes. Quantifying this is one of the main motivations for the present work.

In particular, note that in both the linear and the saturation regimes, one expects the

expressibility of the network to be poor. In contrast, between these extremes lies a re-

gion in which the post-activation distribution is approximately uniform, and hence

we might expect the expressibility of the network to be maximized at this point. To

see this, recall that the uniform distribution has maximum entropy, which measures

the number of possible states any particular system can have; a step function, in

contrast, can only store a single bit of information, and hence has a low entropy of

ln2. This leads to the conjecture that networks whose internal distributions are ap-

proximately uniform, i.e., maximally entropic, have higher expressibility, and hence

3In other words, why does the network remain near the initialization regime (e.g., the edge of chaos) as it
evolves?

4Recall that the updates to the weights and biases under gradient descent contain products of the deriva-
tives of the activation functions in all higher layers.
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might enjoy a performance advantage. Of course, given approximately Gaussian pre-

activations, the post-activation distribution of tanh cannot be exactly uniform, but

we can quantify the degree of uniformity via the relative entropy (defined below). In

fact, we will show that there is a line of uniformity on the (σ2
w ,σ2

b) phase space along

which the post-activation distribution is as uniform as possible. This line intersects

the aforementioned edge of chaos (see fig. 5.1), and the relative importance of lying

near this line is the primary question we shall explore below.

We shall begin by deriving an expression for the line of uniformity, defined by the

condition that the distribution of the final hidden layer minimizes the relative en-

tropy with respect to the uniform distribution. The computation uses many of the

same ingredients as [15], and the interested reader is encouraged to turn there for

more background. We then examine proximity to this line in relation to the edge of

chaos considered in previous works.

We find that for deep networks away from the edge of chaos, the exponential sup-

pression dominates, and no benefit from uniformity is observed. However, along

the edge of chaos – where the suppression is only polynomial – we find a relatively

sharp fall-off in the post-training accuracy to the right of the line of uniformity. The

location of this fall-off depends on the learning rate, since decreasing the learning

rate can increase the final accuracy, but at the cost of additional computing time (see

fig. 5.2). This suggests that criticality is a necessary but not sufficient condition for

optimal trainability.

This dependence on other hyperparameters illustrates that optimal trainability is not

just a matter of final accuracy but also of efficiency, i.e., how quickly the final accu-

racy is reached. Since computational limits exist, we shall rely on an intuitive notion

of efficiency per epochs in addition to accuracy; that is, we consider the accuracy

achieved after a fixed number of training epochs. It is conceivable that in the limit of

infinite training epochs accuracy differences disappear, so that formally, the config-

urations are equally good. In a practical sense however, they clearly are not.

Note that there can obviously be very many notions of efficiency depending on which

resource(s) one considers most valuable. Here, we are implicitly prioritizing training

time, i.e., number of epochs. If one were to put the premium on floating point op-

erations used in training, then one would instead measure efficiency as in [93]. Yet

another concept called learning efficiency has to do with how much time it takes to

run a learning algorithm and, in particular, how this scales with the size of the input

space [94].

Returning to our main question, to isolate the effects of uniformity away from the

edge of chaos, we also examine networks which are both shallow (i.e., not yet ex-

ponentially suppressed) and narrow (i.e., low expressibility per layer), and confirm
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that training efficiency, in the sense described above, degrades to the right of the line

of uniformity (i.e., away from the origin), though final accuracy need not. In con-

trast to the edge of chaos, the line of uniformity is not a sharp phase boundary, but

it does indicate coarsely the parameter boundary where activation saturation starts

to affect training efficiency. This not only establishes the more obvious point that,

even in deep random feedforward toy models on the edge of chaos, backpropagation

training depends sensitively on activation function choice, as earlier emphasized in

[95, 96], but also that for a given activation function choice there are optimal points

or regions on the edge of chaos itself.

5.2. The line of uniformity
We can estimate the location of the line of uniformity by capitalizing on the fact that

wide networks, with a large number N of neurons in each hidden layer, are approx-

imate Gaussian processes. At finite N , the neurons in a given layer are not indepen-

dent due to their shared dependence on the neurons in the previous layer. Physically

however, the non-Gaussianities that can be seen by marginalizing over the previous

layer(s) can be thought of as interactions that are 1/N suppressed [97, 98]. Hence, in

the limit N → ∞, the distribution of pre-activations becomes Gaussian, essentially

by the central limit theorem. This greatly simplifies the analysis, and is the reason for

the widespread use of such models in previous studies, including [15].5

Thus, at large-N , the distribution of pre-activations z for any hidden layer takes the

form

p(z;σ2) = 1p
2πσ

e−
z2

2σ2 , (5.1)

where σ2 is the variance, and we assume the mean µ = 0 since adding a small finite

mean does not qualitatively change our results. If the activation functionφ(z) is one-

to-one and once-differentiable, then the distribution of post-activations x will be

given by

pφ(x;σ2) = 1p
2πσφ′(φ−1(x)

) e−
φ−1(x)2

2σ2 . (5.2)

Concretely, for φ(z) = tanh(z), this yields

pφ(x;σ2) = 1p
2πσ(1−x2)

e−
arctanh(x)2

2σ2 , (5.3)

with x ∈ [−1,1]. The corresponding variance is given by

σ2
φ =

∫ 1

−1
dx x2 pφ

(
x;σ2) . (5.4)

5One will often see the phrase “mean-field theory” used in place of the central limit theorem in this con-
text; however, as pointed out in [98], this is not technically correct, and mean-field theory does not nec-
essarily correspond to the N →∞ limit.
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As mentioned above, we quantify the uniformity of the post-activation distribution

pφ by the relative entropy or Kullback-Leibler divergence with respect to the uniform

distribution puni,

S(puni||pφ) =
∫ 1

−1
dx puni(x) ln

puni(x)

pφ(x)
. (5.5)

Substituting in (5.3) and puni = 1
2 , this yields

S(puni||pφ) = 1

2
ln

(
8πσ2

)
+ π2

24σ2 −2 . (5.6)

This has a minimum at

σ2
min = π2

12
≈ 0.822 . (5.7)

Therefore, we wish to find the set of points (σ2
w ,σ2

b) at which the variance of the final

hidden layer is σ2
min; this will define the line of uniformity. To proceed, we use the

recursion relation

σ2
ℓ =σ2

w σ
2
φ,ℓ−1 +σ2

b , (5.8)

which follows from the large-N condition discussed above (i.e., the neurons on any

given layer can be treated as i.i.d. random variables). Note that this is exactly the

same as eq. (3) of [15], where our σ2
ℓ

is their qℓaa and our σ2
φ,ℓ−1 is the corresponding

integral expression.6 This recursion relation ostensibly requires the variance of the

first hidden layer, σ2
1, as an input. However, it turns out that (5.8) quickly converges

to a fixed value σ2∗, which (by definition) is a function of σ2
w and σ2

b , but not of σ2
1:

σ2
∗ =σ2

w σ
2
φ,∗+σ2

b , (5.9)

where σ2
φ,∗ is σ2

φ evaluated at σ2∗; see [14] for further discussion of this convergence.

In appendix 5.6.1, we have demonstrated numerically that the corresponding post-

activation distribution indeed converges rapidly to one which depends only on the

initialization point (σ2
w ,σ2

b).

Now, consider a fixed value of σ2∗ (and hence also of σ2
φ,∗). Then we can consider

(5.9) as an expression for σ2
b as a function of σ2

w , which defines a line in phase space

of the form

σ2
b =σ2

∗−σ2
φ,∗σ

2
w . (5.10)

where σ2∗ is the y-intercept, and −σ2
φ,∗ is the slope. Since the relative entropy (5.6)

of the final hidden layer is only a function of its variance, the lines of constant σ∗
given by (5.10) are also lines of constant relative entropy. In particular, the line of

6Explicitly, the variance can be written asσ2
φ
= ∫

Dz
[
φ(σz)

]2, where Dz = dzp
2π

e−
z2
2 is the standard Gaus-

sian measure.
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Figure 5.1: (Left) Contour plot of the logarithm of the relative entropy in the (σ2
w ,σ2

b ) plane. The dashed
line is the line of uniformity—saturation increases to the right of it and linearity increases to the left of
it. (Right) Contour plot of χ = e−1/ξ. The ordered/low-temperature phase is shaded blue, while the
chaotic/high-temperature phase is shaded red. In both, the solid black line is the edge of chaos, while
the dashed black line is the line of uniformity.

uniformity (minimum relative entropy) is given by (5.10) with σ2∗ = σ2
min = π2

12 , cf.

eq. (5.7). There is no closed-form expression for σ2
φ,min, but we can evaluate (5.4)

numerically to obtain σ2
φ,min ≈ 0.359. In summary, the line of uniformity (LOU) is

given by

LOU : σ2
b =σ2

min −σ2
φ,minσ

2
w , (5.11)

with σ2
min = π2

12 ≈ 0.822 and σ2
φ,min ≈ 0.359. In the left panel of fig. 5.1, we present

a contour plot of the logarithm of the relative entropy. The line of uniformity is the

dashed black line—to the left of it, as one approaches the origin, is the linear regime;

and to the right, the activation becomes more and more saturated. For comparison,

the edge of chaos is the solid black line.

5.3. The edge of chaos
The method for computing the edge of chaos as a function ofσ2

w andσ2
b is described

in [14, 15]. Once we have σ2∗, as described previously, then we can define the quanti-

ties

χ=σ2
w

∫
Dz

[
φ′(σ∗z)

]2, ξ=− 1

lnχ
, (5.12)

where Dz is the standard Gaussian measure, cf. footnote 6, and ξ is the correlation

length mentioned in the introduction (note that this is denoted ξc in [15]).
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The meaning ofχwill be discussed in the next paragraph, while the meaning of ξ is as

follows: we consider two identical copies of the network and feed them slightly differ-

ent inputs. Then, we can study the correlation (i.e., covariance) between a neuron in

one copy and the same neuron in the second copy as a function of the layer. This cor-

relation will decay exponentially for deeper layers with a characteristic length scale,

ξ. (Strictly speaking, this is only true in the ordered phase: in the chaotic phase, the

quantity ξ is complex-valued and cannot be interpreted as a correlation length). The

edge of chaos is defined as the critical point, where the correlation length ξ diverges.

As discussed in more detail in [14, 15],χ is obtained as the derivative of the aforemen-

tioned covariance with respect to that in the previous layer, and probes the stability

of the fixed point when the covariance is unity: χ > 1 implies that we approach this

point from below (unstable), while χ < 1 implies that we approach this point from

above (stable).7 The edge of chaos corresponds to χ= 1, where ξ diverges.

To find the edge of chaos, we can scan over the space of tuples (σw ,σ∗) to find those

which satisfy the condition χ = 1. We then feed these into (5.8) to find the corre-

sponding value of σb . In this manner, we can find arbitrarily many points on the

edge of chaos (EOC). Within some finite range of σ2
w values, we can find a good fit to

the EOC. In the range 1 ≤σ2
w ≤ 10, a good polynomial fit is

EOC : σ2
b =

9∑
n=2

cn

n!
(σ2

w −1)n , (5.13)

with fit coefficients

n cn n cn

2 0.0190 6 −1.15

3 0.778 7 0.769

4 −1.07 8 −0.328

5 1.25 9 0.0672

(5.14)

Of course, we can reduce the number of fit coefficients needed by reducing the range

of σ2
w values over which we require the fit to be good.

The form of this fit is designed such that it contains the point (σ2
w ,σ2

b) = (1,0), and

that the edge of chaos has zero slope at this point. We justify these conditions ana-

lytically in appendix 5.6.2. In the right plot in fig. 5.1, we present a contour plot of χ.

Again, the edge of chaos is drawn as a solid black line and the line of uniformity as a

dashed line. The point of intersection of the edge of chaos and line of uniformity is

found to be

(σ2
w ,σ2

b)intersect = (2.00,0.104) . (5.15)

7See [99] for a pedagogical explanation.
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Figure 5.2: Accuracies on MNIST for distributions of initial weights along the edge of chaos in a deep
(L = 100), wide (N = 784) neural network with tanh activation function, for a range of learning rates, after
30 epochs (left) and 100 epochs (right). We observe a drop-off in accuracy beyond a value σ2

w which is
up to an order of magnitude larger than the point at which the line of uniformity is crossed. For learning
rates of the order typically used in the literature, this point is near the intersection of the LOU and the
EOC, but moves to higher values of σ2

w for smaller learning rates. When learning rates become extremely
small (r < 10−5), learning becomes highly inefficient, and the drop-off less sharp for the training duration
considered. Networks were trained via stochastic gradient descent with batch size 64 and momentum 0.8.

5.4. The impact of uniformity along the edge of chaos
To the right of the line of uniformity, neurons begin to saturate the tanh activation

function, i.e., approach ±1. This implies that backpropagation based on gradient

descent should be less efficient, and hence networks should reach a lower accuracy

in a fixed amount of training time. The Google Brain collaboration has already es-

tablished that at the edge of chaos, learning accuracy is enhanced due to polyno-

mial rather than exponential decay of correlations as a function of network depth

[15]. Combining the two insights, optimal learning should therefore take place on

the edge of chaos near the line of uniformity.

To test this hypothesis, we have performed the MNIST image classification task in

networks ranging up to a depth of L = 100 hidden layers at various points along the

edge of chaos. The resulting learning accuracy is shown in fig. 5.2. We see that this

expectation is partially validated. On the left side of the line of uniformity – but to

the right of the linear regime – all points on the edge of chaos are equally good at

learning. But beyond a certain point, which lies to the right of the intersection point

(5.15) of the edge of chaos and line of uniformity, the final accuracy decreases. How-

ever, this drop-off point is substantially (up to an order of magnitude) displaced to

the right of the intersection point, indicating that the line of uniformity is perhaps

better thought of as a region rather than a narrow band, and depends on hyperpa-

rameters (such as the learning rate) as mentioned above. Nevertheless, for typical

learning rates used in the literature of order 10−3, such as used in [15], the drop-off
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point at approximatelyσ2
w ∼ 2.5 is indeed fairly close to the intersection between the

line of uniformity and the edge of chaos at σ2
w = 2.

We repeated this exercise for the CIFAR-10 image classification task, and present the

corresponding results in fig. 5.3. We converted the colored images to grayscale to

reduce the input size by a factor of 3. The drop-off in accuracy along the edge of

chaos towards larger values of σ2
w is still present, though the effect is not as dramatic

as it is for MNIST. This is not surprising as CIFAR is a much more difficult task than

MNIST and so we expect that the saturation of slightly more or fewer neurons will

have a much less decisive effect. We note however that in the regime of extremely

small learning rates, where training MNIST becomes highly inefficient, the MNIST

and CIFAR results appear similar insofar as neither exhibits the obvious sharp drop-

off observed for MNIST at the higher learning rates generally used in practice.
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Figure 5.3: Accuracies on CIFAR-10 for distributions of initial weights along the edge of chaos in a deep
(L = 100), wide (N = 1024) neural network with tanh activation function, for a range of learning rates, after
30 epochs (left) and 100 epochs (right). The drop-off in accuracy towards higher values ofσ2

w here is much
more gradual than the sharp drop-offs observed for MNIST in fig. 5.2 (at all but the lowest learning rates,
r < 10−5). Networks were trained via stochastic gradient descent with batch size 64 and momentum 0.8.

Thus, the line of uniformity is not a sharp boundary, unlike the edge of chaos. This

is somewhat inherent in its definition, which selects proximity to the uniform distri-

bution of final hidden layer weights as a condition for efficient learning based on the

entropic argument given above, but does not specify any particular fall-off behav-

ior. The line of uniformity does, however, give an estimate of where the saturation of

the activation function should start to affect learning, and by extension, the point at

which saturation of the activation function begins to hinder learning efficiency. To

summarize: on the left side of the line of uniformity, the distributions are sufficiently

narrow that saturation of the tanh activation function does not occur, and all initial

weight distributions along the EOC learn equally well. Conversely, on the right side

of uniformity, neurons saturate the activation function and hence hamper learning,

even along the EOC. This is our main observation. Importantly, we note that the
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studies by [15] were performed to the left of the point where the line of uniformity

crosses the edge of chaos and hence at optimal efficiency.

Before moving on to our final set of experiments, we note that the above conclu-

sion is of course specific to saturating activation functions, specifically tanh. This

is one motivation for the use of non-saturating activation functions such as ReLU

or SWISH, though the unbounded nature of such functions presents its own set of

training difficulties. While a similar analysis of uniformity, as quantified by the max-

imally entropic distribution, for non-saturating activation functions is beyond the

scope of this work, a brief inspection of learning efficiency along the EOC for SWISH

shows no loss of accuracy in agreement with the absence of saturation effects; see

appendix 5.6.4.8

5.5. Uniformity away from the EOC
Thus far, we have examined the impact of uniformity on training efficiency along

the edge of chaos. Now, we would like to explore whether the line of uniformity

still affords training advantages even for networks initialized far from criticality. In

attempting to exhibit this however, one quickly finds that the edge of chaos repre-

sents a far more dominant effect than the line of uniformity. A close inspection of

the learning accuracy of deep (L=300) and wide (N=784) MNIST learning networks

shows that there is no discernible difference in learning accuracy away from the edge

of chaos: it is simply poor everywhere (see fig. 5.7 in appendix 5.6.3, also [15].) This

can be understood from the form of the correlation functions: away from the edge

of chaos, correlations damp exponentially ∼ e−L/ξ. For a deep network, this expo-

nential damping will erase any finer difference in accuracy results. Along the edge of

chaos, the damping is only polynomial and, therefore, the finer difference remains,

as seen in fig. 5.2. In shallow networks however, the exponential damping does not

have sufficient time to compound, and if the network is also narrow and hence has

low expressibility per layer, we can explore the effect of uniformity even away from

criticality in such models.

Furthermore, it is common lore that efficient backpropagation needs sufficient gra-

dients, and that such gradients are absent if most of the post-activation functions

saturate to a fixed asymptotic value. However, if a sufficient number of weight and

bias values are such that there remain trainable paths through a saturated landscape,

the model will still learn, even though, distribution-wise, most of the neurons have

saturated. Therefore, the inefficiency due to saturation discussed above can be dis-

played more clearly by choosing narrower networks with smaller N , where we might

expect that uniformity – that is, maximally entropic distributions – may afford the

8For both SWISH and tanh, the edge of chaos is a line of critical initalizations through phase space, while
for ReLU it is only a single point [97].
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most advantage.
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Figure 5.4: For small networks, the learning efficiency exhibits threshold behavior as a function of σ2
w .

Shown are results for MNIST trained on a N = 8, L = 1 network sampled over 50 network initializations.
The inset shows the fits in the threshold region. The bottom figure shows that the location of this thresh-
old in σ2

w decreases with increasing σ2
b consistent with the trend implied by the line of uniformity thresh-

old. As explained in the text, there is a multiplicative factor involved and the large-N analysis cannot be
straightforwardly transplanted to this small-N case. The uncertainty bars are propagated from the uncer-
tainties in the accuracy versus σ2

w data points.

The effect of lying near uniformity is therefore strongest in shallow, narrow networks

rather than deep, wide networks where the edge of chaos effect dominates. For these

small networks, some of the asymptotic analysis above locating the LOU and EOC

does not immediately apply, since the network is unable to reach the asymptotic

value σ2∗ of the pre-activation variance.9 At the same time, the input variance and

mean, σ2
0 and µ0, actually do matter in this case and, with this information, we can

roughly estimate the location of the line of uniformity. For example, for L = 1, we

haveσ2
1 =σ2

w (σ2
0+µ2

0)+σ2
b and the line of uniformity would be whereσ2

1 =σ2
min = π2

12 .

For example, for MNIST, σ2
0 ≈ 0.095 and µ2

0 ≈ 0.017, so the line of uniformity can be

estimated as σ2
b ≈ π2

12 −0.112σ2
w . Equivalently, for fixed σ2

b , this gives a σ2
w -threshold

ofσ2
w ∼ 7.35+8.93σ2

b beyond which we expect saturation effects to decrease training

efficiency. For L = 2, we would iterate the above process once more, passing through

the activation function; this gives an estimated threshold of σ2
w ≈ 3.5+8.93σ2

b .

Results for L = 1 are shown in fig. 5.4, and results for L = 2 are shown in fig. 5.5.

As predicted, we observe that the accuracy retains a high, approximately constant

value up to a σ2
b-dependent threshold for σ2

w , and then decays approximately lin-

early thereafter. To determine the threshold empirically, we fit the data to a function

9In this sense, we may take “shallow” to mean L ≤ 5, since as shown in fig. 5.6, by L ≈ 6, the network has
reached σ2∗. Strictly speaking however, the predictions for the EOC as well as the LOU are ill-defined in
narrow networks, since these are no longer approximately Gaussian, and also appear to be beyond the
reach of current perturbative approaches [98].
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of the form

Afit(σ
2
w ) = Amax − r (σ2

w −σ2
w,thr)Θ(σ2

w −σ2
w,thr), (5.16)

where Amax is the maximum accuracy, σ2
w,thr is the threshold value, r is the rate of

linear decay, and Θ is the Heaviside step function. Each accuracy vs. σ2
w data point

is an average over 20 instantiations of the network and thus comes with its own vari-

ance. These propagate into uncertainty bars for the three fit parameters. We plot

the threshold for different values of σ2
b in fig. 5.4 for L = 1. This qualitatively con-

firms our expectations, though the empirical value of the threshold is about a factor

of 2 greater than the analytical prediction, and the slope about a factor of 8 smaller.

However, given that we are applying a large-N analysis to a relatively narrow network

(N = 8), an O(1) quantitative discrepancy is reasonable. For L = 2 the corresponding

results are presented in fig. 5.5, again showing qualitative agreement. The empirical

threshold in this case is about a factor of 4 greater than the theoretical value, and the

slope is a factor of 8 smaller.
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Figure 5.5: Small-network threshold behavior as in fig. 5.4, for MNIST trained on a network with N = 8 and
L = 2, sampled over 50 initial conditions drawn from (σ2

w ,σ2
b ). The bottom figure shows that the location

of this threshold decreases with σ2
b consistent with the trend implied by the line of uniformity.

Conclusion In this work, we establish that for deep random feedforward networks

along the edge of chaos, the efficiency of training via stochastic gradient descent

still depends on non-saturation of the activation function. Similar points have been

made previously in [95, 96], which compared the performance of difference acti-

vation functions initialized at one point on their respective edges of chaos. How-

ever, what we demonstrate for the tanh activation function is that not all points on

the edge of chaos are equally efficient at learning. Within a fixed number of train-

ing epochs (∼ 100), activation function saturation eventually impedes learning if we

push the weight and bias variances too far to the right of the line of uniformity, de-

fined to be where the final layer post-activation is most uniformly distributed, i.e.,

maximally entropic. Unlike the edge of chaos, which separates chaotic and ordered

outputs, the line of uniformity does not mark an abrupt change in the overall be-
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havior of the network. Rather, it simply indicates roughly the point where the sat-

uration of the activation function begins to impede learning. We demonstrate this

for shallow and narrow networks as well, where the exponential damping of neuron

correlations away from the edge of chaos becomes much less of a decisive factor in

determining training efficiency.
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5.6. Appendix

5.6.1. Independence of σ2∗ on σ2
1

The exact pre- or post-activation distribution at a given layer obviously does depend

on σ2
1, the pre-activation variance at the first hidden layer. This dependence is gen-

erated via the recursion relation (5.8). However, at the fixed point, the asymptotic

distributions do not depend on σ2
1. Indeed, the relation that the asymptotic pre-

activation variance satisfies is eq. (5.9), which does not depend on σ2
1 at all. We

can demonstrate this fact by plotting the evolution of the post-activation distribu-

tion for fixed σ2
w and σ2

b , but for many values of σ2
1. In fig. 5.6, we show this for

(σ2
w ,σ2

b) = (1.76,0.05) for several values of σ2
1, both less than and greater than σ2∗

which turns out to be σ2∗ ≈ 0.57 in this case. When σ2
1 < σ2∗, the post-activation dis-

tribution starts out narrower and spreads out, whereas when σ2
1 > σ2∗ it starts out

more peaked at ±1 and then flattens out.
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Figure 5.6: Layer-to-layer evolution of the post-activation distribution at (σ2
w ,σ2

b ) = (1.76,0.05) for six

different values of the first hidden layer pre-activation variance σ2
1. The post-activations converge to the

asymptotic distribution within about five layers.

5.6.2. Analytic Details of the Fixed Point Computation

In this appendix, we will show that the edge of chaos contains the point (σ2
w ,σ2

b) =
(1,0) and has zero slope there. At this point, the fixed-point equation (5.9) reads

σ2
∗ =σ2

φ,∗ . (5.17)
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The left-hand side is the fixed-point pre-activation variance, whereas the right-hand

side is the corresponding post-activation variance. As long as |φ(z)| < |z|, which is

the case for φ(z) = tanh(z) except at z = 0, the variance of the post-activation will

always be smaller than that of the pre-activation. Therefore, the only solution at this

point isσ2∗ =σ2
φ,∗ = 0 and thus at this pointφ′(σ∗z) = sech2(0) = 1 andχ= 1 or ξ=∞.

Hence, this point is on the edge of chaos.

Now, consider eq. (5.10), but now along the edge of chaos rather than the lines of

constantσ2∗. Letσ2
w be our independent parameter along the edge of chaos and take

a derivative with respect to it:

∂σ2
b

∂σ2
w

=
(
1−σ2

w

∂σ2
φ,∗

∂σ2∗

)
∂σ2∗
∂σ2

w
−σ2

φ,∗ , (5.18)

where we have used the fact that σ2
φ,∗ depends on σ2

w only through its dependence

on σ2∗.

To compute the derivative
∂σ2

φ,∗
∂σ2∗

, it is convenient to first rewrite the integral expres-

sion for σ2
φ in (5.4) by changing back to the original pre-activation variable z:

σ2
φ =

∫ 1

−1
dx pφ(x;σ2) x2 =

∫ ∞

−∞
dz p(z;σ2)φ(z)2 . (5.19)

We can easily compute the various derivatives of the pre-activation distribution:

∂p(z;σ2)

∂σ2 =
(

z2

σ2 −1

)
p(z;σ2)

2σ2 ,
∂2p(z;σ2)

∂z2 =
(

z2

σ2 −1

)
p(z;σ2)

σ2 = 2
∂p(z;σ2)

∂σ2 . (5.20)

Therefore, using integration by parts, and the fact that we can ignore boundary terms

due to the fast fall-off of the Gaussian, we find

∂σ2
φ

∂σ2 =
∫

dz
∂p(z;σ2)

∂σ2 φ(z)2 = 1

2

∫
dz

∂2p(z;σ2)

∂z2 φ(z)2 =
∫

dz p(z;σ2)
(
φ′(z)2 +φ(z)φ′′(z)

)
.

(5.21)

By rescaling the variable to σz, the first integral term above can be written as∫
dz p(z;σ2)φ′(z)2 =

∫
Dz

[
φ′(σz)

]2 . (5.22)

Note that when this is evaluated at σ2∗ and multiplied by σ2
w , we get precisely χ, as

defined in (5.12). Let us give a name to the remaining integral in (5.21) evaluated at

σ2∗. For future convenience, we will put a relative minus sign in the definition below,

the reason being that, for φ= tanh, the object φφ′′ is negative semi-definite:

χ̃=−σ2
w

∫
dz p(z;σ2

∗)φ(z)φ′′(z) =−σ2
w

∫
Dzφ(σ∗z)φ′′(σ∗z) . (5.23)
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Then, (5.21) evaluated at σ2∗ and multiplied by σ2
w reads

σ2
2

∂σ2
φ,∗

∂σ2∗
=χ− χ̃ . (5.24)

Now, let us define

ξ̃=− 1

ln
(
χ− χ̃) . (5.25)

This is precisely the object called ξq in [15], which is the length scale that controls

the exponential decay of information propagation through the neural network from

a single input.

Plugging eq. (5.24) back into eq. (5.18) gives

∂σ2
b

∂σ2
w

= (1−χ+ χ̃)
∂σ2∗
∂σ2

w
−σ2

φ,∗ . (5.26)

Along the edge of chaos, χ= 1, and so

∂σ2
b

∂σ2
w

= χ̃ ∂σ
2∗

∂σ2
w
−σ2

φ,∗ , (5.27)

Now, we can establish a simple bound on χ̃ by virtue of the fact that |φ(z)| ≤ |z|, for

φ= tanh. To do this, let us first rewrite χ̃ using the identity

φ′′(z) =−2tanh(z)sech2(z) =−2φ(z)φ′(z) . (5.28)

Therefore,

φ(z)φ′′(z) =−2φ(z)2φ′(z) =−2

3

[
φ(z)3]′ , (5.29)

and

χ̃= 2σ2
2

3

∫
dz p(z;σ2

∗)
[
φ(z)3]′ =−2σ2

w

3

∫
dz

∂p(z;σ2∗)

∂z
φ(z)3 = 2σ2

w

3σ2∗

∫
dz p(z;σ2

∗) zφ(z)3 .

(5.30)

Therefore, since |φ(z)| ≤ |z| for φ= tanh,

0 ≤ χ̃≤ 2σ2
w

3σ2∗

∫
dz p(z;σ2

∗) z4 = 2σ2
w σ

2
∗ . (5.31)

Therefore, since we have already shown that σ2∗ = σ2
φ,∗ = 0 at the point (σ2

w ,σ2
b) =

(1,0), it follows that χ̃= 0 at this point as well and, from eq. (5.27),

∂σ2
b

∂σ2
w

∣∣∣∣
(σ2

w ,σ2
b )=(1,0)

= 0 . (5.32)

In other words, the edge of chaos has zero slope at the point (σ2
w ,σ2

b) = (1,0).



5

112 5. Criticality versus Uniformity in Deep Neural Networks

5.6.3. Implementation Details

Throughout this work, we have used a vanilla feedforward neural network of L hid-

den layers, each having the same depth N . As described, initial weights and biases

are drawn from zero-mean Gaussian distributions with
σ2

w
N andσ2

b respectively. Both

MNIST and CIFAR-10 were trained using the standard cross-entropy loss function

and no optimizer. This reproduces the results of [15] (see fig. 5.7), confirming critical

behavior.
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Figure 5.7: Optimal learning for deep neural networks at the edge of chaos as first shown by [15]. Shown
is learning efficiency for MNIST training as a function of network depth L with N = 784 and choice of
initial weight distribution σ2

w holding the initial bias distribution σ2
b = 0.05 fixed. At the edge of chaos

(σ2
w ,σ2

b ) = (1.76,0.05), learning remains efficient even for very deep networks, but eventually (L ∼ 270)
goes down. This same behavior has been observed for deep feedforward networks in [15, 92]. The learning
rate used is ℓ= 10−3 for L < 100 and ℓ= 10−4 for L ≥ 100.

5.6.4. SWISH activation function

Throughout the text, we examined the impact of saturation via the line of unifor-

mity for the tanh activation function. For non-saturating activation functions, it is

an open question whether a similar notion of uniformity exists. While a full analysis

of this is beyond the scope of this work, in this appendix we offer some preliminary
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results for the SWISH activation function,

swish(z) = z

1+e−z , (5.33)

which also features a line of critical points separating an ordered and chaotic phase.

Note that unlike the EOC for tanh, which increases with increasing σ2
w , the EOC for

SWISH decreases with increasing σ2
w , which prevents us from examining the impact

of large weight variances. Conversely, for small values ofσ2
w , the corresponding value

ofσ2
b becomes so large that we are unable to satisfy the critical detection criteriaχ= 1

discussed in the main text.10 The EOC for SWISH is plotted in fig. 5.8, which shows

a computable range of approximately σ2
w ∈ [1.97,3.4]. The same figure also shows

the accuracy for an L = 40 network with SWISH activation function trained along

the EOC, demonstrating no deterioration of performance within this range, which

confirms the absence of saturation effects. See also [95, 96].
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Figure 5.8: (Left) Edge of chaos for SWISH activation function. (Right) Accuracy for a feedforward network
with L = 40 layers trained on MNIST for 21 equally-spaced points along the SWISH EOC. Over the limited
range for which the criticality conditionχ= 1 is satisfied, we observe no significant differences in accuracy,
though a slightly lower learning rate was used for the left-most two points; we believe this to be due to the
large values of σ2

b in this regime.

10We do not claim that the EOC stops beyond this point, rather that it cannot be computed from the
central limit method used in [14, 15]. It is conceivable that this could be computed via the NN/QFT
correspondence developed in [98], but this has not been attempted for SWISH.
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