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4
Dense Entanglement in

Critical States

Abstract
At critical points the entanglement between microscopic degrees of freedom is

thought to be maximal, and proportional to the number of dynamical fields. In 1D

systems this is analytically known and numerically verified through the knowledge

that the bond dimension in tensor network states represents the upper bound on the

amount of entanglement a system can represent. Here we test this in 2D systems us-

ing Carleo & Troyer neural-network quantum states in solving many-body quantum

systems at their criticality. We postulate that for a neural-network quantum state

(NQS) at criticality the entanglement is bounded by the ratio of the number of visible

(N ) and hidden nodes (M), α = M/N . Computing the entanglement as a function

of α at criticality in Z n
2 /Z2 lattice gauge theories, allows us to study entanglement

at criticality for differing number of dynamical fields. Surprisingly we do not find a

linear relation.

4.1. Introduction
Though the idea precedes it by a number of years, the notion to use entanglement

to classify the ground states of quantum many body systems really took off with the

discovery of the topological insulator. Ordinary states of matter with quasi-particle

expectations around a trivial IR fixed point are short range entangled states. Topo-
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logical insulators with a gap that separates the bulk spectrum from the topological

(edge) modes are long range sparsely entangled states. Sparse, because the number

of topological modes is very small compared to the exponentially large number of ex-

citable modes in the full Hilbert space. It also raises the immediate question whether

there are long range densely entangled states of matter. Such states are arguably the

most quantum many-body state possible and have been coined quantum supreme

matter.

Frustrated systems and quantum spin liquids are possible candidates. But another

possible candidate is a theory right at the non-trivial IR fixed point of a second order

phase transition where the correlation length is infinite. As no length scale remains,

there cannot be either short or long range entanglement. Entanglement must exist at

all scales.1 This is exemplified by the classic calculation of the entanglement entropy

in 1+1D conformal field theories [69]

S1D CFT = c

3
ln

(
ℓ/a

)
. (4.1)

Here ℓ is the size of the region (the area) for which the entanglement with the com-

plement is computed; a is a UV cut-off, and c is the central charge of the theory. Since

the central charge is a measure of the number of degrees of freedom in the system,

the scaling of the entanglement entropy with c shows that all degrees are involved

and entanglement is both dense and long range.

An illustrative example of the dense entanglement in critical states is from a study

of such 1D systems using the Multi-Scale Entanglement Renormalization Ansatz

(MERA) [70]. Similar to Matrix Product States (MPS), these are variational descrip-

tions of many-body-ground states designed to track (up to area-scaling) entangle-

ment in terms of the bond-dimension of the variational state. MERA improves on

MPS by engineering in critical behavior from the start. Tuning such a 1D MERA sys-

tem to criticality one indeed sees that to ensure the same accuracy in the ground

state energy, the minimal bond dimension must grow exponentially with the cen-

tral charge. Since the bond dimension is designed to scale as D ∼ exp
(
S1D CFT

)
, this

includes the scaling with the central charge, consistent with Eq.(4.1).

The aim of this paper is to verify that this similar exponential increase in entangle-

ment at critical states also happens in 2D systems. An extension of MERA to 2D sys-

tems is notoriously difficult. However, the advent of neural network machine learn-

ing techniques, has given us an inroad to this question. From Neural Quantum States

[71, 72], where the many-body groundstate is contructed as a variational wavefunc-

tion based on a Restricted Boltzmann Machine neural network, one can also get an

estimate of the entanglement or rather the entanglement entropy between two spa-

tially separated parts of the groundstate wavefunction [73]. The power of this ap-

1The remarkable connections between quantum entanglement and emergent geometry in holographic
theories suggest that the non-trivial IR fixed point dual to extremal black holes are of this type [67, 68].
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proach is that it is not limited to 1D systems [72]. It works in principle in any dimen-

sion and is only limited by computational time.

The question that remains then is which 2D systems to use. Though one can simply

study the approach to a critical point, one would need a notion of a central charge

to make a fully equivalent statement compared to 1D systems. Of course there is

no notion of a central charge in 2D systems. However, using that the central charge

encodes for the number of degrees of freedom, we can rely on a recent finding that

there is a nice sequence of critical points in classical 3D Z2 × Z2 × . . .× Z2/Z2 gauge

theory [48].2 With each additional Z2 matter factor the number of degrees of freedom

increases, yet in all other aspects the critical points are similar. The thermodynamics

of these classical 3D systems corresponds to the quantum groundstate of 2D gauged

transverse field Ising models [74–76]. It is then natural to suppose that one finds an

increase in the entanglement in the groundstates of 2D Z2 gauged transverse field

Z2 × Z2 × . . .× Z2 Ising at criticality proportional to the number of matter fields in-

volved. That all matter fields are involved is suggested by the nature of the phase

transition: it belongs to the p = 2Nrep−1-Potts universality class [48].

In section 4.2 we set up the RBM based Neural Quantum State variational approx-

imation to the groundstate wavefunction of (Z2)n/Z2 gauged transverse field Ising.

Computationally we will limit our attention to n = 2,3,4. We then compute the En-

tanglement Entropy between two parts of the system in section 4.3. The results are

partially surprising. We see the rise in entanglement entropy as we approach the

critical point corresponding with the absence of a scale and hence densification of

entanglement. However, at criticality we do not see the expected increase in the en-

tanglement entropy corresponding to the increase in the number of matter fields. In

fact the entropy exhibits a puzzling behavior with increasing matter fields. We dis-

cuss possible explanations for this unexpected finding in the conclusion section 4.5.

4.2. Neural Quantum State approximation to ground-
states of Z2×Z2×. . .×Z2/Z2 transverse field "Ising"
lattice gauge theory

4.2.1. NQS from RBM Set-Up: application to Z2 gauge theory

A Neural Quantum State (NQS) is a variational wave function ansatz based on a Re-

stricted Boltzmann Machine (RBM). It was introduced by Carleo & Troyer [71] in-

spired by the use of RBMs in machine learning problem but now applied to mini-

mize the ground state of a given Hamiltonian. Consider a system with N spin-1/2

2This is inspired by orbifold models of 1D systems.



4

86 4. Dense Entanglement in Critical States

spins labeled as S = (s1, s2, . . . , sN ) with si ∈ {−1,1}. Then the RBM represents a wave

function in the following way: The physical spins are complemented by hidden spins

H = (h1, . . . ,hM ) with hi = {−1,1} . Then one posits the variational function for the

quantum state:

ΨM (S,W ) =∑
hi

e
∑

j a j s j +
∑

i bi hi+
∑

i j Wi j hiσ
z
j , (4.2)

which depends on the values of the weights as W = (ai ,b j ,Wi j ). These weights form

a network (Fig.4.1) and the expression resembles a Boltzmann sum over the hi con-

figurations.

Figure 4.1: Illustration of a restricted Boltzman machine (RBM) neural network.

The qualification Restricted refers to the fact that the weights (interactions) only con-

nect visible and hidden spins, and there are no weights amongst hidden spins. Be-

cause of this lack of inter-hidden layer connectivity of an RBM all hidden variables

can be traced out which leaves us with:

Ψ(S,W ) = e
∑

i ai si
M∏

i=1
2cosh

bi +
∑

j
Wi j s j

 , (4.3)

Following the algorithm from [71] we can train this network to efficiently represent

the ground state of our Hamiltonian.

The reason we choose a NQS variational method is that one can readily compute the

entanglement entropy in the (approximate) groundstate. To exhibit dense entangle-

ment at criticality in 2D systems, we wish to compute the entanglement entropy on

a set of related theories that has tuneable set of degrees of freedom. A family of such

theories are Z2 × Z2 . . . Z2/Z2 multiple Ising matter fields gauged with Z2 symmetry

on a 2+1D lattice [48]. These are extensions of the well known Z2/Z2 lattice gauge

theory with Higgs fields from Fradkin and Shenker [75]. On the sites of a lattice, la-

beled by r⃗ , we have n-Ising matter fields (σi (⃗r ), i = 1. . .n) and on the links in the

direction of the lattice vector êµ we have an Ising gauge field (U (⃗r , êµ). The action of
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a d +1 dimensional model on a hypercubic lattice is defined as:

S(σ(⃗r ),U (⃗r , êµ)) = J
n∑

i=1

∑
r⃗ ,µ

σi (⃗r )U (⃗r , êµ)σi (⃗r + êµ)

+K
∑

r⃗ ,µν

U (⃗r , êµ)U (⃗r + êµ, êν)U (⃗r + êν+ êµ,−êµ)U (⃗r + êν,−êν) .
(4.4)

This action is invariant under the local Z2 gauge transformations:

σi (⃗r ) →=σi (⃗r )s (⃗r ) ,

U (⃗r , êµ) → s (⃗r )Uµ (⃗r , êµ)s (⃗r + êµ) ,
(4.5)

where s (⃗r ) = ±1. Though for n = 1 there is famously no phase transition at K = 0 as

a function of J illustrating the formal equivalence between the confining (J < 0) and

Higgs (J > 0) phase of the Z2/Z2 theory, for any n ≥ 2 there is a second order phase

transition at finite J between an disordered J < 0 and ordered phase J > 0 [48]. The

phase transition belongs to the p = 2n−1-Potts universality class and is characterized

by an expectation value of the (gauge invariant) registry order parameters 〈σ1σ2〉,
〈σ1σ3〉, . . . , 〈σn−1σn〉. We will use the product of all order parameters to measure

all of them simulataneously 〈σn−1
1 σn−1

2 . . .σn−1
n 〉 =∏

i< j 〈σiσ j 〉+ . . .. This implies that

the 2D quantum system corresponding to this system has a quantum phase transi-

tion with critical behavior at the corresponding point. The corresponding quantum

Hamiltonian can be derived using transfer matrix formalism. Following [74, 76] we

find a Z2 gauged transverse field Ising Hamiltonian

H =−∑
i ,⃗r

σi
1 (⃗r )−∑

r⃗ ,µ

τ1 (⃗r , êµ)−λ∑
i

∑
r⃗ ,µ

σi
3 (⃗r )τµ3 (⃗r )σi

3 (⃗r + êµ) (4.6)

−ω ∑
r⃗ ,µν

τ3 (⃗r , êµ)τ3 (⃗r + êµ, êν)τ3 (⃗r + êν, êµ)τ3 (⃗r , êν) ,

where now the matter fields σi and the gauge field τ are Pauli matrices acting on

sites and links of a 2D lattice, and we used that for a Z2 symmetry the link is its own

Hermitian conjugate τ(⃗r + êµ,−êµ) = τ(r̂ , êµ). The coupling coefficients λ and ω can

be related to K and J in the 2+1D classical action formulation, but the precise relation

is unimportant. We shall set ω = 0 and keep λ undetermined. What is important

for our NQS variational approach is that physical states of this theory must satisfy

the gauge invariance constraint. So therefore must the NQS itself. The local gauge

transformations are generated by G (⃗r ) = ∏
i σ

i
1 (⃗r )

∏
µτ1 (⃗r , êµ) at each site r⃗ . Every

physical state
∣∣ψ〉

must therefore obey

G (⃗r )
∣∣ψ〉= ∣∣ψ〉

(4.7)

for every site r⃗ of the lattice. This constraint can easily be visualized in the τ1 and σ1

basis Fig.4.2, basically every site needs to have n +m = 2k,k ∈ Z with n the number

of down spins on and m the number of down-links emanating from the site.
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Figure 4.2: Visualization of the gauge constraint in τ1 and σ1 basis. Red color represents down spins (-
1) and blue up spins (+1). (a) Different gauge invariant combinations in the case of Z2/Z2 theory. (b)
Different gauge invariant configurations for the Z2 ××× Z2/Z2 theory. For the visual purposes spins at the
nodes of a lattice for two fields are different sizes, so they can be distinguished in the diagram.

The NQS wavefunction itself is approximated by MCMC sampling. Due to the gauge

constraint, this has to be done with care, because the naive Hilbert space is now

larger than the space of physical states. We employ a simple updating procedure

that always flips two matter spins, a matter spin and a link, or two links on a site to

remain within the physical Hilbert space. For alternate approaches to NQS states for

gauged lattice models, see [77].

4.3. Entanglement entropy
The reason we resort to NQS to approximate the ground state is that entanglement or

rather the entanglement entropy can be readily computed for such wavefunctions.

Entanglement entropy is of course only a partial measure of entanglement, but to

first approximation it should be able to quantify its denseness. Given a system de-

scribed by a density matrix ρ and divided into two parts, A and B , then the entangle-

ment entropy between these parts is defined as:

S A =− tr
[
ρA logρA

]
, ρA = TrBρ . (4.8)

If the original state is pure, as is the case here, then SB = S A .3

Quite generally, for a system decomposable into two parts A and B , the (ground)state

can be written as

|Ψ〉 =∑
i , j

ci , j
∣∣i〉A ⊗ ∣∣ j

〉
B . (4.9)

The coefficients of the expansion ci , j can be combined in one probability-amplitude

matrix where each element at the coordinates i , j would be a probability-amplitude

that we find the system with part A being in the state i and part B being in the state j .

3An important comment is that one has to be careful in computing the entanglement entropy in gauged
theories, see e.g. [78]. As our algorithm specifically only limits to physical states, this is not an issue, and
we can use the standard expression Eq.((4.8)).
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The entanglement entropy can be computed using Schmidt/Singular Value Decom-

position (SVD); see [73] in the context of NQS or e.g. [79] in the contect of MCMC.

We write the probability-amplitude matrix as:

ci , j =Ui ,kΣk,l V †
l , j . (4.10)

If we label with NA and NB the sizes of parts A and B respectively, then U ,Σ and V †

are matrices of dimensions NA ×××NA , NA ×××NB and NB ×××NB , where Σkl = σkδkl is a

“diagonal” matrix with singular (i.e. non-negative real) values on the main diagonal

and zeros otherwise. Using this decomposition the entanglement entropy is easily

seen to equal

S A =−
min(NA ,NB )∑

i=0
σ2

i logσ2
i . (4.11)

In the variational NQS approach the wavefunction is represented probabilistically

by an ensemble of Nens. states with Nens. = 104 as default choice. To compute the

entanglement entropy from this subrepresentation, we follow [73]. These Nens. cor-

respond to Nconf ≪ Nens. different spin configurations, where the multiplicity n s⃗ of

each spin configuration is directly related to its weight p s⃗ = n s⃗ /Nens. in the ensem-

ble. Algorithmically we can easily read off the non-vanishing spin configurations

in subsystem A and subsystem B , and construct the non-vanishing components of

the matrix ci , j = 〈i , j |ψNQS〉. We hierarchically order the absolute value of the |ci , j |.
We make a reduced ansatz by only keeping the Nred. largest values. This gives an

N (A)
red. × N (B)

red. ≥ Nred. matrix of cred.
i , j . In case one is interested in the entanglement

entropy between exactly one half of the system and the other, then by symmetry

N (A)
red.×N (B)

red. = Nred., and Nred. should be chosen to be an exact square. We then com-

pute the entanglement entropy of cred.
i , j by Schmidt decomposition. The accuracy of

the entanglement entropy is controlled by the truncation q = Nred./Nens, and we can

compare this to the accuracy in the groundstate energy when only sampled over the

Nred. most important contributors to the ensemble.

There is one point one needs to pay special attention to. When computing the entan-

glement entropy for gauge theory in the above described way, it can happen that in

constructing the matrix ci , j that the final state resulted from combining states i and

j is not gauge invariant. In that case the probability of system reaching that state is

zero. When creating matrix ci , j we need to check all elements and if the state they

came from is not gauge invariant set those to zero. Doing this we ensure that only

gauge invariant states contribute to the entanglement entropy.

4.4. Dense entanglement at criticality or not?
The 2D lattice we choose will be square of size Nlattice = 3×3 with periodic boundary

conditions (PBC). We will consider the sequence of (Z2)n/Z2 gauge theories that have
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n = {2,3,4}. More than 4 matter fields or more lattice sites becomes computationally

expensive. The NQS variational ansatz will have with Nlattice visible and M hidden

nodes, with the ratio of two labeled as α= M/N . We try four different configurations

α = {1,2,3,4}. The accuracy of the untruncated groundstate energy is expected to

scale polynomially in α [70]; ∆Eg.s = aα−b . Unlike [70], the exact groundstate energy

is not known for our models. However, studying the convergence of the NQS for

α= 1,2,3,4 we can roughly see that increasing the number of hidden knows gives an

improvement that decreases relatively to the number of hidden nodes, if we ignore

the lowest resultα= 1. This is represented in Fig.4.3, where we have sampled over 50

different initial conditions, and estimated the accuracy of the groundstate by using

bootstrap over those 50 initial configurations.

0 100 200 300 400 500 600
iteration

40.5

40.0

39.5

39.0

38.5

38.0

en
er

gy

= 1

= 2

= 3

= 4

Figure 4.3: The approach towards the optimal NQS ground-state wavefunction for the Z 2/Z model mea-
sured through its energy as a function of learning epoch for α = 1,2,3,4 for the value λ = 0.948,ω = 0.
Considering theα= 1 result an outlier, one sees an improved convergence as the number of hidden nodes
α is increased. The average over 50 initial conditions is given as well as the standard error computed using
bootstrap over 500 resamples.

In this finite size system, there is no true instaneous phase transition, but its incipi-

ence is clearly visible in both the specific heat and the development of a finite order

parameter for the registry symmetry. Fig.4.4 illustrates this. We clearly see the incip-

ient second order phase transition as predicted for this model in [48].

We can now test how entanglement also in 2D systems becomes denser both as we

approach the critical point, and as we increase the number of degrees of freedom

analogous to the central charge in 1D systems. Fig.4.6 gives our results of the en-

tanglement between 2/3 and 1/3 of the system. In the case of 3×3 system, dividing

system exactly in half is not possible, the method we opted out for is the divisions

along the secondary diagonal as in the Fig.4.5.

Fig.4.6 and specifically the middle row of Fig.4.6 shows the results of the entangle-
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Figure 4.4: The specific heat cV = ∂〈E〉NQS
∂λ

(green) and registry order parameter 〈On〉 =
〈σn−1

1 . . .σn−1
n 〉NQS (red) for the Z n

2 /Z2 gauge theory for n = 2,3,4 for ω = 0 as a function of λ deter-
mined from the NQS wavefunction for α= 3. The mean and standard deviation after are computed using
bootstrap.

Figure 4.5: Illustration of the system division for a 3×××3 lattice used in our computations.

ment entropy for the sequence of Z n
2 /Z2 theories as a function of the relative cou-

pling λ−λc /λc w.r.t. the criticial point. Initially the entanglement entropy does in-

crease when going from 2 to 3 fields, but then stays the same when we added another

4th field. Though the numerical results are not super smooth, and there is a slight in-

crease for α = 4, we expect a linear increase and this is clearly not there. There are

several possible explanations for this. One is that finite size effects due to compu-

tational limitations do have a direct impact. This cannot be ruled out, but the fact

that the entanglement entropy does not change much with the increase in α sug-

gests otherwise. Already α = 1 appears sufficient to represent all the entanglement

in the system. Another possible explanation for the relation between entanglement

entropy and the number of matter fields is that increasing number of fields would

require an increase in the Nred.. From the right figure in the bottom row of Fig.4.6 we

see that increase of Nred. lead to the increase in the entanglement entropy. We are

again computationally limited here as a further increase in the number of required

states would cause memory issues.
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Figure 4.6: The entanglement entropy S2/3 of 2/3 of the 3× 3 system entangled with the other 1/3 for
the Nred. = 104 truncated (see text) NQS groundstate of Z n

2 /Z2 gauge theories averaged over 50 initial
conditions. The top row shows the dependence on the number of hidden variables as a function of λ for
Nred. = 104: Left is the result for n = 2 for α= 1,2,3,4; middle for n = 3; right for n = 4. This estimates the
error in the entanglement entropy. The middle row shows the dependence on n rescaled to λred. = λ−λc

λc
;

left for α = 3, right for α = 4 for Nred. = 104. No discernible increase in the entanglement entropy as a
function of n is seen. The bottom row shows the dependence on Nred. = 104 (solid line) and Nred. = 103

(dashed line).

4.5. Discussion
Having presented our results, we must leave a verification whether entanglement en-

tropy scales with the number of degrees of freedom also at a 2D critical point an open

question. Surprisingly, within the limitations of our numerics in the Z n
2 /Z2 sequence

of models we studied this appears not to be the case. We cannot fully rule out that

a technical/computational limitation is the cause, but we have performed extensive

tests and the code faithfully reproduces the known 1D results (see Appendix). One

possibility to overcome computational limitations is to move away from the tradi-

tional Monte Carlo sampling and using more direct approach like equivariant flow-

based sampling [80] or generative models [81]. We leave this for future research.
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4.6. Appendix

4.6.1. NQS States and Entanglement for 1D transverse field
Ising Model

Given that we have such an unexpected and curious result, it behooves an in depth

exhibition of the validity of our approach. Here we compute the known entangle-

ment entropy in a 1D transverse Ising model using exactly the same algorithm. These

results agree with the theoretical expectation as well as the numerical NQS results of

[73]. We have parametrized the 1D transverse field Ising model Hamiltonian analo-

gous to Eq.((4.6))

HTI-1D =−∑
r⃗

σ1 (⃗r )−λ∑
r⃗ ,µ

σ3 (⃗r )σ3 (⃗r + êµ) (4.12)

and use a N = 16 site system with periodic boundary conditions. The results are on

Fig.4.7. One sees the increase in entanglement as one approaches the critical value

λc = X X consistent with the notion of dense entanglement.
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Figure 4.7: Left: The specific heat and Z2 order parameter of the 1D Ising model as a function of λ. Right:
The entanglement entropy both as a function of λ and as a function of boundary site s = 2,4,6,8,10,12,14
between subsystem A and subsystem B (the boundary site is the last site that is included in A.). The
dashed line is the CFT result in the continuum limit.




