
Numerical exploration of statistical physics
Bukva, A.

Citation
Bukva, A. (2023, October 10). Numerical exploration of statistical physics.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3643232
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/3643232
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3643232


3
Replicating Higgs Fields in

Ising Gauge Theory: the
Registry Order

Attribution
This paper has been previously published as a preprint on arXiv and has been sub-

mitted to Physical Review E for publications, and it is currently under the editorial

review, under the title Replicating Higgs fields in Ising gauge theory: the registry
order, together with Koenraad Schalm and Jan Zaanen.[48]

Abstract
We consider Z2 gauge field theory coupled to “Higgs” matter fields invoking several

copies of such matter, interacting entirely through the gauge fields, the Z2 × Z2 ×
Z2 · · ·/Z2 and the O(N )×O(N )×O(N ) · · ·/Z2 families of theories. We discover that

the Higgs phase of such theories is characterized by a hitherto unidentified “reg-

istry” order parameter. This is characterized by a gauge invariant p = 2Nrep /2 Potts

type symmetry where Nrep is the number of matter copies. The meaning of this reg-

istry is that the different matter copies align their vectors locally in strictly parallel or

anti-parallel fashion, even dealing with the continuous O(2) symmetry. Supported

by Monte-Carlo simulations, we identify the origin of this registry order in terms of
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the gauge interactions mediated by the fluxes (“visons”) associated with the Z2 gauge

fields, indirectly imposing the discrete symmetry in the gauge invariant global sym-

metry controlled effective order parameter theory. In addition, it appears that our

simulations reveal a hitherto unidentified “pseudo-universality” associated with the

very similar form of the overall phase diagrams of the various theories suggesting a

remarkable “governance” by the gauge field part of the dynamics.

3.1. Introduction
The physics of gauge fields has its special traits and arguably the simplest incarnation

of such an interacting theory, controlled by Ising (Z2) local symmetry, has played a

historical role in the subject, comparable to the (global) Ising model itself in revealing

generic principle. Early on, the pure Z2 gauge theory was introduced by Wegner [10,

11], revealing in a minimal setting the fundamentals in the form of the confining

and deconfining phases. Much later it was gradually realized that, different from the

confining phase, the deconfining phase is characterized by topological order [49–54].

Kitaev rediscovered this in the context of topological quantum computation in the

form of his toric code [55] demonstrating the non-Abelian braiding associated with

its fluxes. This insight into the Ising deconfining state acquired in a recent era plays a

central role in various guises in the modern topological order portfolio of condensed

matter physics.

In a next step one can couple in Higgs fields (“matter”) and generically a Higgs phase

is formed besides the (de)confining phases. Next to the role it played in quantum

condensed matter (e.g. [51, 52]), this flourished particularly in the context of liquid

crystals. It was early on realized that the Higgs-confinement transition of O(3) mat-

ter Z2 gauge (O(3)/Z2) is equivalent to the (uniaxial) nematic to isotropic transition

[56] (see also [53, 54]). Recently this was exploited to study “generalized” nematics

characterized by the breaking of the non-abelian point groups in 3D [57].

In fact, this started with the pioneering work by Fradkin and Shenker [12] that fo-

cused in on the minimal case where matter is “in the fundamental”, e.g. the Higgs

field is governed by Z2 symmetry as the gauge fields. They found that the “maximally

ordered” Higgs phase and “maximally disordered” confining phase actually become

indistinguishable. This confused the community for a long while and perhaps this

got resolved for the first time by Huse and Leibler [58] invoking an analogy with am-

phiphilic phases as of relevance in e.g. biology. We will review this in more detail

underneath since this motif will play an important role in the remainder.

We stumbled on a natural extension of this discrete gauge theory portfolio. Although

we have not managed to identify any circumstance where this could be of empirical

relevance, as a theoretical construct it is entertaining. It adds some new general mo-
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tifs, while shedding also an unexpected light on the basic physics of discrete gauge

systems. We call this “discrete gauge theory with replicated Higgs fields”, where var-

ious matter fields couple to the same gauge field. This defines a vast landscape of

theories, and we will focus on the most elementary examples. We will limit ourselves

to three (overall) dimensional systems characterized by a single Z2 gauge field cou-

pling to “replicated” Z2 and O(2) Higgs fields.

Let us first define this “replicated” theory. Discrete gauge symmetry can only be han-

dled departing from a UV lattice. Let us consider the Euclidean action that may be

interpreted as a thermal problem in D = d + 1 dimensions, or either as the action

of the quantum incarnation in d space dimensions after Wick rotation. Consider a

hyper-cubic lattice in D overall dimensions and assign matter (Higgs) fields φ⃗a
i to

the site i with a symmetry that will be specified in a moment. The novelty is in the

a = [1, Nrep] different “flavor” copies of the matter fields. Next, assign gauge group

matrices Ui j to the links between nearest-neighbor lattice sites. The action is then in

full generality of the form,

S[{φa ,Ui j }] = K
∑
□

Tr
[
U12U23U34U41

]+Nrep∑
a=1

Ja
∑
〈i j 〉

Ui j φ⃗
a
i · φ⃗a

j

+∑
ab

J L
ab

∑
i
φ⃗a

i · φ⃗b
i

(3.1)

in the usual guise of defining the gauge curvature in terms of the Wilson plaquette

action (first term), coupling minimally to matter (second term). Once again, the only

novelty is in the consideration of the Nrep > 1 matter field copies. The last term corre-

sponds with the minimal, gauge invariant couplings between the Higgs field “repli-

cas”. A crucial ingredient is that all replica’s are subjected to coupling to the same

gauge field.

We will be focused on the minimal Z2 gauge field incarnation in a thermal setting,

addressing its statistical physics in 3 overall space dimensions. In terms of Ising spins

±1 with Pauli matrices living on the bonds with operator τz
i j ,

SZ2 [{φa ,Ui j }] =−K
∑
□
τz

12τ
z
23τ

z
34τ

z
41 −

Nrep∑
a=1

Ja
∑
〈i j 〉

τz
i j φ⃗

a
i · φ⃗a

j

−∑
ab

J L
ab

∑
i
φ⃗a

i · φ⃗b
i .

(3.2)

For a single Higgs field this is just the thoroughly studied O(· · · )/Z2 action, where

O(· · · ) refers to the symmetry group of the matter field. We will concentrate on the

elementary cases of the matter fields in the fundamental O(· · · ) → Z2 as well as the

case of O(2) matter.
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We repeat, different from the single copy versions, we have not managed to identify

circumstances where these replicated theories become of relevance to experiment.

Perhaps the closest approach are the multi-component superconductors identified

and analyzed by Babaev and coworkers [59–61]. These would correspond with two

U (1) matter fields sharing the U (1) gauging by electromagnetism. However, the latter

is supposedly to be non-compact lacking magnetic monopoles: as will become clear,

the analogous “gauge fluxes” (or “visons”) of the Z2 version are crucial to the physics

we wish to discuss.

Not knowing quite what to expect, we explored this theoretical landscape in first in-

stance through Monte-Carlo simulations with a focus on establishing the nature of

the phase diagrams. To establish the location and nature of the phase transition we

employ standard methodology (thermodynamics, Binder criterium): details can be

found in the appendix.

This revealed surprises that we deem of sufficient interest to report here. These are

already revealed by the simplest replicated Z2 × Z2 × Z2 · · ·/Z2 version. We first con-

sider the limit where the local couplings between the matter fields (the J L
ab = 0 in

Eq. (3.2)) are absent for identical Higgs couplings Ja = J ∀ a. Although there are no

direct couplings between the replicated matter fields, we identify a new, gauge in-

variant global symmetry. We call this the “registry” order parameter, associated with

the relative orientation of the local matter fields. As we will explain in Section 3.3, for

Nrep replicated fields this is governed by a p = 2Nrep /2 state Potts model. This sym-

metry is automatically broken in the Higgs phase, while it restores in the confining

phase. The consequence is that, different from the single copy version, this renders

the Higgs and confining phase to be distinguishable as they are now separated by a

second order phase transition. The local couplings J L
ab break this symmetry explic-

itly turning these transitions into cross-overs, while the onset of the “registry” phase

transition in the gauge coupling (K ) and matter coupling (Ja = J ) can be manipulated

by choosing matter couplings that are different for the copies Ja ̸= Jb ̸=a .

We will then turn to the O(2)×O(2)× ·· ·/Z2 case (Section 3.5). For a single matter

copy the Higgs phase is distinguishable from the confining phase since the former

breaks symmetry spontaneously in the form of a (“spin”) nematic order parameter,

involving for O(2) a second order phase transition. However, invoking more than

one copy we find that this is characterized by the same registry order parameter as

the Z2 case for vanishing local couplings. The ramification turns out to be that the

confinement-to-Higgs (or isotropic-to-nematic) transition is lifted to a first order one

for the reason that two global symmetries (registry and nematic) are simultaneously

spontaneously broken at this transition.

Last but not least, it sheds further light on a peculiarity associated with the Z2 gauge

systems that we find to be more generic than anticipated. This departs from the
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structure of the phase diagram of the Z2/Z2 problem, as function of gauge (K ) and

matter (J ) coupling, Fig.3.1. As pointed out already by Fradkin and Shenker [12], by

following the large J (top side) and small K (left side) evolution of the couplings no

phase transition is encountered between the confining and Higgs “phases”, stressing

the indistinguishability. However, departing from the tricritical point associated with

the deconfining phase one finds a strand of first order transition terminating at a

critical endpoint. This was elucidated in full by Huse and Leibler [58], employing a

dual language involving both the matter and gauge topological defects, that we will

review first to set the stage (Section 3.2). This is associated with a peculiar “amplitude

dynamics” and we find that it is remarkably robust, being actually rather insensitive

to the presence of gauge invariant global symmetries. This can already be seen in the

elementary O(2)/Z2 system where it appears to have been overlooked (see Fig. 3.4)

– we are aware of only one publication where the first order “strand” was mentioned

without further analysis [62]. We will end with a short discussion of our findings

(section 3.6).

0

1.5

0.75

10.75 0.00 0.25 0.50 0.75 1.00
K

0.25

0.50

0.75

1.00

J

2

4

6

8

10

Figure 3.1: The quantitative phase diagram as established by Monte-Carlo of the Z2/Z2 theory as func-
tion of the gauge coupling K and matter coupling J , see appendix 3.7.1 for details. The left panel gives
the overview, further illustrated by the outcomes for the specific heat in the right panel. The dashed- and
drawn lines represent second- and first order transitions respectively, that we confirmed by a detailed
analysis of the Binder cumulants. This is well understood (see main text): for small J the matter sector
is disordered and can be ignored, and one is just dealing with the pure gauge Wegner Ising gauge theory
revealing the deconfining- and confining phases separated by a continuous phase transition, where the
latter can be viewed as a condensate of gauge fluxes (“visons”). Upon increasing J at large K one enters
the “Higgs-like” phase that is famously indistinguishable from the confining phase – a transition is absent
as function of J for small K . A peculiarity is the first order line emanating at the tricritical point anchored
at the deconfinement transition. This reflects a van der Waals density driven liquid-vapor transition asso-
ciated with the density of “featureless” domain walls, terminating at a critical end point.
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3.2. A short review of Z2 gauge theory with matter.
Let us first remind the reader of the thorough understanding of Wegner Ising gauge

theory, both for matter in the fundamental (Z2) and the case of matter fields with

a larger symmetry than the fundamental. The pure gauge theory played a decisive

role in the very early days of Yang-Mills theory by demonstrating the existence of

confining/deconfining phase transitions [10] in 3 and higher (overall) dimensions,

highlighted by the famous lecture notes by Kogut [11]. Among others, the pure Z2

gauge is dual to global Ising, while the deconfining phase was much later understood

as being characterized by topological order. For a particularly appealing physical

interpretation see the “stripe fractionalization” [53, 54].

The essence is the invariance of the theory Eq. (3.2) under the local gauge transfor-

mations at each site i ,

|state〉 → ∏
j
σx

i j |state〉

φa
i → −φa

i . (3.3)

The bond variables are Ising valued (±1) and the action is invariant under flipping

the signs of all bonds emanating from any site i when simultaneously the matter

(vector) fields living on the site revers their signs. For vanishing (and by extension

small) matter couplings Ja one is in the realms of the pure gauge theory (see Fig.3.1).

This is best understood in terms of the topological excitations, the “gauge fluxes”

[11] also called “visons” in the condensed matter literature [52]. The gauge invariant

object is the Z2 valued Wilson plaquette variable τz
12τ

z
23τ

z
34τ

z
41: for an even or uneven

number of positive bond variables τz
i j this takes a positive or negative value, the latter

representing gapped excitations when K is large.

These visons have a similar status as the monopoles of compact QED [63], the differ-

ence being that these fluxes have co-dimension d −2: in 3 dimensions these corre-

spond with “world lines” (see Fig. 3.2). It is easy to see that a Dirac seam emanates

from the line (forming a surface) and for large K these form small closed loops pro-

tecting the topological order. As for global U (1) in 3D, upon reducing K these loops

grow in size to “blow out” at the transition to the confining phase that can be viewed

as a condensate of the “vison particles”. It is easy to demonstrate [11] that the (gauge

invariant) Wilson loop exhibits a perimeter law when the visons are expelled from

the vacuum (deconfinement), turning into an area law in the confining phase (vi-

son condensate). This explains the small J regime of all phase diagrams that we will

present.

Let us now turn on the matter couplings J a to focus in on the case of minimal Z2

matter “in the fundamental”. As we already emphasized, the demonstration by Frad-

kin and Shenker [12] that the “maximally orderly” and “maximally disorderly” Higgs
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Figure 3.2: An example of a closed Z2 gauge flux (“vison”) loop as these occur in the deconfining (and Higgs
“like”) phase representing the topological excitation of the gauge theory. The plaquettes indicated by
blue represent a gauge invariant flux τz

12τ
z
23τ

z
34τ

z
41 =−1 immersed in a background of positive plaquette

values. These have to form a connected line in three dimensions, the dashed line in this illustration.

Figure 3.3: The featureless nature of the Higgs “phase” of the Z2/Z2 theory explained by inspecting the
domain walls in the large J ,K regime. Depart from the unitary gauge (upper row) and construct a domain
wall costing an energy J/unit cell. Restore the gauge invariance implying that on every site an up spin can-
not be distinguished from a down spin. This shows that the domain wall has the gauge invariant meaning
of an object carrying energy but nothing else. This is the crucial insight behind the indistinguishability of
the Higgs and confining phases.

and confining phases are actually indistinguishable caused initially confusion. But

in hindsight it is obvious, for the simple reason that a phase transition requires a

global, gauge invariant symmetry to be broken. But in the presence of single Z2 mat-

ter, global symmetry is erased. Consider the large K , J limit; the visons are completely

expelled and one can choose a unitary gauge fix taking all bond variables to be posi-

tive and the matter field living on the sites form an ordered Ising state with the spins,

say, pointing up. However, according the gauge transformation Eq. (3.3) on every site

this can be swapped to a down spin. This sense of Ising order has no gauge invari-

ant meaning and a global symmetry that is broken cannot be identified, and thereby

there is no distinction from the confining phase.

From tracking parameters along the large J limit varying K followed by descending
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along J for small K one finds no phase transition proving the indistinguishability of

the Higgs and confining phases. The oddity is however in the form of a “strand”

of first order transitions emanating from the tricritical point anchored at the pure

gauge confining-deconfining transition; the deconfining phase keeps of course its

identity characterized by the expelled visons. This will be an important motif in the

remainder: it is a peculiarity of the “amplitude sector” of these gauge theories, that

was elucidated by Huse and Leibler in a particularly appealing physical setting [58].

Although there is no manifest global symmetry, there is a “material dynamics” at

work that becomes obvious considering the topological excitations, see Fig. 3.3. It

is instructive to depart from the large K , J limit. Consider the unitary gauge fix where

one is dealing with a standard Ising model, characterized by domain walls as topo-

logical excitation costing an energy E ∼ J/unit cell. However, upon restoring gauge

invariance it “looses the symmetry”: for instance one can swap all spins to the left of

the domain wall from up to down and the other way around to the right. Although the

matter spins “disappear”, the presence of the domain wall as en energetic excitation

is a gauge invariant notion. This is the simple clue; upon reducing J such featureless

domain walls will start to proliferate.

Let us now decrease K such that (closed) vison loops start to form. It is easy to find

out that the Z2/Z2 domain walls and visons relate to each other in the same way as

the (Abrikosov) flux lines and magnetic monopoles of the compact U (1)/U (1) the-

ory, where the monopole “cuts open” the flux line. The vison loop “cuts open” the

domain wall surface. For small J and large K in the “Higgs like” phase one finds ac-

cordingly large domain wall surfaces with here and there a small hole (“vesicles” [58]

). However, for small K and finite J (“confinement like”) there are many visons and

accordingly the domain walls are “cut in small pieces” (“platelets” [58]).

This offers the crucial insight regarding the origin of the first order line separating

the confining and Higgs like regime. The net density of domain walls takes the role

of density in the van der Waals theory dealing with liquid-vapor transitions. This is

just the ubiquitous affair where the density changes discontinuous in a first order

transition in the pressure-temperature diagram, terminating at a critical point. Huse

and Leibler argue that this particular “platelet” versus “vesicle” incarnation is literally

related to the behaviour of lipid membranes as of great relevance to e.g. biology[58].

One take-home message of our work is that this peculiar “amplitude dynamics” is

surprisingly ubiquitous in the whole landscape of theories defined by Eq. (3.2).

The next general motif that will be important is associated with matter field charac-

terized by a larger symmetry than the gauge sector. In general, this will imply that a

gauge invariant global symmetry can be identified, that is broken in the Higgs phase,

restoring the distinguishability with the confining phase. The simplest example is

the single copy O(N )/Z2 system.
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This “left over” global symmetry breaking is easy to infer in the large K , J limit. In

unitary gauge one finds here an ordered state breaking the O(N ) symmetry. How-

ever, the gauge transformation transforms the vector into minus itself. Consider

O(3) in 3D: this turns the vector in the director order parameter of a uniaxial ne-

matic. The confinement-Higgs transition becomes in turn equivalent to the liquid

crystal nematic-isotropic transition. This was used by Toner et al. [56] to shed light

on the origin of the well known first order character of this transition. One way is

to consider small K to integrate out perturbatively the gauge fluctuations, the out-

come being that one recovers the Landau-de-Gennes theory governed by a rank two

traceless symmetric tensor order parameter, allowing for a cubic invariant responsi-

ble for the first order transition. However, the dual (topological) language elucidates

that two global symmetries are now simultaneously broken by the vison condensa-

tion as well as the manifest nematic order. We notice that this gauge theory strategy

was used recently to completely classify and study “generalized nematics” associated

with the breaking of rotational symmetry to any of the (non-Abelian) three dimen-

sional point groups. This is a remarkably rich affair, with the highly symmetric point

groups translating in high rank tensor order parameters [57, 64, 65].
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Figure 3.4: In the left panel the phase diagram of the O(2)/Z2 theory, established from the Monte Carlo
results for the specific heat cV in the right panel. This can be directly compared with the Z2/Z2 theory,
Fig.3.1. One infers that it looks very similar, the only difference being that now the “gap” between the
termination of the first order line and the K → 0 limit between the confining- and Higgs phase is now
interrupted by a second order phase transition associated with the breaking of the gauge invariant “half-
periodic” O(2) symmetry. The fact that in other regards the phase diagrams look so similar is surprising,
see the main text.

A final motif that will be useful in the remainder is associated with the “outlier”

Abelian matter O(2)/Z2 case that is also well known, especially in the context of “frac-

tionalized” superconductivity (e.g., [52]). Different from the non-Abelian O(N ) cases

in the small K limit the rank two tensor order parameter simplifies to a simple O(2)
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with halved periodicity,

Heff,K→0 =−J ′
∑
〈i , j 〉

(
Φ⃗i · Φ⃗ j

)2 =−J ′|Φ|2 ∑
〈i , j 〉

cos
(
2(φ j −φi )

)
, (3.4)

using Φ⃗i = |Φ|e iφi . This has the obvious ramification that for K → 0 this transition

continues to be second order. In Fig.3.4 we show the phase diagram. There is now

indeed a second order transition separating the Higgs and confining phases, asso-

ciated with the disappearance of the “halved periodicity” XY order parameter char-

acterizing the Higgs phase. However, upon increasing K this turns into a first order

line again. Strikingly, this first order “strand” is even quantitatively very similar as

its analogue in the Z2/Z2 case: the main difference is just that the “connection” be-

tween confining and Higgs is now closed off by the transition involving the manifest

XY order parameter. This is clearly associated with the amplitude of the order param-

eter that obviously submits to the same “Huse-Leibler” logic, being controlled by the

density of the “non-topological” matter defect “fragments” near the tricritical point.

Although it has been previously observed that close to the tricritical point the Higgs-

confinement transition has turned first order [62] it took us by surprise that the

O(2)/Z2 behavior behaves so similarly as to the Z2/Z2 case: the only essential differ-

ence is that the “gap” between the critical end point and the K → 0 limit is just “filled”

with the nematic-to-isotropic like second order transition, barely affecting even the

locus of the end point of the first order line. A priori it is not at all obvious why this

is so similar. For instance, the matter topological excitations, as identified in uni-

tary gauge, are now XY-vortices with a quantized rotation associated with the halved

periodicity. These are lines (and not surfaces) in 3D, in stark contrast with the Ising

domain walls of the Z2/Z2 theory. We will encounter underneath other variations on

this theme, invariably revealing this somewhat mysterious quantitative universality

of the Huse-Leibler motif.

3.3. Replicating the Z2 matter fields: two copies.
After these preliminaries let us now turn to the main subject: the family of “repli-

cated” Ising gauge theories. The simplest case is the Z2 matter theory with two mat-

ter copies: Z2 × Z2/Z2. In fact, the most interesting case is the truly minimal one

where we take the same matter field coupling J1 = J2 = J and set the local couplings

to zero J 12
L = 0. Under these circumstances the matter fields couple only through the

Ising gauge fields.

Let us start with the simplest example of a Z2 gauge theory with replicated mat-

ter: the Z2 × Z2/Z2 case. In Fig.3.5 we show the phase diagram as established

by our Monte-Carlo simulations. We infer that this is a very close sibling of the

O(2)/Z2 phase diagram that we just discussed Fig.3.4. Next to the ubiquitous Higgs-
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deconfining transition, the transitions between the Higgs- and confining phase looks

very similar, including the first order line emanating from the tricritical point turning

second order roughly at the locus of the Z2/Z2 critical endpoint.

0

0.7

0.35

10.75 0.00 0.25 0.50 0.75 1.00
K

0.2

0.4

0.6

J

5

10

15

20

25

Figure 3.5: The phase diagram of the “two copy” Z2×××Z2/Z2 theory for J1 = J2 = J and J 12
L = 0 illustrated by

the Monte Carlo results for the specific heat cV in the right panel. This looks very similar as to the O(2)/Z2

case (Fig.3.4) in turn similar to the Z2/Z2 case except for the connection between Higgs- and confinement
is closed off by an honest second order transition. As explained in the text, one can now identify an Ising
valued gauge invariant “registry” order parameter that breaks the symmetry spontaneously in the Higgs
phase having a similar role as the nematic order parameter of the O(2)/Z2 case.

What is going on here? As explained earlier, for the transition between confining and

Higgs at low K to be a true second order phase transition, there has to be a broken

global symmetry. In fact this is indeed controlled by a gauge invariant order param-

eter with a global Ising symmetry that may not be directly obvious to the reader, but

it is quite simple. Consider again the unitary gauge with all bond spins +1. Because

we have two matter fields, we are now dealing with two independent Ising spin sys-

tems living on the sites that will both be ordered for large J ,K . As we emphasized in

Section 3.2, after restoring the gauge invariance both Ising spin systems “loose their

symmetry” according to the Z2/Z2 rule book. But now we observe that the relative

orientation of these two spin systems actually corresponds with a gauge invariant,

global Z2 symmetry!

Take the matter spins “1” to be pointing in the positive direction, and the “2” spins

can be either parallel or anti-parallel to the “1” spins. Let us now see what happens

with this “registry” upon restoring the gauge invariance, see Fig.3.6. Consider par-

allel registry on a particular site like ↑1↑2 and under a gauge transformation both

spins flip – a single sector ↑,↓ is not gauge invariant. But it follows that the relative

orientation of the matter spins in both sectors can be either parallel or anti-parallel

and after restoring the gauge invariance it continues to be distinguishable whether

one is dealing with locally parallel or anti-parallel configurations: ↓1↓2↔↑1↑2 versus

↑1↓2↔↓1↑2! This is what we call the “registry order parameter” which carries clearly
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Figure 3.6: The “registry” order parameter of the two copy Z2 × Z2/Z2 theory. Depart from the large J ,K
limit and take a unitary gauge fix as in Fig.3.3. One can now construct two types of domain walls associated
with the two copies (upper line). However, upon restoring gauge invariance only two of the four on-site
configurations can be distinguished: the spins are locally either parallel- or anti-parallel. This is the global
Z2 symmetry that is broken in the Higgs phase.

a global Z2 charge!

This “registry” symmetry breaks spontaneously in the Higgs phase, causing a two fold

degenerate ground state: either the “parallel” or “anti-parallel” registry takes over.

This registry order parameter 〈φ1φ2〉 is easy to measure and it is precisely what we

find in the Monte-Carlo simulation of the Higgs phase, see Fig.3.7.
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0.75

〈 φ1 φ
2
〉

Figure 3.7: Expectation value of the registry order parameter 〈φ1φ2〉 of the Z2 × Z2/Z2 theory, along the
K = 0 slice.

At first sight this may be a bit confusing given that the matter fields interact only via

the gauge couplings. However, the simple logic in the previous paragraph just reveals

that this replicated system has in the Higgs phase a doubly degenerate ground state

associated with “parallel” and “anti-parallel” registry. It is easy to construct gauge
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invariant domain walls between domains with opposite registry, as the “featureless”

domain walls of the Z2/Z2 theory now acquire the gauge invariant meaning that they

represent a jump in the registry order. Notice that the phase diagram is in all regards

other than the second order Higgs-confinement transition a near quantitative copy

of the Z2/Z2 phase diagram. Given the lessons of the O(2)/Z2 theory this is perhaps

not surprising since the “microscopy” of the Z2×Z2/Z2 theory is a close cousin of the

O(2)/Z2 case.
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Figure 3.8: The phase diagrams of the Z2 ××× Z2/Z2 theory, with the Monte Carlo data for cV in the second
row, for a finite JL = 0.1 (a) and JL = 1 (b). Notice that the Monte Carlo results are shown over a small
interval in K to highlight the most relevant changes. This local coupling acts as a field breaking the registry
symmetry explicitly, turning the JL = 0 Ising phase transition into a cross over. The consequence is that
for any finite JL the indistinguishability of Higgs and confinement is restored. The small strand of second-
order like (dashed line) transition for small JL (a) may well be related to a rapid crossover that can not be
distinguished within our numerical accuracy (Binder criterium) from a real transition. For large JL (b) the
phase diagram becomes nearly identical to the one of the Z2/Z2 theory itself. Another interesting game
is to vary the relative strength of the matter coupling of the two copies for JL = 0. In (c) we show a typical
example dealing with different matter couplings J = J1 = 3J2.

To illustrate these matters further, let us consider what happens when the local J 12
L

interaction in Eq. (3.2) is switched on. It is immediately obvious that this relates

directly to the registry: one sees immediately departing from unitary gauge that this

lifts the degeneracy of the parallel and anti-parallel registry configurations. This acts

as a field breaking the registry Ising symmetry explicitly! This should have the effect

to turn the registry phase transition into a cross over, with the effect that yet again

the confining and Higgs phases become indistinguishable again, and this is what we

find is going on according to our MC simulations: see Fig.3.8 (a,b).
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A next freedom one can exploit is to take JL = 0 but change instead the relative mag-

nitude of the matter couplings, J = J1 ̸= J2. This is an entertaining affair highlighting

the unusual nature of the registry order. Upon reducing J2 the locus on the vertical

axis where this second field changes from order to disorder shifts upwards along the

vertical axis in terms of the “dominating” copy governed by J1 = J . The effect is that

at the J1 transition in the small K regime the J2 coupled matter field is still disor-

dered while the order in both fields is required for the existence of the registry order!

Hence, holding J1 ̸= J2 fixed while varying K , there is a window where the registry

order disappears in the small K regime, switching on again when K has become suf-

ficiently large to reach the J where also the second field becomes also prone to order

again, see Fig.3.8(c). The outcome is a critical end point where now a line of second

order transitions starts that is subsequently turned into the first order Huse-Leibler

affair! We notice that this peculiar behaviour is only seen in a small J2/J1 interval; for

J2 ≤ 0.25J the phase diagram becomes again the one of the single copy Z2/Z2 theory.

Up to this point we have demonstrated that in terms of the degrees of freedom of the

gauge theory a quantity can be identified characterized by a global symmetry that is

broken in the Higgs phase – the registry order parameter. However, what is the nature

of the dynamics responsible for the stability of this order? Inspecting this deep in the

Higgs phase (large K , J ) employing the unitary gauge is not informative. The reason

is that this is rooted in “gauge field interactions” that are unusual in the sense that

the discrete nature of the Z2 gauge fields implies that these “gauge forces” are char-

acterized by a mass scale that becomes large deep in the Higgs phase. In a statistical

physics language any gauge field mediated force may be viewed as an “order-out-of

disorder” phenomenon – the fluctuations of the gauge fields are responsible for the

interactions between the (gauge invariant) matter fields.

Hence, the limit to consider is K = 0: the visons are the dynamical degrees of free-

dom of the discrete gauge theory and these come for free in this limit. Given that

the disclinations are bound states of matter defects (domain walls) and the visons,

the stability of the Higgs phase itself is entirely due to the cost associated with the

former, while the Z2 gauge field is maximally fluctuating. Its only energy cost comes

from the coupling to the matter fields. The gauge fields can therefore be straight-

forwardly integrated out with the outcome that one obtains the (gauge invariant)

Landau-de-Gennes order parameter theory [56]. In the general case one is dealing

with the point groups associated with the rotational symmetry of the nematic-type

state; for Abelian point groups in two dimensions that are encoded by ZN gauge

fields one recovers in this way the simple “p-adic” nematics [66], while this proce-

dure has been shown to be instrumental to derive the high rank tensor de-Gennes

order parameters associated with the non-Abelian point groups in three dimensions

[57, 64, 65].
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The outcome for the elementary Z2 gauge theory is simple: integrating out the gauge

fields when K = 0 leads to the simple “square of the Hamiltonian” gauge invariant

effective theory as in Eq. (3.4) [56]. In full generality, departing from the replicated

theory with arbitrary matter field symmetry Eq. (3.2) when J i j
L = 0 and all Ji = J one

obtains,

Heff,K=0, =−J ′
∑
〈i , j 〉

Nrep∑
a=1

φ⃗a
i · φ⃗a

j

2

. (3.5)

Let us first consider the single replica Z2 matter field. Here φ⃗i → σz
i and we infer

that the effective Hamiltonian becomes
∑

〈i , j 〉(σz
i σ

z
j )2 → constant: this is the essence

of the Fradkin-Shenker observation [12], no gauge invariant degree of freedom can

be identified distinguishing the Higgs and confining phases implying that these are

indistinghuishable. But let us now consider two identical Z2 copies,

Heff,K=0,Nrep=2 =−J ′
∑
〈i , j 〉

(
2∑

a=1
(σz )a

i · (σz )a
j

)2

= constant− J ′
∑
〈i , j 〉

(
(σz )(1)

i (σz )(2)
i

)(
(σz )(1)

j (σz )(2)
j

)
.

(3.6)

This simple affair reveals the origin of the “registry dynamics”: the combination(
(σz )(1)

i (σz )(2)
i

)
takes the (global) Z2 values ±1 for parallel and anti-parallel registry

and Eq. (3.6) is just an Ising Hamiltonian associated with the registry degrees of free-

dom.

In hindsight this is elementary. As for the uniaxial nematics of Toner et al. [56],

the gauge theory in the strong coupling regime (K → 0) is in fact a redundant

parametrization of the “director” gauge invariant de Gennes type theories. The ad-

ditional richness of the gauge theory is associated with K becoming large, i.e. the

weak coupling regime of the gauge theory. For instance, the topologically ordered

deconfining phase has no physical identification dealing with the “molecular” ne-

matic liquid crystals. Additional microscopic structure is required, with perhaps the

“stripe fractionalization” [53, 54] being the most elementary example of how this can

happen.

This is also underlying the difficulty to recognize this simple motif “deep” in the Higgs

phase, for large J and K →∞. Departing from the unitary gauge one easily identifies

the registry as gauge invariant degree of freedom (as in the above) but at first sight

the dynamics stabilizing it is obscure. The reason is of course that the visons are

now highly energetic excitations requiring an energy E ∼ K per unit length associated

with the effect that the gauge symmetry is discrete and the gauge fields are massive

. However, there is no phase transition in the Higgs phase at large J , varying K from

zero to infinity. This implies that regardless the magnitude of the virtual visons their

fluctuations always suffice to hard wire the registry order. This may be viewed as an

order-out-of-disorder phenomenon pushed to its extreme.
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3.4. The case of many Z2 matter fields.
Having established the rules for two Z2 matter fields copies, how does this generalize

to many copies? Let us depart again from Eq.(3.2) for Z2 matter and consider an

arbitrary number of matter field copies Nrep. As before the circumstances optimal

for the registry type order are associated with setting all local couplings to vanish,

J ab
L = 0, and taking the matter fields couplings to be equal: Ja = J . It is in fact easy

to find out by induction how the registry spontaneous symmetry breaking of the two

copy case generalizes to many copies.

Let us consider the three copy case: Z2 × Z2 × Z2/Z2. We just proceed as before, de-

parting from deep in the Higgs phase (large K , J ) and using the unitary gauge. At

every site the matter fields can occur in 23 different configurations, see Fig.3.9. Iden-

tifying these with domains one would find accordingly 8 different domain walls as-

sociated with flipping one spin keeping the other spins fixed. However, upon restor-

ing the gauge invariance amounting to flipping all spins on the site, it follows that

configurations are pairwise associated, e.g. ↑↑↑↔↓↓↓. Accordingly, one finds 4 dis-

tinct gauge invariant vacuum states, separated by “single spin” domain walls. This

is governed by a p = 4 state Potts model! It is easy to check that the Ising registry

theory Eq.(3.6) generalizes to the 4-state Potts theory by considering the “squared”

de-Gennes type effective theory in the K → 0 limit.

Figure 3.9: The registry order parameter (see main text) in the case of the three copy Z2 × Z2 × Z2/Z2

theory. Depart from unitary gauge fix and the three matter fields can locally form eight configurations.
However, under gauge transformations half of them are redundant, e.g. ↑↑↑↔↓↓↓. The gauge invariant
registry order parameter takes therefore four different physical realizations and it is governed by a p = 4
state Potts model.

This is confirmed by our MC simulations. In Fig.3.10 we show the phase diagram of

the three copy model. As anticipated, this looks very similar as to the two copy case,

Fig.3.5. Although the dynamics is quite different — the 4 distinct “gauged” domain

walls associated with p = 4 Potts — the Huse-Leibler first order strand is barely af-

fected with yet again the registry order being responsible for the continuous (Potts

model) phase transition distinguishing the confining and Higgs phases. In Fig.3.11

we show a typical realization after a partially annealed Monte-Carlo “quench” deep in
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Figure 3.10: The phase diagram of the three copy Z2 ××× Z2 ××× Z2/Z2 theory as in Fig.3.1 and Fig.3.4 for the
“minimal” Ja = J and J L

ab = 0 case. This looks very similar to Fig.3.5 and the strand of the first order
transitions is barely changed. The specific heat cV data suggests a first order transition all the way down
to K = 0, but a Binder cumulant study reveals this change to second order as sketched. A major distinction
now is that dynamics of (continuous) confining to Higgs transition is governed by a p = 4 state Potts model.

the Higgs phase: one discerns the 4 distinct Potts domains separated by the “registry

domain walls” confirming this simple analysis.

As for the two copy case one can now proceed by switching on various J ab
L local cou-

plings, “gluing together” the local matter copies with the expected results that we

checked. Involving one coupling between two of the three sectors, the 4-state Pott

symmetry is lifted by the explicit symmetry breaking to the effective two copy reg-

istry Ising symmetry. Similarly, coupling all copies with each other diminishes the

registry spontaneous symmetry breaking such that confinement and Higgs become

indistinguishable. In the same guise one can detune the matter couplings Ja , turning

into a variation of the matters we discussed in the previous section.

The two and three copy cases reveal the counting rules and by induction we can gen-

eralize this now to an arbitrary number copies. We just proceed as for the three copy

case. Given Nrep copies there are a total of 2Nrep local configurations in unitary gauge.

The next observation is that these configurations are pair wise identified with each

other by the gauge transformation. The result is that the registry symmetry is now

captured by a p = 2Nrep /2 state Potts model.

3.5. Replicating O(2) matter.
The “matter in the fundamental” Z2 matter case is special, and what to expect when

the symmetry of the matter field is raised relative to the Z2 gauge symmetry? For this

purpose we focused in on the minimal extension: the replicated O(2) matter fields
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Figure 3.11: Planar snapshot along the z axis of a Monte Carlo quench for the three copy model deep in
the Higgs phase J1 = J2 = J3 = 0.8 and K = 0. This reveals the presence of the 4-state Potts model domains

of Fig.3.9 separated by the “registry” domain walls. Domain 1 - are ↑↑↑↔↓↓↓, domain 2 - are

↓↑↑↔↑↓↓, domain 3 - are ↓↑↓↔↑↓↑, domain 4 - are ↑↑↓↔↓↓↑. Every domain wall differs from the
neighboring domain by a single flip.

gauged by Z2. As we discussed in Section 3.2, for a single copy the Higgs phase is now

characterized by the nematic-like order, distinguishing it from the confining phase

through the presence of a second order phase transition.

In Fig.3.12 we show the phase diagram of the two copy O(2)×××O(2)/Z2 case for the

(usual) choice J = J1 = J2, J 12
L = 0. This looks yet again very similar as to the other

cases, the main difference being that now the transition between the Higgs and con-

fining phase has turned into a first order transition for all K . Inspecting the “strength”

of the first order transition exploiting the Binder criterium (see Appendix 3.7.2) we

find that close to the tricritical point the transition looks quite like the other cases:

this is clearly driven by the “Huse-Leibler” amplitude fluctuations. Upon reducing K

the transition becomes an increasingly weak first order transition, but it continues to

be first order all the way down to K → 0.

As we will argue, this first order behavior is due to the fact that two order parameters
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Figure 3.12: The phase diagram of the O(2)×××O(2)/Z2 (left) and raw MC data for cV (right) for J1 = J2 = J
and J 12

L = 0. This is yet again remarkably similar as to the other phase diagrams. The difference is that
the Higgs-confinement phase transition is now first order all the way to K = 0 contrasting with its second
order behavior for the single copy version, Fig.3.4. This due to the occurrence of a Ising type registry
order parameter in the Higgs phase which is of the same kind as for the Z2 matter cases, that disappears
simultaneously with the nematic type order parameter upon entering the confining phase. The first order
nature is confirmed by a Binder cumulant study (Fig.3.15(c) in Appendix 3.7.2).

governed by two independent global symmetries vanish simultaneously at the Higgs

to confinement transition. In fact, the replicating has the effect that the “accidental”

second order nature of this transition for O(2)/Z2 becomes similar to the generic first

order transition of the O(N )/Z2 system with N ≥ 3 as argued by Ref. [56].

What are the two symmetries that are broken in the Higgs phase? This is actually

a bit more of a subtle affair than for the simple Z2-replica’s. As we will argue and

confirm with the Monte Carlo, one type of symmetry is associated with the nematic

type “halved periodicity” XY as for a single O(2)/Z2, actually applying to both copies

individually. But these are non-locally coupled together by the gauge fluctuations in

a way that they submit to a perfect Z2 registry symmetry, that is macroscopically the

same symmetry as the registry Z2 of the Z2 ×Z2/Z2 theory.

This is yet again easy to deduce by zooming in on the maximal gauge fluctuations,

the K = 0 case. As discussed in Section 3.3, this is of the universal form Eq.(3.5). For

the two copy O(2)×O(2)/Z2 case it follows immediately,

HO(2)×O(2),K→0 =−J ′
∑
〈i , j 〉

(
Φ⃗i 1 · Φ⃗ j 1 + Φ⃗i 2 · Φ⃗ j 2

)2

∼−J ′
∑
〈i , j 〉

(
(Φ⃗i 1 · Φ⃗ j 1)2 + (Φ⃗i 2 · Φ⃗ j 2)2 +2(Φ⃗i 1 · Φ⃗ j 1)× (Φ⃗i 2 · Φ⃗ j 2)

)
.

(3.7)

The first and second term just represent the director order parameter – for O(2) just

the halved periodicity – and upon ignoring the last term one is just dealing with two
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completely decoupled identical "O(2) nematics". This last term encapsulates the in-

teractions between these two copies as induced by the fluctuating disclinations. It is

obvious that also this term is governed by an invariance under O(2) rotations of every

copy separately – there is surely no effective single site "anisotropy" at work reducing

it to the on site Z2 registry revealed by Eq. (3.6) of the Z2 ×Z2/Z2 case.

However, the registry is now hidden in the "synchronization" imposed by the gauge

fluctuations associated with the relative orientation of the two spin configurations

on neighbouring sites. Parameterize Φ⃗= |Φ|e iφ, such that φ j a =φi a +∇i jφa and the

interaction term becomes,

−J ′
∑
〈i , j 〉

(Φ⃗i 1 · Φ⃗ j 1)× (Φ⃗i 2 · Φ⃗ j 2) =−J ′|Φ|2 ∑
〈i , j 〉

cos
(
∇i jφ1

)
cos

(
∇i jφ2

)
. (3.8)

This interaction term is governed by a global Z2 symmetry! It originates in the syn-

chrony of gauge invariant “remnants” of the two copies: the interaction term is min-

imal either for both copies being parallel on neighbouring sites or both antiparallel

where ∇i jφa = 0 or ∇i jφa =π. This signals the two fold degeneracy of the Ising order.

In Fig.3.13 we illustrate how to construct the Ising domain walls associated with this

registry order.

Figure 3.13: Illustration of the registry order of the O(2)×××O(2)/Z2 theory: the construction of the registry
Ising domain wall. We see that in contrast with the multiple Z2 matter fields — the local onsite orientation
of different matter fields is irrelevant for the registry. The two copies acquire independent orientations on
the O(2) (half) circle. What matters is how two matter fields change together from site to site. The strong
gauge field fluctuations “glue” together matter fields in a sense that they would have to simultaneously
change together in the same direction, see Eqs.(3.7),(3.8). In all cases (a)-(d) we depart from the same
unitary gauge two spin reference configuration on site i . In (a) we just consider the ground state con-
figuration on site j in unitary gauge. By performing a gauge transforming on site j we obtain (b), gauge
equivalent to (a). But now consider (c), with an anti-parallel orientation of the second spin on site j , gauge
equivalent with (d). The case (a), (b) corresponds with ∇i jφ1 = ∇i jφ2 = 0. We see that these configura-
tions minimize the interaction energy Eq.(3.8). While (c), (d) instead has ∇i jφ1 = 0,∇i jφ2 =π. Compared
to (a)-(b) this would cost us 2J ′ energy. The configuration (a)-(b) corresponds with a registry domain wall
between parallel and anti-parallel orientations of O(2) matter directors at the neighboring sites.

This can be illustrated by a Monte-Carlo quench from “high temperature”, departing
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Figure 3.14: 2D snapshot along z axis of a system on 12×××12×××12 lattice with periodic b.c for O(2)×O(2)/Z2

model. We a single frozen configuration of fields computed using a Monte Carlo quench deep in the Higgs

phase: J1 = J2 = 5 and K = 0. (Left) Snapshot of cos
(
∇i jφ1

)
. This elucidates a simple registry order

(parallel/anti-parallel), in the form of registry domains that are frozen in. The color coding denotes the

cosine of the relative orientation of the spins on the neighboring sites: Domain 1 (parallel) - corre-

sponds with ↑↑↔↓↓, and domain 2 (anti-parallel) - accordingly ↓↑↔↑↓. (Right) Snapshot of exp
(
2iφ1

)
director order parameter showing homogeneous distributions, being annealed, with some local fluctua-
tions due to the finite size and temperature effects.

from random configurations and partially annealing the system in the Higgs regime,

similar to Fig.3.11. This is shown in Fig.3.14. One infers that one form of order is of

the nematic-type (XY like) associated with the orientation of the director of one of

the the copies that we find to be homogeneous in this snapshot – this is annealed.

However we can also track the relative orientation of a single field between neighbor-

ing sites ∇i jφα, for α = 1. Fig.3.14 (Left) shows that this is either parallel ∇i jφ1 = 0

or anti-parallel ∇i jφ1 = π as illustrated in Fig.3.13 and explained after the text. As

in Fig.3.11 we observe domains of the two different parallel and anti-parallel registry

separated by “registry domain walls” of the kind similar to the Z2 matter.

Similar to the Z2 ××× Z2/Z2 case, this registry order is critically dependent on the J 12
L

being zero – upon switching it on this acts as an explicit symmetry breaking of the

registry turning the first order transition near K = 0 into second order, exhibiting

a phase diagram that is like the single copy O(2)/Z2 case (Fig.3.4). The effect of

unbalancing the matter couplings (J1 ̸= J2) has very similar effects as illustrated in

Fig.3.8, although now a second order transition is left behind when the registry order

switches off.

In summary, the “registry-sector” of the O(2) case behaves more or less identically as

in the Z2 case. The difference is that in the O(2) case one also has to account simul-

taneously for the nematic type order characterizing this Higgs phase. This renders

the phase transition first order all the way to K = 0. The topological defects of this

nematic-like state will start to populate the vacuum upon lowering K , J . These are

the disclinations, in turn being a “confined” combination of the vortex-type matter

defect, and the Z2 gauge flux/vison, e.g. [56, 62]. The matter-vortices of the two

copies share a single gauge flux. Upon integrating out these “topological fluctua-
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tions”, an interaction mediated by the Z2 gauge fields develops which is responsible

for the registry order. Similar to the Z2 case, the limit where one can easily deduce

the effects of the visons “gluing” the copies into registry, this is most easily deduced

in the K = 0 limit which is entirely controlled by the matter interaction J .

3.6. Discussion and conclusions
Gauge field theory is of course well known to have its own rules. In this paper we

have focused in on the simplest of all gauge symmetries, the Z2 variety, as the sim-

plest theory revealing the characteristic phase structure characterized by confine-

ment, deconfinement and the Higgs phase. By introducing the matter replicas we

discovered a new set of phenomena. In this pursuit we have heavily leaned on the

unbiased Monte-Carlo simulations. Puzzled by the outcomes we discovered the new

phenomenon of “registry order parameter”. As we discussed in Sections 3.3 and 3.4,

it is very easy to identify the origin in the Z2 matter versions, although it is a bit less

obvious and arguably more entertaining for the O(2) version in Section 3.5. It took us

by surprise, given that the origin of the induced “gauge interaction” that is responsi-

ble for the registry symmetry breaking is of a kind that is rather unfamiliar.

The mechanism is revealed by considering the extreme strongly coupled limit of the

gauge fields, K = 0. In terms of the degrees of freedom of the gauge theory, the mech-

anism is unusual, highlighted by the O(2) case. The physical degrees of freedom as-

sociated with the disordering of the Higgs phase are the nematic-type disclinations

that are in turn confined combinations of matter vortices and the fluxes of the gauge

field (the visons). Although both matter fields carry their own vortices, these “share”

a single vison. In the K = 0 limit the latter come for free and upon integrating these

out one finds that the de-Gennes type effective order parameter theory is endowed

with the registry “Ising” Hamiltonian, Eq . (3.6), and Eq.(3.8) respectively. Interest-

ingly, the discrete nature of the gauge theory has eventually the effect to generate the

Ising type registry global symmetry breaking.

We have only inspected the most elementary forms of such gauge theoretical sys-

tems. These are just a point in the vast landscape of all gauge theories, up to the

non-Abelian Yang-Mills theory behind e.g. the Standard Model. It would be quite

interesting to find out what happens with this “registry order” upon systematically

raising the symmetries involved. What happens in the “replicated” Z2 gauge theory

involving the non-Abelian O(N ) matter fields with N ≥ 3? What happens raising the

Z2 gauge symmetry to the non-Abelian 3D point group symmetries as in Ref. [57]?

Even more fundamental, what is the fate of registry dealing with continuous gauge

symmetry, starting with the Abelian U (1) of compact electrodynamics [63]?

Finally, another aspect also caught us by surprise in the Monte Carlo outcomes for
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the various phase diagrams. The Huse-Leibler mechanism for the first order transi-

tion between the "Higgs” and "confinement-like phase” emanating from the tricrit-

ical point appears to be surprisingly universal. Eventually this is a quantitative af-

fair. The mechanism as understood for the Z2/Z2 case does in this regard rely on the

specifics of this particular theory: the “vesicles” versus “platelet” affair. This surely

works differently involving continuous symmetry – the O(2) cases. But surprisingly

the “first order strand” is even quantitatively barely affected by these fundamental

differences. The reason for this is presently unclear to us and it may be of interest to

have a closer look at the origin of this “quasi-universality”.
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3.7. Appendix

3.7.1. Monte Carlo Simulations

The Monte Carlo simulations were performed on a d×d×d grid with periodic bound-

ary conditions. Grid size in all simulations was d = 12 in order to avoid finite size ef-

fects and still get reasonable computational times. We used most of the time a num-

ber of measurement sweeps N = 6000000; thermalization sets in typically after 1/3 of

the sweeps. Near the critical points we checked this by tracking the evolution of the

various quantities as function of the number of steps, taking as many steps as needed

for the quantity to saturate. For the updating rules we used the Metropolis-Hastings

algorithm with the acceptance ratio A(n,n′) = min(1,e−∆En,n′ ) where ∆En,n′ is the

energy difference between states n and n′ that differ in a single matter field or gauge

field flip. Phase diagrams were obtained by vertically scanning along different values

of J ’s, using annealing order to improve convergence accuracy. The whole phase di-

agram was run on a remote cluster where each process was associated with a single

value of K scanning along the J axis. We noted that the longest sweeps were required

to equilibrate when deep in the deconfining regime. Flipping single “bond spins” us-

ing the Metropolis-Hastings algorithm leads to highly energetic configurations and

accordingly to long thermalization times. But this did not pose any difficulty since
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the physics in this regime is simple.

3.7.2. Determining order of phase transition

We used several quantities in order to determine the order of a phase transition. For

the O(2) matter fields we tracked the local nematic magnetization m = 〈|e2iθi |〉 and

local registry order parameter R = 〈θ1
i ·θ2

i 〉. For Z2 matter fields we only encountered

the local registry order parameter. Note that formally the O(2)×××O(2)/Z2 registry or-

der parameter is non-local in that it is the nearest neighbor difference. In practice

this implies also a local order parameter, which is easy to understand after perform-

ing a “block-spin” averaging RG-step. We also measured the specific heat computed

as CV = 1
d 3 (〈E 2〉 − 〈E〉). In order to see the exact point of phase transition we em-

ployed the Binder ratio defined as:

U = 1

2

[
3− 〈m4〉

〈m2〉2

]
. (3.9)

In the limT→0 U = 1 while for limT→∞U = 0. Since this ratio is dimensionless, plot-

ting curves of different sizes clusters their intersection point which represents the

exact value of the phase transition. In our case shape of the Binder curve is more

important than the exact intersection point. A smooth transition from 0 to 1 in a sig-

moid fashion indicates a second order transition while a sharp dip that diverges with

system size indicates a first order behavior. Especially the transition associated with

the small K regime of the O(2)×××O(2)/Z2 is quite weakly first order, and this is man-

ifested by a Binder ratio dip that does not diverge with the system size, see e.g. and

Fig.3.15((c)). When going to larger system sizes, dip in the Binder curve become very

narrow. In that case, refining values of J in that regions helps capture it, otherwise

the peak is easily missed.

Besides the Binder ratio we also inspected histograms of values occurred during the

run of a simulation for an average spatial order parameter and the local energy in

order to observe the detailed behavior around the critical point where more than one

peak signals the phase separation associated with first order transitions. Histogram

are created by counting the occurrences of observed value in specific predetermined

bins. Even with fluctuations happening during the run of a simulation, these graphs

reveal where are the points of most concentrations around which quantity varies. In

most simulations size of the single bin was 10−5 in single unit of observed quantity,

which helps in a resolution of very closely placed peaks. As an example of usefulness

of distribution histograms in determining the order of a phase transition we present

“registry” and energy distributions for Z2 ××× Z2/Z2 model for single value of K = 0.55

in the regime of “Huse-Leibler” first order line emanating from the tricritical point,

Fig.3.16.
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Figure 3.15: Examples of the Binder ratio as function of system size: (a): A typical example of a second
order transition from confining to Higgs for O(2)/Z2 at K = 0, (b): An example of a first order transition for
O(2)/Z2 at value of K in the range of first order - "Huse-Leibler" line emanating from the tricritical point
(c): An example of the Binder ratio for a weak first order transition, showing its behavior for O(2)×××O(2)/Z2

for K = 0 as function of J . (d) An example of the Binder ratio for Z2 ××× Z2 ××× Z2/Z2 along K = 0 with a clear
indication of a second order phase transition.

All the phase diagrams presented in this paper are graphs of specific heat. But for de-

termining the precise nature of the phase order that is not enough. As it can be seen

from raw data graphs absolute values of specific heat can be an indicator of the or-

der, but can’t be completely trusted, because these values depend on the model and

are not universal. We only used specific heat as an indicator of where the transition

might be Fig.3.17, but analysis using Binder and histograms were done to determine

the order of the transition.
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Figure 3.16: Example of average order parameter (〈θ1
i ·θ2

i 〉) and energy (E) distributions values during a
single run of a simulation, on the “Huse-Leibler” first order line J = 0.29,K = 0.55 , for Z2 ××× Z2/Z2 model
with the usual J = J1 = J2 and J 12

L = 0. We see the appearance of two peaks in these distributions indicating
the coexistence of two phases.
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Figure 3.17: Example of the specific heat cV for O(2)×××O(2)/Z2 (blue-dots) and O(2)/Z2 (red-cross) along
the K = 0 slice (Higgs to confining transition). These two models have a different order of a phase transi-
tion which might be seen from the amplitude of a cV divergence. Usually sharper and bigger divergences
indicate the first order has occurred. However, one has to be careful due to finite size effects, and for
this reason we also study the Binder cumulants. Better use for this graphs is in roughly locating where
the transition happens. This information can be used to run the simulation on a more finely spaced grid
around the transition in order to get better convergence and more precise point of transition using finite
size methods.


