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2
Operator Thermalization vs

Eigenstate Thermalization

Attribution
This paper has been previously published as a preprint on arXiv under the title Op-
erator thermalization vs eigenstate thermalization, together with Philippe Sabella-

Garnier and Koenraad Schalm.[16]

Abstract
We study the characteristics of thermalizing and non-thermalizing operators in in-

tegrable theories as we turn on a non-integrable deformation. Specifically, we show

that σz , an operator that thermalizes in the integrable transverse field Ising model,

has mean matrix elements that resemble ETH, but with fluctuations around the

mean that are sharply suppressed. This suppression rapidly dwindles as the Ising

model becomes non-integrable by the turning on of a longitudinal field. We also

construct a non-thermalizing operator in the integrable regime, which slowly ap-

proaches the ETH form as the theory becomes non-integrable. At intermediate val-

ues of the non-integrable deformation, one distinguishes a perturbatively long relax-

ation time for this operator.
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2.1. Introduction
The question of how closed, unitary quantum systems can (appear to) thermalize has

long been at the heart of statistical mechanics. Recently, it has become more pressing

because of its implications for real-life experiments [17–22] and, through holography

for the black hole information paradox [23–29]. The usual answer to the puzzle is the

eigenstate thermalization hypothesis (“ETH”)[30–33]. At its core, the statement is the

following. Suppose that there is a regime where the matrix elements of an observable

O in the basis of energy eigenstates closely approximate the following form:

〈m|O |n〉 ≈O(E)δmn +e−S(E)/2 f (E ,ω)Rmn ,

E = Em +En

2
, ω= En −Em , (2.1)

where O(E) and S(E) are the microcanonical expectation value of O and entropy at

energy E , f (E ,ω) is a smooth function and Rmn is a random matrix with zero mean

and unit variance. Then, it can be shown that the long time average of the expec-

tation value of O in a superposition of energy eigenstates (such as a state produced

by a quench in the Hamiltonian of the system) will approach its thermal expectation

value, with the temperature set by the average energy of the initial state. The hypoth-

esis is that in generic quantum theories with a large number of degrees of freedom,

“most” observables have matrix elements approximately of this form and therefore

the system will appear to thermalize.

Nevertheless, while this is a sufficient condition for apparent thermalization, it is not

necessary. It is often argued that the validity of equation (2.1) for generic operators

is a symptom of quantum chaos. However, it has been noticed in various contexts

that even in free systems certain (usually composite) operators can relax to a thermal

state, at least at the level of linear response [34–40]. In [40], it was in fact shown that

the thermal retarded Green’s function of an operator in a free theory will generically

decay exponentially in time unless the operator satisfies a particular no-go condi-

tion. That condition is:

|〈m|O |n〉|2 = 0 unless En −Em = F (O)
i (Pn −Pm) , (2.2)

where Em,n and Pm,n are the energy and momentum of the states, F (O)
i (P ) are (not-

necessarily continuous) functions that depend on O , with i an index that runs over

a finite (system size-independent) range. By extension, such a statement should

hold in any integrable theory, with a combination of the extensive set of conserved

charges playing the role of momentum in the above expression.

In a generic non-integrable theory, finding an operator satisfying this no-go condi-

tion is hard, if not impossible, since the momentum difference and energy difference

between two states are a priori independent quantities. In integrable theories, the
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extensive number of conserved quantities makes finding operators that satisfy this

condition easier. For example, in a free field theory the field itself obeys it, and one

easily constructs others. However, it is also not hard to evade the no-go condition:

any operator that involves two uncorrelated momentum modes will do so (for exam-

ple, the square of a free field). As explained in [40], even free and integrable theories

therefore have many operators that thermalize in linear response.

Of course, integrable field theories cannot be said to be chaotic for any reasonable

definition of the word. In fact, their spectrum is highly regular. The fact that, at least

at the level of linear response, many operators are sufficiently blind to this struc-

ture (as expressed by violating this no-go condition) and appear to thermalize is the

idea that we have called operator thermalization. This is in contrast with eigenstate

thermalization in which it is the (lack of) structure of the spectrum itself that is re-

sponsible for thermalization.

In this note, we aim to determine the difference between these two ideas more con-

cretely by studying thermalization in a one-dimensional quantum Ising chain. When

only a transverse field is present, the model is integrable, whereas it is chaotic for a

certain regime with both transverse and longitudinal fields. As an example of OTH,

the local magnetization σz , which violates the no-go condition relaxes even in the

integrable regime. We show that its matrix elements in the integrable theory take a

form that is also consistent with equation (2.1) provided we average over small en-

ergy windows. However, a detailed examination shows that the integrable structure

of the spectrum is reflected in a non-Gaussian spectrum for Rmn . As we turn on

the non-integrable deformation and transition to the chaotic regime, Rmn becomes

smoother and one observes a classic example of ETH.

We then compare this with the behaviour of a non-thermalizing operator Γ in the

integrable regime. By construction, this operator satisfies the no-go condition and

does not relax. It therefore manifestly does not obey the ETH ansatz, even after aver-

aging. Deforming the theory to the non-integrable regime slowly induces a violation

of the no-go condition, and the operator then approaches a form compatible with

equation (2.1). In contrast to σz , one clearly sees the onset of a long perturbative

slowest-relaxation timescale (“mean free path”) in the system, that shortens as the

degree of non-integrability is increased.

We summarize our results in table 2.1. For other work on ETH in the context of inte-

grable theories, see [41–46].
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Theory Operator Satisifies no-go

condition?

Relaxes? Obeys ETH ansatz?

In
te

gr
ab

le σz No Yes Yes, but with Rmn

more sharply

peaked than a

Gaussian

Γ Yes No No

N
o

n
-i

n
te

gr
ab

le σz No Yes Yes

Γ No Yes, but with a long

relaxation time

Yes, with f (E ,ω) flat

as a function of ω

Table 2.1: Summary of results

2.2. Model details
The one-dimensional Ising model with transverse and longitudinal fields has the fol-

lowing Hamiltonian:

H =−J
N∑

n=1

(
σz

i σ
z
i+1 +hσx

i + gσz
i

)
, (2.3)

where σa
i are the usual Pauli matrices, obeying

[σa
i ,σb

j ] = 2iϵab
c σ

c
i δ

i j . (2.4)

We impose periodic boundary conditions, σa
i+N ≡ σa

i . When g = 0, the trans-

verse field Ising model is integrable and can be mapped to a model of free spinless

fermions through a series of textbook transformations. First, a Jordan-Wigner trans-

formation and Fourier transform will make the Hamiltonian quadratic:

σx
i = 1−2c†

i ci , σz
i =−∏

j<i
(1−2c†

j c j )(ci + c†
i ) ,

c j = 1p
N

∑
k∈K

ck e i kr j , (2.5)

{ck ,c†
k ′ } = δkk ′ .

We think of the system as being on a lattice with lattice spacing a and total size

L = N a, so that r j = j a ∈ [a, N a]. The periodic boundary conditions on σa
i impose

either periodic or anti-periodic boundary conditions on the fermionic operators (de-

pending on the total number of fermions), leading to

K =
{

2π

L
n

∣∣∣∣∣n ∈Z or

(
Z+ 1

2

)}
. (2.6)
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Of course, the momenta must lie in the first Brillouin zone, leading to −π
a < k ≤ π

a ,

so that n ∈
(
−N

2 , N
2

]
. In practice, we will work with a = 1, so that N measures system

size. This transformation is followed by a Bogoliubov transformation:

ck = ukγk + i vkγ
†
−k ,

uk = cos
(
θk /2

)
, vk = sin

(
θk /2

)
, tanθk ≡ sin

(
ka

)
h −cos

(
ka

) . (2.7)

In terms of these fermions, the Hamiltonian is diagonal:

H |g=0 =
∑

k∈K
ϵk

(
γ†

kγk −
1

2

)
, ϵk ≡ 2J

√
1+h2 −2h cos

(
ka

)
. (2.8)

The momentum operator is then

P = ∑
k∈K

kγ†
kγk . (2.9)

Numerically, we work in this fermion basis, labelling states by occupation number of

each of the momenta in K with the appropriate boundary conditions. To construct

operators in the non-integrable regime, we first construct them in the basis of eigen-

states of the integrable Hamiltonian. We then diagonalize the non-integrable Hamil-

tonian and numerically find the transformation between the eigenvectors. For the

integrable model, we work in a basis of joint eigenvectors of the occupation num-

ber of each of the momentum modes. Away from integrability, the Hamiltonian is

still translationally-invariant. We therefore work in a basis of joint eigenvectors of H

and the translation operator. Throughout this paper, we set the value of the trans-

verse field to h = −1.05, following [47] which studied thermalization in the mixed

field Ising chain. We will mostly focus on three values of the parallel field: g = 0

(integrable), g = 0.1 (which we label simply “non-integrable”) and g = 0.5, which

(following [47]) we label “far from integrable”.

In figure 2.1, we show the level statistics for these three values of the transverse field

in one particular sector (i.e. for states with one particular eigenvalue of the transla-

tion operator), confirming that the far-from-integrable case follows a Wigner distri-

bution while the integrable case is Poisson-distributed.

2.3. Operators: thermalizing and non-thermalizing
As discussed in the introduction, we will be considering two different operators in

both the integrable and non-integrable regimes. The first operator is σz
i . This op-

erator clearly violates the no-go condition (2.2) in the integrable regime: its matrix

elements are non-zero for a two-dimensional subregion of the (∆E ,∆P ) plane, as op-

posed to a discrete set of lines. This is seen explicitly in figure 2.2a This confirms the

analysis made in [40] by analytical methods at the critical point (h = 1).
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(a) Integrable (g = 0) (b) Non-integrable (g = 0.1) (c) Far from integrable (g = 0.5)

Figure 2.1: Distribution of unfolded level spacings in units of average level spacing s for states with one

eigenvalue of the translation operator (e
(N−2)πi

N ). The red line corresponds to the Wigner sumrise for the
Gaussian Orthogonal Ensemble. The green line corresponds to a Poisson distribution. Level repulsion is
very clearly visible for the far from integrable case. Note that the intermediate g = 0.1 case can be seen to
approach the Wigner sumrise overall but still shows an excess of approximate degeneracies. N = 13.

By contrast, we can use the free fermion basis to construct an operator that obeys the

no-go condition (2.2). Take

Γ= 2π

L

∑
k∈K

(
γkγk+δ+γ†

k+δγ
†
k

)
, (2.10)

where δ is an arbitrary (fixed) shift in momentum space. We will take it to be as

small as possible, that is to say δ= 2π
N . This is the simplest operator that satisfies the

no-go condition without being a conserved current. It creates pairs of particles with

correlated momenta. It is easy to see that, in the integrable theory, such an operator

has non-zero matrix elements only between states where

∆P =±(2k +δ) (2.11)

∆E =±(ϵk +ϵk+δ) =±
(
ϵ ∆P−δ

2
+ϵ ∆P+δ

2

)
. (2.12)

This is confirmed by figure 2.2b.

In the integrable regime, Γ(x, t ) is easily obtained by Fourier transforming:

Γ(x, t ) = 2π

L

∑
k∈K

(
e i (2k+δ)x e−i (ϵk+ϵk+δ)tγkγk+δ+e−i (2k+δ)x e i (ϵk+ϵk+δ)tγ†

k+δγ
†
k

)
,

(2.13)

In the non-integrable regime, we can construct Γ(x, t ) by evolving Γ in time explicitly

with the non-integrable Hamiltonian and translation operator.

In figure 2.3a, we examine the finite-temperature retarded two-point function of

σz , −iΘ(t )〈[σz
i (t ),σz

i (0)]〉β, as a function of time in both the integrable and non-

integrable regimes. We can clearly see that it relaxes in both cases. To confirm that Γ

does not relax in the integrable theory, but does as we move away from integrability,

we study its retarded Green’s function as a function of the parameter g while holding
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σz Γ

Figure 2.2: The no-go condition (2.2) for a thermalizing (2.2a) and non-thermalizing (2.2a) operator. Peach
points correspond to zero matrix elements while teal points correspond to non-zero matrix elements. We
can clearly see that for the thermalizing operator, the matrix elements are generically non-zero whereas
for the non-thermalizing operator they are only non-zero when∆E is given by a finite number of functions
of∆P . N = 13. Note that the fact that there is a non-zero matrix element with a particular∆E and∆P does
not exclude that some other matrix element with those same values is zero.

h fixed. This is shown in figure 2.3b. There are two characteristic timescales present

in this response. We see that at g = 0, the two-point function for Γ does not relax, but

as we increase g it does. At g = 0.5, it relaxes in a comparable manner to σz . We can

Fourier transform GR (t ) to better study the two timescales involved: the resulting fre-

quency distribution can be fit to Lorentzian distributions, consistent with a signal of

the form e−Ωt sin
(
ω0t

)
. The position of the peaks of the Lorentzian givesω0 and their

width givesΩ. The lifetime of the excitation,Ω−1, and the damping ratio ζ=
√

Ω2

ω2
0+Ω2

are shown in figure 2.4 as a function of the magnitude of the longitudinal field.

2.4. OTH vs ETH
Both OTH and ETH are fundamentally formulated in terms of the matrix elements of

an operator in a basis of energy eigenstates, 〈m|O |n〉. OTH specifically is a corollary

to the no-go condition expressed for 〈m|O |n〉. To study the relation between—and

transition from— OTH to ETH, we study the matrix elements of both σz and Γ as

we turn on the non-integrable longitudinal field. Note that in the integrable theory,

the energy eigenvalues are degenerate, whereas they are not so in the non-integrable

theory (up to momentum). For a proper comparison, we will therefore at various

stages take an average in both cases over a small energy window (δE = 0.01) while
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σz Γ

Figure 2.3: Finite-temperature retarded Green’s function for σz and Γ for various integrability-breaking
parameters g , with h = −1.05 We can see that σz always relaxes whereas in the integrable regime Γ does
not, and becomes more damped as g is increased. N = 13

(a) Lifetime (b) Damping ratio

Figure 2.4: Lifetime (in units of system size) and associated damping ratio of an excitation of the thermal
state by Γ as a function of longitudinal field g for different system sizes. We can see that for small g the
lifetime scales with system size. As g is increased, the lifetime drops (and does so more steeply as we
approach a continuum limit. We single out three values of g that are of interest: at g = 0 the theory is
exactly integrable. g = 0.1 displays a measurable break from integrability. Finally, g = 0.5 is chaotic
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(a) Integrable (b) Far from integrable

Figure 2.5: Dependence of the absolute value of matrix elements of σz on the average energy of the states
at fixed ω. The blue points correspond to a running average over a small energy window and the red line
is e−S(E)/2. The bottom of the figure shows the running average divided by e−S(E)/2, which gives the E
dependence of | f (E ,ω)|. In both cases, the result is consistent with that function not depending on E . The
error bars correspond to a 95% confidence interval if the underlying distribution is normal.

holding ω fixed or vice-versa (δω= 0.8).

2.4.1. Thermalizing operator, E dependence

In figure 2.5, we show the dependence of matrix elements of the thermalizing oper-

ator on the average energy of the states, E = Em+En
2 . In the integrable regime, half of

the matrix elements 〈m|σz |n〉 are exactly zero because of parity symmetry (i.e. be-

cause the Hamiltonian is invariant under σz
i →−σz

i ). We exclude these points from

our analysis. The behaviour of the remaining matrix elements in the integrable the-

ory is strikingly similar to those in the non-integrable one. Taking a running average

over a small (but finite) energy window allows us to extract a smooth function. In

the non-integrable case, that should correspond to e−S(E)/2 f (E ,ω). The same also

happens—perhaps surprisingly— in the integrable case: the average over an energy

window also scales predominantly as e−S(E)/2. This need not have been, but shows

explicitly the similarity between OTH and ETH at the level of averages. It explains in

particular why many studies in 2D CFTs, which have an extensive number of con-

served quantities, nevertheless find ETH-like behaviour, even though it is usually a

case of OTH (see, eg [24–26, 29]). We can see that most of the dependence on E

comes from this exponential factor of entropy, as expected. In the insert, we extract

the function f (E ,ω).
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(a) Integrable (b) Non-integrable (c) Chaotic

Figure 2.6: Dependence of the absolute value of matrix elements of Γ on the average energy of the states
at fixedω. Note that in the integrable case, we do not perform an average or use a log scale, since the large
majority of points are exactly zero. In the non-integrable and chaotic cases, the blue line corresponds to a
running average over a small energy window and the red line is e−S(E)/2. The bottom of the figure shows
the running average divided by e−S(E)/2, which gives the E dependence of | f (E ,ω)|. Unlike for σz , there
appears to be a non-trivial E dependence. The error bars correspond to a 95% confidence interval if the
underlying distribution is normal.

2.4.2. Non-thermalizing operator, E dependence

By contrast, the matrix elements of the non-thermalizing operator Γ clearly (by con-

struction) do not follow an ETH-like distribution as a function of average energy or

entropy in the integrable case. This is seen in figure 2.6. Indeed, they are very sensi-

tive to the fine-grained structure of the states, as opposed to coarse-grained features

like the average energy. However, immediately upon turning on the non-integrable

deformation the matrix elements of the operator start to look ETH-like. From a mi-

croscopic point of view, this is not surprising, since there are no more details of the

state for it to depend on: the additional conserved charges coming from integrability

are at this point completely meaningless. We see here the effects of true ETH, which

is able to overcome the fact that the operator was constructed in the integrable the-

ory explicitly to evade OTH. There is one subtle distinction with the thermalizing

operator σz . There is now a small remnant dependence on E in addition to the en-

tropic suppression e−S(E)/2, i.e. the function f (E ,ω) is not flat as a function of E . This

dependence becomes more pronounced as the system becomes more chaotic.

2.4.3. Statistics

We now probe a bit deeper into the meaning of the running average. As mentioned

above, we extract | f (E ,ω)| by averaging the magnitude of the matrix elements over a

small window (where we assume this smooth function to be constant) and dividing

the result by e−S(E)/2, where eS(E) is the number of states in the window. The method

to determine this entropy turns out to be irrelevant. Figure 2.7 shows the agreement

between this microcanonical entropy and the usual canonical entropy calculated at
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(a) Integrable (b) Chaotic

Figure 2.7: Agreement between microcanonical and canonical entropy. The microcanonical entropy (blue
points) is obtained from the logarithm of the number of states in a small but finite energy window (of size
δE = 0.01). The canonical entropy (solid red line) is obtained from the usual expression evaluated at a
temperature where the average energy corresponds to the energy in question.

a temperature set by the average energy. Note these two match best where the spec-

trum is densest (i.e. around E = 0), and that in the integrable case it is essential to

take a finite window. This is crucial. In order for the resemblance between OTH and

ETH to become apparent, we have found that we must average over several energy

levels in the integrable theory. A naive guess could have been that one only needed

to sum over the degeneracy of a single energy level, and correspondingly in the non-

integrable theory a window that just captured the splitting of these levels as the sym-

metry protecting the degeneracy is broken by the non-integrable deformation. This

turned out to be insufficient and too narrow a window to see the resemblance be-

tween OTH and ETH. The resemblance is there for the larger window presented in

figure 2.5.

Insightful results follow from looking not at the average, but at the full statistical dis-

tribution. Following ETH, parametrize the matrix elements as

Omn = e−S(E)/2 f (E ,ω)Rmn . (2.14)

We now extract Rmn . In figure 2.8, we show a typical example of the distribution

within a window of Omn

|Omn | for σz . Without loss of generality, we can take |Rmn | = 1

since Omn = 0, so that Omn

|Omn | = Rmn .

We then see that the statistical distribution of values of σz around the mean re-

veals a distinction between the integrable and non-integrable theories. In the non-

integrable regime, where ETH should hold, the matrix elements in our energy win-

dow have a standard deviation of order 1. However, in the integrable regime the dis-

tribution is distinctly more peaked (although of comparable variance). To better un-
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(a) Re(Rmn )

(b) Rmn density in the
complex plane, integrable

(h = 0)

(c) Rmn density in the
complex plane, far from

integrable (h = 0.5)

Figure 2.8: (Colour online) Statistical distribution of the matrix elements e−S(E)/2 f (E ,ω)Rmn of σz in a
small energy window around E = 0, ω= 0. N = 13.

(a) Re(Rmn )

(b) Rmn density in the
complex plane,

non-integrable (h = 0.1)

(c) Rmn density in the
complex plane, far from

integrable (h = 0.5)

Figure 2.9: Statistical distribution of the matrix elements e−S(E)/2 f (E ,ω)Rmn of Γ in a small energy win-
dow around E = 0, ω= 0. N = 13.
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Figure 2.10: The cumulative distribution function for |Rmn |/σ (as defined in the text). A faster early growth
corresponds to a more peaked distribution. A Gaussian is shown for reference. Notice that σz in the
integrable regime is not only more peaked than in the chaotic regime but becomes more so as N increases.

derstand this, we can plot the cumulative distribution of |Rmn |, that is to say

χ(|Rmn |/σ) =
∫ |Rmn |/σ

0
P (|x|)d x , (2.15)

where P (|x|) is the probability distribution of Rmn/σ. This is the probability that

the absolute value of the matrix element is less than or equal to a particular value

|Rmn |, with everything expressed in units of the standard deviation. In figure 2.10,

we show how for σz this function increases more sharply near zero in the integrable

regime than in the chaotic regime, indicating that the probability distribution is more

peaked.

Considering the statistical distribution around the average for the non-thermalizing

operator 〈m|Γ|n〉 the fluctuations around the average are again non-Gaussian dis-

tributed. In the integrable system, manifestly so. There is in essence no distribution.

As the system becomes more chaotic, a distribution develops which is somewhat

more peaked than the peaked non-Gaussian distribution for the thermalizing oper-

ator. This is seen in figure 2.9.

2.4.4. Dependence on energy difference ω

The remaining ETH-like property to study is the dependence of the mean f (E ,ω) on

the energy difference. Fixing the average energy of the states and examining the de-

pendence on the energy difference ω, we again confirm the similarity between the
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(a) Integrable (b) Far from integrable

Figure 2.11: Dependence of the absolute value of matrix elements of σz on the energy difference between
the states at fixed average energy E . The blue line corresponds to a running average over a small energy
window, which is equivalent (up to an overall factor of e−S(E)/2 to | f (E ,ω)|.

matrix elements 〈m|σz |n〉 of the thermalizing operator in the integrable and non-

integrable theories. This is shown in figure 2.11. We show both the exact answer

and a running average over a small energy window. The latter displays the expected

smooth dependence of the matrix elements on energy—this time, the dependence

on ω of e−S(E)/2 f (E ,ω). A curious feature is that the dependence on ω is already no-

ticeable atω= 0. There is no random matrix theory-like plateau forω<ω∗. Studying

the energy difference dependence for Γ, on the other hand, does show this cut-off

frequency below which the response is RMT-like, once the system has become non-

integrable.1 We do not have an explanation for this distinction between the two op-

erators. Nor does there appear to be a relation between ω∗ and the relaxation time

Ω−1 displayed in figure 2.4. We leave a better understanding of these scales to fur-

ther study. We note, however, that the trivial ω dependence can be understood by

the fact that Γ loses all meaning when far away from integrability. Indeed it was built

out of a few single-particle operators, but the physics of the model can no longer be

understood in this language.

2.5. Discussion and outlook
In this note, we have demonstrated by explicit examples the differences and similar-

ities between operator thermalization and eigenstate thermalization. We emphasize

the point again: while the anstaz for matrix elements in equation (2.1) is such that

operators that obey it will relax to their thermal expectation values, satisfying that

ansatz for all (or most) operators in the theory is not necessary for there to be some

operators that do relax. This is especially true when an average is taken, so that the

1In the integrable regime, the dependence on ω is highly erratic: this is because the operator is very de-
pendent on the details of the spectrum and cannot be simply understood in terms of the energies of the
states.
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(a) Integrable (b) Non-Integrable (c) Far from integrable

Figure 2.12: Dependence of the absolute value of matrix elements of Γ on the energy difference between
the states at fixed average energy E . The blue line in the last two figures corresponds to a running average
over a small energy window, which is equivalent (up to an overall factor of e−S(E)/2) to | f (E ,ω)|. N = 13

details of the statistical distribution of matrix elements is smoothed over. Indeed, we

have shown that σz
i in a transverse field Ising chain, is consistent with this ansatz.

This is despite the fact that the TFI is an integrable model. The corollary statement

that an operator satisfying ETH implies quantum chaos is therefore also manifestly

not true.

We have also illustrated how the no-go condition is a feature of integrability: even

a small move away from integrability caused our operator Γ to relax, with the relax-

ation becoming faster as we moved farther away. This move away from integrability

was also correlated with the matrix elements approaching a more ETH-like form.

A natural next route of inquiry is to study quenches and non-linear response. So

far, we have focused on matrix elements and linear-response two-point functions.

However, we can also ask how quenching with operators in different classes might

produce states approximating different ensembles. An obvious question is whether

there is a connection between operators satisfying the no-go condition and the re-

sulting density matrices approaching a thermal ensemble vs a generalized Gibbs en-

semble. This can be studied numerically using the examples we have presented here,

but also analytically by closely examining the form that ETH should take in the pres-

ence of conserved charges and examining possible (in)compatibility with the no-go

condition, equation (2.2).

Finally, one can wonder how far operators can go towards mimicking chaotic prop-

erties of the spectrum of theories, often the underlying physics behind ETH. This

may be tested by studying the behaviour of out-of-time-order correlators and more

generally operator growth. Once again, the example of thermalizing operators in free

and integrable theories leads to the obvious question of whether they behave differ-

ently under such measures than non-thermalizing opertors. We hope to report on

this soon.
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