
Numerical exploration of statistical physics
Bukva, A.

Citation
Bukva, A. (2023, October 10). Numerical exploration of statistical physics.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3643232
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/3643232
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3643232


1
Introduction

One of the recurring motifs throughout this thesis is how recent advances in com-

puter hardware and reduced cost of computations helped us push the boundaries of

physical knowledge. Our exploration starts with one of the most widely used numer-

ical tools in any computational discipline, the Monte Carlo (MC) method. Because of

the use of random numbers, these methods are believed to carry the name after the

most famous casino in the world, Monte Carlo Casino in Monaco. The term Monte

Carlo was first used in modern literature by S. Ulam, E. Fermi, J. von Neumann, and

N. Metropolis while they were working on the Manhattan Project in Los Alamos Na-

tional Laboratory during the second world war. MC methods will also play a signif-

icant role in this thesis as one of the primary tools for analyzing physical systems.

Our journey will start with an exploration of different realizations of gauge lattice

models; we will introduce simple Wegner Ising gauge theory, the fundamental block,

and later build upon it by adding matter fields to the lattice. MC played a significant

role in the early days of lattice gauge theories helping us advance our understanding

of the theory of elementary particles. We will use it similarly to explore phase dia-

grams and phase transitions in our lattice gauge models. On the next stop, we will

explore how closed, unitary quantum systems can (appear to) thermalize, a ques-

tion that has been at the heart of statistical physics for a long time. The final stop

will be one governed by the recent advances of machine learning in areas of physics.

We will try to quantify the multipartite entanglement in quantum systems by com-

bining MC simulations and newly proposed variational wave functions in the form

of restricted Boltzmann machines (RBM). Some of the problems, or quirks, of MC

methods can also appear in the modern training of neural networks. Most promi-

nent is the choice of initial distribution for parameters we are trying to optimize.

1



1

2 1. Introduction

Using statistical physics and field theory tools, we will find optimal initial conditions

to improve neural networks’ training speed and accuracy.



1.1. Statistical physics

1

3

1.1. Statistical physics
The primary goal of statistical physics is an exploration of macroscopic quantities

and the calculation thereof. Often, the systems we explore are made up of many

degrees of freedom, and solving them exactly is impossible. In order to do this, we

will assume that the statistical average over all possible states can replace the time

average.

One of the main assumptions we make when resorting to statistical calculations in-

stead of fully dynamically solving the system is the principle of ergodicity. Ergodicity

states that if the system is left to evolve, all accessible states will eventually be re-

alized. This assumption helps us often turn insolvable time integrals into relatively

easy and, more importantly, simulation-friendly integrals over the probability distri-

butions of those states. For example, let us say we want to study some volume of gas

in a container. At standard temperature and pressure, one liter of oxygen contains

around 3 · 1022 oxygen molecules moving around the container. Just writing down

equations of motion for all molecules would take a very long time, but no practical

conclusion can be drawn even if we manage to do it. Hence we turn to the methods

of statistical physics.

These statistical integrals are averaging over many system realizations while keeping

certain parameters fixed. These sets of systems with specific parameters fixed are

called ensembles. For example, a glass of water sitting on a counter at a fixed temper-

ature will have many different configurations of water molecules that fluctuate while

having a fixed average energy.

There are several well-known ensembles according to corresponding fixed quanti-

ties. If the fixed quantity is energy, the ensemble is called microcanonical, we can

denote the total number of states with that energy as N (E), the probability that any

of those instances are realized is 1
N (E) and the probability that system is in some

other energy E ′ ̸= E is simply zero.

Now we can define the entropy of a system as:

S(E) = kB logN (E) . (1.1)

Because the number of states in a system of N bits/particles is of order N (E) ∼ 2N , it

follows that the entropy is proportional to a number of particles in the system S(E) ∼
N . We can see that this makes entropy an extensive quantity. For two non-interacting

systems at energies E1 and E2, we get the total number of states in both systems as:

N (E1,E2) =N (E1)N (E2) ,

and the entropy will be:

S(E1,E2) = S(E1)+S(E2) .



1

4 1. Introduction

Often systems are not isolated but actually in contact with some reservoir at a spe-

cific temperature T . One way we can remedy this is by including the reservoir in our

calculation and using a microcanonical ensemble, but doing this results in very com-

plex calculations and, more importantly, properties of the reservoir that are often not

of interest to us. Because of this, we will introduce an ensemble at a fixed tempera-

ture called canonical. Now the system can be in states with the different energy that

will fluctuate around some well-defined average value. The average energy of the

system is defined as a sum of energies of all the states weighted with their respective

probabilities:

〈E〉 =∑
i

pi Ei . (1.2)

Here pi is a probability that the system is in the state with energy Ei . One can derive,

either by entropy maximization or placing the system in contact with a heat bath,

that a system with only energy as conserved quantity has a probability, also known

as Boltzmann distribution:

pi =
exp

(−βEi
)∑

i exp
(−βEi

) . (1.3)

We have introduced a factor, inverse temperature, β = 1
kB T where kB is Boltzman

constant = 1.380649 ·10−23J ·K−1, and T temperature of the ensemble. Exponential

factors ensure that states with energies Ei ≫ kB T get suppressed while states with

Ei ≤ kB T have a chance of being populated. We can check that this makes sense. Let

T → 0, and the system is forced to a ground state energy with all higher states being

suppressed. We can also define the entropy for the canonical ensemble as follows:

S =−kB
∑

i
pi log pi . (1.4)

The normalization factor is an essential quantity in Eq.(1.3). This sum over all acces-

sible states that ensure that probability sums to 1 is called partition function:

Z =∑
i

exp
(−βEi

)
. (1.5)

Once we know the partition function, we can compute any quantity about the sys-

tem; we have complete knowledge. Let us explore what information we can extract

from the partition function. We can define the free energy at fixed temperature as:

F = 〈E〉−T S , (1.6)

where T is temperature and S is entropy. We can think of free energy as energy avail-

able to the system, an intricate interplay between internal energy and entropy. At the

fixed temperature, we can get free energy directly from the partition function:

F =−kB T log Z . (1.7)



1.1. Statistical physics

1

5

To connect average energy and a partition function, we can plug Eq.(1.3) into

Eq.(1.2):

〈E〉 =∑
i

pi Ei =
∑

i

Ei exp
(−βEi

)
Z

.

However, this can be rewritten in the form of a partial derivative of the partition func-

tion:

〈E〉 = ∂

∂β
log Z . (1.8)

As stated earlier, energy is not constant in the canonical ensemble but fluctuates.

The exponential factor in Boltzmann distribution ensures that these fluctuations are

around kB T ; we can compute them as a variance of energy:

σ2
E = 〈(E −〈E〉)2〉 = 〈E 2〉−〈E〉2 = ∂2

∂β2 log Z =−∂〈E〉
∂β

.

We can make a connection with specific heat that will give us a different interpre-

tation of these fluctuations. Specific heat is a thermodynamic quantity defined as

C = ∂E
∂T or how much the energy of a system changes as we vary the temperature.

Specific heat can be measured while we keep other parameters fixed, like volume or

pressure. So, for example, specific heat at fixed volume will be CV = ∂E
∂T

∣∣∣∣
V =const

. Now

we can connect specific heat and the variance of energy:

σ2
E = kB T 2CV .

Interesting conclusions can be drawn from here; if CV of the system is large, it can

easily absorb bigger energy fluctuations without changing its temperature. Another

conclusion is that for macroscopic systems (N ≫ 1) away from the critical point, E ∝
N and CV ∝ N , so we have that energy fluctuations scale as:

σE

E
∼ 1p

N
. (1.9)

In the limit, when N → ∞, the energy becomes exactly 〈E〉. This is also known as

a thermodynamic limit. These fluctuations are too small for real systems to be de-

tected, but they are often how we calculate thermodynamic quantities in simula-

tions.

The question now is what happens with the fluctuations of other quantities. If there

are terms in the Hamiltonian H , of form −X Y , where Y is some field and X conju-

gate variable to which field Y is coupled then we have:

〈X 〉 = 1

βZ

∂

∂Y

∑
i

exp
(
−β〈

i
∣∣H ∣∣i〉)=− ∂F

∂Y
. (1.10)

Now
〈

i
∣∣H ∣∣i〉 contains the term of form −X Y on which partial derivative acts. So if

we desire to find an average value of any conjugate variable, we need to differentiate



1

6 1. Introduction

free energy with respect to the appropriate coupled field. If there is no term coupling

field to desired quantity, we can add it, find the derivative, and later set the same field

to zero, restoring an original Hamiltonian. Doing further differentiation, we can see

that:

− 1

β

∂2F

∂Y 2 = 1

β

∂〈X 〉
∂Y

= 〈X 2〉−〈X 〉2 . (1.11)

We used this variance to connect energy fluctuations to the specific heat. Now we

have a general way of finding these variances from the second derivatives of free en-

ergy with respect to coupled fields. The derivative in Eq.(1.11) measures the magni-

tude of the response of X to changes happening in Y . This is called susceptibility of

X to Y and is usually written as χ. This gives us a general way of calculating suscep-

tibility directly from the simulations by measuring fluctuations in desired quantities.

A practical example of susceptibility that will be important to us is the magnetic sus-

ceptibility or how total magnetization of the system changes as we vary the external

magnetic field.

Some systems can go through a phase transition, a sudden change in a system’s spe-

cific property, becoming discontinuous in the large N limit. The prominent feature

of a phase transition is the appearance of a non-vanishing value of order parameter,

some quantity that is non-zero in the ordered phase and then identically zero in the

disordered phase. Different order parameters are identified in different systems; for

example, in a ferromagnet, it is a spontaneous magnetization, and in the liquid-gas

phase, it is the difference in the density between the liquid and gas phases at the

transition line. They can be scalar or multi-component quantities as well.

The classification of phase transitions can be done by the order of discontinuous

derivative of a free energy. If the first derivative of the free energy shows discontinu-

ous behavior, we call those transitions first order. If, on the other hand, the first order

is continuous but the second derivative is not, we label those transitions second or-

der.

We can deduce some qualitative characteristics of a model using Landau theory of

phase transitions. The main idea revolves around expanding the free energy in the

powers of the order parameter. For this expansion to converge, we have to keep the

order parameter small, so near the critical point. The Ising model in an external

magnetic field h is a popular toy system to illustrate the main concepts. The energy

of the Ising model can be expressed as:

E =−J
∑
〈i j 〉

si s j −h
∑

i
si , (1.12)

where spins si ∈ {−1,1} and we sum over all neighboring sites 〈i j 〉 in a d-dimensional

hyper-cubic lattice.

Let us start with the description of a second-order phase transition. Consider a gen-



1.1. Statistical physics

1

7

eral model (like the Ising case defined above) and denote an order parameter m (in

our case, total magnetization). Then we can expand the free energy as:

F (T,m) = F0(T )+a(T )m2 +b(T )m4 +·· · . (1.13)

We do not have odd terms because the theory is invariant under the change m →−m,

which forbids odd terms in the free energy (in our case, when h = 0 Ising has this

symmetry). The system’s state can be found by extremizing the free energy, ∂F
∂m =

0. We can immediately see that result will depend on the signs of the temperature-

dependent terms. These terms can change sign with varying temperature as well. For

simplicity, we will assume that b(T ) > 0 for all T . If we do not impose this condition

and let b(T ) have any sign, then we need to include higher terms of expansion (m6

in our case) which can lead to the formation of tri-critical points, a phenomenon

explored in the later chapters. In order to illustrate this further, we will use the free

energy of the Ising model that we can calculate from mean-field theory[1]:

F =− 1

β
log Z = 1

2
J N qm2 − N

β
log

(
2coshβheff

)
, (1.14)

where q = 2d is the number of nearest neighbors and heff = h + J qm is an effective

(mean-field) magnetic field. We can expand this mean-field expression in order to

compare coefficients with our free energy expansion:

F (T,m) =−N kB T log2+
(

N J q

2
(1− J qβ)

)
m2 +

(
Nβ3 J 4q4

12

)
m4 +·· · . (1.15)

The first term is just an additive constant, which will vanish once we take a deriva-

tive with respect to m. Consider then the quadratic term with coefficient a(T ) =
N J q

2 (1− J qβ) there are two different cases a(T ) > 0 and a(T ) < 0. From the expres-

sion of a(T ) = 0, we can also determine the critical temperature Tc = J q
kB

. In the case

of a(T ) > 0;T > Tc , and thus when temperatures are high, we see that the only equi-

librium solution is for m = 0. On the other hand, when T < Tc , for low temperature,

there are three solutions, 0,±
√

− a(T )
2b(T ) . Substituting these values in Eq.(1.15), we see

that the free energy of a state with m = 0 is higher than the other two and represents

an unstable solution, Fig.(1.1). We thus find that the free energy equals:

F (T ) =
F0(T ) T > Tc

F0(T )− a(T )2

4b(T )2 T < Tc
. (1.16)

The important point is that if a(T ) is a smooth function, then the equilibrium value

of m also changes continuously from m = 0 in the T > Tc regime to a m ̸= 0 in a

T < Tc regime. We can also see that the free energy is continuous at the transition.

However, suppose we differentiate free energy twice to get a specific heat. In that

case, we will have a term a(T )′2
b(T ) which is usually not equal to zero, and hence specific



1

8 1. Introduction

heat has a discontinuous change at T = Tc , defining characteristics of a second order

phase transition.

When we were expanding the free energy in Eq.(1.13), we said that odd terms are

forbidden by the symmetry m →−m, so-called Z2 symmetry. Then when we found

the equilibrium values of m for T < Tc , we saw that the system had to choose one

ground state of the two, ±
√

− a(T )
2b(T ) , this is the well-known phenomena of sponta-

neous symmetry breaking. The Ising model discussion above illustrates how it is tied

to the second-order phase transition.

F

m

F

m

Figure 1.1: Free energy curves in the case of second-order phase transition. In the left graph, when a(T ) >
0, we see only one equilibrium solution at m = 0. On the other hand, when a(T ) < 0 (right graph), two
more solutions appear. The previously stable solution at m = 0 now becomes unstable. We can see that the
system can choose which stable solution to be in, which is what we call spontaneous symmetry breaking.

Let us briefly explore what happens when we include odd power terms of the order

parameter in our expansion of the free energy F .

F (T,m) = F0(T )+α(T )m +a(T )m2 +γ(T )m3 +b(T )m4 +·· · . (1.17)

If we look back at our definition of Ising model Eq.(1.12) we see that for h ̸= 0 the

system doesn’t have Z2 symmetry in m →−m, so we can use the expansion above:

F (T,m) =−N kB T log2+ J N q

2
m2 − N

2kB T
(B + J qm)2 + N

24(kB T )3 (B + J qm)4 +·· · .

(1.18)

We will use the same assumption again that b(T ) > 0 for all T . In the regime where

T < Tc , we again have three solutions, but now the curve is skewed, and more impor-

tantly, two minima are no longer degenerate. An introduction of the external mag-

netic field h broke the degeneracy that was initially there, and the other solution is

called a meta-stable state. When odd terms in the expression for the free energy,α(T )

and γ(T ), change signs, the curve goes from the left to the right picture in Fig.(1.2).

This changes the true ground state, and the transition from this new meta-stable

state to the true ground state with lower energy is the first-order phase transition. In

the example of the Ising model, this transition occurs when the external magnetic



1.1. Statistical physics

1

9

field h changes sign. If we increase the temperature above the critical T > Tc , the

free energy curve looks similar to the second-order transition. However, it is shifted

because of the linear term α(T ).

F

m

F

m

F

m

Figure 1.2: Curves of free energy in case of a first-order phase transition. Again we have three solutions,
but only one is the true ground state and has lower energy than the other. A state with higher energy is a
meta-stable state. Curves change shape as we change the sign of α(T ) and γ(T ), corresponding to a phase
order transition.

The toy model presented here can be solved exactly using the mean-field technique.

Nevertheless, the question remains: How to compute the free energy for more com-

plicated systems where a direct analytical approach does not work? One solution is

to do it numerically or more precisely using the statistical techniques of Monte Carlo

simulations that we will explore in the next chapter.



1

10 1. Introduction

1.2. Monte Carlo techniques
The Monte Carlo methods are probably one of our most important numerical meth-

ods. The main idea is to obtain the approximate value of an integral by randomly

sampling the value of the integrand at the expense of introducing statistical errors.

Traditional grid methods that subdivide total volume become increasingly compu-

tationally expensive as we try to evaluate integrals in higher dimensions. For large

systems, the number of configurations i used in Eq.(1.2) is the integral of primary

interest to physicists. The expectation value of some quantity
〈
ξ
〉

, like the total en-

ergy of a system or a magnetization, is computed by summing over all possible states

weighted by their respective probabilities.

〈
ξ
〉= ∑

α ξαe−βEα∑
α e−βEα

, (1.19)

where β = 1/kT and Ei energy of a state. Sums like these are only feasible for small

systems and generally cannot be computed exactly. One possible solution that we

can take is to evaluate this sum only on a small appropriate subset of states and use

this as an estimate. Suppose we take L states {α1, . . . ,αL}, then our estimate will be

given by:

ξL =
∑L

i=1 ξαi p−1
αi

e−βEαi∑L
j=1 p−1

α j
e
−βEα j

. (1.20)

We call ξL the estimator of ξ. It is clear from the procedure that as we take more

samples, the estimator becomes more accurate, and in the limit limL→∞ ξL = 〈
ξ
〉

.

The question then is how to choose pα. The most straightforward choice is to take all

the states with an equal probability. Immediately we can see that for specific cases,

this will be a terrible choice. Imagine evaluating an integral that is highly peaked

around a particular value. Choosing points with equal probability will sample parts

of the integral that do not contribute much toward the final result. Another way we

can look at this from the physics point of view is when evaluating these sums at a

very low temperature. Usually, only a handful of states will effectively contribute to

the sum, so sampling over all (improbable) states will be a waste of computational

time. The technique for selecting these most appropriate states is called importance

sampling.

Return to a physics example; we know that at a specific temperature, only the states

in a small energy window will have measurable contributions to the sum, while an

exponential factor will suppress the others. The natural choice for the probability

distribution then presents itself; we will choose states according to their Boltzmann

distribution. Looking at the equation Eq.(1.20), we can see that if we pick the states

according to their Boltzmann weight pα = Z−1e−βEα , this expression simplifies con-



1.2. Monte Carlo techniques

1

11

siderably:

ξL = 1

L

L∑
i=1

ξαi . (1.21)

We see that all the factors have canceled out. We are left with a simple sum, or more

precisely, in order to get an estimate of a quantity ξ, we are going to sample states

according to their Boltzmann distribution, measure ξ in those states and then find an

average over all of the measurements. When we settle on the desired distribution, the

question remains how to realize it. One of the most widely used methods to achieve

the desired distribution is through a Markov process.

In order to understand Markov processes, let us define a stochastic process at dis-

crete times t1, t2, t3, . . . and a system with a finite set of states α1,α2,α3, . . . . Let us

label with X t the state of a system at time t . The defining property of a Markov pro-

cess is that:

P (X tn =αn |X tn−1 =αn−1, X tn−2 =αn−2, . . . X t1 =α1) = P (X tn =αn |X tn−1 =αn−1) ,

(1.22)

or in words, Markov process is memory-less, the state of a system in the next time

step only depends on the system’s current state. Probability of generating state αn

given that system is in αn−1 is called transition probability P (αn−1 → αn). Another

condition that these probabilities should satisfy is that they do not change over time.

As with all probabilities, these should satisfy the fundamental requirement:∑
αn

P (αn−1 →αn) = 1 , (1.23)

this means the process must generate some state, even the one the system already is

in. We will end up with a Markov chain of states by repeatedly generating new states.

Suppose transition probabilities are chosen correctly after a sufficiently long time. In

that case, the chain will come to an equilibrium, and its new states will satisfy the

desired Boltzmann distribution.

With chosen correctly, the following is meant. For the Markov process to achieve the

desired equilibrium distribution, we must satisfy two additional conditions, ergod-

icity and detailed balance. Ergodicity, as we stated before, means that the Markov

process should be able to reach any valid state from any valid state of the system if

we let it run long enough. We know that every state in the Boltzmann distribution

has a non-zero probability of appearing, so if this condition is violated, that would

mean that there would be a pair of states α and γ such that if we start from a state

α we would never be able to reach state γ and our goal of reaching the Boltzmann

distribution would not be achievable. This does not mean that all transition proba-

bilities should be non-zero, just that there should always be a path from two states

that the process can follow.



1

12 1. Introduction

The second condition that we need to satisfy is the one of a detailed balance. This

condition ensures that the final distribution we have reached is the desired Boltz-

mann distribution. What this exactly means is that the process has reached an equi-

librium state. Let us take not a single state α, but an ensemble with distribution pα.

Then this ensemble is in equilibrium if the rate of states transforming into any state

α is the same as the rate of states transforming from α:∑
β

pαP (α→β) =∑
β

pβP (β→α) . (1.24)

Then using Eq.(1.23) we get:

pα =∑
β

pβP (β→α) . (1.25)

If our transition probabilities satisfy this condition, the probability distribution pα
will be the equilibrium distribution. Only imposing the condition in Eq.(1.24) is not

enough to guarantee that the probability distribution generated from any state will

eventually settle to the desired distribution pα. In order to understand this, let us

consider transition probabilities P (β→ α). We can form a large matrix where each

entry in column α and row β would be a transition probability from α to β; we call

this a Markov matrix. If we label the probability that our system is in a state α at

time t with pα(t ), then we can say that a probability that the system is in state β in a

subsequent time step is:

pβ(t +1) =∑
α

P (α→β)pα(t ) ,

or in a more compact, matrix notation:

p(t +1) = P ·p(t ) .

Now if we let this run for some time at the certain point the Markov chain will reach

an equilibrium and we will have:

p(∞) = P ·p(∞) .

which is just a form of standard eigenvector equation. However, it is also possible

for the Markov process to reach dynamic equilibrium, which means that p rotates

around several different values. Such rotation is called a limit cycle. If this were the

case, then the eigen equation would be:

p(∞) = P n ·p(∞) ,

where we call n the length of the limit cycle. So how can we ensure limit cycles do

not happen? The easiest way is to impose the condition of detailed balance:

pαP (α→β) = pβP (β→α) . (1.26)



1.2. Monte Carlo techniques

1

13

We can trivially see that if this condition is satisfied, then Eq.(1.24) is also satisfied,

but more importantly, we are eliminating the possibility of cycles. In order to under-

stand why, look at the left side of Eq.(1.26); this is an overall rate at which transition

from α to β happens, while the right side is the reverse. So this tells us that, on aver-

age, the system goes fromα→β as often as β→α. This would inherently be violated

in the limit cycle as the states need to go from one to the other in a cyclic way. An-

other way we can justify the detailed balance condition is that most physical systems

satisfy it in some way. The majority of the physical systems exhibit time-reversal

symmetry. If we had a cycle in such a system upon reversing the arrow of time, the

cycle would also reverse its direction. However, this reversal of cycle direction would

completely change the system’s dynamics, and any already established equilibrium

would not be the same. In order to represent physical systems without this behavior,

we would also like to remove it from our models.

We have established how to generate the desired probability, and from the detailed

balance, our transition probabilities should satisfy the following:

P (α→β)

P (β→α)
= pβ

pα
= e−β(Eβ−Eα) . (1.27)

Here in the last step, we substituted the Boltzmann distribution. If we choose tran-

sition probabilities that satisfy this and the ergodicity condition, our Markov process

should converge to the Boltzmann distribution. The procedure described so far looks

straightforward; we need to choose the correct transition probability P (α→ β), and

we are set. This is not always such an easy task, and there can be many different ways

of creating a state β from α that still, in the end, does not produce the desired dis-

tribution. There is a trick that can help us construct the desired process using any

algorithm that we come up with, called the acceptance ratio.

The main observation that lies at the heart of the acceptance ratio is that we can

modify the probability of a state staying at the same state as much as we want (still

with the constraint that probability should be positive and less than one) and auto-

matically satisfy Eq.(1.27). This allows us to tune our transition probabilities as we

like and then, by adjusting the “staying” probability, satisfy the required condition.

Let us see how we can do this. First, we will break the transition probability into two

parts:

P (α→β) = g (α→β)A(α→β) .

The first quantity on the right side, g (α→ β), is called the selection probability, the

probability given an initial state α that we will end up in the state β. The second

quantity, A(α→ β), is the acceptance ratio, the probability that we accept the gen-

erated state. Now if we expand the Eq.(1.27) in terms of selection probability and

acceptance ratio, we will get:

P (α→β)

P (β→α)
= g (α→β)A(α→β)

g (β→α)A(β→α)
. (1.28)



1

14 1. Introduction

From the equation above, we see that the ratio A(α→β)
A(β→α) can take any value between

0 and ∞. This means that selection probabilities can be tuned to anything we like,

and the acceptance ratio will absorb any difference. Partitioning transition proba-

bilities into acceptance ratio and selection probability enables us to create a Monte

Carlo algorithm that will generate random state ν given stateµ and then adjust selec-

tion probabilities for these states so they satisfy the condition in Eq.(1.28) and reach

the desired Boltzmann distribution. So we finally reached a theoretically complete

algorithm to generate the desired Boltzmann distribution.

Algorithm 1 Markov process algorithm

1: design an algorithm that will generate a random new state β given that we are at

α with some probabilities g (α→β)

2: accept that state with the probability A(α→β)

3: adjust acceptance ratios in such a way that we satisfy Eq.(1.28)

4: after reaching it’s equilibrium state, Markov process will have the desired Boltz-

mann probability distribution.

The algorithm outlined above looks nice and easy, but we still need to pay attention

to how we choose our acceptance ratios. If they are small, we will usually stay in

the same state and not move at all. We need to make a delicate balance so that our

algorithm explores the phase space without slowly crawling around it. This can be

ensured by making the acceptance ratio close to one. The good thing is that Eq.(1.28)

only fixes ratio A(α→β)
A(β→α) , which means that we have the freedom to multiply both of

them with some constant. In practice, this often means we fix the larger to one and

then multiply the other with an appropriate constant to keep the ratio fixed. Another

thing that we can try to do while designing a new algorithm is to put as much of

P (α→ β) into the selection probability because the perfect algorithm would be the

one where the states are only selected by the transition probability, which means

acceptance ratio is always one. In the absence of a perfect, we can try to keep our

acceptance ratio as close to one as possible.

We have covered the theoretical part of designing an algorithm to ensure that the

resulting chain will have the Boltzmann distribution. Let us look into one of the most

common algorithms, Metropolis algorithm.

In order to show all the details of how this algorithm works, we will again use the Ising

model, where “spins” si live on the sites of a lattice and can take values {−1,+1}. If we

have d dimensional lattice of size N , our system can be in 2N d
possible states. These

numbers grow exponentially as we go to higher dimensions and bigger lattices. This

type of problem is the perfect playground for Monte Carlo methods. To recall from



1.2. Monte Carlo techniques

1

15

Eq.(1.12) the Ising Hamiltonian is:

E =−J
∑
〈i j 〉

si s j −h
∑

i
si , (1.29)

where J is the interaction energy between the nearest neighbors and h is the exter-

nal magnetic field. The most common questions regard the values of magnetization

m and specific heat CV at the fixed temperature, which we computed earlier in the

mean-field limit. For simplicity, we will consider the Ising model with no external

magnetic field h = 0

As we showed in the section 1.1 in the thermal equilibrium, energies of the system

stay in a tiny window around the mean value; they do not fluctuate much. We want to

replicate this behavior in our algorithm as well. The easiest way we can do this is by

flipping a single spin at a time. This type of algorithm has a single spin-flip dynamics.

In the d dimensional lattice, the maximum energy difference would be 2z J , where z

is lattice coordination number, or simply the number of neighbors a site has. Another

advantage of flipping a single spin is that we also satisfy the ergodicity condition.

The Metropolis algorithm now sets the selection probabilities g (α→ β) equal for all

possible states βwhile setting it to zero for all the other ones. Let us say that we have

N d spins in our system; that means there are N d different spins that we could flip

and also N d different states that we could end up in. This means that we have N d

different selection probabilities g (α→β) that are non-zero, and all of them have the

same value:

g (α→β) = 1

N d
.

In practice, we randomly pick a site with equal probability and flip its spin. Now our

condition of the detailed balance (1.28) is:

P (α→β)

P (β→α)
= g (α→β)A(α→β)

g (β→α)A(β→α)
= A(α→β)

A(β→α)
= e−β(Eβ−Eα) . (1.30)

If we remember the algorithm design steps, we will set the largest of the acceptance

ratios to 1 and adjust the other one to make this the most efficient algorithm. Assume

that state α has the lower energy than β, Eα ≤ Eβ. Then the larger acceptance ratio

would be where we go from the state β to the state α, A(β→ α), we will set it to 1.

In order to satisfy Eq.(1.30) we must then set A(α→ β) = e−β(Eβ−Eα). Now our final

algorithm is:

A(α→β) =
e−β(Eβ−Eα) if Eβ−Eα ≥ 0

1 otherwise
. (1.31)

Put in words, this means that if we select a state with lower energy, we always accept

the move, and if we select the state with higher energy, we will accept it with the

probability e−β(Eβ−Eα).



1

16 1. Introduction

So far, we only said that we must wait long before our system reaches equilibrium.

Now we will specify what this exactly means. First, let us define this period. The time

we need to wait for the system to reach the thermal equilibrium is called the thermal-

ization time, τT . How do we know how long is enough? We could look at the state of

a system as in the Fig.(1.3) and then gauge when it has reached the equilibrium, but

the better and simpler way to do this is to plot some quantity, like energy or magne-

tization, over "time" and see when it settles around the average value. The usual way

to measure time in Monte Carlo simulations is in terms of sweeps. Sweep is the num-

ber of updates we do to flip all the spins on the lattice. So if we sequentially try to flip

spins in the lattice after N d attempts, we will complete one sweep. In Fig.(1.4), we

see that after 300 sweeps, the average magnetization and energy have thermalized.

However, in practice, this is not always enough. Sometimes if the energy landscape is

particularly rough, we could end up in one of the local minima and oscillate around

it. In order to avoid this, we can start our simulation with different initial conditions,

like at T = 0 (all spins aligned) and T =∞ (completely randomly oriented spins), and

let them run. When two runs settle around the same average value, we have good

reason to believe that thermalization has completed and we have reached equilib-

rium Fig.(1.5). If we are still worried that we might have ended up in some local

minimum, we can do a third run with a different randomly oriented configuration

and repeat the same procedure.



1.2. Monte Carlo techniques

1

17

Figure 1.3: Time slices of the spin configuration on a 100×××100 lattice throughout the simulation. Red are
spins −1, and blue spins are +1. We have started at T = 0 configuration with all the spins aligned and then
simulated J = 1 and T = 2.4 for 1000 sweeps. Slices were taken every 100 sweeps. The graph shows that
the system reached equilibrium configuration around the 400th sweep.



1

18 1. Introduction

0 100 200 300 400 500 600

sweeps

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

Energy [J]

Magnetization

0.0

0.2

0.4

0.6

0.8

Figure 1.4: Graph of magnetization per site (green squares) and energy per site (red circles) for a 2D Ising
model with no external magnetic field (h = 0) on a lattice N = 100, J = 1 near the critical temperature
(Tc ∼ 2.26) T = 2.0. We can see that energy and magnetization reach their thermal values around 300-400
sweeps.

0 100 200 300 400 500 600

sweeps

0.0

0.2

0.4

0.6

0.8

M
ag

ne
ti

za
ti

on

Figure 1.5: Graph of magnetization per site for two 2D Ising models with different initial configurations
(at T = ∞), no external magnetic field (h = 0) on a lattice N = 100, J = 1 and equilibrium temperature
T = 2.0. We can see that two different initial configurations had different paths through the phase space,
but both have settled on the same value for the magnetization per site. Waiting for around 500 sweeps
would guarantee that our Monte Carlo chain has thermalized for these values of J and T .

We have established how to get an adequately converged Monte Carlo simulation.

The next step is measuring some quantity, such as energy or magnetization. If we

recall our algorithm’s exact dynamics, we will realize that the single flip dynamics

states are actually highly correlated. This implies that two or more successive mea-

surements will be correlated. In order to solve this, we will wait for a certain amount

of sweeps between successive measurements, called correlation time, τ.

In order to estimate autocorrelation time, we will use time-displaced autocorrelation



1.2. Monte Carlo techniques

1

19

function. We give here an example of it for magnetization:

χ(t ) =
∫

dt ′(m(t ′)m(t ′+ t )−〈m〉2) . (1.32)

This is just the two-point function we have seen in the first part of the introduction,

but now instead of being between two sites i and j , it is between two time-steps t and

t ′. One assumption that we have to make in order to make this work is that the auto-

correlation function falls off exponentially at long times (which is a very reasonable

assumption to make):

χ(t ) = e−
t
τ . (1.33)

We can see from this that waiting time τ between two measurements will only re-

duce the autocorrelation function by 1/e, so the most common practice is to take

measurements every 2τ sweeps. Given the exponential form of the autocorrelation

function Eq.(1.33) we can define what the integrated correlation time:∫ ∞

0

χ(t )

χ(0)
dt =

∫ ∞

0
e−

t
τ dt = τ . (1.34)

This equation gives us a direct way of estimating the autocorrelation time. To com-

plete the procedure, we need a discrete version of the Eq.(1.32) that we can use in

order to estimate the autocorrelation time:

χ(t ) = 1

tmax − t

tmax−t∑
t ′=0

m(t ′)m(t ′+ t )−
(

1

tmax − t

)2 tmax−t∑
t ′=0

m(t ′)
tmax−t∑

t ′′=0

m(t ′′+ t ) . (1.35)

When using this equation to calculate χ, we have to take care that at long times

when t gets close to tmax, the upper limit in the sums gets very small, and because

of the statistical nature of the measurements, errors can get very large. In order to

avoid this, we can run a simulation long enough (hopefully for several autocorrela-

tion times), and then we would not need to worry about the long tails of χ(t ).

We have established how to generate new states from the old one, measure quantities

of interest and calculate autocorrelation time so our sample end up uncorrelated.

The final step is to quantify the errors of those measurements in order to get the

complete results. Our errors can be divided into two categories, systematic errors

and statistical errors. We have introduced systematic errors due to the procedures

we used to measure observables. Another source of systematic errors can be if we do

not wait long enough for the system to thermalize. Also, if we do not collect enough

samples after the thermalization and let our samples be correlated. Systematic errors

are hard to measure, and we can mitigate them by following the correct procedure for

reaching the equilibrium and collecting enough uncorrelated samples after. On the

other hand, statistical errors are more easily measured; they arise from the random

nature of the Monte Carlo simulations and the system’s thermal fluctuations. The

simplest way to minimize statistical errors is to collect more uncorrelated samples.



1

20 1. Introduction

Statistical errors of a quantity are relatively easy to estimate. As we stated, due to the

thermal fluctuations from one state to the other, measurements (let us take magneti-

zation m) vary around some average value. The natural way is to take the mean of all

of these samples as the actual average value and the error of the mean as an error to

that estimate. Let us take N measurements of magnetization m; our best estimator

for the true average is the mean value:

〈m〉 = 1

N

N∑
i=0

mi , (1.36)

and the estimate of the standard deviation of the mean is:

σ2 = 1

N (N −1)

N∑
i=0

(mi −〈m〉)2 = 1

N −1

(〈
m2

〉
−〈m〉2

)
. (1.37)

This might look similar to the susceptibility we defined in section 1.1. There we cal-

culated susceptibility as a variance of the energy over the given ensemble of states,

while here, the σ2 is an unbiased estimator for the true variance of the mean. An es-

sential fact about Eq.(1.37) is that it assumes that our samples are statistically inde-

pendent. If, on the other hand, we have samples that were sampled every ∆t sweeps

and the autocorrelation time is τ, then our estimate for the standard deviation is[2]:

σ2 = 1+ 2τ
∆t

N −1

(〈
m2

〉
−〈m〉2

)
. (1.38)

We can immediately see that if∆t ≫ τ, this expression would reduce to the Eq.(1.37),

but often, because of practical reasons, we have ∆t ≪ τ. If that is the case, then we

can practically ignore the 1 and note that the number of samples is the total amount

of time divided by the sampling interval:

N = tmax

∆t
.

For the large number of samples we have:

σ2 = 2τ

tmax

(〈
m2

〉
−〈m〉2

)
. (1.39)

A neat property of this estimation is that our standard deviation does not depend on

∆t , which means we can sample with any frequency we want.

In some cases, it is not feasible to calculate the errors this way, for example, in any

derived quantities that depend on the average values, like specific heat. We only

have access to the average values after we finish running and do not have access to

specific heat during every time step. In principle, we could do a detailed analysis of

error propagation taking into account how 〈E〉 and
〈

E 2
〉

errors are correlated, but

this would be a complex and error-prone process, also the resulting equation would



1.2. Monte Carlo techniques

1

21

be highly dependent on the initial equation we used to calculate the observable. This

would mean that every time we have a different form of an equation, we would have

to do the same analysis again. Luckily, we can use robust methods to estimate an

error of these quantities. The most known and well-established is bootstrap method.

Bootstrap belongs to a class of the resampling methods. Let us first sample N mea-

surements of the energy. Next, we can consider these N measurements as a state

space for the energy, forming some probability distribution. In essence, we want to

infer the information about this probability and functions of it. For energy, our goal

would be to calculate the mean and the error. The idea is to draw N new samples

with equal probability and repetition from the original set of N samples, repeating

the procedure M times. Calculating the mean for each set of M repetitions would get

us M values of the mean. These new M values represent the probability distribution

of the mean, and we can use them to calculate the standard deviation. This method

is advantageous when, for example, we have stored some observable values but want

to estimate some function of it.

An example of a function of an observable would be the specific heat CV (〈E〉 ,
〈

E 2
〉

).

The procedure would go like this, from initial N measurements sample new N sam-

ples with repetition M times. For each of the M samples, we compute CV , leaving us

with a list of specific heats that we call a. Now it turns out that the standard deviation

of the specific heat is given by[2]:

σ2 = 〈a2〉−〈a〉2 . (1.40)

This means we take the standard deviation of the newly constructed list of CV values,

and the mean would simply be the average of a. It can also be shown that even if we

draw correlated samples, bootstrap will estimate standard deviation equally well.

So far, we have covered the basic steps and algorithms for constructing the Markov

process with the desired distribution. These steps are the same for multiple fields

where Monte Carlo simulation might be used. Now we focus on the applications in

physics. We will stick with the 2D Ising model. At the mean-field level, Ising in 2D

dimensions goes through the phase transition as we change the temperature. We

can think of it this way, at a very high temperature T =∞, all the spins are randomly

oriented, with plenty of energy at their disposal and no order among the spins. This

is a paramagnetic phase, where the total magnetization of the system is zero.

As we decrease the energy, spins try to align more and more, as this is now energeti-

cally more favorable, and at a certain point, the total magnetization becomes finite.

This phase, where the total system has non-zero magnetization, is the ferromag-

netic phase. As discussed in the previous section, this phase transition belongs to

the second-order phase transitions class. Second order means the second derivative

of the free energy is discontinuous. The standard second derivative is specific heat



1

22 1. Introduction

CV = −T
(
∂2F
∂T 2

)∣∣∣∣
V =const

. The straightforward way to see if the system goes through a

phase transition is to plot specific heat as a function of the changing variable. Thus,

specific heat should be diverging at the transition point for the second-order phase

transition. Strictly speaking, diverging behavior is only seen in the thermodynamic

limit (for infinite systems). Since we can only simulate systems of finite sizes, we will

see that specific heat will develop a sharper peak as we increase the size. This can

be seen in Fig.(1.6). We can compare the value of T with the exact known critical

temperature Tc = 2J

ln
(
1+p2

) ≈ 2.27J , as well as the meanfield result Tc = 4J .

2.20 2.25 2.30 2.35 2.40

T [J ]

8

10

12

C
V

[J
2
]

L=24

L=32

L=48

L=64

L=96

Figure 1.6: Specific heat curves CV of 2D Ising for J = 1 on a square L×××L lattice around the transition point
for different system sizes. Strictly speaking, specific heat only shows diverging behavior for infinite system
sizes. Because of this, determining the exact point of transition through these curves is not very precise.
The exact value of critical temperature is Tc =≈ 2.27, while the mean-field result is Tc = 4 (way off on the
above graph).

Now that we have identified the existence of a continuous phase transition, we would

like to describe it in more detail for two reasons: both related to the numerical im-

plementations. The first is critical slowing down, and the second is finite size deter-

mination of free phase transition. Landau’s theory of phase transitions shows that

the free energy has a singularity in the thermodynamic limit, usually described by a

power law of the observables near the critical point. Underlying this divergence is a

divergent correlation length ξ. It gives a sense of how correlated or ordered the spins

in our system are, and it is diverging near the transition according to the:

ξ∼ |T −Tc |−ν , (1.41)

whit ν the critical exponent. The specific heat has a similar shape near the criticality:

CV ∼ |T −Tc |−α , (1.42)

with the difference that α can now be positive and negative. From the renormal-

ization group theory, we know that these critical exponents are related by scaling



1.2. Monte Carlo techniques

1

23

relations. In most cases, only two exponents are independent, and the rest can be

derived from them[2]. These two exponents fully characterize the critical behavior

of the model. Also, it can be shown that models often have the same set of these criti-

cal exponents and can be further categorized in universality classes. This means that

models with different microscopic details exhibit the same behavior near the critical

point, and details get washed away. Everything is controlled by ν.

The issue is that these divergences only occur in the thermodynamic limit. For finite-

size systems, the critical behavior is smeared out, and estimating the location of the

peak will introduce the error. Due to a related problem, critical slowing down, one

cannot simply sample more[2].

One better way to determine the transition point and critical exponents is through

the technique of finite size scaling. Using the results from the renormalization group,

we know that the magnetization scale, close to the transition, with system size L as:

〈
mL

〉∼ L
β
ν M̃

[
L

1
ν (T −Tc )

]
, (1.43)

where M̃(x) in unknown scaling function. We can see from the Eq.(1.43) that〈
mL

〉
/Lβ/ν at T = Tc will be independent of the system size, as the argument of M̃

will be zero. So this means that scaled magnetizations will all have the same value

precisely at the critical temperature. On the plot where these different scaled mag-

netization curves would be drawn together at the point of critical temperature, they

would intersect each other. If we want to be completely precise, we are ignoring

some non-analytic corrections to the scaling so the curves intersect only at the same

point in the sense L →∞. Doing finite-size scaling using this method is not helpful

in practice because neither β nor γ is known a priori. A better approach is to com-

pute a combined quantity that is dimensionless. One such quantity is the Binder

cumulant[3]:

U = 1

2

3−
〈

m4
〉

〈
m2

〉2

∼ G̃
[

L
1
ν (T −Tc )

]
. (1.44)

In the limit, T → 0, Binder cumulant goes to 1; in the opposite limit, when the tem-

perature T →∞ Binder goes to 0. Because Binder cumulant is a dimensionless quan-

tity, different L curves should approximately intersect at the same point, given that

the non-analytic corrections are small. We can use this to determine ν, see Fig.(1.7a).

On the other hand, if we plot all the curves with the appropriate critical scaling ν on

the plot U vs. L1/ν(T −Tc ) they all fall on top of each other as in Fig.(1.7b).



1

24 1. Introduction

2.20 2.25 2.30 2.35 2.40

T [J ]

0.2

0.4

0.6

0.8

1.0
U

L=24

L=32

L=48

L=64

L=96

(a)

−5 0 5 10

L1/ν(T − Tc)[J ]

0.2

0.4

0.6

0.8

1.0

U

L=24

L=32

L=48

L=64

L=96

(b)

Figure 1.7: (a) Binder cumulant curves for different system sizes. Because the Binder cumulant is a dimen-
sionless quantity, all the curves cross at the same point, given that the non-analytic corrections are small.
This method is more robust and reliable for determining the exact critical temperature Tc ∼ 2.26. (b) After
doing the finite size scaling for the Binder cumulant data in Fig.(1.7a), all the curves have collapsed on a
single line. We can use Binder cumulant curves to determine the exact position of Tc and then use that to
fit all the curves to determine the critical exponent ν= 1.

In this thesis, we shall use the Binder cumulant differently to determine the order

of a phase transition. In the case of continuous, second-order phase transition, the

Binder cumulant has a smooth transition. In the case of a first-order phase transition,

instead of being continuous, the Binder cumulant has a dip at the point of the critical

transition. The dip occurs because, at the point of transition order, the parameter

experiences a discontinuity which is also present in any functions that depend on it.

This dip diverges with the system size[3]. We can use Binder cumulant to see whether

the actual phase order exists and determine its order. Another possibility is the case

of a weak first-order transition, where the Binder cumulant still exhibits a dip, but

this dip is not diverging with the system size.



1.3. Machine learning

1

25

1.3. Machine learning
Since discovering quantum mechanics, physicists have sought better, more accu-

rate approximation techniques to solve real-world quantum problems. As we know

from the introductory quantum mechanics courses, only a handful of toy models

Schrödinger equation can be solved exactly. If we start considering systems with

many interacting particles, our analytical methods can only serve up to a certain

point. Some well-known numerical techniques, such as exact diagonalization and

tensor networks, also start having problems when we apply them to systems of many

highly interacting particles. The Monte Carlo techniques reviewed in the previous

section can provide approximate answers. Recently, one of the pioneering methods

that used machine learning was introduced by Carleo and Troyer [4], where they con-

sider an RBM network as an ansatz in variational quantum Monte Carlo.

The term machine learning (ML) has become an everyday expression in recent times.

It can be defined as a sub-field of Artificial intelligence primarily tasked with develop-

ing algorithms for learning from experience (or data). The backbone of ML is based

on applied statistics while also drawing some ideas from statistical physics. The main

goal of ML is to estimate unknown, often very complicated, functions that depend

on a large number of unknowns and give useful predictions on new (unknown) data.

This program of pushing ever bigger and more complex algorithms led to the devel-

opment of deep learning (DL), where massive networks with millions of parameters

are trained on more extensive data sets. The development of highly efficient and par-

allel GPUs led to a boom in developing new ML and DL algorithms. The main appeal

of ML and DL is that some tasks, hard to put in an algorithmic form, can now be tack-

led with ease. A typical example would be recognizing a cat, dog, or human being in a

picture or detecting a new phase state of a quantum matter. ML and DL have grown

tremendously in recent years; hence a complete introduction is simply impossible

here, and we will try to introduce the essential elements of both fields used in the

later chapters.

Before actually doing any computation, we need to establish the main ingredients

we need to make the computer learn [5]:

• a task that we need to solve, like regression, classification, generating pictures,

or learning how to play a game

• data in the case of ML and DL, we can look at the data as an experience that our

algorithm lives and learns from. Some forms of data can be given in a table, like

pictures of handwritten digits and their labels, or it can be given in the form of

a reward, for example, how long the robot managed to walk

• a model that learns from the data.



1

26 1. Introduction

Usually, more than these are needed to specify the learning algorithm fully. We need

to define a measure that will compare the performance of our algorithm with the

actual known data. Our task is to minimize this difference between the predicted

and known data.

• Regression can be viewed as one of the most common forms of ML. We assume

that there is some (potentially unknown) relation between two variables x and

y, and we try to learn what that relation is. We will call variable x an input and

variable y an output. These variables are not restricted to a single dimension;

they are often multi-dimensional. As stated, our task is to find some function

f that will satisfy the relation y = f (x). The simplest example would be a linear

regression, where we assume that our function has the form y = Ax+b, and we

have free parameters A and b to optimize.

• Classification is a task where our output variables do not have a continuous

output but are rather discrete and categorized in different classes (labels). In

comparison with the regression, we are now trying to find a function that will

map our input x to a target y but also encode a representation for multiple

different classes. The simplest example would be a binary classification, a case

when we need to distinguish between two different labels, for example, is this

a picture of a cat or not. One of the most famous datasets that we will use later

is MNIST (Modified National Institute of Standards and Technology), which

consists of 70.000 handwritten digits distributed over 10 “classes”, the digits

0,1,2, . . . ,9.

The data, the main ingredient in many machine learning tasks, comes in datasets D ,

containing data points xi , D = {xi }. Depending on the information available in our

data set, we can divide the types of learning we can do:

• Supervised learning is a class of problems where our data points are labeled. It

can either be a regression or a classification. Methods used to do supervised

learning can be classical ML or more modern and complex DL.

• Unsupervised learning is applied when data does not have accompanying la-

bels that we can use. Some examples of unsupervised learning methods are

the initial pre-processing of data when we are trying to select the best features

to use, for trying to find some order in the given data set by grouping points in

clusters according to some features or increasing the dimensionality by adding

features through generative models. An example from physics application is

trying to distinguish two phases of a matter when we do not understand the

underlying process governing it.



1.3. Machine learning

1

27

• Reinforcement learning, in this case, we usually do not have a data set, but

rather some environment that our model explores. Through the actions of a

model and feedback received from the environment model chooses the next

best step in order to maximize some in advance predetermined metric.

In this thesis, we will explore some topics from the supervised classification prob-

lems through the DL and reinforcement learning methods to find the ground state of

a quantum system.

The last ingredient we need is a model. In general, this is some function fθ(x) of the

input data. There are various forms of functions, each suitable for a specific job. The

model function is specified by giving its mathematical form, in ML the network, and

a set of variable parameters θ, in ML the weights. Our job then is to train a model

to find an optimal set of parameters θ̂ that will minimize some target loss function

L or maximize a model performance. In essence, we are modeling the true relation

between x and ansatz fθ(x). In physics, we know this from variational wave function

approximation. We will review this later. One of the most common loss functions to

minimize is the mean-squared error (MSE) used in regression problems:

LMSE =
N∑

i=1
(yi − fθ(xi ))2 , (1.45)

where N is the number of data inputs. For classification problems, the most widely

used loss function is a cross-entropy (CE). The simplest form of CE is when we only

have two categories, binary cross-entropy (BCE). In the case of multiple different cat-

egories, we use categorical cross-entropy (CCE):

LBCE =−
N∑

i=1
yi log

(
fθ(xi )

)+ (1− yi ) log
(
1− fθ(xi )

)
, (1.46)

LCCE =−
N∑

i=1

K∑
j=1

yi , j log
(

fθ(xi )
)

, (1.47)

where now index j goes over K different categories and the constraint
∑

i fθ(xi ) = 1.

The last formula is written in a form where labels yi , j are given in a one-hot encoding.

yi , j =
1, if yi = j

0, otherwise
(1.48)

For example, if we have 5 categories, label y3 = (0,0,1,0,0) is a vector with all zeros

and one at the i-th (3rd) class position.

We need to specify the minimization procedure after choosing a model and loss func-

tion. This procedure can either be gradient-based or gradient-free. A standard widely

used is gradient descent (GD). In short, we start our learning process by initializing



1

28 1. Introduction

a random set of parameters θ0 and compute the loss function. After that, we com-

pute the gradient of a loss function with respect to the model parameters. Finally,

we update our parameters by subtracting previously computed gradients along the

steepest direction:

θ j+1 = θ j −η∂L
∂θ j

, (1.49)

where η is a learning rate, it controls the size of steps we take. Every time we complete

one full update, we say that one epoch has passed. Choosing an appropriate learning

rate is a delicate process; if the learning rate is too small, our training will take forever,

and we will waste computing resources. If the learning rate is too big, our algorithm

might never converge. The most common way of choosing a learning rate is through

trial and error.

Gradient descent is only sometimes the best algorithm to use. The algorithm will

converge if the learning rate is small enough, but there is no guarantee that the min-

imum reached is the actual global minimum, not a local one. A clever way to deal

with this problem is to introduce some stochasticity. There are various ways to do

so, but one way is to incorporate it directly into GD. A standard, modified version of

GD is called stochastic gradient descent (SGD). One computes the gradients not on a

whole input data set but only on a small set of batches. The initial data set is divided

into batches of equal size, and in each step, the neural network is trained only on a

single batch. We say that one epoch has passed after we trained the neural network

on all the batches and went through the data set once. Doing this has two benefits;

one is that now we do not need to compute gradients with respect to all the inputs

hence reducing the computational cost, and second by only updating parameters af-

ter computing gradients with respect to one batch, we are introducing randomness

and avoiding saddle points and narrow local minima.

A further improvement to an SGD is in the form of momentum or inertia. This serves

as a memory of the direction in which we are moving and helps us move in a direc-

tion with consistent but small gradients while avoiding oscillations in high curvature

directions:

v j = γv j−1 +η∂L
∂θ j

, (1.50)

θ j+1 = θ j − v j , (1.51)

where v j is a running average of the previously computed gradients and (1−γ)−1 sets

a time scale of how far back we want to look. If we set γ = 0, we revert to a previous

case of (S)GD without momentum.

Parameters like η, γ, the number of batches we use, and the total number of epochs

are called hyperparameters. Besides these, all parameters that control the learning

process can be put in this category. In order to find a good set of hyperparameters,



1.3. Machine learning

1

29

the established method is to split the input data into two sets, training set and valida-

tion set. Doing this is a good practice besides finding an optimal set of hyperparam-

eters. We want an independent data set that was not seen before, on which we will

evaluate our model. In practice, we might have several choices for our models, and

a consistent way to compare them is to see how they perform on previously unseen

data. Being able to make generalizations and predict results from unknown data is

the primary goal of ML and DL. We can get in a situation whereby choosing a very

complex model will fit every possible feature in our data set (overfitting the data),

but then when presented with a new, previously unseen data model, will perform

terribly.

On the other hand, if we choose a simpler model, our loss might be higher for the

training data. However, when presented with new data, this simpler model will out-

perform a more complicated one, see Fig.(1.8). This is called bias-variance trade-off.

Figure 1.8: Three different scenarios of model selection. On the left, the selected model does not have
enough representational power to capture desired features in our data set. The center image model is
complex enough to balance bias and variance while still being able to generalize on new data. We have a
too-complex model for the given data set on the right. Too many parameters and the model will be able
to capture all the features of the data, even the noise, leading to an inferior generalization.

This principle can be nicely illustrated on an example of the MSE loss function and

linear relation between input and target:

y = fθ(x)+ϵ , (1.52)

where ϵ is a noise distributed according to a Gaussian distribution ϵ ∼ N (0,σ2
ϵ ). In

this case, the MSE loss function would be:

LMSE =
N∑

i=1
(yi − f (xi;θ))2 . (1.53)

Following the simple exercise in algebra and probability [5], we can factor this loss

into three individual components:



1

30 1. Introduction

error = bias2 +var+noise , (1.54)

where bias is:

bias2 =
N∑

i=1

(
f (xi )−

〈
f (xi; θ̂D )

〉
D

)2

, (1.55)

and variance:

var =
N∑

i=1

〈(
f (xi; θ̂D )−

〈
f (xi; θ̂D )

〉
D

)2
〉

D

. (1.56)

Bias represents how well our model would perform if we had an infinite amount of

data, and the variance tells us how much our model fluctuates because of the finite

amount of samples we have. Increasing the number of parameters will reduce the

bias, but at some moment, the variance will increase. This is the central concept in

ML, the trade-off between the complexity of a model and the amount of data we have

to train it on. Because, in practice, we are usually presented with a limited amount

of data. Choosing a less complex model with a higher bias will often lead to less

variance and better generalization on new data points.

Now that we have covered the basic intuition behind ML and DL, we will specify one

simple model we will use later in the thesis, logistic regression. Let us consider a case

where our target variable y can take a value m = 0, . . . , M−1 from one of the M classes.

We want to define a function that, given an input, returns a probability that it belongs

to one of the M classes. One such function is the sigmoid function:

σ(s) = 1

1+exp(−s)
(1.57)

Let us start first with a simple case of two classes yi = {0,1}. Then a probability that

given data point xi belongs to a category is:

p(yi = 1|xi ,θ) = 1

1+exp
(
−xT

i θ
) (1.58)

p(yi = 0|xi ,θ) = 1−p(yi = 1|xi ,θ) (1.59)

The most appropriate loss function would be cross-entropy:

LBCE =−
N∑

i=1
yi log

(
σ(xT

i θ)
)
+ (1− yi ) log

(
1−σ(xT

i θ)
)

(1.60)



1.3. Machine learning

1

31

We can minimize this loss function, but there is no simple closed-form solution and

some of the minimization methods we have discussed need to be applied. Moving to

a general case when instead of 2, we have M classes, and following one-hot encoding,

we can write individual probabilities for each class as:

p(yi ,m′ = 1|xi , {θ}M−1
k=0 ) =

exp
(
−xT

i θm′
)

∑M−1
m=0 exp

(
−xT

i θm

) (1.61)

This is known as SoftMax function, and the appropriate cross-entropy is:

LCCE =−
N∑

i=1

M−1∑
m=0

yi ,m log
(
p(yi ,m = 1|xi ,θm)

)
+ (1− yi ,m) log

(
1− (p(yi ,m = 1|xi ,θm))

)
(1.62)

1.3.1. Neural networks for ML

Models that we have considered so far are simple ML models that form a basis for

any further improvements. The introduction of neural networks catapulted the field

of ML and DL to the heights of today.

Figure 1.9: On the left is an illustration of a fully connected neural network with a single hidden layer and
two layers in total. On the right is a neuron, an elementary building block of neural networks.

The fundamental building element of a neural net is a neuron i , Fig.(1.9) that takes

as an input d dimensional vector of features x = (x1, x2, . . . , xd ) and produces a scalar

output ai (x). A neural network is formed by stacking many neurons on top of each

other to form a single layer. Then multiple layers are stitched together to form the

whole network. Stacking multiple layers enhances our neural networks’ expressivity,

which helps us approximate complex functions. The existence of a universal approx-

imation theorem states that a neural network with a single layer can approximate



1

32 1. Introduction

any "nice" and continuous function with arbitrary accuracy. The first layer is called

an input layer, the last layer is called an output layer, and any layer(s) in-between

is(are) called hidden layer(s). What makes neural networks work is an introduction

of some non-linearity between layers, activation function. We usually take the same

activation function for all the neurons in a single layer. Going from one to the other

layer, first, the linear transformation of the form is computed:

zi =ωi ·x+bi = xT ·wi , (1.63)

where weight vector ωi = (ω1
1,ω1

2, . . . ,ω1
d ), x = (1, x) and wi = (bi ,ωi ). After the linear

transformation, the activation function is applied to get a post-activation value of a

layer:

ai (x) =σi (zi ) (1.64)

There are many possibilities for activation functions; some of the popular ones are

step-function, sigmoid, hyperbolic tangent, rectified linear units (ReLUs), leaky rec-

tified linear units (leaky ReLUs), and exponential linear units (ELUs)[5]. What we

choose as an activation function will impact the performance of our network and

greatly depend on a specific task we are trying to solve, which we will later see in

Chapter 5. Another consideration should be taking a derivative of activation func-

tions as they are required for any gradient-based function minimization methods.

If we remember from our previous sections how to train a network, we will need to

find a derivative of a loss function with respect to all the weights for any gradient-

based method. At first, this seems like a daunting task. However, luckily, there is a

very nice and elegant algorithm that can help us find all of the desired derivatives

easily, backpropagation. Behind the fancy name is nothing more complicated than a

simple chain rule for differentiation. Because this is crucial background knowledge

to the chapter, we discuss it here. In order to fully understand this backbone of an

algorithm, let us set the stage first. We will take a network with L layers labeled with

l = 1, . . . ,L. Weightsωl
j ,k connect k-th neuron from l−1 layer to a j -th neuron in layer

l . The bias associated with this neuron is bl
j . Then we can write a post-activation

value al
j of this neuron as:

al
j =σ

(∑
k
ωl

j ,k al−1
k +bl

j

)
=σ(z l

j ) (1.65)

where the linear combination part, the pre-activation value, is defined as:

z l
j =

∑
k
ωl

j ,k al−1
k +bl

j (1.66)

Let us think about how we compute the loss function. Directly the value of a loss

function depends on the post-activation values aL
j from L-th layer, but these values

indirectly depend on the post-activations from the previous layers. This is the cru-

cial observation to set up a backpropagation algorithm. Define the error ∆L
j of j -th



1.3. Machine learning

1

33

neuron in the final L-th layer as a partial derivative of the loss function with respect

to the weighted input zL
j :

∆L
j =

∂L

∂zL
j

(1.67)

Analogous to this, we can define the error for any neuron j in arbitrary layer l as:

∆l
j =

∂L

∂z l
j

= ∂L

∂al
j

σ′(z l
j ) (1.68)

we can also make the chain rule different in order to get the following:

∆l
j =

∂L

∂z l
j

= ∂L

∂bl
j

∂bl
j

∂z l
j

= ∂L

∂bl
j

(1.69)

where we have used Eq.(1.66) to find
∂bl

j

∂zl
j

= 1. As we stated before, the layered struc-

ture of the network ensures that the layer error l +1 depends on the post activations

from layer l , and we can use the chain rule to expand:

∆l
j =

∂L

∂z l
j

=∑
k

∂L

∂z l+1
k

∂z l+1
k

∂z l
j

=∑
k
∆l+1

k

∂z l+1
k

∂z l
j

=
(∑

k
∆l+1

k ωl+1
k, j

)
σ′(z l

j )

(1.70)

The final equation is:

∂L

∂ωl
j ,k

= ∂L

∂zk
j

∂zk
j

∂ωl
j ,k

=∆l
j al−1

k (1.71)

Now we have all the necessary ingredients to state the entire backpropagation algo-

rithm:

Algorithm 2 The backpropagation algorithm

1: Calculate the post-activation values of all neurons in the input layer a1
j

2: Now using Eq.(1.65) compute all the z l and al values until the last layer

3: Calculate the error of the final layer using Eq.(1.68); for this, we will need to com-

pute the analytical form of loss and activation functions manually

4: Using Eq.(1.70) we can propagate error backwards in order to calculate ∆l
j

5: The final step is using Eqs.(1.69, 1.71) in order to calculate the desired derivatives
∂L
∂w l

j ,k

and ∂L
∂bl

j



1

34 1. Introduction

The name backpropagation now makes sense; we are using a single forward pass

through the network to compute linear combinations and post-activations, and then

by backtracking through the network, we compute all of the derivatives. This specific

nature of backpropagation makes it highly efficient when implemented on modern

GPU units. The immediate relevance to the work in this thesis is the appearance of

σ′ in Eq.(5.2). A core part of chapter 5 is the exploration of the effects of saturation,

domain regions where σ′ = 0 and therefore negligible gradients, on the final training

efficiency.

1.3.2. Neural quantum states

In order to motivate this next class of neural networks, we use some topics from

quantum mechanics to guide us. Let us say that we have an isolated quantum system

of spins 1/2 in a chain of length N. Then we can expand any wave function in some

arbitrary basis that will have 2N coefficients. For example, consider a 1D system with

40 spins. Directly writing down all the coefficients alone would be an infeasible task;

there are 240 ∼ 1012 different coefficients, and just writing them down would take

up more than 40TB of space. If we want to study real-life systems with many more

particles and in many more dimensions like 2D or 3D , we need to find some other

methods of doing it. This should not be the end; usually, only a small part of a Hilbert

space is of relevance, and this fact can help us a lot. We can apply some of the varia-

tional methods that try to find the optimal representation of the quantum state, one

that will encompass all the necessary features and be computationally friendly. We

can write the basis expansion as:

∣∣Ψθ

〉= 2N∑
s=1

Ψθ(s) |s〉 (1.72)

whereΨθ(s) = 〈
s
∣∣Ψθ

〉
and our goal would be to find the bestΨθ(s) that approximate

a ground state but dim[θ] ≪ dim[s]. We can then use this proposed model for the

wave function to compute the expectation values of desired operators in polynomial

time. To cast the usual complex wave function computations in terms of probabili-

ties, we use the following local estimator method to compute the expectation value

of some arbitrary operator Ô [5]:

〈
Ô

〉
=

〈
Ψθ

∣∣Ô∣∣Ψθ

〉〈
Ψθ

∣∣Ψθ

〉
=

∑
s,s′

〈
Ψθ

∣∣s〉 〈
s
∣∣Ô∣∣s′〉〈

s′
∣∣Ψθ

〉∑
s |

〈
Ψθ

∣∣s〉 |2
=

∑
s |

〈
Ψθ

∣∣s〉 |2 ∑
′s

〈
s
∣∣Ô∣∣s′〉 〈

s′
∣∣Ψθ

〉
〈s|Ψθ〉∑

s |
〈
Ψθ

∣∣s〉 |2
(1.73)



1.3. Machine learning

1

35

We can identify two terms here:

p(s) = |〈Ψθ

∣∣s〉 |2∑
s |

〈
Ψθ

∣∣s〉 |2 (1.74)

Oloc(s) =∑
s′

〈
s
∣∣Ô∣∣s′〉 〈

s′
∣∣Ψθ

〉〈
s
∣∣Ψθ

〉 (1.75)

The first is the usual quantum mechanics probability density. The second one Oloc(s)

is called a local estimator of Ô. Therefore we can write a quantum mechanical expec-

tation as a classical expectation value:〈
Ô

〉
=∑

s
p(s)Oloc(s) = 〈

Oloc(s)
〉

p (1.76)

The procedure of how to estimate the expectation value of any operators in the form

of Eq.(1.76) is very reminiscent of Eq.(1.21) so we can write it as:

〈
Ô

〉
≈ 1

Nsamp

Nsamp∑
i=1

Oloc(si ) (1.77)

Now we are back to the conventional statistical physics that we reviewed earlier. We

now know how to compute this by constructing a Markov Chain and using Monte

Carlo simulation to compute the expectation value.

What remains is to make a suitable variational ansatz Ψθ(s). This is where we com-

bine ML with Monte Carlo, an insight from Carleo and Troyer [4]. We will use the

restricted Boltzmann machines (RBM) for this job. Neural network architecture is

called the neural quantum state (NQS).

Figure 1.10: Illustration of a restricted Boltzmann machine (RBM) neural network. We use RBM as a
variational ansatz to represent a wave function of N spins with s = (σz

1 ,σz
2 , . . . ,σz

N ) and M hidden units
h = (h1,h2, . . . ,hM ). There is general proof that a sufficiently dense (α≫ 1) RBM can approximate any
probability distribution [6].



1

36 1. Introduction

RBM networks are fully connected two-layer networks with one visible and one hid-

den layer. The visible layer has N spins, and the hidden layer has M spins. We will

label the ratio of the number of hidden vs. visible neurons as α = M
N . The insight of

Carleo and Troyer was that the intrinsically non-local correlations of RBM could lead

to a significantly more compact representation of many-body quantum states. Then

the ansatz wave function is given by:

Ψθ(s) =∑
h

exp
(
b†

v ·s+b†
h ·h+h†Ws

)
. (1.78)

Because of the network architecture, we can trace out hidden variables and get the

following:

Ψθ(s) = exp
(
b†

v ·s
) M∏

i=1
2cosh

(
bh,i +Wi ·s

)
, (1.79)

where bh,i and Wi are i -th hidden bias and weight matrix row. Now we have a model

wave function that will convert our spin configuration into a desired probability.

With this ansatz, we are back in familiar territory to find the ground state energy of

some Hamiltonian:

E(θ) = 〈
Ψθ

∣∣Ĥ
∣∣Ψθ

〉
, (1.80)

in terms of ML, this will be our loss function. We must also remember that this vari-

ationally obtained ground state energy is E(θ) ≥ E0, but this is strictly true when ex-

pectation values are calculated exactly.

We can exchange operator Ô for the energy in Eq.(1.77) in order to get stochastically

approximated energy:

E(θ) ≈ 1

Nsamp

Nsamp∑
i=1

Eloc(si ) (1.81)

where we have defined our local energy as Eloc(s) = ∑
s′ 〈s|Ĥ |s〉

〈
s′

∣∣Ψ〉
〈s|Ψ〉 . We will use

gradient-based optimization methods to minimize our loss function. The energy

gradient with respect to parameters is:

∂E(θ)

∂θi
= 2Re

[〈
Eloc(s)O⋆

i (s)
〉
−〈

Eloc(s)
〉〈

O⋆
i (s)

〉]
(1.82)

where θi is the i -th parameter and operator Ôi is defined as:

Oi (s) = ∂

∂θi
log

〈
s
∣∣Ψθ

〉= 〈s|Ôi |s〉 (1.83)

Now we have all the necessary ingredients to formulate the final algorithm for finding

the ground state of a Hamiltonian Ĥ using RBM and variational method:

Compared to the current standard numerical methods, NQS can have the same or

better accuracy[4]. Compared with MPS, PEPS, and DMRG for transverse-field Ising



1.3. Machine learning

1

37

Algorithm 3 Finding ground state with NQS

Randomly initialize all the parameters of a neural network θ

for i = 1 to Nsteps do
Generate Nsamp samples using Markov chain

Calculate the gradient of the energy ∂E(θ)
∂θi

using Eq.(1.82)

Update parameters using SGD or some other minimization technique

end for
return Optimized parameters θ̂

(TFI) and anti-ferromagnetic Heisenberg models (AFH), NQS achieved better accu-

racy for sufficiently large α ration. AFH, when compared to DMRG, NQS with α = 4

managed to outperform DMRG with the bond dimension of ∼ 160, pointing towards

a much more compact representation of a many-body wave function. This also has

practical implications, as fewer variational parameters are easier to optimize. Even

when applied at the critical point, NQS managed to get the accuracy of the state-

of-the-art methods or even better, albeit with slowed down converged, which is ex-

pected near the criticality. The compact nature and ability to express the wave func-

tion near the critical point prompted us to use it to analyze entanglement entropy for

lattice gauge fields explored in chapter 4 of the thesis.



1

38 1. Introduction

1.4. This thesis
In the introduction, we have covered the basic ideas used later in this thesis. We

started with introductory topics in thermodynamics and statistical physics, then

moved to a basic introduction to Monte Carlo methods and all the required knowl-

edge to understand our physical system’s simulation design and analyze the results.

The proceeding section was dedicated to the basics of machine learning, deep learn-

ing, and appropriate selection of model, loss function, and minimization method.

The last section culminated in a synergy of the previously mentioned topics by com-

bining quantum physics, Monte Carlo methods, and neural networks in neural quan-

tum states that we used to find the ground state and its energy of lattice gauge theo-

ries.

1.4.1. Chapter 1 - Thermalization in quantum systems

The properties of closed unitary quantum systems and how they exactly thermalize

have been one of the leading research questions in statistical physics for a long time.

The puzzle is that a thermal ensemble is formally a mixed state, but a mixed state can

never arise from unitary evolution from a pure state. The usual answer to how they

thermalize is the eigenstate thermalization hypothesis (“ETH”) [7]. The hypothesis

is that in generic quantum theory with many degrees of freedom, most observables

will have a particular form of matrix elements after averaging, and observable will ap-

pear to thermalize. However, recently [8] showed that ETH has to be taken with care.

Even in free field theory, there are operators that appear to relax, called operator

thermalization hypothesis (OTH). Given a particular no-go condition, the retarded

Green’s function will typically decay exponentially unless the condition is met. Find-

ing an operator that will satisfy this condition in a general non-integrable theory is

challenging but possible. On the other hand, this job is more straightforward in inte-

grable theories due to the extensive number of conserved quantities. We work in the

transverse field Ising (TFI) model where we compare a specially designed operator Γ

that will satisfy the no-go condition with the Pauli σz operator that does not satisfy

it. Through the examples, we show the differences and similarities of ETH and OTH

and how, despite TFI being an integrable theory, σz will relax after the perturbation.

Also, we have demonstrated how the no-go condition is a feature of integrability, and

any minor deviation from integrability will cause Γ to relax. Our results were later

confirmed in [9].

1.4.2. Chapter 2 - Symmetry restoration through “registry”

Starting from the simple Wegner gauge theory [10, 11], Fradkin and Shenker [12]

discovered that when an added matter field is “in the fundamental”, meaning that



1.4. This thesis

1

39

there is an additional Higgs field that is also governed by Z2 symmetry as the gauge

fields, the Higgs phase and confining phase become one, without a phase transi-

tion. In this chapter, we propose a straightforward generalization of their lattice

gauge theory that could serve as a candidate for a highly entangled state of mat-

ter. We will consider adding multiple Z2 and O(N ) matter fields on the lattice and

gauging them with a common Z2 field. It will be shown how, in such a case, the

Higgs phase becomes separate from the confining phase. It will be characterized

by the “registry” order parameter, which turns out to be gauge invariant p = 2Nrep−1

Potts type symmetry, where Nrep is the number of matter field copies. Interpretation

for this type of symmetry is that different matter copies align their vectors locally

in strictly parallel or anti-parallel ways, even in the case of continuous O(N ) mat-

ter fields. These theories will be studied using Monte-Carlo simulation on a 3D grid

using the Metropolis-Hastings algorithm and annealing techniques to improve the

convergence near the critical point. From the simulation results, we can discover

some unidentified “pseudo-universality” associated with the form of the phase dia-

gram for various numbers of matter field theories.

1.4.3. Chapter 3 - Entanglement entropy of lattice gauge theo-
ries

Building further on the work from the previous chapter, we will study entanglement

entropy in the neural network representation of the above lattice gauge theories,

now considered as quantum theories in one lower dimension. Following the sem-

inal work of Carleo and Troeyer [4], we will construct neural quantum states as the

representation of our theory using a variational wavefunction based on Restricted

Boltzmann Machines used in Machine Learning. Using ideas from tensor networks

that the bond dimension represents the upper bound on the amount of entangle-

ment a state can have, we will postulate that by increasing the number of matter

fields, ground state entanglement entropy of our lattice gauge theory will increase as

the ratio of hidden vs. visible nodes. We have tested our hypothesis in the case of

2,3, and 4 matter fields. Within the achievable computational limits, the results are

puzzling. Even though increasing the number of variational parameters improved

the energy of the ground state, the impact on the entanglement entropy is less than

obvious. Curves of entanglement entropy for different system sizes look the same up

to the statistical errors.



1

40 1. Introduction

1.4.4. Chapter 4 - Phase space and efficient learning of deep
neural networks

This chapter combines some statistical physics insights into machine learning with

the computational mechanics of deep random feedforward neural networks. In re-

cent times with the ever-growing amount of available data, neural networks have

become one of the de-facto methods for analyzing and processing vast amounts of

data [13]. One of the reasons why these methods became so popular is their ability

to express any function with a relatively small number of parameters [5] and the ease

with which this expressivity can be increased by adding more depth. This easy fix

does not come for free; deep neural networks generally require more training com-

putations. Specifically, they suffer from exploding or vanishing derivatives in opti-

mizing the parameters. The phase space of deep random feedforward neural net-

works is characterized by the variance of initial weights and the variance of initial

bias. Following previous work [14, 15] that demonstrated the existence of order-to-

chaos regime change in this phase space, we will examine the behavior of the pre-

and post-activations in terms of their distributions and also final accuracy on classi-

fication task such are MNIST and CIFAR10. The phase boundary dividing these two

regimes is called the edge of chaos (EOC). We demonstrate that for the tanh activa-

tion function, not all points along the EOC yield the same learning efficiency. In the

case of shallow and narrow neural networks, we define the line of uniformity (LOU),

a set of points for which the final layer post-activation values are distributed uni-

formly, i.e., with maximal entropy. We show that moving away to the right from LOU

and drastically increasing initial variances means that gradient saturation will start

impeding optimization over parameters, i.e., the learning process.


