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Abstract  

The characterization of land use impacts in life cycle assessment (LCA) requires 

a constant compromise between highly specific impacts models and coarse 

geographical scales available in life cycle inventory, where most information is 

provided at country level as the highest degree of geographical specificity. The 

derivation of country-specific characterization factors is usually done estimating 

impacts with the use of land cover and potential natural vegetation maps, 

assuming the most predominant biome per country as representative. This study 

explores the use of land system archetypes to derive country-specific 

characterization factors for land use-related soil erosion impacts that can better 

represent intra-national variations, while accounting for several biogeographical 

and socioeconomic differences. Land use-specific characterization factors were 

derived as the potentially enhanced soil erosion rate, using the soil erosion rates 

of each archetype as a reference state, and correction factors to reflect the 

relative increase or decrease in soil erosion rates associated with each of the 

eight land use types. Country-specific characterization factors for land use 

erosion impacts of occupation (in ton/(m2·year)) were calculated by taking into 

account the land system archetypes present in each country, the land use-

specific characterization factors, and the likelihood of each land use type 

occurring across archetypes (based on rule of thumb expert estimates). The 

country-specific characterization factors were produced specifically for 

occupation impacts for each of the eight land use types, and covering 263 

countries and territories/dependencies. The resulting 2,104 country-specific 

characterization factors displayed in average a considerably greater variation in 

comparison with characterization factors produced when only the most 

predominant archetype per country is assumed as representative per country. 

The results indicate that world generic values might underestimate up to 10 

times the degree of impacts associated with land use types such as permanent 

crops, fallow ground, mining, and landfill. The use of land system archetypes 

presents a viable approach to derive country-specific characterization factors 

while taking into account key intra-national variations, as well as 

biogeographical and socioeconomic factors. 

 

Keywords: Life cycle assessment; Regionalization; Land use; Characterization 
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5.1 Introduction  

The level of regionalization in life cycle assessment (LCA) for the estimation of 

land use impacts is commonly deter- mined by the available geographical scales 

found in life cycle inventory (LCI) databases, and the resolution of the 

characterization factors used to translate the inventory of a product system into 

potential impacts (Nordborg et al. 2017). Most LCI databases present 

information aggregated as either country-specific or world generic values 

(Wernet et al. 2016; Othoniel et al. 2016). Given the current structure and oper- 

ationalization of LCA through its large-scale background databases, 

compatibility with available LCI scales is essen- tial to reflect the potential 

impact of background processes (those obtained from LCI databases, such as 

ecoinvent), since the application of high resolution characterization factors is 

usually limited to foreground processes (those createdby LCA practitioners) 

(Bos et al. 2020; Othoniel et al. 2019). LCA results are strongly influenced by 

background processes, as Heijungs (2012) showed by describing how the use of 

a single process from the ecoinvent database can be linked with ~2000 other 

processes. Background processes are commonly aggregated at country level as 

maximum degree of specificity (Yang 2016; Mutel et al. 2019; Pavan and Ometto 

2016). Therefore, most regionalized impact methods that have been developed 

for LCA, such as LC- Impact (Verones et al. 2020), IMPACT world + (Bulle et 

al. 2019), and TRACI (Bare 2011), provide country-specific characterization 

factors. These country-specific estimates are usually obtained by utilizing land 

cover and potential natural vegetation (PNV) maps to characterize potential 

impacts, assuming the most predominant biome per country as a rep- 

resentative estimate for country-specific factors (Verones et al. 2020; Bulle et al. 

2019; Saad et al. 2013; Bos et al. 2020). However, the estimation of country-

specific values based on most predominant biomes per country might not 

accurately represent intra-national variation. Furthermore, land use impacts are 

influenced by a variety of factors that go beyond biogeographical characteristics, 

and that relate to socio-economic and environmental dynamics. In contrast with 

the general practices where the degree of land use impact is based on PNV land 

cover maps and biogeographical parameters, we hypothesize that land system 

archetypes can be used to increase representativeness of regional variations in 

the calculation of country-specific characterization factors. 
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The use of spatial archetypes has been proposed in the literature as a potential 

way towards regionalization of impact categories (Mutel et al. 2019). Archetypes, 

defined as groups or categories that share similar characteristics and patterns, 

can help incorporating information beyond spatial units. Moreover, land system 

archetypes can account for multiple factors, both socio-economical and 

biogeographical, that influence the degree of potential environmental impacts. 

An example of archetypes application in LCA is the case of the toxicity impact 

model, USEtox, which utilizes freshwater archetypes to assess the variability of 

impacts related to exposure to toxic substances and particulate matter (Gandhi 

et al. 2011; Rosenbaum et al. 2008; Kounina et al. 2014). Archetypes present 

potential advantages for application on several other impact categories, with 

land use as the clearest example of an impact driver that is highly dependent on 

multidimensional conditions varying across the globe (IPBES 2019). The 

objective of this study was to assess if the use of land system archetypes help to 

better represent intra-national variations when deriving country-specific 

characterization factors for soil erosion impacts as a representative example of 

land use-related impacts. Our focus was on illustrating the potential benefits of 

adopting land system archetypes for the derivation of characterization factors, 

rather than assessing or further developing a specific method for soil erosion 

impacts. By presenting the application and comparison of characterization 

factors based on land system archetypes, we provide further evidence of their 

potential benefits for a wider application in LCA studies and a better 

representation of socio-economical and biogeographical differences across the 

globe. 

 

5.2 Methods  

5.2.1 Land system archetypes  

In this study, 12 land system archetypes (LSAs) produced by Václavík et al. 

(2013) were used for the characterization of land use impacts. These archetypes 

are based on clustered patterns of land systems data, covering approximately 30 

indicators related to land use intensity (e.g., soil erosion, irrigation, temporal 

trends of cropland), socioeconomic factors (e.g. population density, GDP), and 
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environmental factors (e.g., temperature, precipitation) (Václavík et al. 2013). 

Each of the 12 LSAs presents a specific combination of land use and human–

environment interactions. We used the soil erosion rates that are associated with 

each of the 12 land system archetypes as the reference state (Qref,a) to assess 

land use-related soil erosion impacts (further explained in Sect. 5.2.2). These soil 

erosion rates (see Table 5.1) have been derived from spatially explicit models of 

soil erosion based on the universal soil loss equation, and used in conjunction 

with global databases of land use, soil, climate, accounting for parameters such 

as slope steepness and soil organic carbon (Van Oost et al. 2007). For further 

clarification, throughout this study, we refer to the terms “land system 

archetypes” and “land use types.” The first one refers to the 12 archetypes 

produced by Václavík et al. (2013), while land use types refer to the specific use 

of land that can have an erosion impact on the studied land (e.g., agricultural 

crops, natural landscape, roads). Therefore, one or multiple land use types can 

take place in a land system archetype (e.g., a road through a forest system in the 

tropics). 

 

Table 5.1 Soil erosion rates associated with each of the land system archetypes by 
Václavík et al. (2013). 

 

 

 

Land system archetype Soil erosion rate (in 
ton/(ha·year)) 

LSA 1 Forest systems in the tropics  2.6 
LSA 2 Degraded forest/cropland systems in the tropics  120.3 
LSA 3 Boreal systems of the western world  0.2 
LSA 4 Boreal systems of the eastern world  0.1 
LSA 5 High density urban agglomeration 3.1 
LSA 6 Irrigated cropping systems with rice yield gap  6.2 
LSA 7 Extensive cropping systems  5.9 
LSA 8 Pastoral systems  1.8 
LSA 9 Irrigated cropping systems  2.4 
LSA 10 Intensive cropping systems  2.8 
LSA 11 Marginal lands in the developed world 0.7 
LSA 12 Barren lands in the developing world  0.3 
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5.2.2 Determination of land use‑specific characterization factors 

Before deriving country-specific characterization factors, we first calculated land 

use specific characterization factors. Land use specific characterization factors 

were calculated as the potentially enhanced land use-specific soil erosion rate 

(𝐶𝐹𝑎,𝑏) expressed in ton/(m2·year), which describes the potential soil erosion 

impact of land use b on archetype a, calculated as the difference in soil erosion 

rates between the reference state (𝑄𝑟𝑒𝑓,𝑎)  and the state under the given land 

use b (𝑄𝐿𝑈,𝑎,𝑏).  

𝐶𝐹𝑎,𝑏 = 𝑄 𝐿𝑈,𝑎,𝑏 − 𝑄𝑟𝑒𝑓,𝑎 

Where 𝑄𝑟𝑒𝑓,𝑎 is the soil erosion rate of archetype a, and 𝑄𝐿𝑈,𝑎,𝑏  is the soil 

erosion rate associated with land use b, calculated by multiplying the soil erosion 

rate of archetype a (𝑄𝑟𝑒𝑓,𝑎), by a ‘correction factor’ of land use type b (𝐾𝑢𝑠𝑒,𝑏) 

that is adapted from the LANCA method by Beck et al. (2010) (Figure 5.1).  Thus:  

𝑄𝐿𝑈,𝑎,𝑏 = 𝑄𝑟𝑒𝑓,𝑎 ∗ 𝐾𝑢𝑠𝑒,𝑏 

These ‘correction factors’ (𝐾𝑢𝑠𝑒) reflect the relative degree of soil erosion impact 

that can be attributed to each land use type. The factors are dimensionless 

numbers ranging from 0.5 to 10, and available for 36 land use types (Beck et al., 

2010). These correction factors represent a considerable simplification of soil 

erosion mechanisms. While alternative approaches have utilized additional 

correction factors to incorporate relative differences due not only to land cover 

but also management practices, for the comparative and illustrative purposes of 

this study, we assume the correction factor 𝐾𝑢𝑠𝑒 from Beck et al. (2010) as an 

applicable approximation to estimate land use-specific soil erosion rates. 

The specific land use types to assess in this study were selected based on their 

compatibility with land use elementary flows used in background processes of 

the ecoinvent database (https://www.ecoinvent.org/), given that this is one of 

the most predominantly used database in the LCA field (Wernet et al. 2016). To 

select the land use types, we compared the list of land use types for which Beck 

et al. provides Kuse factors, with the detailed list of relevant background processes 

in ecoinvent (Version 3.4, ‘cut off’). This comparison (detailed in Supporting 

information) led to the following selection of land use types assessed in this 

study: ‘Forest’, ‘Permanent crops, ‘Farmland’, ‘Fallow ground’, ‘Urban, industrial 

https://www.ecoinvent.org/
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and transport’, ‘Grassland, meadow’, ‘Moorland, lawn or fallow with vegetation’, 

and ‘Mining and landfill’. 

 

Figure 5.1 Study design for the calculation of country-specific characterization 
factors for land use soil erosion impacts 

 

Furthermore, the characterization of land use impacts is commonly done for two 

types of impacts, occupation and transformation. Occupation describes the 

influence of land use over an area for a given amount of time (𝐶𝐹𝑜𝑐𝑐 = 𝑄𝑟𝑒𝑓 −

𝑄𝐿𝑈) while transformation is described as the change in quality of an area from 

one land use to another, including the regeneration time (𝐶𝐹𝑡𝑟𝑎𝑛𝑠 = (𝑄𝑟𝑒𝑓 −

𝑄𝐿𝑈)*0.5*𝑡𝑟𝑒𝑔 ) (Koellner et al. 2013; Milà i Canals et al. 2007). If the same ∆𝑄 

is incorrectly assumed to be applicable to the calculation of CFs for both 

occupation and transformation impacts, there is a risk of incurring on double 

counting during the impact assessment of a product system. Additionally, most 

land use processes in ecoinvent were found to have the same magnitude of flows 

for both occupation and transformation (see examples in Supporting 
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information). While land occupation always follows land transformation, the 

reverse is not always the case. Therefore, the current connection of flows 

inevitably increases the risk of incorrect double counting. Based on these 

considerations and for the comparative purposes of this study, we will illustrate 

the production of characterization factors focusing on occupation impacts only.  

As an additional consideration for the case of sealed soils, which occur in roads, 

industrial and urban areas for example, the procedure by Beck et al. (2010) 

assigns a high erosion correction factor to represent the permanent damage 

done to the quality of soil. However, for land use occupation impacts, the soil 

erosion is neither improved nor decreased by the effect of sealing. While sealing 

has a negative effect on other soil properties such as mechanical and 

physicochemical filtration (Beck et al., 2020), the soil erosion is not actively 

increasing nor decreasing due to the sealing during occupation impacts. To 

address this methodological artifact, we attribute the neutral value of 1 as the 

correction factor 𝐾𝑢𝑠𝑒  for sealed soils corresponding to 

urban/industrial/transport land use types, this results in a characterization factor 

of value 0, representing no change of erosion during occupation. The impact of 

soil sealing would be reflected as a transformation impact. However, the 

production of CFs for transformation impacts are currently left of out of the 

scope of this study. For the land use types of mining and landfill, the maximum 

value of 10 was used as Kuse factors for occupation impacts.  

5.2.3 Producing country specific characterization factors    

To aggregate towards country-specific characterization factors for each land use 

type, we produced characterization factors for occupation impacts for each land 

use type, e.g. b, in country c (𝐶𝐹𝑂𝐶𝐶,𝑏,𝑐) based on a weighting process taking into 

account the impact potential of land use type b on each archetype present in 

country c (𝐶𝐹𝑎,𝑏,𝑐), the probability of the land use b occurring on each archetype 

present in country c (𝑃𝑂𝑎,𝑏,𝑐), and the area of each archetype a within a country 

c (𝐴𝑟𝑎,𝑐), which results in:   

𝐶𝐹𝑂𝐶𝐶,𝑏,𝑐 =
∑ (𝐴𝑟𝑎,𝑐)(𝐶𝐹𝑎,𝑏,𝑐)(𝑃𝑂𝑎,𝑏,𝑐)12

𝑎=1

∑ 𝐴𝑟𝑎,𝑐
12
𝑎=1
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For example, the probability of using the land as ‘Forest’ is considered to be 

minimal in archetypes such as LSA5 (High density urban agglomeration) and 

LSA12 (Barren lands in the developing world), and quite high in archetypes such 

as LSA1 (Forest systems in the tropics) and LSA3 (Boreal systems of the western 

world). These probabilities estimates ranged between three values (0.1, 0.5 and 

1), and were based on rule of thumb expert estimations (see Supporting 

information).  

5.2.4 The indicator result  

Characterization factors are used to translate environmental interventions into 

potential environmental impacts, commonly referred to in LCA as the indicator 

results. The characterization factors produced, translate occupation flows for 

land use type b in country c (𝑂𝑏,𝑐) into potential soil erosion impacts by 

multiplying the land use flows by their respective characterization factors 

(𝐶𝐹𝑂𝑐𝑐,𝑏,𝑐). The impact results are aggregated across all land use types into an 

indicator result: 

𝑆𝑜𝑖𝑙 𝐸𝑟𝑜𝑠𝑖𝑜𝑛 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 (𝑆𝐸𝑂) = ∑(𝐶𝐹𝑂𝑐𝑐,𝑏,𝑐 × 𝑂𝑏,𝑐)

𝑥=𝑛

𝑥=1

 

The impact indicator, which in LCA refers to the quantifiable representation of 

an impact, corresponds to the tons of soil eroded due to land use impacts. Where 

𝑂𝑏,𝑐 is the time-integrated area of occupation (in m2·year). The unit of the 

estimated impact, the indicator result (𝑆𝐸𝑂) is thus in tons, which represents the 

tons of soil eroded that can be associated with the functional unit of a studied 

system.  
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5.3 Results  

5.3.1 Land use‑specific characterization factors 

The land use-specific impacts on soil erosion rates were characterized for each 

combination of land use and archetype, presented in Table 5.2. For the 

categories “moorland” and “Urban and industrial,” the land use-specific 

characterization factors (in ton/(m2·year)) result in values of 0, due to the fact 

that the correction factors had a value of 1, indicating that these land use type 

do not increase or decrease soil erosion. The land use-specific characterization 

factors for the categories grassland and forest have negative values, which 

indicate a reduction in soil erosion across all archetypes. The categories of 

permanent crops, farmland, and fallow ground present positive values, indicating 

a negative impact to the soil by increasing erosion rates. The values of these land 

use-specific impacts vary across archetypes, with LSA2 (degraded 

forest/cropland systems in the tropics) being disproportionally higher than the 

rest, due to the fact that this archetype is present in areas of the world 

characterized with the highest soil erosion rate (Table 5.1). 

 



____ 

125  

 

T
able 5.2 L

a
nd

 use specific characterization factors (in ton/
(m

2·year)), for each com
bina

tion of la
nd

 use type and land 
system

 a
rchetype 

 



____ 

126  

5.3.2 Country‑specific characterization factors 

The characterization factors were derived for 263 countries and for 8 land use 

types, resulting in 2,104 values expressed in terms of ton/(m2·year) (data 

generated and full list of CFs available in Supporting information). The country-

specific characterization factors allow to distinguish between land use types, and 

present a wide range of variation for permanent crops, fallow ground, and mining 

and landfill, with mean values around 0.002ton/(m2·year), and reaching max 

values, including outliers, of up to 0.035ton/(m2·year) (Figs. 5.2a and 5.3). To 

compare the CFs, we also calculated country-specific characterization factors 

based only on the most predominant archetype per country (and without 

applying probability of occurrence factors) (Fig. 5.2b).  

The CFs based on the most predominant archetype per country ranged between 

0 and 0.003ton/(m2·year) for permanent crops and between 0 and 0.005 

ton/(m2·year) for fallow ground and Mining landfill, indicating these CFs could 

underestimate impacts of up to 0.020ton/(m2·year) for permanent crops and of 

up to 0.035 ton/(m2·year) for fallow ground and mining and landfill. The benefits 

of grassland are underestimated as well when only accounting for the most 

predominant archetype in comparison to CFs weighting all archetypes within a 

country, with a difference of 6.26*10–4 ton/(m2·year). Similarly, for forest, the 

mean CFs indicate lower benefits in comparison to weighted values. However, 

these CFs have a slightly larger range (from 0 to -0.0031) than weighted values 

(0 to -0.00022), due to the influence of the probability of occurrence estimates.  
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Figure 5.2 Country-specific characterization factors for soil erosion potential impacts 
(in ton/(m2·year)). 

Furthermore, when accounting only for the most predominant archetype per 

country, not all archetypes are represented in the CF results. This was the case 

for LSA 2 (degraded forest/cropland systems in the tropics) and LSA 5 (High 

density urban agglomerations), which are not predominant in any country. 

Considering the high soil erosion rate and impact potential associated with LSA2 

(Table 5.2), the use of country-specific CFs based only on most predominant 

archetypes as reference does not allow to reflect key land use impacts on highly 

vulnerable areas. The countries characterized as some of the most vulnerable in 

terms of soil erosion impacts for permanent crops, farmland, and fallow ground 

(e.g., Rwanda, Guatemala, Philippines, Swaziland, New Zealand, Malaysia, 

Burundi, Sri Lanka, Albania, and Dominican Republic) present as common 

feature an archetype composition mainly dominated by a combination of LSA1 

(forest systems in the tropics), LSA2 (degraded forest/ cropland systems in the 

topics) and LSA7 (Extensive cropping systems). Therefore, the use of weighted 

values for the production of characterization factors results in a more 

comprehensive representation of intra-national impacts.  
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Figure 5.3 Global maps of country-specific characterization factors for soil erosion 
potential impacts by land use occupation (in ton/(m2·year)). 
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The probabilities of land use occurrence (PO) were rule of thumb expert 

estimates (of value 0.1, 0.5, and 1) based on the assumption that not all land use 

types have the same probability of occurring across all archetypes. To assess the 

influence of these probability estimates, we compared the results with CFs 

produced without taking into account the probability estimates (assuming PO = 

1 across all land types and archetypes). The results of this comparison (Fig. 5.4) 

indicate that the use of probability estimates allow to identify differences 

between grassland and forest, which would otherwise be represented by the 

same values, given that both land use types use the same correction factor of 

0.5. The mean benefits of grassland and forest are slightly decreased by the use 

of the probability estimates. The variation range is also smaller, due to the fact 

that we assumed a low probability (= 0.1) of these natural landscapes occurring 

in archetypes describing urban or highly agglomerated areas.  

By taking into account the occurrence probabilities, the potential bias due to 

unlikely combinations is decreased. For example, while grassland represents the 

highest potential benefits when assessed for LSA2 (Table 5.2), the probability of 

grassland occurring in LSA2 was attributed a probability estimate of 0.5, thus 

decreasing the influence of LSA2 in the total CFs for grassland by half. For 

farmland, permanent crops, and mining and landfill, there were no substantial 

differences between the results, while the mean impacts for fallow ground are 

slightly increased when no probability of occurrence is assumed. Furthermore, a 

comparison of CFs obtained with world generic estimates based on the mean of 

each land use type (Fig. 5.5) shows that world generic estimates can 

underestimate over ten times the degree of potential impact associated with land 

use types such as mining and landfill, fallow ground, and permanent crops. 
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Figure 5.4 Comparison of the resulting characterization factors when accounting for 
probability of occurrence estimates (in green) and without (in red). 

 

 

Figure 5.5 Comparison of the characterization factors values for world generic (blue), 
country- specific considering only most predominant biome (grey), and considering all 

archetypes within a country (orange). 
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5.4 Discussion 

5.4.1 Considerations for country‑specific characterization factors 

The compatibility of characterization factors with the information present in 

LCA inventory databases is, as previously mentioned, generally a limiting factor 

to the applicability of new regionalized impact methods that need to reconcile 

with coarse geographical scales available in inventory data. In the case of land 

use impacts, this reconciliation generally leads to the production of country-

specific characterization factors that are commonly derived by considering the 

most predominant biome per country as representative of the whole. While 

moving from world generic estimates to country-specific values might seem like 

a sufficient compromise, the great variation shown by the resulting 

characterization factors demonstrate further evidence of the need to improve 

the representation of intra-national variations during impact characterization, as 

illustrated in this study with the use of land system archetypes.  

Furthermore, the use of occurrence probabilities in the calculation of 

characterization factors allowed us to evaluate additional differences between 

land use impacts by taking into account the characteristics of each land system 

archetype. The risk of potentially underestimating benefits or potential impacts 

will depend on the assumptions made for each occurrence probability. This risk 

may be reduced by obtaining occurrence probabilities based on a wider 

consensus of expert knowledge, or by coupling land use and urban planning data 

for more accurate predictions. We suggest that using coarse probability 

estimates might be better than using none, as further evidenced when comparing 

our results with those from Saad et al. (2013), where the characterization factors 

for grassland and forest present the same values and are therefore unable to 

reflect differences between these two land use types, a shortcoming that can be 

overcome with the use of occurrence probabilities. 
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5.4.2 Advantages of land system archetypes 

The land system archetypes used in this study were produced by Václavík et al. 

(2013) using a self-organized map (SOM), which relies on a non-supervised 

neural network algorithm that decreases dimensionality by eliminating 

redundancy among indicators and allowing to visualize complex datasets. The 

output is a map where a given amount of archetypes is determined to be a 

representative amount of categories to represent land use systems (Václavík et 

al. 2013). The resulting archetypes reflect patterns clustered in consistent groups 

based on the similarity of the available indicators. There are several potential 

benefits of utilizing unsupervised data driven methods to further develop 

archetypes that can be used for impact characterization, as they allow to cluster 

large amount of data without the need of expert rules or a priori classification 

thresholds. The archetypes by Václavík et al. (2013), reflect regional patterns 

that take into account several land use intensity indicators and temporal trends 

to account for changing dynamics of land systems, and therefore might be better 

suited to reflect land use potential impacts in contrast with estimates based 

solely on land cover maps where only a few biogeographical parameters are 

considered. For example, while CFs for soil erosion impacts are usually heavily 

influenced by soil texture and geographical slope data, the land system 

archetypes that were particularly vulnerable to further soil damage were 

characterized by factors such as a high degree of agricultural inputs, low GDP 

and strong dependence on agricultural production (Václavík et al. 2013). 

Therefore, accounting for socio-economic factors besides biogeographical 

parameters seems indispensable to improve representativeness of 

characterization factors for land use impacts. 

5.4.3 General recommendations for LCA application 

For a practical application of archetypes in LCA, it is recommendable to apply 

or develop an archetype classification that can be used across several impact 

categories, to keep consistency and minimize the proliferation of category-

specific archetypes (Mutel et al. 2019). The land system archetypes used in this 

study, by Václavík et al. (2013), account for a variety of parameters such as crop 

yield, fertilizer input, species richness, irrigation, among several other factors that 

present opportunities for their use in other impact categories. However, this 
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should be further studied by for example, a meta-analysis focusing on the 

different data requirements across categories. Further integration of 

environmental and socioeconomic indicators with the use of archetypes 

presents potential advantages for the characterization of environmental impacts 

in LCA and in particular of ecosystem services. Ecosystem services have gained 

attention during the last decade due to their key role sustaining quality of life 

throughout the world (EEA 2016; FAO 2015; IPBES 2019). The severe degree 

of anthropogenic impact found across several key services globally, has fuelled 

increased efforts for their incorporation in impact assessment methods (Blanco 

et al. 2017; Zhang et al. 2010, Beck et al. 2010; Bos et al. 2016; Mutel et al. 2019; 

Cao et al. 2015; Milà i Canals et al. 2007a; Núñez et al. 2013; Othoniel et al. 

2019). However, their assessment still remains highly underrepresented in 

common LCA studies (Othoniel et al. 2016; Alejandre et al. 2019).  

The complex dynamics that influence ecosystem services and their high spatial 

variability present multiple characterization challenges. The archetypes 

approach outlined in this study is highly suitable to address these issues, 

precisely for its capacity to incorporate a range of multidimensional aspects 

while allowing to characterize impacts for LCA. Additionally, while general 

recommendations have been made in the literature regarding uncertainty (Igos 

et al. 2019; Muller et al. 2016), assessing and merging the several sources of 

uncertainty associated with characterization factors presents major challenges 

for impact assessment developers (Mutel et al. 2019). In the case of the land 

system archetypes, the nature of the data and methods applied to produce the 

resulting archetype classification introduces several levels of uncertainty. 

Additional uncertainty sources for the characterization factors are related with 

the characterization model assumptions, inherent spatial variability, among 

others. To include an estimate of uncertainty for regionalized CFs, developers 

usually provide measures of dispersion along with their resulting CFs to reflect 

the uncertainty associated with the spatial variability, for example, by estimating 

the average absolute deviation to show how far is a CF from the central tendency 

(e.g., median value). However, further research is necessary to determine the 

best approach for harmonizing uncertainty guidelines for both LCI databases and 

impact assessment developers. 
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5.5 Conclusions  

The results of this study illustrate how the use of land system archetypes present 

a practical and representative approach to characterize land use impacts while 

accounting for intra-national differences in country-specific CFs. The hypothesis 

was that by utilizing land system archetypes we could better reflect spatial 

variability that can be driven by biogeographical and socioeconomic factors, 

than by simply assessing the most predominant archetype as the representative 

per country. This was confirmed by the comparison of country-specific CFs, 

which presented a considerably larger variation when accounting through a 

weighting process all the archetypes present within a country, than those 

assuming only the most predominant archetype as representative. The resulting 

CFs yielded estimates of up to ten times higher magnitude compared with world 

generic values, reflecting considerable regional differences. Moreover, our use 

of land system archetypes as reference state avoided potential biases in impacts 

of land use change, as it accounts for prevailing general soil degradation – in 

contrast to the commonly used potential natural vegetation as reference state. 

A wider application of archetypes for regionalization of impacts in LCA is 

recommended for further research as a practical approach to bridge the gap 

between impact models that require finer spatial and multidimensional data with 

currently available LCA inventories. 

 

5.6 Supporting information  

All supporting material is available online via:  
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