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ABSTRACT
Background  The efficiency of clinical trials for retinitis 
pigmentosa (RP) treatment is limited by the screening 
burden and lack of reliable surrogate markers for 
functional end points. Automated methods to determine 
visual acuity (VA) may help address these challenges. 
We aimed to determine if VA could be estimated using 
confocal scanning laser ophthalmoscopy (cSLO) imaging 
and deep learning (DL).
Methods  Snellen corrected VA and cSLO imaging were 
obtained retrospectively. The Johns Hopkins University 
(JHU) dataset was used for 10-fold cross-validations 
and internal testing. The Amsterdam University 
Medical Centers (AUMC) dataset was used for external 
independent testing. Both datasets had the same 
exclusion criteria: visually significant media opacities 
and images not centred on the central macula. The JHU 
dataset included patients with RP with and without 
molecular confirmation. The AUMC dataset only included 
molecularly confirmed patients with RP. Using transfer 
learning, three versions of the ResNet-152 neural 
network were trained: infrared (IR), optical coherence 
tomography (OCT) and combined image (CI).
Results  In internal testing (JHU dataset, 2569 images, 
462 eyes, 231 patients), the area under the curve 
(AUC) for the binary classification task of distinguishing 
between Snellen VA 20/40 or better and worse than 
Snellen VA 20/40 was 0.83, 0.87 and 0.85 for IR, OCT 
and CI, respectively. In external testing (AUMC dataset, 
349 images, 166 eyes, 83 patients), the AUC was 0.78, 
0.87 and 0.85 for IR, OCT and CI, respectively.
Conclusions  Our algorithm showed robust 
performance in predicting visual impairment in patients 
with RP, thus providing proof-of-concept for predicting 
structure-function correlation based solely on cSLO 
imaging in patients with RP.

INTRODUCTION
Retinitis pigmentosa (RP) is the most prevalent 
group of inherited retinal dystrophy (IRD) in the 
world, with an estimated incidence of 1 in 4000 
persons.1 In recent years, significant advancement 
has been made in the field of IRD with the Food 
and Drug Administration approval of voretigene 
neparvovec (Luxturna) for the treatment of RPE65-
mediated IRD.2 According to www.clinicaltrials.gov 
(accessed 16 May 2021), there are 39 active inter-
ventional clinical trials for RP that are currently 
recruiting or enrolling subjects, and an additional 
10 active studies that are not yet recruiting. Specific 

gene therapy targets for RP include MERTK, PDE6A, 
PDE6B, RPGR and MYO7A gene mutations, among 
others.3 4 Mutation-agnostic modalities being 
developed include cell therapy (​clinicalTrials.​gov 
identifier: NCT04604899, NCT02464436) and 
antioxidant therapy (NCT03063021) approaches.

The efficient conduct of adequately powered 
clinical trials in RP is hampered by the need to 
screen relatively large numbers of patients to 
find those that fit the inclusion criteria. Typically, 
inclusion criteria include visual field (VF) and 
visual acuity (VA) parameters. These parameters 
are potentially susceptible to patient-dependent 
and/or operator-dependent variability,5 6 and are 
labour-intensive and time-consuming to measure. 
The problem of variability is increased by the fact 
that patients are typically dispersed across many 
different hospitals and countries. In response to 
this problem, surrogate biomarkers that are based 
on confocal scanning laser ophthalmoscopy (cSLO) 
imaging have been studied and deployed. cSLO 
modalities include optical coherence tomography 
(OCT), short-wavelength fundus autofluorescence 
(SW-FAF) and infrared (IR) reflectance. Screening 
of potential RP trial subjects based on cSLO may 
offer the advantages of being time-efficient, objec-
tive and relatively operator-independent. The ellip-
soid zone (EZ) line length7 on OCT has been shown 
to correlate with the edges of the VF in patients 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The efficient conduct of adequately powered 
clinical trials in retinitis pigmentosa (RP) is 
hampered by the need to screen relatively large 
numbers of patients to find those who fit the 
inclusion criteria.

WHAT THIS STUDY ADDS
	⇒ Structure-function correlation based solely 
on confocal scanning laser ophthalmoscopy 
imaging in patients with RP can be predicted 
using deep learning (DL).

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ DL-based estimation of visual acuity using 
optical coherence tomography images may 
enable efficient screening of potential subjects 
in future RP research studies or clinical trials.
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with RP. The foveal EZ width is currently accepted as a struc-
tural surrogate biomarker of VF size. It has gained popularity 
as a parameter for subject selection and also as a clinical trial 
outcome measure, supported by data from the EZ Working 
Group that validated the robust structure-function correlation 
of this parameter with VF indices.8 Another imaging surrogate 
biomarker of VF with potential utility in clinical trials is the size 
of the hyperautofluorescent ring on SW-FAF imaging.9

In contrast to VF, selecting a single cSLO-based surrogate 
biomarker for VA appears to be more challenging because 
multiple structural parameters appear to correlate with VA. In 
diabetic macular oedema, multivariate analysis has shown that 
central subfield thickness (CST), signal intensity and photore-
ceptor outer segment thickness correlate with VA.10 Studies in 
other disease contexts have shown relationships between VA 
and EZ integrity,11 external limiting membrane (ELM),12 outer 
retinal hyper-reflective foci13 and cone outer segments tips 
(COST) line integrity,14 among others. This complexity under-
scores the challenge of selecting a single OCT parameter as a 
surrogate biomarker for VA in RP because epiretinal membrane, 
outer retinal hyper-reflective foci, increased CST due to cystoid 
macular oedema (CME) and disruptions in ELM, COST and EZ 
frequently co-exist in RP.

Our goal was to further understand structure-function correla-
tion of cSLO parameters with VA in RP. Specifically, we aimed 
to determine the feasibility of developing a cSLO-based model 
to predict visual impairment in RP using deep learning (DL). 
We chose a VA cut-off of Snellen 20/40, as evidence suggests 
that significant impairment in activities of daily living (ADL) 
occurs when the vision in the better-seeing eye is <20/40.15–18 
We chose to use DL as the machine learning technique of choice 
as DL is particularly adept at pattern recognition. The feasi-
bility of using DL for this purpose was supported by the recent 
work of Kawczynski et al, in which DL techniques were used to 
predict VA from OCT data in neovascular age-related macular 
degeneration.19 Briefly, DL processes are representation learning 
methods that use multilayered neural networks, the parameters 
of which are iteratively updated by backpropagating gradients 
with respect to the desired output.20 DL has been used to clas-
sify images, often on par with human experts, across different 
ophthalmology diseases, such as age-related macular degener-
ation (AMD), diabetic retinopathy and glaucoma.21–26 In this 
study, we chose to use cSLO imaging because it is widely avail-
able and can reliably be repeated and tracked over time. Further-
more, we hypothesised that combining two modalities (OCT 
and IR) would enhance the performance of the cSLO-based 
prediction model over using OCT alone. To enhance the rigour 
of our work, we leveraged distinct datasets from the USA (Johns 
Hopkins University (JHU)) and Europe (Amsterdam University 
Medical Centers (AUMC)). This approach ensured the separa-
tion of subjects for training and testing.

MATERIALS AND METHODS
Datasets
The JHU dataset included patients with a clinical diagnosis 
of RP. Inclusion criteria: phenotypic findings consistent with 
RP that included bone spicule pigmentation in the midperiph-
eral retina on biomicroscopy, loss of the EZ in the peripheral 
macula on OCT, constriction of the Goldmann visual field test 
and typical full field electroretinogram (ERG) findings of rod-
cone dysfunction consistent with RP. Exclusion criteria: visually 
significant media opacities and images not centred on the central 
macula. The JHU dataset was used for 10-fold cross-validations 

and internal testing. The AUMC dataset was used for indepen-
dent, external testing of the trained models. All patients included 
in the AUMC dataset had disease-causing variants as confirmed 
by genetic testing. Both eyes of each patient were included, and 
the data were partitioned on a patient level.

The corrected VA and cSLO imaging (Spectralis, Heidelberg 
Engineering, Heidelberg, Germany) data of each eye at each 
clinic visit was obtained via retrospective chart review. For each 
eye, both spectral domain OCT and en face IR imaging were 
obtained using the Heidelberg Spectralis machine. The foveal 
OCT line scan and the corresponding IR image of each eye at all 
available visits were exported in an uncompressed TIFF format 
in a deidentified fashion (1280×868 pixels and 24 bit/pixel). 
During image export using the commercial software that accom-
panied the Heidelberg Spectralis machine, the default export 
format was a combined image (CI), containing both the IR and 
OCT images, as shown in figure 1.

Neural network training
A 10-way k-fold cross-validation was used to determine the 
optimal parameters for neural network training. Four pretrained 
neural networks were tested: AlexNet,27 DenseNet-161,28 
ResNet-50, ResNet-152.29 The pretrained weights were based on 
the ImageNet training and read directly as part of the network 
loading in PyTorch. The number of epochs varied from 1 to 
30. Three learning rates were tested, 0.01, 0.001 and 0.0001, 
a batch size of 16 was used. Stochastic gradient descent as the 
optimiser and cross-entropy loss as the loss function were used. 
The random seed was manually set for each of the Python pack-
ages to create a reliable comparison across runs. The area under 
the curve (AUC) of the receiving operator curve was measured 
over the 10-folds and reported as a mean and SD to determine 

Figure 1  Sample images used as input data during neural network 
training and testing. The infrared (IR) only and optical coherence 
tomography (OCT) only images are shown in the top row. The combined 
image includes the IR and OCT images exported in a standardised 
combined format.
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the best set of parameters. This was repeated for the IR images 
only, OCT images only and CIs.

An optimal set of parameters was generated for each image 
type (IR, OCT and CI). Therefore, a separate network was 
trained for each image type (three separate networks in total) 
using the ResNet-152 (the best-performing neural network 
architecture during 10-fold cross-validation), a batch size of 16, 
learning rate of 0.001, stochastic gradient descent and a cross-
entropy loss. The three trained networks (IR, OCT and CI) were 
used for further testing, both internal (JHU dataset) and external 
(AUMC dataset).

To evaluate the performance of the three networks, each 
network was tested twice, once against the held out portion of 
the JHU dataset (internal testing) and once against the entire 
AUMC dataset (external testing), for the binary classification 
task of distinguishing between Snellen VA 20/40 or better and 
worse than Snellen VA 20/40. The AUC was calculated along 
with the precision and recall. Gradient-based class activation 
maps were calculated30 during external testing to visually under-
stand the spatial activation from the network.

All data processing and neural network training and predic-
tion were accomplished in Python V.3.7 using PyTorch V.1.8 and 
related packages. The training was performed with a computer 
with dual GPU Tesla P100-PCIE with 12 GB RAM each.

RESULTS
This study included a total of 2918 images from 628 eyes from 
314 patients. Of these, the training (JHU) database included 
2569 images from 462 eyes from 231 patients (65% Cauca-
sian; 23% Black; 6% Asian; 47% male). Within this cohort, the 
median age at the time of imaging was 52 years (range: 7–88 
years) and the median Snellen VA was 20/40 (range: 20/16 to no 
light perception). Of the 2569 images, 62% were from eyes with 
Snellen VA 20/40 or better and 38% were from eyes with worse 
than Snellen VA 20/40. Within the JHU cohort, 197 patients had 
longitudinal OCT scans (median: 4) over a median follow-up 
period of 2.9 years.

The testing (AUMC) database included 349 images from 166 
eyes from 83 patients (70% Dutch; 11% Middle Eastern; 6% 
African; 5% non-Dutch European; 4% Asian; 4% South Amer-
ican; 60% male). All 83 patients carried pathogenic mutations 
confirmed by genetic testing. The most commonly involved 
genes were: USH2A (19%), RPGR (13%), CRB1 (8%), RHO 
(6%), RP1 (6%), EYS (5%) and MYO7A (5%). Pathological 
mutations were found in two patients for each of the following 
genes: PRPH2, SNRNP, PRPF31, ABHD12, RP2, SGSH, BBS1 
and NR2E3. Pathological mutations were found in one patient 
for each of the following genes: PDE6A, PDE6B, HGSNAT, 
AD4RV1, FDE6B, ABCA4, MERTK, RLBP1, PRPF31, CDH23, 
NPHP1, LRAT, RDH12, C80RF3T and FAM161A. Within this 
cohort, the median age at the time of imaging was 38 years 
(range: 6–77 years; IQR 29–55 years) and the median Snellen 
VA was 20/32 (range: 20/16 to light perception; IQR 20/25 to 
20/100). Of the 349 images, 52% were from eyes with Snellen 
VA 20/40 or better and 48% were from eyes with worse than 
Snellen VA 20/40. Within the AUMC cohort, 49 patients had 
longitudinal OCT scans (median: 2) over a median follow-up 
period of 1.2 years.

Internal testing
After the 10-fold cross-validation experiments were completed, 
three versions of the network were trained (IR, OCT and 
CI). Optimal hyperparameters were first obtained during 

cross-validations on the splits of the training subset, and then 
the model was trained with all the data in the training subset. An 
internal testing, using a held-out JHU dataset, was performed. 
The AUC for distinguishing between Snellen VA 20/40 or better 
and worse than Snellen VA 20/40 was 0.83, 0.87 and 0.85 for 
IR, OCT and CI, respectively. The results of the internal testing 
are summarised in table 1.

External testing
Using the same models that were used in internal testing, we 
tested our algorithms against the external dataset obtained 
from AUMC. The AUC for distinguishing between Snellen VA 
20/40 or better and worse than Snellen VA 20/40 was 0.78, 
0.87 and 0.85 for IR, OCT and CI, respectively. Of the 166 
eyes in the test set, 96 eyes had serial images. The accuracy of 
our model for OCT images was 71% on an eye level. For an eye 
with serial images, it was counted as ‘correct’, only if all images 
generated from that eye were predicted correctly. The results of 
the external testing are summarised in table 1 and figure 2. Of 
the 349 images in the external test set, 52 contained structural 
abnormalities other than outer retinal atrophy: full-thickness 
macular hole (n=3), lamellar macular hole (n=11) and CME 
(n=38) that significantly distorted the foveal contour. Of these 
52 images, 27 images (52%) received an incorrect prediction 
from the version of the network that involved only OCT images.

Herein, we present two examples of successful application of 
our algorithm. The first example (figure 3) shows the detection 
of a contemporaneous functional difference between the two 
eyes of a single patient. The patient had relatively asymmetric 
structural changes in the two eyes. The right eye (oculus dexter, 
OD) showed a residual EZ line in the fovea (Snellen VA 20/30). 
The left eye (oculus sinister, OS) showed a near complete loss of 

Table 1  Internal test results on the Johns Hopkins University 
(JHU) dataset and external test results on the Amsterdam University 
Medical Centers (AUMC) dataset, using the ResNet-152 network

JHU

Modality VA category AUC Precision Recall

Infrared only Overall 0.83 0.78 0.77

Snellen 20/40 or better 0.71 0.83

Worse than Snellen 20/40 0.83 0.71

OCT only Overall 0.87 0.76 0.76

Snellen 20/40 or better 0.73 0.75

Worse than Snellen 20/40 0.78 0.76

Combined Overall 0.85 0.83 0.82

Snellen 20/40 or better 0.76 0.89

Worse than Snellen 20/40 0.89 0.76

AUMC

Modality VA category AUC Precision Recall

Infrared only Overall 0.78 0.69 0.63

Snellen 20/40 or better 0.80 0.40

Worse than Snellen 20/40 0.56 0.88

OCT only Overall 0.87 0.79 0.79

Snellen 20/40 or better 0.84 0.74

Worse than Snellen 20/40 0.74 0.84

Combined Overall 0.85 0.77 0.77

Snellen 20/40 or better 0.78 0.78

Worse than Snellen 20/40 0.75 0.75

Three versions of the network were trained and tested: infrared only, OCT only and 
combined image.
AUC, area under the curve; OCT, optical coherence tomography.; VA, visual acuity.
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EZ line in the fovea (Snellen VA 20/80). Our algorithm correctly 
classified OD as Snellen VA 20/40 or better and OS as worse 
than Snellen VA 20/40. The second example in figure 3 shows 
the detection of a functional change over time in a single eye. 

The same eye was evaluated at two successive visits (2.5 years 
apart), over which the Snellen VA decreased from 20/40 to 
20/63. Our algorithm correctly classified the earlier visit as VA 
20/40 or better and the follow-up visit as worse than VA 20/40.

DISCUSSION
The data showed that a DL algorithm can be used to correlate 
structure with function using only cSLO OCT imaging data in 
patients with RP. Specifically, this algorithm was able to predict 
the presence or absence of visual impairment, based on the 
20/40 cut-off that is defined by WHO and generally accepted in 
the USA and internationally. The algorithm appears to be able to 
detect contemporaneous interocular differences in VA, as well as 
temporal changes in VA. The ability of a DL algorithm to predict 
VA based on imaging has also been demonstrated in a recent 
study by Kawczynski et al19 for neovascular AMD. However, the 
current study is, to our knowledge, the first demonstration of 
the application of DL to predict structure-function correlation 
in IRDs.

Our analysis showed that using CIs did not confer additional 
predictive power, as there was no improvement in AUC over 
using OCT images alone. Examination of the gradient-based 
class activation maps in the CIs showed strong activation on the 
OCT side in most images, suggesting that when our deep neural 
network was presented simultaneously with an IR and OCT 
image during training, it tended to ‘learn’ mostly from the OCT 
component. Examination of the gradient-based class activation 
maps in OCT-only images showed strong activation centred on 
the fovea and/or remaining EZ, suggesting that our model was 
learning from OCT features that were biologically meaningful 
and medically relevant. Sample visualisation of correct predic-
tions are shown in figure 4. We have chosen Snellen VA 20/40 as 
the cut-off for the binary classification used in this study because 
this is a functionally meaningful cut-off. Snellen VA 20/40 is the 
cut-off for driver’s license requirements in many European coun-
tries and in most states in the USA.31 Vision worse than 20/40 
has been shown to be a risk factor for limitations in instrumental 
ADL,32 and is often defined as visual impairment in population-
based studies in the USA.33 34

While our study contributes novel information regarding 
the role of DL in functional prediction, other studies have 
looked at DL techniques in RP primarily focusing on disease 

Figure 4  Sample Grad CAM visualisation of correct predictions 
during external testing with the Amsterdam University Medical Centers 
dataset. Top (Snellen 20/40 or better); bottom (worse than Snellen 
20/40).

Figure 2  The receiver operating characteristic curves and 
corresponding confusion matrixes generated from external testing 
on the Amsterdam University Medical Centers (AUMC) dataset. Top 
(infrared); middle (optical coherence tomography); bottom (combined). 
AUC, area under the curve.

Figure 3  Examples of cases in which algorithm-predicted visual 
acuity (VA) correctly identified intereye or intervisit differences in actual 
VA. (A) Images obtained from the same subject at the same visit. Our 
algorithm correctly classified the right eye as ‘Snellen 20/40 or better’ 
(ground truth actual VA: 20/30) and the left eye as ‘worse than Snellen 
20/40’ (ground truth actual VA: 20/80). (B) Images obtained from the 
same eye at visits that were 2.5 years apart. The actual VA decreased 
from Snellen 20/40 to 20/63 over this interval. Our algorithm correctly 
classified the VA at the initial visit as ‘Snellen 20/40 or better’ and the 
subsequent visit as ‘worse than Snellen 20/40’.
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detection, diagnosis and anatomic measurement. Examples 
include measurement of preserved photoreceptors on en face 
OCT,35 measurement of EZ width on OCT B-scans,36 diagnosis 
of RP using colour fundus photographs,37 38 differentiation of 
RP from Best vitelliform macular dystrophy, Stargardt disease 
and healthy controls on SW-FAF39 and to differentiate EYS-
associated RP from ABCA4-associated and RP1L1-associated 
IRD based on OCT imaging.40 While quantitative measurement 
of traditional image-based clinical end points, such as the EZ 
width on OCT B-scans, is useful to track progression in RP, 
DL-based approaches may offer additional advantages such as 
pattern recognition of multiple features, including those that are 
difficult to quantify such as outer retinal hyper-reflective foci41 
and signal hypertransmission due to outer retinal atrophy.

A DL algorithm that can accurately predict VA from OCT 
images could be valuable in terms of clinical care and clinical 
trials for RP. With further optimisation, DL-based OCT analysis 
could be potentially developed into an OCT ‘potential acuity 
metre’ and circumvent the impact of undercorrected refractive 
error, ocular surface disease and media opacity. DL-based OCT 
analysis may also provide data that could potentially support 
clinical management of patients with RP, such as estimating the 
potential VA improvement with cataract surgery. In the realm of 
clinical trials, the sensitivity and specificity of the DL algorithm 
can be adjusted to fit the needs of a particular research goal. 
For example, a high-specificity version of this algorithm can be 
used as a screening tool in clinical trial enrolment to ensure that 
only patients with a VA worse than 20/40 are included. Once 
a DL algorithm has been trained to accurately predict function 
from imaging, additional analyses can be done to identify novel 
imaging biomarkers that correlate with functional outcomes.

The strength of our study lies in the validation of our algo-
rithm by a truly external independent dataset, which was meticu-
lously curated and included only molecularly confirmed patients 
with RP with disease-causing variants. The main weakness of 
our study stems from its retrospective design, in which VA was 
measured in a clinical practice setting and thus lacked prospective 
standardisation and the age of disease onset was not recorded in 
most patients. At this stage of development, our algorithm can 
perform only binary classifications instead of multivalent clas-
sifications, although we picked a VA cut-off that is functionally 
meaningful. Also, the performance of our algorithm declined in 
the presence of additional structural abnormalities other than 
outer retinal atrophy such as significant CME.

These findings support the feasibility of developing a 
DL-based cSLO imaging metric that will correlate with VA in 
RP. In principle, this metric will incorporate multiple physiolog-
ical and pathological anatomical structural features in RP eyes 
in an unbiased manner. Further research will clarify the utility 
of incorporating additional imaging modalities such as SW-FAF, 
and the ability of DL algorithms to predict other aspects of visual 
function that are clinically meaningful. If successfully developed, 
this DL metric could be taken as a unified clinically meaningful 
biomarker that is important in a practical sense to patients with 
RP, and therefore be favourably considered as a quantitative 
surrogate end point in observational or interventional clinical 
trials in RP.

With further optimisation, DL algorithms for structure-
function correlation in RP and other ocular diseases may 
enhance the efficiency of recruitment efforts for clinical trials 
and support clinical decision-making regarding management 
strategies for visual impairment. The ability of this algorithm to 
detect a functional difference between eyes, and over time in 
the same eye, suggest a possible future role in long-term patient 

monitoring and evaluating treated versus control eyes in clinical 
trials. As the next step, we plan to include fundus autofluores-
cence images, more training OCT images with CME, increase 
the size of the training dataset to allow for training of the neural 
network in regression mode to predict the exact VA on a numeric 
scale and to train a model that can predict other important visual 
functions such as the size of the remaining visual field.

CONCLUSIONS
A DL algorithm can discriminate between two levels of VA with 
relatively high sensitivity and specificity, using only a single-
slice transfoveal OCT image as the input data. Specifically, the 
DL algorithm was able to detect visual impairment based on a 
VA cut-off of 20/40. The role of multimodal imaging input in 
improving algorithm performance is unclear at present. These 
data establish the feasibility of predicting structure-function 
correlation based on OCT images in patients with RP.
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