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Short communication 
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A B S T R A C T   

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes mild symptoms in the majority of 
infected individuals, yet in some cases it leads to a life-threatening condition. Determination of early predictive 
biomarkers enabling risk stratification for coronavirus disease 2019 (COVID-19) patients can inform treatment 
and intervention strategies. Herein, we analyzed whole blood samples obtained from individuals infected with 
SARS-CoV-2, varying from mild to critical symptoms, approximately one week after symptom onset. In order to 
identify blood-specific markers of disease severity status, a targeted expression analysis of 143 immune-related 
genes was carried out by dual-color reverse transcriptase multiplex ligation-dependent probe amplification 
(dcRT-MLPA). The clinically well-defined subgroups of COVID-19 patients were compared with healthy controls. 
The transcriptional profile of the critically ill patients clearly separated from that of healthy individuals. 
Moreover, the number of differentially expressed genes increased by severity of COVID-19. It was also found that 
critically ill patients can be distinguished by reduced peripheral blood expression of several genes, which most 
likely reflects the lower lymphocyte counts. There was a notable predominance of IFN-associated gene expression 
in all subgroups of COVID-19, which was most profound in critically ill patients. Interestingly, the gene encoding 
one of the main TNF-receptors, TNFRS1A, had selectively lower expression in mild COVID-19 cases. This report 
provides added value in understanding COVID-19 disease, and shows potential of determining early immune 
transcript signatures in the blood of patients with different disease severity. These results can guide further 
explorations to uncover mechanisms underlying immunity and immunopathology in COVID-19.   

1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
causes mild symptoms in the majority of infected individuals, albeit in 
some cases it requires hospitalization and may lead to a life-threatening 
condition (Gorbalenya et al., 2020; Huang et al., 2020; Wang et al., 
2020a). This single-stranded RNA virus’ S-protein binds to 
angiotensin-converting enzyme 2 (ACE2), which is highly expressed by 
epithelial cells in the lungs but also present in other organs (Hoffmann 

et al., 2020). The coronavirus disease 2019 (COVID-19) pandemic has so 
far led to 4.4 million confirmed deaths (reported to the World Health 
Organization by August 16, 2021), and has put a strain on all layers of 
societies (UN, 2020; WHO, 2021). Critical illness and deaths are mainly 
caused by severe pneumonia with respiratory distress (Gorbalenya et al., 
2020; Huang et al., 2020). A dysregulated immune response with 
excessive inflammation is believed to play an important role in patho
genesis of severe COVID-19 (Laing et al., 2020; Qin et al., 2020; Zhou 
et al., 2020). 
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Older age quickly emerged as the most important risk factor for poor 
outcome, but also male sex, obesity, diabetes mellitus and several other 
co-morbidities are associated with increased risk for severe disease and 
mortality (Rawshani et al., 2021; Williamson et al., 2020). Moreover, 
objective clinical and laboratory parameters, like hypoxemia, low 
lymphocyte counts and high levels of C-reactive protein (CRP), aid in the 
diagnostic and prognostic of the disease (Liu et al., 2020b). Determi
nation of early predictive biomarkers enabling risk stratification for 
COVID-19 patients can inform treatment and intervention strategies. 

Herein, we analyzed whole blood samples obtained from individuals 
infected with SARS-CoV-2, with varying degree of severity, around one 
week after symptom debut for the expression of 143 immune-related 
genes by dual-color reverse transcriptase multiplex ligation-dependent 
probe amplification (dcRT-MLPA) (Haks et al., 2015). The underlying 
premise was to determine early blood transcriptional signatures of dis
ease severity in COVID-19 patients. 

2. Materials and methods 

2.1. Patients and study design 

A total of 50 whole blood samples were selected from a cohort of 
adult individuals at the Department of Infectious Diseases, Sahlgrenska 
University Hospital, Gothenburg, Sweden (Patel et al., 2021). All sam
ples were collected during the period March to May, 2020. Out of these, 
35 displayed symptoms compatible with COVID-19, and were subse
quently PCR-verified as SARS-CoV-2 infected. The peak severity 
COVID-19 symptoms varied from mild (score 2–3, neither treatment nor 
in-patient hospital care) to moderate/severe (score 4–6, requiring 
low-flow nasal oxygen to high-flow nasal oxygen) to critical (score ≥ 7, 
requiring invasive mechanical ventilation or deceased) according to the 
WHO Clinical Progression Scale (Marshall et al., 2020). All blood sam
ples for this study were retrieved before the start of treatment, e.g. 
glucocorticoid administration. The remaining 15 individuals were 
healthy and were tested negative for SARS-CoV-2 by PCR. All clinical 
data were retrieved from the patient records. 

2.2. Sample preparation and gene expression analysis 

2.2.1. Sample collection 
Whole blood samples were collected in PAXgene Blood RNA tubes 

(PreAnalytiX, Qiagen/BD) according to the manufacturer’s recommen
dations. Each tube was filled with a volume of 2.5 ml whole blood, and 
stored at room temperature for a minimum of 2 h before transferred to 
− 70 ◦C. 

2.2.2. RNA isolation 
Total RNAs were isolated from whole blood using the PAXgene Blood 

RNA kit (PreAnalytiX, Qiagen/BD) according to the manufacturer’s 
recommendations. Briefly, the samples were thawed, the cells were 
pelleted and then lysed. The cell content was treated with proteinase K. 
After filtering out cell debris, the flow-through was mixed with ethanol 
to precipitate nucleic acids and added to a spin column, designed to bind 
nucleic acids. The membrane in the spin column was treated with DNase 
I, and the remaining RNAs were eluted in a total volume of 80 μl. The 
whole procedure included several washing steps. Quantification of RNA 
(mean 5.8 μg/sample) and purity (A260/A280 ratio 1.8–2.2) were carried 
out using a NanoDrop-1000 instrument. 

2.2.3. dcRT-MLPA 
For each target sequence, a specific RT primer was designed located 

immediately downstream of the left- and right-hand half-probe target 
sequence. RNA was reverse transcribed to cDNA by incubating at 37 ◦C 
for 15 min, using RT-primer mix and the Moloney Murine Leukemia 
Virus reverse transcriptase kit (Promega). The enzyme was inactivated 
by heating at 98 oC for 2 min. The probes were hybridized to the cDNA at 
60 ◦C overnight and annealed half-probes were ligated at 54 ◦C for 15 
min using ligase-65. The ligase was subsequently inactivated by heating 
at 98 ◦C for 5 min Ligated probes were amplified by PCR (33 cycles at 
95 ◦C for 30 s, 58 ◦C for 30 s and 72 ◦C for 60 s, followed by one cycle at 
72 ◦C for 20 min). To monitor assay performance, substituting RNA with 
nuclease-free water (Thermo Fisher) was used as negative control while 
Human Universal References RNA (Clontech, Palo Alto, CA, USA) and 
synthetic template oligonucleotides as hybridization templates were 
used as positive controls. Primers and probes were from Sigma-Aldrich 

Table 1 
Demographics and clinical characteristics.   

Control Mild Moderate/ 
Severe 

Critical 

n 13 7 10 12 
Female/male, no. 6/7 3/4 2/8 2/10 
Age, mean years 

(range) 
56 (36–80) 46 (30–72) 45 (22–65) 57 (28–80) 

Blood collection, 
mean days since 
symptom onset 
(range) 

– 7 (5–9) 8 (5–9) 7 (4–9) 

Low-flow oxygen, no. – 0 8 0 
High-flow oxygen, 

no. 
– 0 2 1 

Mechanical 
ventilation, no. 

– 0 0 11 

Deceased, no. – 0 0 2 
Co-morbiditya, no. 3 3 8 8 
CRP, mean mg/L 

(range), sampled 
no. 

– 5 (4–8), 3 109 
(38–210), 
10 

257 
(100–420), 
12 

Lymphocytes, mean 
109/L (range), 
sampled no.b 

2.3 
(2.0–2.7), 
4 

1.9 
(1.4–2.2), 
3 

1.1 
(0.5–2.2), 
10 

1.0 
(0.5–1.9), 12  

a Co-morbidity: Chronic lung disease, Chronic kidney disease, BMI > 25, 
Immunosuppressed, Diabetes mellitus type 1/2, Hypertension. 

b Reference: 0.8–4.5 (109/L). 

Fig. 1. OPLS-DA analysis of mRNA expression of immune-related genes in 
COVID-19 patients and in healthy controls. Whole blood samples were 
collected from healthy control subjects (n = 13) and COVID-19 patients 
(n = 29) with varying degree of symptoms. The COVID-19 symptoms were 
classified, based on clinical presentation, as either mild (n = 7), moderate/se
vere (n = 10) or critical (n = 12). Total RNA samples were isolated from the 
blood, converted into cDNA, and profiled by a dual-color Reverse Transcriptase 
Multiplex Ligation-dependent Probe Amplification (dcRT-MLPA) assay that 
targeted 143 immune genes. A supervised global analysis of the mRNA 
expression data was performed with the multivariate analysis tool Orthogonal 
Partial Least Square Discriminant Analysis (OPLS-DA). The OPLS-DA score plot 
explained 68% (R2X) of the variability. The model displays inter-group varia
tion for mild, moderate and severe COVID-19 in relation to healthy controls (x- 
axis) as well as the variability within each group (y-axis). Each data point 
represents one sample and the circles define respective group cluster. 
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and the SALSA MLPA reagent kit from MRC-Holland (Amsterdam, The 
Netherlands). RT primers and half-probes were designed by Leiden 
University Medical Centre (LUMC, Leiden, The Netherlands) (Joosten 
et al., 2012), and comprised sequences for four housekeeping genes and 
143 selected genes to profile the innate, adaptive and inflammatory 
immune responses. PCR products were diluted 1:10 in highly deionized 
formamide (Thermo Fisher) containing 400HD Rhodamine X fluo
rophore size standard (Thermo Fisher). PCR products were denatured at 
95 ◦C for 5 min, stored immediately at 4 ◦C and analyzed on an Applied 
Biosystems 3730 capillary sequencer in GeneScan mode (BaseClear, 
Leiden, The Netherlands). Trace data were analyzed using GeneMapper 
software 5 (Applied Biosystems). The areas of each assigned peak 
(arbitrary units) were exported for analysis in R (version 3.5.1). The 
housekeeping genes included in the analyzes were beta-2-microglobulin 
(B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glucu
ronidase beta (GUSB), and RhoGEF and GTPase activating protein 
(ABR). Data were normalized to GAPDH as it was shown to be the most 
reliable housekeeping gene for whole blood derived RNAs in the assay 
(Haks et al., 2015; Joosten et al., 2012). GeneMapper (Log2 transformed 
peak area 7.64) were used to assign the threshold value for noise cutoff. 
Finally, the normalized data were Log2-transformed for statistical 
analysis. Eight samples were removed from data analysis due to quality 
issues (two from control, four from mild and two from critical). Sample 
number, per group, according to Table 1. 

2.3. Statistics and bioinformatics 

2.3.1. Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) 
and Principal Component Analysis (PCA) 

OPLS-DA is a discriminant version of orthogonal projections to latent 
structures (OPLS) and a modification of traditional projection to latent 
structures (PLS-DA) (Bylesjö et al., 2006; Trygg and Wold, 2002). 
OPLS-DA was used to model and visualize the separation between the 
COVID-19 subgroups and the controls. The models were evaluated using 
the OPLS-DA performance measures R2 and Q2 (the closer to 1, the 
better model performance). Cross-validation ANOVA (CV-ANOVA) was 
used for significance testing for the OPLS models, and as a diagnostic 
tool for assessing the reliability of the OPLS models. ANOVA is a method 
to test if two models are significantly different when fitted to the data 
used for cross-validation. The default SIMCA cross-validation procedure 
is a 7-fold cross-validation. CV-ANOVA for significance testing of PLS 
and OPLS1 models (Bylesjö et al., 2006; Eriksson et al., 2008; Trygg and 
Wold, 2002). The Simca v17 (Sartorius/Umetrics, Goettingen, Ger
many) was used for the analyzes. Further, gene expression variances 
were displayed as PCA plots to highlight similarities and differences 
depending on COVID-19 disease status, age classes (according to the 
United Nation definition: young 18–39 years; middle age 40–60 years; 
and older than 60 years) as well as gender (female/male), using the 
R-packages prcomp, ggfortify and ggplot2 on Log2 transformed data. 

2.3.2. Differential expression analysis 
To illustrate the distribution of gene expression, a heatmap was 

Fig. 2. Pattern of expression for individual immune-related genes in COVID-19 patients and in healthy controls. A heatmap displaying color-coded 
expression levels of genes in healthy individuals and COVID-19 patients with mild, moderate/severe or critical symptoms. The experimental setup is described in 
Fig. 1. The heatmap was created with normalized Log2 transformed dcRT-MLPA data. Only genes with a pre-specified call rate > 80% were included. The heatmap 
was generated by hierarchical clustering on both rows (genes) and columns (groups). The color intensity corresponds to the Z-score that indicates the number of 
standard deviations by which the normalized raw value was below (green) or above (red) the mean value row by row. Black color denotes that the normalized raw 
value coincided with the mean value of that specific gene, while white gaps represent no detectable signal in the dcRT-MLPA assay. 
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created with normalized Log2 transformed dcRT-MLPA data. Of the 143 
genes, 101 showed a pre-specified call rate > 80% and were included. 
The heatmap was generated by hierarchical clustering on both genes and 
groups, using the R-package gplots. Differentially expressed genes in the 
three groups (mild, moderate/severe and critical COVID-19) were 
identified using an unpaired t-test analysis on Log2 normalized data 
compared with controls, using a false discovery rate (FDR) correction. 
All 143 genes were considered for the FDR correction and the signifi
cance cut-off was set to 0.05. The differentially expressed genes were 
visualized using a volcano plot, that displays Log2 fold change against 
-Log10 p-value from the t-tests, using the R-package ggplot2. A Venn 
diagram of the overlapping genes among the groups (only genes with 
FDR-adjusted p-value below p < 0.05 were included) were created using 
the R-package VennDiagram. Differentially expressed genes were then 
visualized in Circos plots generated using CIRCOS v 0.69–6, to demon
strate the similarities and differences between the COVID-19 subgroups 
compared to controls. The R package ggpubr was used to add significance 
levels to box plots comparing the gene expression between COVID-19 
groups. FDR-adjusted P-values < 0.05 were considered statistically 
significant. The R software version 4.0.2 (https://www.r-project.org/, 
The R project, Vienna, Austria) was used for the analyzes. 

3. Results and discussion 

To determine blood-specific markers of disease severity status, a 
targeted expression analysis of 143 immune-related genes was carried 
out on total RNA extracted from whole blood of patients with acute 
COVID-19 and healthy control samples. The disease status varied in the 
COVID-19 cohort, classified as either mild, moderate/severe or critical. 
The blood samples were retrieved approximately one week from the 
onset of illness, which coincides with the onset of clinical aggravation of 
the disease (Huang et al., 2020). The demographics and clinical char
acteristics of the study cohort are summarized in Table 1. The patients 
with a critical condition were approximately ten years older (mean age 
57) than the other two COVID-19 subgroups. A majority of the in
dividuals suffering from either moderate/severe or critical illness were 
male (80% and 76%, respectively). The observed increased vulnerability 
linked to older age and male gender as described by others (Docherty 
et al., 2020; Peckham et al., 2020). In line with previous reports, the 
subgroups moderate/severe and critical COVID-19 had relatively high 
CRP (109 respectively 257 mg/L) and low blood lymphocyte counts (1.1 
respectively 1.0 × 109/L) (Guan et al., 2020; Herold et al., 2020; Huang 
et al., 2020; Yang et al., 2020). Of note, the CRP value and the 
lymphocyte count denote the highest and the lowest recorded value 
during the hospital care, respectively (Table 1). 

The dcRT-MLPA data were first modeled using OPLS-DA, a super
vised statistical multivariate data analysis technique that uses labeled 
groups. The model explained 68% of the variability (R2X = 68%, R2Y =
32%, Q2 = 25%) and was significant according to cross-validation 
ANOVA (p-value = 0.045). The model was significant but of modest 
Q2, most likely due to heterogeneity in study groups. The inter-group 
variation, visualized in the horizontal direction of the score scatter 
plot, revealed that the transcriptional profile of critical COVID-19 pa
tients can be separated from that of healthy controls, while those of mild 
and moderate/severe COVID-19 patients showed close to overlap in the 
model (Fig. 1). The intra-group variation, displayed in the vertical 
dimension, was large for the three COVID-19 patient subgroups. When 
projecting the data in an unsupervised manner (Fig. S1), PCA axis 1 and 
2 explain 68% of the variance. The PCA plot did not show a clear sep
aration between the subgroups, even though a tendency of separation 
could be observed, especially for the critical subgroup. The intra-group 
variation is highlighted in Fig. 2, a heatmap displaying normalized 
expression values for 101 genes that had available data from at least 
80% of the samples. The clustering, based on both genes and subgroups, 
identified varying transcriptional response types within each subgroup. 
This heterogeneity in the transcriptional changes of immune-related 

Fig. 3. Differential expression of immune-related genes in COVID-19 pa
tients with varying degree of symptoms. Volcano plots displaying signifi
cantly regulated genes, in comparison to healthy controls, in individuals with 
(A) mild, (B) moderate/severe and (C) critical COVID-19 symptoms (according 
to Fig. 1). The vertical axis (y-axis) corresponds to the Log10 FDR-adjusted p- 
values, and the horizontal axis (x-axis) displays the Log2 fold change value. The 
vertical dashed line indicates 0 Log2 fold change, and the horizontal dashed line 
represent 1.3–Log10 FDR-adjusted p-value (corresponding to the significant 
threshold of 0.05 FDR-adjusted p-value). Positive x-values represent higher 
expression and negative x-values represent lower expression. The color of the 
dots indicates whether the gene had higher expression (red), lower expression 
(blue) or was unregulated (gray). The abbreviation next to each dot corresponds 
to the gene with significantly changed expression. 

J. Persson et al.                                                                                                                                                                                                                                 



Molecular Immunology 145 (2022) 17–26

21

genes in each clinically well-defined subgroup can, at least in part, be 
explained by the varying impact of SARS-CoV-2 infection in different 
individuals (Mathew et al., 2020). No confounding co-variation was 
observed with regards to age or gender of the infected subjects (Fig. S2A 
and B). 

Despite the variance observed within each subgroup, numerous 
differentially expressed genes showed a statistically significant differ
ence (FDR-adjusted p < 0.05) in COVID-19 patients relative to control 
samples. The number of differentially expressed genes increased by 
severity of COVID-19 (Fig. 3). More specifically, out of the 143 analyzed 
immune-related genes, we found ten genes (three down- and seven up- 
regulated) for mild, eleven genes (nine down and two up) for moder
ate/severe and 27 genes (13 down, 14 up) for critical, to be significantly 
altered in comparison with the control group. 

As shown in Fig. 4, only three differentially expressed genes were 
shared between all of the COVID-19 subgroups, namely IFI6 (interferon 
alpha inducible protein 6), IFITM3 (interferon-induced transmembrane 
protein 3) and NLRP1 (nod-like receptor family pyrin domain containing 
1). The two interferon (IFN) signaling-related genes, IFI6 and IFITM3, 
were found to be expressed higher in all COVID-19 subgroups. These 
genes have previously been suggested as markers for COVID-19 infec
tion (Hachim et al., 2020; Shaath et al., 2020b). NLRP1, which is 
involved in pattern recognition of innate immunity as part of an 
inflammasome, had lower expression. It has recently been reported that 
SARS-CoV-2 can activate double-stranded (ds) RNA-mediated innate 
immune responses (Bauernfried et al., 2021; Li et al., 2021b). It is 
therefore reasonable to speculate that reduced expression of NLRP1, as 
one of the sensors of dsRNA, may provide an innate immune escape 
mechanism for SARS-CoV-2. 

The subgroup displaying mild symptoms had one downregulated 
gene, HCK (hematopoietic cell kinase), in common with the moderate/ 
severe subgroup (Fig. 4). This kinase is specifically expressed by myeloid 
and B-lymphocyte cell lineages, activated by certain inflammatory 
stimuli and can initiate several downstream signaling pathways that are 

involved in immunity to viruses (reviewed in Poh et al., 2015). In 
addition, mild cases had five genes with higher expression, IFI35 
(interferon induced protein 35), IFI44, IFIT2 (IFI with tetratricopeptide 
repeats 2), OAS2 (2’–5’-oligoadenylate synthetase 2) and OAS3, in 
common with the critical subgroup (Fig. 4). The moderate/severe sub
group showed a trend towards upregulation of these five genes, albeit 
not statistically significant (FDR-adjusted p-values 0.066–0.405). This 
can be explained by the observed intra-group variation and the small 
sample size. In order to identify expression patterns within the three 
COVID-19 subgroups more clearly, genes with FDR-adjusted p-val
ues < 0.1 were also marked in the Circos plots (Fig. 5) that have been 
based on gene functionality. The interferon-stimulated genes (IFI35, 
IFI44 and IFIT2) and antiviral restriction enzyme activators (OAS2 and 
OAS3) have recently been reported in association with SARS-CoV-2 
infection (Li et al., 2021a; Pairo-Castineira et al., 2021; Shaath et al., 
2020a; Ziegler et al., 2020). Hence, significantly higher expression of 
interferon-related genes dominates transcriptional changes that 
occurred within a week after COVID-19 symptoms onset (Fig. 5). 

The moderate/severe and the critical subgroup had seven commonly 
down-regulated genes: CCL5 (C-C motif chemokine ligand 5); CD3E 
(cluster of differentiation 3E); CD4; CTLA4 (cytotoxic T-lymphocyte- 
associated protein 4); GATA3 (GATA binding protein 3); PTPRCv1 
(protein tyrosine phosphatase receptor type C transcript variant 1, 
encoding CD45RA); and TAGAP (T cell activation RhoGTPase activating 
protein) (Fig. 4). This gene set is preferentially expressed by T cells 
(Fig. 5) (Connelly et al., 2014; Mao et al., 2004; Takahashi et al., 2000; 
Tian et al., 2017; Van de Walle et al., 2016). It is hence plausible that the 
observed down-regulation of these genes stemmed from the decline in 
peripheral blood lymphocytes, indicated by the reduced CD3E expres
sion which correlated with the observed lymphopenia. There are several 
reports on lymphocytopenia in serious cases of COVID-19 (Guan et al., 
2020; Huang et al., 2020; Yang et al., 2020), with profound T cell losses 
(Laing et al., 2020; Liu et al., 2020b). The reduction of blood lympho
cytes following SARS-CoV-2 infection may for instance be due to 

Fig. 4. Similarities and differences in gene expres
sion patterns of COVID-19 patients with different 
disease severity. A Venn diagram summarizing genes 
with significantly changed mRNA expression (FDR- 
adjusted p-value < 0.05) in COVID-19 patients with 
either mild, moderate/severe or critical symptoms. The 
data presented are based on the results displayed in 
Fig. 3. Each circle represents one group and any unique 
regulated genes can be found in its outer portion, while 
shared regulated genes appear in the intersections be
tween the circles. Red color indicates genes with higher 
expression, while blue color denotes genes with lower 
expression.   
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infiltration and sequestration of these cells in target organs, death due to 
being target cells of the virus and/or because of the burst of 
pro-inflammatory cytokines (Huang and Pranata, 2020; Tan et al., 
2020). It is noteworthy that overexpression of inhibitory checkpoint 
molecules, such as CTLA-4 has been reported during SARS-CoV-2 
infection (Kong et al., 2020; Zheng et al., 2020a). However, the 
expression can apparently be transient in CD4+ T cells and unchanged 
in CD8+ T cells, during the first week (Jeannet et al., 2020). It has also 
been shown that regulatory T cell (FOXP3+) mechanisms are impaired 
in the lung, which may lead to T-cell hyperactivation (Kalfaoglu et al., 
2020). 

Likewise, the lower expression of BCL2 (B-cell lymphoma 2), CCL4, 
CD8A, GNLY (granulysin) and IL7R (interleukin-7 receptor), uniquely 
observed for critical COVID-19, most likely relates to the changes of 
circulating lymphocytes (Figs. 4 and 5). Low expression of the anti- 
apoptotic BCL2 can have a direct effect on cell numbers (Youle and 
Strasser, 2008). It has been described that the SARS-CoV-2 ORF3a pro
tein can induce apoptosis, in cell lines, without any effect on BCL2 
expression levels (Li et al., 2020; Ren et al., 2020). As lymphocytes 
produce the chemokine CCL4 (Eberlein et al., 2020) as well as gran
ulysin, a pore-forming protein involved in chemotaxis (Sparrow and 
Bodman-Smith, 2020), the reduced expression of these genes may be a 

Fig. 5. Functional profile of immune-related genes in the blood of COVID-19 patients. Circos plots displaying expression of all analyzed genes in blood samples 
from COVID-19 samples compared with healthy individuals, as described in Fig. 1. Each quarter of the plot represents one group, controls as well as mild, moderate/ 
severe and critical COVID-19, as indicated. The immune-focused genes were categorized into four main groups: (A) Innate pattern recognition and response; (B) Cell 
functions; (C) Cytokine signaling and immune cell markers; and (D) T cell cytokines and markers. Each of the main gene categories were further subdivided according 
to the outer circle but single genes do not have a subheading. Genes with lower expression are represented by green (p < 0.1) and blue (p < 0.05) lines, while genes 
with higher expression are represented by orange (p < 0.1) and red (p < 0.05) lines. All unregulated genes (p > 0.1) have black lines. 

J. Persson et al.                                                                                                                                                                                                                                 



Molecular Immunology 145 (2022) 17–26

23

direct effect of the lymphopenia. Similarly, the IL7R expression could be 
a direct consequence of the lymphocyte reduction in the blood. This may 
also be due, however, to the state of lymphocyte differentiation during 
COVID-19 as the IL-7R expression varies quite a bit depending on 
whether the T cells are naïve, activated or of memory type (reviewed in 
Mazzucchelli and Durum, 2007). IL-7 treatment has been used to restore 
normal lymphocyte levels in both septic shock (Francois et al., 2018) 
and COVID-19 (Laterre et al., 2020). 

The critical COVID-19 subgroup also uniquely displayed higher 
expression of a few genes: FCGR1A (Fc-gamma receptor 1A); GBP1 
(guanylate-binding protein 1); GBP2, STAT1 (signal transducer and 
activator of transcription 1); and TAP1 (antigen peptide transporter 1) 
(Fig. 4). The expression of the above-mentioned genes is increased in 
response to IFN stimuli (Fig. 5). It is believed that IFNs play a crucial role 
in COVID-19 (Lee et al., 2020; Wilk et al., 2020), as part of the antiviral 
defense, and are, at least in part, responsible for the aggravation during 
the second week of illness (Tincati et al., 2020). The transcription factor 
STAT1 is located downstream in the IFN signaling pathway, and thereby 
involved in the induction of IFN-responsive genes (Darnell et al., 1994). 
The high affinity FcγRI (CD64) is continuously expressed on the surface 

of most myeloid cells and some granulocytes. Upregulation of FcγRI on 
monocytes, macrophages and NK cells enables efficient phagocytosis, 
binding to immune-complexes, antibody-dependent cellular cytotoxicity 
and cytokine secretion during infection (Kårehed et al., 2007; Pearse 
et al., 1991). High levels and/or dysregulation of peripheral 
pro-inflammatory monocytes have been described in COVID-19 patients 
suffering from severe disease (Schulte-Schrepping et al., 2020; Tincati 
et al., 2020). There are also reports of neutrophilia and/or highly active 
NK cells in severely ill COVID-19 patients (Maucourant et al., 2020; Qin 
et al., 2020; Tincati et al., 2020; Wang et al., 2020b). TAP1 is engaged in 
peptide transport for antigen presentation, forming a complex with MHC 
class I molecules (Eggensperger and Tampé, 2015), and hence facili
tating activation of cytotoxic T cells. However, several studies described 
functional exhaustion of cytotoxic lymphocytes during COVID-19 
(Kusnadi et al., 2021; Liu et al., 2020a; Mathew et al., 2020; Zheng 
et al., 2020b). 

The gene TNFRSF1A (tumor necrosis factor receptor superfamily 
member 1A) had selectively lower expression in the subgroup displaying 
mild symptoms (Fig. 4). This finding is of particular interest as 
TNFRSF1A is one of the major receptors for TNF-α, which is believed to 

Fig. 6. Comparative analysis of differentially expressed genes in patients with varying degree of illness. Box plots comparing the expression levels of a set of 
immune-related genes between clinically defined COVID-19 subgroups, according to Fig. 1. The selection was based on the genes found to differ significantly between 
critically ill cases (right) relative to individuals with mild symptoms (left) and/or the subgroup with moderate/severe symptoms (middle). The x-axis displays Log2 
transformed GAPDH-normalized relative gene expression. Each box contains the interquartile range (IQR), quartile 1–quartile 3, and the center line indicates the 
median value. The whiskers mark 1.5 × IQR and data points outside this range represent outliers. The comparisons were performed pairwise with asterisks denoting 
significance level. Differences were considered statistically significant at p values of p < 0.05 (*), p < 0.01(**) and p < 0.001(***). 
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play a pivotal role in the hyperinflammatory response associated with 
more-severe COVID-19 cases (Feldmann et al., 2020). TNF-α has been 
identified to independently predict patient outcomes (Del Valle et al., 
2020), and TNF-α inhibitors were reported to protect against severe 
forms of COVID-19 (Brito et al., 2021; Robinson et al., 2020). It is to be 
expected that the level of TNF-α signaling would be influenced by re
ceptor availability. Several viruses actually have the capacity to down
regulate TNFRAF1A (Rahman and McFadden, 2006). There is no 
previous report, to our knowledge, that describes stratification of 
COVID-19 patients based on TNF-α receptor expression. 

In order to pinpoint what distinguishes the individuals in need of 
hospitalization from outpatients, gene expression profile was compared 
between the COVID-19 patient subgroups. A set of 15 immune-related 
genes was found to differ significantly between the two extremes, 
namely critically ill individuals and those with mild symptoms (Fig. 6). 
All but three genes (FCGR1A, TAP1 and TLR2) displayed lower 
expression in the critical subgroup. For most of the genes, the expression 
pattern in the moderate/severe subgroup resembled that of critical 
cases, with three exceptions (CCL5, TAP1 and TLR2). The genes 
expressed to a lesser extent in more-severe disease can presumably be 
explained by the decline in circulating lymphocytes. The high expres
sion of FCGR1A and TLR2 may probably be linked to the level/activa
tion states of monocytes and NK cells found in peripheral blood of 
patients with critical SARS-CoV-2 infection as a feature of the docu
mented imbalanced immune response to SARS-CoV-2 (Maucourant 
et al., 2020; Qin et al., 2020; Schulte-Schrepping et al., 2020; Tincati 
et al., 2020; Wang et al., 2020b; Zhou et al., 2020). 

In summary, we found numerous differentially expressed immune- 
related genes in acute COVID-19 patients compared with healthy con
trols, although heterogeneity in the transcriptional profile was observed 
within each of the clinically well-defined subgroup. Our results propose 
that critical COVID-19 patients can be distinguished by reduced pe
ripheral blood expression of several T-cell-associated genes, which most 
likely relates to the lower lymphocyte counts, observed in this study and 
reported in other studies (Guan et al., 2020; Herold et al., 2020; Huang 
et al., 2020; Yang et al., 2020). There was also a notable dominance of 
IFN-associated genes in critically ill COVID-19 patients, a majority dis
played higher expression, but several of these gene expression patterns 
could also be observed in less severely ill patients. Interestingly, the 
expression of the gene encoding one of the main TNF-receptors, 
TNFRS1A, was selectively lower in mild COVID-19 patients. Although 
it needs validation in larger COVID-19 patient cohorts, TNFRS1A could 
potentially help stratify COVID-19 patients. We are however aware that 
the limited sample size in the patients’ subgroups could represent a 
limitation of this study. 

Whole genome transcriptomics analyses of blood samples from 
COVID-19 patients have recently been reported (Aschenbrenner et al., 
2021; Monaghan et al., 2021; Ng et al., 2021; Pairo-Castineira et al., 
2021). However, our highly quantitative assessment of 143 
immune-related genes by dcRT-MLPA method provides added value and 
can help inform determination of early immune transcript signatures in 
the blood of COVID-19 patients with different disease severity. These 
results warrant further exploration to uncover mechanisms underlying 
immunity and immunopathology in COVID-19. 
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Horne, A., Gemünd, I.D., Rovina, N., Agrawal, S., Dahm, K., van Uelft, M., Drews, A., 
Lenkeit, L., Bruse, N., Gerretsen, J., Gierlich, J., Becker, M., Händler, K., Kraut, M., 
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