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Abstract: Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant
BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia
coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection
and immunogenicity compared to BCG in a murine TB infection model. To further investigate the
immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced
by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections
of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The
rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes
such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels
of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2
macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1,
SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue
repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of
immune responses induced in human macrophages by rBCG-LTAK63 associated with increased
inflammation, activation, and tissue repair, which may be correlated with a protective immune
response against TB.

Keywords: tuberculosis; BCG vaccination; recombinant BCG; gene expression profiling; cytokine
profiling; primary human macrophages; immune response

1. Introduction

Tuberculosis (TB) is still a public health problem and is one of the top 10 causes of
death in the world. The COVID-19 pandemic has reversed years of progress in providing
essential TB services and reducing TB disease burden. There was a large global drop in
the number of people newly diagnosed with TB and reported in 2020 as compared with
2019; this fell from 7.1 million in 2019 to 5.8 million in 2020. Consequently, infected and
non-diagnosed patients did not receive treatment, resulting in an increase in the number
of people who died from TB in 2020. There were an estimated 1.3 million deaths among
HIV-negative people and an additional 214,000 deaths among HIV-positive people [1]. The
BCG vaccine does not sufficiently prevent pulmonary tuberculosis in adults [2]; thus, new
prevention or treatment strategies are required to control the infection spread, and these
are part of the main goals of the World Health Organization’s End TB Strategy [1].
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There are several factors that contribute to the success of Mycobacterium tuberculosis
(Mtb) as the main cause of TB. One of them is that this pathogen employs several mecha-
nisms to evade induced immune responses [3]. Classically, it is known that Mtb primarily
infects macrophages and can inhibit phagosome maturation by arresting phagosome–
lysosome fusion to ensure intracellular survival within these innate immune cells [4].
Furthermore, it has been reported that Mtb can modulate the microenvironment of the
initial immune response, reprogram macrophages, and delay antigen presentation [5].
Macrophages are heterogeneous cells that have originally been subdivided into classically
activated M1 macrophages and alternative activated M2 macrophages as being the polar
ends of a complex polarization spectrum. They have been described to differ in terms of
receptors, cytokine and chemokine expression, and effector functions. M1 macrophages are
mainly involved in microbicidal and inflammatory mechanisms, while M2 macrophages
are predominantly engaged in immunomodulatory and tissue homeostatic activities. How-
ever, macrophages are highly plastic innate immune cells, and depending on available
environmental stimuli, M1 macrophages can redifferentiate into M2 cells or vice versa [6–9].

The innate immune response is important for the development of an effective adaptive
immune response, which can display immunological memory. Moreover, in recent years,
studies on innate immunity and patterns of macrophage activation have gained more
attention, and they play an important role in the development of new vaccine strategies
against TB [10]. The rBCG-LTAK63 strain, one of the next-generation TB vaccine candidates
based on Bacillus Calmette–Guérin (BCG) [11], was previously shown to confer enhanced
protection against an intratracheal challenge with Mtb in mice as compared to BCG [12].
The rBCG-LTAK63 strain takes advantage of the adjuvant properties of LTAK63. The
heat-labile Escherichia coli enterotoxin and its derivatives have a broad spectrum of adjuvant
properties, which can improve the innate and adaptive immune responses [13,14]. These
results indicate the potential of rBCG-LTAK63 as a vaccine candidate. In order to move
forward towards clinical applications, we have recently constructed an unmarked strain
of rBCG expressing LTAK63 through auxotrophic complementation. The BCG auxotroph,
obtained by the CRISPR/cas9 approach, was transformed with a complementation vector
expressing the antigen without an antibiotic resistance marker [15]. This strain will be
suitable for clinical studies.

Additional investigation showed that the immunization of mice with the rBCG-
LTAK63 strain increased the recruitment of neutrophils, macrophages, and lymphocytes,
and induced enhanced innate and long-term adaptive immune responses. In addition, in-
creased levels of mediators and effectors of macrophage activation, such as nitric oxide, hy-
drogen peroxide, and inflammatory cytokines, were observed in rBCG-LTAK63-immunized
animals [16].

To further investigate the immune mechanisms induced by rBCG-LTAK63, and rein-
force its potential as a human vaccine, we explored and compared the immune responses
induced by rBCG-LTAK63, BCG, and Mtb H37Rv strains in an in vitro infection model of
primary human M1 and M2 macrophages. Macrophage responses in both cell subtypes
were analyzed based on gene expression and cytokine secretion profiles.

2. Materials and Methods
2.1. Culture of Primary Human-Monocyte-Derived Macrophages

Buffy coats were obtained from healthy donors after written informed consent (San-
quin Blood Bank, Amsterdam, The Netherlands). Monocytes were isolated from buffy coats
by FICOLL separation and CD14 MACS sorting (Miltenyi Biotec, Teterow, Germany). The
isolated CD14+ cells were subsequently cultured in Gibco Roswell Park Memorial Institute
(RPMI) 1640 medium (Gibco, Life Technologies, Paisley, UK) containing 10% FBS, 2 mM
L-alanyl-L-glutamine (PAA, Linz, Austria), and either 5 ng/mL granulocyte–macrophage-
colony stimulating factor (GM-CSF, BioSource Life Technologies-Invitrogen, Waltham, MA,
USA) to generate M1 macrophages or 50 ng/mL macrophage-colony stimulating factor
(M-CSF, R&D Systems, Abingdon, UK), to generate M2 macrophages [17,18]. Following
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differentiation for 6 days at 37 ◦C/5% CO2, macrophages were harvested using Trypsin
(Sigma-Aldrich®, Merck KGaA, St. Louis, MO, USA) and scrapping and analyzed by flow
cytometry for the expression of cell surface markers CD14, CD11b, and CD163.

2.2. Bacterial Culture and Macrophage Infection

All experimental procedures were performed according to local and national guide-
lines for working with pathogenic mycobacteria. Mycobacterium bovis BCG Moreau strain
was used to generate the recombinant rBCG-LTAK63 strain, as previously described [12].
BCG wild-type, rBCG-LTAK63, and Mtb H37Rv strains were grown in Middlebrook 7H9
medium (MB7H9) (Difco, Detroit, MI, USA) supplemented with albumin–dextrose–catalase
broth (ADC) (BBL, Cockeysville, MD, USA) and 0.05% Tween 80 (Sigma Chemical Co.,
St. Louis, MO, USA) (MB7H9/ADC/Tw) and 20 µg/mL kanamycin (for rBCG-LTAK63).
Cultures were incubated at 37 ◦C with 5% CO2 until they reached an optical density of 1.0
at 600 nm (OD600).

One day before infection, M1 and M2 macrophages were plated in either 48= or 96-well
plates at a density of 1 × 105 cells/well. In addition, mycobacterial cultures were diluted to
a density corresponding to early log-phase growth OD600 of 0.4. On the day of infection,
M1 and M2 macrophage cultures were inoculated with 100 µL of rBCG-LTAK63, BCG, or
Mtb H37Rv (multiplicity of infection (MOI) = 10) and incubated at 37 ◦C with 5% CO2 for 1,
24, or 48 h, as indicated.

2.3. Intracellular Mycobacterial Survival Assay

Macrophages were infected with mycobacterial strains for 1, 24, or 48 h. At each time
point, the supernatant was removed, and cells were washed with RPMI containing a high
gentamicin concentration (50 µg/mL), followed by incubation for 2 h with RPMI containing
a low gentamicin concentration (5 µg/mL) to eliminate extracellular bacteria. Then, the
supernatant was removed, and cells were lysed using H2O containing 0.05% SDS. Serial
dilutions were plated on Middlebrook 7H10 medium (MB7H10) (Difco, Detroit, MI, USA)
supplemented with oleic–albumin–dextrose–catalase broth (OADC) (BBL, Cockeysville,
MD, USA) and 20 µg/mL kanamycin for rBCG-LTAK63. After 14 days, colony-forming
units (CFUs) were counted.

2.4. RNA Extraction, dcRT-MLPA Assay, and Data Analysis

Macrophages were infected with mycobacterial strains for 24 or 48 h. At each time
point, infected cells were collected in 350 µL of Trizol (Life Technologies-Invitrogen), and the
RNA was isolated according to the manufacturer’s protocol. Briefly, cells were incubated
for 5 min at room temperature (RT). Chloroform (70 µL) was added, and the mixture was
centrifuged for 15 min at 12,000× g at 4 ◦C. The aqueous phase was transferred to a 1.5 mL
microcentrifuge tube. Isopropanol (175 µL) was added and incubated for 20 min at RT.
The samples were spun for 10 min at 12,000× g at 4 ◦C, and the RNA pellets were washed
twice with 1 mL of ethanol 75% before being dissolved in RNase-free H2O (12 µL). The
concentration of RNA was measured using a Nanodrop, and the RNA was stored at−80 ◦C
until downstream processing.

Dual-color reverse transcriptase multiplex ligation-dependent probe amplification
(dcRT-MLPA) was performed as described previously [19,20]. Briefly, for each target-
specific sequence, a specific RT primer was designed to hybridize immediately downstream
of the left- and right-hand half-probe target sequence. Following reverse transcription of
100 ng RNA (M1 macrophages) or 25 ng RNA (M2 macrophages) using MMLV reverse
transcriptase (Promega, Leiden, the Netherlands), left- and right-hand half-probes were
hybridized to the cDNA at 60 ◦C overnight. Annealed half-probes were ligated and
subsequently amplified by PCR (33 cycles of 30 s at 95 ◦C, 30 s at 58 ◦C, and 60 s at
72 ◦C, followed by 1 cycle of 20 min at 72 ◦C). Primers and probes used were from Sigma-
Aldrich and MLPA reagents from MRC Holland (Amsterdam, the Netherlands). PCR
amplification products were diluted 1:10 in HiDi formamide (Thermo Fisher Scientific,
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Waltham, MA, USA) containing GeneScan 400HD ROX (Applied Biosystems, Waltham, MA,
USA) size standard and were analyzed on an Applied Biosystems 3730 capillary sequencer
in GeneScan mode (Baseclear, Leiden, the Netherlands). Trace data were analyzed using
GeneMapper software package 5.0 (Applied Biosystems/Life Technologies). The areas of
each assigned peak (in arbitrary units) were exported for further analysis in Microsoft Excel
spreadsheet software. Signals below the threshold value for noise cutoff in GeneMapper
(log2-transformed peak area ≤7.64) were assigned to the threshold value for noise cutoff.
Following normalization of the data to the average signal of housekeeping gene GAPDH,
signals below the threshold value for noise cutoff in GeneMapper were again assigned the
threshold value for noise cutoff. Primers and probes of 43 preselected immune-associated
genes were designed by Leiden University Medical Center (LUMC). The fold change was
calculated by comparing infected and uninfected macrophages for all genes, and statistical
analysis was performed as indicated.

2.5. Cytokine Production

Macrophages were infected with mycobacterial strains, and the supernatant was col-
lected 48 h after infection. Production of the following cytokines were measured using the
multiplex cytokine assay, Milliplex (Merck Millipore, Burlington, MA, USA) according to
the manufacturer’s protocol: IL12(p70), TGF-α, MCP-3, MDC, TNF-β, Eotaxin, Fractalkine,
SCD40L, IL-1α, IL-2, IL-4, IL-3, IL-5, IL-9, IL-10, IL-15, IL-17, IFN-γ, IP-10, TNF-α, IL-1β,
IL-6, IL12(p40), IL-7, IL-13, IFNA2, TGF-α, EGF, VEGF, FGF-2, PDGF-AA, PDGF-AB-BB,
FLT-3L, G-CSF, GM-CSF, RANTES.

2.6. Statistical Analysis

Statistical significance was determined by paired Student’s t-test or repeated-measures
(RM)-ANOVA with p ≤ 0.05 or indicated p-value, as described in the figure captions.
GraphPad Prism (version 7.02, Prism, La Jolla, CA, USA) was used for statistical analysis.

3. Results
3.1. Intracellular Survival of rBCG-LTAK63 in M1 and M2 Macrophages Is Comparable to BCG

To investigate the survival of the rBCG-LTAK63 strain in M1 and M2 macrophages in
comparison with BCG, intracellular mycobacteria were recovered at different time points
post-infection and counted by CFU. The CFU recovered from M1 and M2 macrophages
infected with rBCG-LTAK63 was comparable to those infected with BCG (Supplementary
Figure S1A), indicating similar survival and growth rates. Furthermore, the expression of
the vector containing the LTAK63 gene was stable in both macrophage subsets over 48 h
(the latest time point in our human in vitro infection model), as demonstrated by similar
CFU counts of rBCG-LTAK63 in the presence or absence of kanamycin (Supplementary
Figure S1B).

3.2. M1 Macrophages Infected with rBCG-LTAK63 Display Marked Upregulation of Genes
Associated with the IFN Signaling Pathway

The gene expression profiles of 43 immune-associated genes were evaluated by dcRT-
MLPA in macrophages infected with BCG, rBCG-LTAK63, or Mtb H37Rv (Supplementary
Figure S2, Figure 1B). At 24 h post-infection, 22 DEGs were identified in M1 macrophages in-
fected with rBCG-LTAK63 (compared to uninfected controls), while 19 DEGs were identified
in BCG-infected M1 cells, and 17 of these DEGs were found to be in common (Figure 1A).
Interestingly, a large set of interferon (IFN)-signaling genes was more profoundly induced
in rBCG-LTAK63-infected M1 as compared to either BCG- and Mtb-infected M1 (Figure 1B,
Supplementary Table S1). The IFIT3 and OAS3 genes were significantly upregulated when
rBCG-LTAK63 was compared to BCG-infected M1. CXCL9, an antimicrobial gene, was also
significantly upregulated in rBCG-LTAK63-infected M1 as compared to BCG-infected M1
macrophages (Figure 1C).
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Figure 1. M1 macrophages infected with rBCG-LTAK63 display marked upregulation of genes
associated with IFN signaling pathway. M1 macrophages from 4 different donors were infected
with rBCG-LTAK63, BCG, or Mtb H37Rv, and transcriptomic profiles were determined at 24 h post-
infection by dcRT-MLPA. (A) Venn diagram displaying the number of differentially expressed genes
(p < 0.05) identified in rBCG-LTAK63- or BCG-infected M1 macrophages (fold change in relation
to uninfected M1 macrophages). (B) Heat map showing fold changes in expression profile of the
43 immune-related genes in M1 macrophages in response to infection with rBCG-LTAK63, BCG, or
Mtb H37Rv. (C) Differentially expressed genes (p < 0.05) in rBCG-LTAK63-infected M1 macrophages
when compared to BCG-infected M1 cells. Statistical significance was determined by paired Student’s
t-test. Significant differences were observed as indicated * p < 0.05.
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3.3. BCG Induces Downregulation of an Inflammatory Gene Profile in M2 Macrophages, While
rBCG-LTAK63 Maintains or Induces Upregulation for 48 h

In contrast to M1 macrophages, only very few DEGs could be identified in mycobacteria-
infected M2 macrophages at 24 h post-infection compared to uninfected controls
(Supplementary Table S2, Figure 2B). Nevertheless, similar to M1, IFN-signaling genes
were more profoundly induced in rBCG-LTAK63-infected M2 compared to either BCG- or
Mtb-infected M2. Moreover, the IFN-signaling TAP1 and GBP1 genes were found to be
significantly upregulated in rBCG-LTAK63-infected M2 when compared to BCG-infected
M2 macrophages (Figure 2B,C). After 48 h, 9 DEGs could be identified in M2 macrophages
infected with rBCG-LTAK63 (compared to uninfected controls), while 2 DEGs could be
identified in M2 macrophages infected with BCG, which were DEGs in common with
rBCG-LTAK63-infected M2 (Figure 2A). Of note, at 48 h post-infection, BCG-infected M2
macrophages had predominantly downregulated inflammatory-correlated genes, while
rBCG-LTAK63 infection maintained or further upregulated inflammatory-associated tran-
scripts. Expression of the genes, TNIP1, SLAMF7, and IL6 was upregulated and CD14
and HCK genes downregulated when rBCG-LTAK63 was compared to BCG-infected M2
macrophages (Figure 2C).
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BCG, or Mtb H37Rv, and transcriptomic profiles were determined at 24 h and 48 h post-infection by
dcRT-MLPA. (A) Venn diagram displaying the number of differentially expressed genes (p < 0.05)
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identified in rBCG-LTAK63- or BCG-infected M2 macrophages at 48 h (fold change in relation to
uninfected M2 macrophages). (B) Heat map showing fold changes in expression profile of the
43 immune-related genes in M2 macrophages in response to infection with rBCG-LTAK63, BCG, or
Mtb H37Rv for 24 h or 48 h. (C) Differentially expressed genes (p < 0.05) in rBCG-LTAK63-infected M2
macrophages compared to BCG-infected M2 macrophages. Statistical significance was determined by
paired Student t-test. Significant differences were observed as indicated * p < 0.05.

3.4. M1 and M2 Macrophages Infected with rBCG-LTAK63 Display Increased Production of
Inflammatory Cytokines

Cytokines are mediators and effector molecules of immune responses against pathogens.
We evaluated the production of cytokines associated with inflammatory responses, cell
growth, and repair in the culture supernatants of M1 and M2 macrophages infected with
rBCG-LTAK63 or BCG at 48 h post-infection, or uninfected macrophages as a control.

Overall, the levels of secreted cytokines in rBCG-LTAK63-infected M1 macrophages
clearly surpassed the levels observed in BCG-infected M1. Furthermore, the production of
IL-17A, IFNA2, TNF-α, Fractalkine, IL-10, VEGF, and FLT3L was strongly induced in both
rBCG-LTAK63- and BCG-infected M1 when compared with uninfected M1 macrophages
but, more interestingly, the production of IL-15 and proinflammatory cytokines IL-12(p70)
and TNF-β was significantly higher in rBCG-LTAK63- compared to BCG-infected M1
macrophages (Figure 3).
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Figure 3. M1 macrophages infected with rBCG-LTAK63 display higher secretion levels of inflamma-
tory cytokines. M1 macrophages derived from 4 different donors were infected with rBCG-LTAK63
or BCG for 48 h and the supernatants were analyzed for cytokine production by Luminex and com-
pared to uninfected control cells. Statistical significance was determined by RM—ANOVA (p < 0.05).
Significant differences were observed as indicated * p < 0.05, ** p < 0.01.

Similar to M1-infected cells, overall, the levels of secreted cytokines in rBCG-LTAK63-
infected M2 macrophages exceeded the levels observed in BCG-infected M2 (Figure 4). The
production of MCP-3 and EGF was higher in rBCG-LTAK63 when compared with BCG-
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infected M2 macrophages; the production of IFN-γ was higher only when rBCG-LTAK63
was compared with uninfected M2 macrophages; and the production of IL-6, IL-9, IL-7,
Fractalkine, TGF-α, and IL-12 (p70) was higher in rBCG-LTAK63 or BCG when compared
with uninfected M2 macrophages.
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4. Discussion

In order to uncover the immunological mechanisms or pathways activated by rBCG-
LTAK63 in human cells and in more depth, we investigated the gene expression profiles
induced in infected primary human macrophages. Since the expression of heterologous
proteins in bacteria can be influenced by several factors in both in vivo and in vitro condi-
tions [21–23], we first demonstrated that the recombinant strain is stable during infection
of primary human macrophages.

Compared to BCG-infected M1 cells, the rBCG-LTAK63-infected M1 macrophages
displayed stronger upregulation of IFIT3 and OAS3 genes, which are part of the IFN
signaling pathway. The role of the IFN signaling pathway is complex, as it can both be
beneficial or harmful to the host, depending on the experimental context [24]. The IFIT3
gene is part of the interferon-induced proteins with tetratricopeptide repeats (IFITs) family,
strongly induced due to activation of type I IFN [25]. Initially, the role of this gene was
described in antiviral defense, as well as in the activation of several components of the IFN
signaling pathway [24]. However, it has also been described to be positively regulated in
bacterial infections, such as mycobacteria infections [26–29].

Expression of IFIT family genes depends on pattern recognition and the JAK-STAT
pathway. Pathogen-associated molecular patterns (PAMPs) are molecules associated with
different groups of pathogens, including viruses, bacteria, fungi, and others. Pattern
recognition receptors (PRRs) recognize different PAMPs during infection by pathogens
and activate signaling molecules. As a result, activation of receptors known as Toll-like
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(TLRs) and RIG-like receptors (RLRs) induce gene expression of the IFIT family [25]. The
IFIT3 gene has been described as a protective molecule against virus infection [27]. It has
been reported that upon viral or bacterial infection, the IFN signaling activation induces
the production of the 2′-5′-oligoadenylate synthetase (OAS) family [30], which includes
the OAS3 gene, that was upregulated by infection with rBCG-LTAK63. The role of the
OAS family in bacterial infections is not well defined yet. However, it has been reported to
induce intracellular survival of mycobacteria, IFN secretion, and autophagy [31].

Another gene significantly upregulated by infection with rBCG-LTAK63 compared to
BCG is the IFN-induced monokine-encoding gene, CXCL9, that is induced in response to
IFN-γ and induces inflammation together with recruitment of activated lymphocytes [32,33].
CXCL9 is a pleiotropic molecule involved in innate and adaptive immune response mecha-
nisms [34–36].

The higher protein secretion levels of IL-12(p70), TNF-β, and IL-15 displayed in
rBCG-LTAK63-infected M1 are in agreement with the findings at the transcriptomic level
in that infection with rBCG-LTAK63 enhanced the inflammatory and activated cellular
immune response profile compared to BCG-infected M1 macrophages. IL-12(p70) is a
proinflammatory cytokine that has been described to have an important role in the control
of mycobacterial infections [37–39]. The proinflammatory cytokines, TNF-β and TNF-α,
are homotrimers, and they have similar structures and functions [40,41]. It has also been
reported that mycobacteria-infected macrophages secrete IL-15 [42]. It is mainly produced
by macrophages and dendritic cells and acts in the recruitment of T lymphocytes, stim-
ulating CD4 T cells [43] and specific subpopulations of memory lymphocytes, such as
CD8 T cells [44,45]. In support of a possible role for IL-15 during rBCG-LTAK63 vacci-
nation, we have previously shown that rBCG-LTAK63 induces CD4+ and CD8+ T cells
in vivo [16]. However, the induction of memory and activation markers for T cells still
need to be evaluated.

It is interesting to note the unique feature of the rBCG-LTAK63 induced transcriptomic
signature, which separates it from BCG and Mtb, and which involves the strong induction
of a large set of IFN signaling genes. Although excessive inflammation may be damaging
to the host [46], it is evident that neither BCG nor Mtb induces an immune response that
effectively eliminates Mtb. On the other hand, our previous results have shown that
immunization with rBCG-LTAK63 induced reduced immunopathology in Mtb-infected
mouse lungs [16]. Therefore, our results suggest that the superior induction of IFN signaling
genes/proinflammatory cytokines by rBCG-LTAK63 correlates with, and may at least partly
explain, the improved protection in mice.

Since M2 macrophages usually have an immunomodulatory phenotype, a different
gene signature and cytokine production profile would be expected. While genes asso-
ciated with an inflammatory profile were rapidly upregulated in mycobacteria-infected
M1 macrophages (within 24 h), mycobacteria-infected M2 macrophages showed only few
DEGs 24 h post-infection. Substantially more DEGs were identified at 48 h post-infection,
suggesting that the default immunomodulatory profile of M2 macrophages delays the
switch towards an inflammatory profile.

In M2 macrophages, genes associated with an inflammatory profile were more ex-
tensively upregulated by infection with rBCG-LTAK63, compared to infection with BCG,
including the TAP1 and GBP1 genes, which are both part of the IFN signaling pathway.
TAP1—transporter associated with antigen processing-1—is important for MHC-I function
and has a key role in adaptive immunity [47,48]. GBP1—guanylate-binding protein-1
precursor—is part of the IFN-induced GTPase family. This protein is associated with protec-
tion against bacterial infections, host defense, and intracellular pathogen killing, including
mycobacteria [49–52].

The levels of expression of the TNIP1, SLAMF7, and IL6 genes were also higher in M2
infected with rBCG-LTAK63 when compared to BCG. TNIP1 is one of the major regulators
of the NF-Kβ signaling pathway and is implicated in cell inflammation [53]. A wide
repertoire of functions is suggested for TNIP1, including modulation of cellular activation
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and enhancement of CD4 T-cell levels [54]. IL-6 is a pleiotropic cytokine, secreted by a
variety of cell types, playing a role in inflammation, response to infections, and repair
of cellular tissues [55]. SLAMF7 is a receptor present in NK cells and is related to cell
activation [56,57]. Furthermore, the cytokine MCP-3 was produced at elevated levels in
M2 macrophages infected with rBGC-LTAK63. The chemokine MCP-3 is structurally and
functionally similar to MCP-1, and both are potent monocyte chemoattractants for T cells
and NK cells [58]. On the whole, these results could suggest that rBCG-LTAK63 activated
M2 cells may have a role in signaling to NK and CD4 T cells; however, the involvement
of NK cells has not been investigated. The cytokine EGF was produced at elevated levels
in M2 macrophages infected with rBGC-LTAK63 as compared to those infected with BCG.
Epidermal growth factor (EGF) promotes proliferation, differentiation, survival, and repair
in several cell types [59].

In conclusion, rBCG-LTAK63, when compared to BCG, induced a dominant inflamma-
tory profile in M1 macrophages, while a combined inflammatory and repair profile was
induced in M2 macrophages. In this study, we used three different mycobacterial strains:
Mtb H37Rv, a virulent strain; BCG, the current attenuated strain used as a vaccine for TB;
and the rBCG-LTAK63, a recombinant BCG strain that has been shown to confer increased
protective properties against TB in a murine TB challenge model. In general, we observed
only few differences between the attenuated BCG and the virulent Mtb strains, but this
is in agreement with other studies that have shown that infection, even with inactivated
pathogens, is able to activate immune responses [60]. Although this underlines the com-
plexity of understanding the immune mechanisms related to pathogenicity or protection
induced by mycobacteria, we clearly found distinct transcript and protein secretion profiles
in human macrophages infected with rBCG-LTAK63 compared to cells infected with either
BCG or Mtb. Previously, rBCG-LTAK63 vaccination was shown to increase the recruitment
of neutrophils, macrophages, and lymphocytes and induce enhanced innate immune re-
sponse with higher levels of mediators of macrophage activation (nitric oxide, hydrogen
peroxide, and inflammatory cytokines) in vivo in a murine TB infection model [16]. Here,
our data in human in vitro infection models indicate an important immunological pro-
file induced in human macrophages by rBCG-LTAK63 (Figure 5) that can be correlated
with a protective immune response against TB. Further studies will be needed to confirm
this hypothesis.

The distinct immunological profiles induced in human macrophages indicate that the
mechanism of protection may be different from BCG and the currently studied vaccines,
reinforcing the potential of rBCG-LTAK63 as a vaccine candidate.
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